搜档网
当前位置:搜档网 › VEGF_C真核表达载体的构建及蛋白表达

VEGF_C真核表达载体的构建及蛋白表达

VEGF_C真核表达载体的构建及蛋白表达
VEGF_C真核表达载体的构建及蛋白表达

V EGF2C真核表达载体的构建及蛋白表达

丁凯阳,白 霞,董宁征,余自强,阮长耿

(苏州大学附属第一医院,江苏省血液研究所,江苏苏州215006)

摘要:目的 构建人血管内皮生长因子(V EGF2C)编码序列基因真核表达载体,为探讨V EGF2C的生物学功能奠定基础。方法 根据已公布的序列设计引物,用PCR方法从肿瘤细胞株cDNA中扩增出人V EGF2C编码序列基因片段,测序正确后用限制性内切酶将目的片段插入PcDNA3.1/V52His2TOPO载体中。采用酶切和PCR鉴定后通过脂质体介导转染至CHO细胞中进行瞬时表达。结论 经RT2PCR扩增转染细胞cDNA和Western blotting 检测证实重组质粒pcDNA3.12V EGF2C能在宿主细胞中高效表达。

关键词:血管内皮生长因子2C;聚合酶链反应;真核表达

中图分类号:R34 文献标识码:A 文章编号:1673-0399(2005)02-0234-04

The Construction and Expression of Eukaryotic Expression V ector H arboring

H omo Sapiens V ascular Endothelial G row th F actor2C G ene

DIN G Kai2yan,BA I Xia,DON G N i ng2z hen,et al

(Institute of Hematology,the First Hospital Affiliated to Suzhou University,Jiangsu Suzhou215006,China)

Abstrct:Objective To study the biological activity of V EGF2C,and to consbuct eukaryotic ex2 pression vectors harboring homo sapiens V EGF2C gene was constructed.Methods The human V EGF2C cDNA was amplied from the pancreatic cancer cell line A549by PCR and the PCR products which was in line with the reported human V EGF2C gene were inserted into eukaryotic expression vectors PcD2 NA3.1/V52His2TOPO by enzyme restriction and ligation.Methods The recombinant expression plasmid was transfected into CHO cells and the transient expression product was analyzed by Western blotting.Conclusion The results demonstrated that the eukaryotic expression vector PcDNA3.1/V52 His2TOPO2V EGF2C was successfully constructed and can express its corresponding protein efficiently, which provides a basis for the further study of biological function of human V EGF2C.

K ey w ords:V EGF2C;PCR;eukaryotic expression

血管/淋巴管新生是生物体重要的生理或病理过程。血管/淋巴管新生在恶性肿瘤进展和浸润转移过程中发挥着重要作用。血管内皮生长因子家族(V EGFs:V EGF2A,B,C,D,E,PIGF)和它们的受体是已知的一类最重要的促血管/淋巴管新生的蛋白分子。近年来V EGF2C/V EGFR22,3信号通路可促进结合血管/淋巴管新生,在血液肿瘤中的作用受到越来越多的关注。因而我们构建人V EGF2C真核表达载体并通过脂质体介导转染至中国仓鼠卵巢(CHO)细胞进行瞬时表达。为进一步研究V EGF2C 在血液肿瘤中作用奠定基础。1 材料与方法

1.1 材料

1.1.1 质粒、菌种与细胞 PcDNA3.1/V52His2 TOPO购自Invitrogen公司,大肠杆菌TG1及中国仓鼠卵巢细胞(CHO)及肺癌细胞株A549均由本室保存。

1.1.2 主要试剂 DNA分子量标准、限制性核酸内切酶和T4DNA连接酶均购自MB I公司,DNA凝胶纯化试剂盒、质粒纯化试剂盒和抗6×His单抗Penta2His购自Qiaqen公司;DEM E完全培养基、

收稿日期:2004-12-09 作者简介:丁凯阳(1972-),男,安徽全椒人,在读博士研究生,研究方向为肿瘤血管生物学。

OPTI2M EM培养基及Lipofectamine TM Reagent均为GIBCO/BRL产品;HRP标记的羊抗鼠Ig G为二抗;抗V EGF2C多抗购自R&D systems公司;二抗为HRP标记的兔抗羊Ig G(Dako公司)。

1.1.3 PCR引物设计 参照G enBank公布的人V EGF2C全长cDNA序列设计一对引物,上游引物: 5’2A G AA G CTT TCC TTC CAC CA T GCA CTT GCTG23’,5’端插入HindⅢ酶切位点,下游引物: 5’2AA GT CTG G A G CGC CAC A TG TAA TTG GTG GG23’,5’端插入XhoⅠ酶切位点。均由上海Sangon生物工程技术服务有限公司合成。

1.2 方法

1.2.1 目的片段的扩增及回收 以肺癌细胞株A549细胞cDNA为模板,采用热启动PCR,反应条件:94℃预变性5min;继之94℃变性45s,58℃退火45s,72℃延伸1min,共30个循环;最后72℃延伸10min。获得V EGF2C基因编码序列第421~1177bp的扩增产物。PCR产物经琼脂糖凝胶电泳进行鉴定,并用V2gene公司的琼脂糖凝胶回收纯化试剂盒回收纯化。

1.2.2 PCR产物的组装及鉴定 PCR产物与T载体连接,连接体系:PCR产物4μl,pUCm T载体1μl,T4DNA连接酶、PEG、连接酶缓冲液各1μl, ddH2O2μl。12~16℃连接过夜,取5μl连接产物转化200μl感受态细菌TG1,涂于含X2gal和IPTG 的Amp+LB平板中37℃温育16h,挑选白色单个菌落,扩增后抽提、纯化质粒,采用双酶切和PCR鉴定后。选取正向插入的阳性克隆送上海申工生物技术公司测序。

1.2.3 真核表达载体的构建及酶切鉴定 用限制性内切酶HindⅢ和XhoⅠ双酶切重组质粒pUCm T2 V EGF2C,回收V EGF2C目的片段,连接入经同样双酶切处理的pcDNA3.1/V52His2TOPO,构建成蛋白V EGF2C表达质粒pcDNA3.12V EGF2C。取5μl连接产物转化200μl感受态细菌TG1,涂于Amp+LB 平板中37℃温育16h,重组质粒经Q IAQ EN公司质粒回收试剂盒纯化,双酶切鉴定后,紫外分光光度计定量,4℃保存待用。

1.2.4 重组质粒转染CHO细胞 取对数生长期的CHO细胞,以2×105接种于35mm的组织培养皿上,用DEM E完全培养液,在37℃含5%CO2的条件下培养12~16h,使细胞达到50%~80%的融合。待转染细胞经无血清培养基和Opti2M EM培

养基洗涤后,与Opti2M EM培养基孵育30min备用。对每份转染细胞用250μl Opti2M EM培养基稀释10μl脂质体(Lipofectamine)和已纯化的4μg pcDNA3.12V EGF2C质粒,室温混匀孵育30min。用750μl的混悬物滴加在待转染的CHO细胞上,培养5h,弃转染混合物,每皿加完全培养基1ml,分别在24h和48h收获上清,并在上清中加入40μl混合蛋白酶抑制剂或冻存于-20℃待分析。培养细胞在48h后用PBS洗涤2次,用细胞裂解液100μl(含150mmol/L NaCl,50mmol/L Tris2HCl, 5mmol/L ED TA,2mmol/L碘乙酸,2mmol/L N2乙基顺丁烯二酰亚胺,2mmol/L PMSF,0.5%SDS, 1%N P40,p H7.5)冰浴裂解30min。同时用不含V EGF2C cDNA序列的pcDNA3.1空质粒作为转染的内参照,同上方法转染CHO细胞,与完全培养基孵育48h后,收集细胞。

1.2.5 R T2PCR检测CHO细胞V EGF2C目的片段 培养细胞在48h后用PBS洗涤2次,TRIzol试剂盒抽提总RNA,逆转录成cDNA,PCR扩增V EGF2 C目的片段,并以转空载体CHO细胞为对照。

1.2.6 重组蛋白V EGF2C的Western Blot鉴定 在收取的细胞上清和细胞裂解液中加入5×SDS上样缓冲液,进行12%SDS2PA GE电泳,结束后转膜, 100mV电压下4℃转移60min,5%脱脂奶粉封闭过夜。次日分别以Penta2His单抗(1∶1000)和抗V EGF6C抗体(0.15μg/ml)作为一抗,HRP标记的羊抗鼠Ig G(1∶10000)及兔抗羊Ig G(1∶10000)为二抗,用Western blotting印迹法鉴定上清和细胞中的重组蛋白,具体操作方法参见《分子克隆实验指南》[1]。

2 结果

2.1 目的片段扩增、克隆及鉴定 自行设计引物扩增出756bp的V EGF2CcDNA,编码包含起始密码子,信号肽,V EGF同源区(V HD),N2端多肽。同理与预期结果相符,无非特异性产物(图1)。

2.2 目的基因测序 将目的基因与pUCm T载体连接的阳性克隆测序,测得DNA序列与在G enBank 中经Blast证实与人V EGF2C全长cDNA421~1177 bp序列完全一致。

2.3 重组质粒pcDNA

3.12V EGF2C的鉴定

2.3.1 PCR鉴定 用与克隆基因相同引物对pcD2 NA3.12V EGF2C重组质粒扩增出与预期结果相符的片段,标明目的基因已克隆入载体(图2)。

2.3.2 酶切鉴定 用限制性内切酶Hind

Ⅲ和Xho Ⅰ双酶切重组质粒pUCm T 2V EGF 2C ,得到

756bp 片段,与预期相符,初步证明目的基因正向克隆入pcDNA3.1/V52His 2TOPO 载体中(图2)。2.4 R T 2PCR 检测CHO 细胞V EGF 2C 目的片段 

从转染pcDNA3.1/V52His 2TOPO 载体的CHO 细胞逆转录cDNA 中可扩增出756bp 大小目的片段,而转空载体的CHO 细胞cDNA 中未扩增出目的片段,证明转染成功(图3)。

2.5 重组蛋白V EGF 2C 的Western Blotting 鉴定 

重组质粒pcDNA3.12V EGF 2C 转化CHO 细胞后,可

见48h 的细胞培养上清中分泌表达的重组蛋白。Western blotting 印迹检测结果显示,上清和细胞内重组蛋白不仅能够特异地与抗His Tag 的单抗Pen 2ta 2His 反应(图4B ),而且也能与抗V EGF 2C 的多抗,在相同的位置出现特异的单一条带,重组蛋白的分子量约为21KDa ,其中细胞内重组蛋白的分子量略大于上清中的重组蛋白(图4A )。

3 讨论

V EGF 2C 是血管内皮生长因子家族(V EGFs )的

一个成员,具有独特的氨基端、羧基端和血管内皮生长因子同源序列(V HD )。正常机体内V EGF 2C 主要由成人心脏、胎盘、卵巢、小肠及早期胚胎血管壁表达[2],并以蛋白前体形式,从胞内到胞外分泌过程中逐步降解成各种大小不一中间体,最后成熟的

V EGF 2C 分子量为21KDa 。这种蛋白降解过程也

调控V EGF 2C 与受体的结合能力[3]。V EGF 2C 表

达主要由炎性因子如,TN F 2β、IL 21等诱导[4]。V EGF 2C 主要与特异性受体V EGFR 23结合诱导淋

巴内皮增殖、移行,又可以与V EGFR 22结合促进血管内皮增殖和渗透性增加。最近一研究显示V EGF 2C +/2小鼠会出现持续的组织淋巴水肿;V EGF 2C 2/2基因剔除胚鼠静脉内皮可以向淋巴管内

皮转化,但无法出芽形成淋巴管,导致胚鼠因广泛组织水肿死亡,在转染了V EGF 2C 后,静脉可以出芽

形成淋巴管[5]。另外V EGF2C及其受体在多种组织来源的肿瘤细胞均有表达,以旁分泌形式促进肿瘤细胞增殖、组织浸润和转移[6]。

从实体瘤细胞株A549细胞的cDNA中扩增出V EGF2C编码序列,构建了带有6×组氨酸标签的真核细胞表达载体,并成功转染CHO细胞,用Western blotting方法检测出细胞及上清均有充足蛋白表达,表明该蛋白是以分泌形式表达的并且V EGF2C在细胞内有正常的蛋白降解生物调控过程。

近年来V EGF2C及其受体也在血液肿瘤细胞表达,并且可能与血液肿瘤细胞增殖、耐药有关。因此针对V EGF2C/V EGFR22,3信号途径的靶点治疗成为近年来的研究热点,并有一部分药物进入临床试验阶段。因此V EGF2C真核表达质粒的构建及其初步表达不仅为研究其结构与功能奠定了基础,而且为我们筛选建立稳定的V EGF2C真核表达细胞株,获得具有生物活性的蛋白V EGF2C来进行相关疾病的治疗创造了条件。

参考文献:[1] J.萨姆布鲁克,D.W.拉塞尔,黄培堂,等译著.分子克

隆试验指南[M].第三版,北京∶科学出版社,2002∶1713-1726.

[2] Lee J,Gray A,Yuan J,et al.Vascular endothelial growth

factor2related protein:A ligand and specific activator of

the tyrosine kinase receptor Flt24.Proc.Natl.Acad.Sci.

USA,1996,93(5)∶1988-1992.

[3] Joukov V,S orsa T,Kumar V,et al.Proteolytic process2

ing regulates receptor specificity and activity of V EGF2C.

The EMBO Journal,1997,16(13)∶3898-3911.

[4] Ristimaki A,Narko K,Enholm B,et al.Proinflamma2

tory cytokines regulate expression of the ymphatic en2

dothelial mitogen vascular endothelial growth factor2C

[J].J Biol Chem,1998,273(14)∶8413-8418.

[5] K ainen MJ,Haiko P,Sainio K,et al.Vascular endothelial

growth factor C is required for sprouting of the first lym2

phatic vessels from embryonic veins[J].Nat Immuno,

2004,5(1)∶74-80.

[6] K inoshita,J K itamura K,K abashima A,et al.Clinical sig2

nificance of vascular endothelial growth factor2C(V EGF2

C)in breast cancer.Breast Cancer Res Treat,2001,66∶

159-164.

(上接第187页)

单,时间短,标记后不需要纯化,标记率测定简便,在体外、体内稳定。实验结果发现,主要器官的每克组织百分注射剂量率在1小时内均有明显下降,血液的百分注射量率在1h内下降稍慢,但随时间的延长还在缓慢地下降,这在99m Tc2EC2D G的临床显像时可能需要患者注药后等待较长的时间。实验发现肾脏是99m Tc2EC2D G的主要代谢途径,肾脏的百分注射剂量率明显高于其他组织、器官,肾脏的高放射性可能会干扰肾脏周围病变的诊断。正常小鼠的脑组织不吸收99m Tc2EC2D G,这与18F2FD G不同,18F2 FD G的分子量是182,注射入血液后可以通过血脑屏障,加之葡萄糖是脑组织代谢的主要能量来源,所以18F2FD G PET显像时脑组织的放射性水平很高,这对某些恶性程度较低的脑肿瘤及头颈部肿瘤的诊断造成了一些困难,而EC2D G的分子量是591,不能通过血脑屏障,所以99m Tc2EC2D G显像时脑组织的放射性为本底水平,这对脑肿瘤及头颈部肿瘤的诊断可能是它的优势。

实验还发现肌肉组织对99m Tc2EC2D G的摄取较少,这也与某些18F2FD G PET显像不同。在18F2FD G PET显像中,经常会发现肌肉组织吸收了较多的放射性,形成了“伪影”,干扰了对真正的病灶的诊断,而在本研究中发现肌肉组织对99m Tc2EC2D G的摄取较少,这在临床显像中可减少肌肉摄取放射性对诊断的影响。

本研究是为以后99m Tc2EC2D G用于肿瘤显像做准备的基础研究,实验前所有小鼠均禁食8h以上,以降低其血糖水平,增加各组织、器官对99m Tc2EC2 D G的摄取,因此实验结果可能与进食情况下的有所不同,这在以后进行99m Tc2EC2D G心肌显像研究时可作进一步的实验。

参考文献:

[1] David J.Y ang,Chang2Guhn K im,Naomi R.Schechter,

et al.Imaging with 99m Tc2EC2D G targeted at the mul2 tifunctional glucose transport system:feasibility study

with rodents[J].Radiology,2003,226(2)∶465-473.

[2] 孙敬芳,主编.动物实验方法学[M].北京:人民卫生

出版社,2001∶271-281.

[3] Bar2Shalom R,Valdivia A Y,Blaufox MD.PET imaging

in oncology[J].Semin Nucl Med2000,30∶1502185.

基因表达载体构建教学设计

“基因表达载体的构建”教学设计

专题1 1.2基因工程的基本操作程序之基因表达载体的构建 一、目的基因和运载体的连接 二、利用标记基因筛选含目的基因的受体细胞 三、目的基因和启动子的相对位置关系 附件1: 附件2:

【教学反思】 基因表达载体的构建是基因工程的关键步骤,空间想象难度大,科学理论和技术实践密切联系,思维跨度也大。福州屏东中学学生程度一般,正因如此,处理不好会提高学习难度,令学生视高科技为畏途,导致教学流于形式。本节课用微课和模型成功地化解了难点。 一方面基于学生课前微课的“先学”,学生对表达载体的构建有个整体的认识,然后以此为支架在课堂上填充和拓展内容,当学生在课堂上遇到相关问题时,能尽快到达“最近发展区”,获得进一步的发展,使学生逐渐对细节有更丰富更具体的理解,这种先整体后局部的处理符合学生的认知规律。基于微课的先学后教模式实质上是利用微课为学生创设一个情境,使学生带着思考和疑惑走进课堂,节省课堂的热身时间,从而使高效率大容量的课堂教学目标得以实现。 另一方面高二学生具有抽象思维,但是仍然需要感性知识,形象知识作为支持,所以教师精心设计纸质模型,基于教材原有的学习完“DNA重组的基本工具”后的纸圈模拟活动,再设计了双酶切的活动,化微观为直观,一系列问题的发生都源自学生自己亲手构建的模型,从模型中发现问题,进而逐步由浅入深。学生像科学家一样思考问题、解决问题,获得成功的体验。由于是带着问题的探究模拟活动,使学生的课堂参与是形式之上思维的积极参与。学生获得的体验是:基因工程这么高深的原理原来我也能想得到。学生的纸质模型立体、科学、易操作,但不好展示,而教师利用不同颜色的磁贴,随着课程的逐步推进,简洁明了地逐步在黑板上呈现,让整个环节衔接自然,师生互动流畅。直观的教学手段——模型构建,减轻了学生掌握这些知识的阻力,激发了学习积极性,使学生在轻松愉快的氛围中突破了重难点,强化了学生交流合作意识。 总之,作为教师,应该想学生之所难,积极探索有效途径,一堂成功的课不是展示教师的才智、形象、语言,更要通过学生的成功来反映。

真核细胞常见表达载体

真核细胞常见表达载体 真核细胞, 表达载体 1、pCMVp-NEO-BAN载体 特点:该真核细胞表达载体分子量为6600碱基对,主要由CMVp启动子、兔β-球蛋白基因内含子、聚腺嘌呤、氨青霉素抗性基因和抗neo基因以及pBR322骨架构成,在大多数真核细胞内都能高水平稳定地表达外源目的基因。更重要的是,由于该真核细胞表达载体中抗neo 基因存在,转染细胞后,用G418筛选,可建立稳定的、高表达目的基因的细胞株。 插入外源基因的克隆位点包括Sal1、BamH1和EcoR1位点。注意在此载体中有二个EcoR1位点存在。 2、pEGFP, 增强型绦色荧光蛋白表达载体(Enhanced Fluorecent Protein Vector) 特点: pEGFP表达载体中含有绿色荧光蛋白,在PCMV启动子驱动下,在真核细胞中高水平表达。载体骨架中的SV40origin使该载体在任何表达SV40 T抗原的真核细胞内进行复制。Neo抗性盒由SV40早期启动子、Tn5的neomycin/kanamycin抗性基因以及HSV-TK基因的聚腺嘌呤信号组成,能应用G418筛选稳定转染的真核细胞株。此外,载体中的pUC origin 能保证该载体在大肠杆菌中的复制,而位于此表达盒上游的细菌启动子能驱动kanamycin抗性基因在大肠杆菌中的表达。 用途: 该表达载体EGFP上游有Nde1、Eco47111和Age1克隆位点,将外源基因扦入这些位点,将合成外源基因和EGFP的融合基因。借此可确定外源基因在细胞内的表达和/或组织中的定位。 亦可用于检测克隆的启动子活性(取代CMV启动子,Acet1-Nhe1)。 3、pEGFT-Actin, 增强型绿色荧光蛋白/人肌动蛋白表达载体 特点:pEGFP-Actin表达载体中含有绿色荧光蛋白和人胞浆β-肌动蛋白基因,在PCMV启动子驱动下,在真核细胞中高水平表达。载体骨架中的SV40origin使该载体在任何表达SV40 T 抗原的真核细胞内进行复制。Neo抗性盒由SV40早期启动子、Tn5的neomycin/kanamycin 抗性基因以及HSV-TK基因的聚腺嘌呤信号组成,能应用G418筛选稳定转染的真核细胞株。此外,载体中的pUC origin 能保证该载体在大肠杆菌中的复制,而位于此表达盒上游的细菌启动子能驱动kanamycin抗性基因在大肠杆菌中的表达。 用途: pEGFP-Actin载体在真核细胞表达EGFP-Actin融合蛋白,该蛋白能整合到胞内正在生的肌动蛋白,因而在活细胞和固定细胞中观察到细胞内含肌动蛋白的亚细胞结构。 4、pSV2表达载体 特点:该表达质粒是以病责SV40启动子驱动在真核细胞目的基因进行表达的,克隆位点为Hind111。SV40启动子具有组织/细胞的选择特异性。此载体不含neo基因,故不能用来筛选、建立稳定的表达细胞株。 5、CMV4 表达载体 特点:该真核细胞表达载体由CMV启动子驱动,多克隆区域酶切位点选择性较多。含有氨苄青霉素抗性基因和生长基因片段以及SV40复制原点和fl单链复制原点。但值得注意的是,该表达载体不含有neo基因,转染細胞后不能用G418筛选稳定的表达细胞株。 其他常用克隆Vector: pBluscript II KS DNA 15 ug pUC18 DNA 25 ug pUC19 DNA 25 ug 说明: pBluescript II kS、pUC18 &Puc19载体适合于DNA片段的克隆、DNA测序和对外源基因进行表达等。这些载体由于在lacZ基因中含有多克隆位点,当外源DNA片段扦入,转化lacZ基因缺乏细胞,并在含有IPTG和X-gal的培养基上培养时,含有外源DNA载体的细胞将

原核蛋白表达常见问题解析

原核蛋白表达常见问题解析 1、为什么目的蛋白总是以包涵体的形式出现? 在原核蛋白表达纯化中目的蛋白经常发生错误的折叠,并聚集成为 包涵体。经过诱导,目的蛋白通常可达细胞总蛋白的50%以上。虽然有一定比例的蛋白以可溶的单体形式存在,而多达95%(甚至更多)的蛋白则在包涵体中。实验过程中,可以采取降低诱导温度,例如25–30°C,或降低IPTG浓度(0.01–0.1mM)并延长诱导时间,还有采用特别的 培养基等方法获得更多的可溶蛋白。 2、跨膜蛋白为什么很难表达? 跨膜蛋白的表达成功率相对较低是一个实验结果,究其原理,目前 众说纷纭很多种理论。以我们浅薄的理解层面来看,主要有以下几个 原因: 跨膜蛋白一般都是强疏水性的氨基酸分子和亲水性的分子跳跃式 的连接,形成的亲水疏水的一个最简单的跨膜化学结构,这种结构与 信号肽结构相似,对于原核细胞来说,简单的细胞器很难像真核细胞 一样完成信号肽识别及切除、引导内质网、高尔基体重新包装及分泌 这一复杂过程,有些蛋白是多次跨膜,对于原核细胞来说几乎是不可 能完成的任务。 另外,对于疏水性的片段,在原核细胞中极易形成包涵体,疏水 性多肽会抑制翻译过程,甚至与原核膜结构融合形成毒性,出于生物 自我保护的本能,所有的细胞器都会停止合成蛋白的过程。 3、如何选择蛋白表达宿主菌?

4、我们有哪些原核蛋白纯化方式?如何选择不同的纯化方式? 答:我们公司的蛋白纯化方法大致分为亲和纯化、离子交换、切胶 回收三类。 1、常规情况下,一般携带融合标签(His标签,GST标签,sumo标签,Fc标签),我们可以通过Ni柱、GST柱、Protein A等进行亲和纯化 获得融合蛋白,用亲和纯化的方法一般可以获得85%以上纯度的蛋白, 亲和纯化的方便快捷。 2、如果需要目的蛋白不含有任何标签,怎么选择纯化方式?。 (1)可表达融合蛋白,用蛋白工具酶切割融合蛋白,再进行纯化除去 工具酶。此方法能快速得到蛋白。 (2)可表达不含标签的蛋白,进行离子、分子筛、疏水等纯化,通过AKATA纯化设备获得蛋白。 3、如果需要获得蛋白作为抗原,可以直接通过切胶回收的方式,此方 法获得蛋白纯度较高,进行免疫动物后得到的抗体进行WB反应,灵敏 度较高。 5、表达得到的蛋白是有活性的么? 答:需要让蛋白有活性的条件很复杂,合适的缓冲液体系、盐浓度、蛋白的折叠状态甚至检测活性的方法的细微差别都可能导致活性 的强弱有无,一般情况下,上清表达的蛋白要比包涵体经过变复性纯 化后得到的蛋白活性要好,我们尽量从上清中获得蛋白,期许蛋白形 成的折叠最接近活性状态,这也是我们擅长的。但是在实际实验条件下,我们无法承诺表达纯化的蛋白一定具有客户期望的生理活性。

真核基因不同水平上的表达调控

真核生物基因表达的调控远比原核生物复杂,可以发生在DNA水平、转录水平、转录后的修饰、翻译水平和翻译后的修饰等多种不同层次(图真核生物基因表达中可能的调控环节)。但是,最经济、最主要的调控环节仍然是在转录水平上。(一)DNA水平的调控 DNA水平上的调控是通过改变基因组中有关基因的数量、结构顺序和活性而控制基因的表达。这一类的调控机制包括基因的扩增、重排或化学修饰。其中有些改变是可逆的。 1、基因剂量与基因扩增 细胞中有些基因产物的需要量比另一些大得多,细胞保持这种特定比例的方式之一是基因组中不同基因的剂量不同。例如,有A、B两个基因,假如他们的转录、翻译效率相同,若A基因拷贝数比B基因多20 倍,则A基因产物也多20倍。组蛋白基因是基因剂量效应的一个典型实例。为了合成大量组蛋白用于形成染色质,多数物种的基因组含有数百个组蛋白基因拷贝。 基因剂量也可经基因扩增临时增加。两栖动物如蟾蜍的卵母细胞很大,是正常体细胞的一百倍,需要合成大量核糖体。核糖体含有rRNA分子,基因组中的rRNA基因数目远远不能满足卵母细胞合成核糖体的需要。所以在卵母细胞发育过程中,rRNA基因数目临时增加了4000倍。卵母细胞的前体同其他体细胞一样,含有约500个rRNA基因(rDNA)。在基因扩增后,rRNA基因拷贝数高达2×106。这个数目可使得卵母细胞形成1012个核糖体,以满足胚胎发育早期蛋白质大量合成的需要。 在基因扩增之前,这500个rRNA基因以串联方式排列。在发生扩增的3 周时间里,rDNA不再是一个单一连续DNA片段,而是形成大量小环即复制环,以增加基因拷贝数目。这种rRNA基因扩增发生在许多生物的卵母细胞发育过程中,包括鱼、昆虫和两栖类动物。目前对这种基因扩增的机制并不清楚。 在某些情况下,基因扩增发生在异常的细胞中。例如,人类癌细胞中的许多致癌基因,经大量扩增后高效表达,导致细胞繁殖和生长失控。有些致癌基因扩增的速度与病症的发展及癌细胞扩散程度高度相关。 2.基因丢失 在一些低等真核生物的细胞分化过程中,有些体细胞可以通过丢失某些基因,从而达到调控基因表达的目的,这是一种极端形式的不可逆的基因调控方式。如某些原生动物、线虫、昆虫和甲壳类动物在个体发育到一定阶段后,许多体细胞常常丢失整条染色体或部分染色体,而只有在将来分化生殖细胞的那些细胞中保留着整套的染色体。在马蛔虫中,个体发育到一定阶段后,体细胞中的染色体破碎,形成许多小的染色体,其中有些小染色体没有着丝粒,它们因不能在细胞分裂中正常分配而丢失,在将来形成生殖细胞的细胞中不存在染色体破碎现象。但是,基因丢失现象在高等真核生物中还未发现。 3.DNA重排(基因重排) 基因重排(gene rearrangement)是指DNA分子中核苷酸序列的重新排列。这些序列的重排可以形成新的基因,也可以调节基因的表达。这种重排是由基因组中特定的遗传信息决定的,重排后的基因序列转录成mRNA,翻译成蛋白质。 尽管基因组中的DNA序列重排并不是一种普通方式,但它是有些基因调控的重要机制,在真核生物细胞生长发育中起关键作用。

真核基因表达调控的特点

真核基因表达调控的特点 尽管我们现在对真核基因表达调控知道还不多,但与原核生物比较它具有一些明显的特点。 真核基因表达调控的环节更多 如前所述:基因表达是基因经过转录、翻译、产生有生物活性的蛋白质的整个过程。同原核生物一样,转录依然是真核生物基因表达调控的主要环节。但真核基因转录发生在细胞核(线粒体基因的转录在线粒体内),翻译则多在胞浆,两个过程是分开的,因此其调控增加了更多的环节和复杂性,转录后的调控占有了更多的分量。 图中标出了真核细胞在分化过程中会发生基因重排(gene rearrangement),即胚原性基因组中某些基因会再组合变化形成第二级基因。例如编码完整抗体蛋白的基因是在淋巴细胞分化发育过程中,由原来分开的几百个不同的可变区基因经选择、组合、变化、与恒定区基因一起构成稳定的、为特定的完整抗体蛋白编码的可表达的基因。这种基因重排使细胞可能利用几百个抗体基因的片段,组合变化而产生能编码达108种不同抗体的基因,其中就有复杂的基因表达调控机理。 此外,真核细胞中还会发生基因扩增(gene amplification),即基因组中的特定段落在某些情况下会复制产生许多拷贝。最早发现的是蛙的成熟卵细胞在受精后的发育程中其rRNA 基因(可称为rDNA)可扩增2000倍,以后发现其他动物的卵细胞也有同样的情况,这很显然适合了受精卵其后迅速发育分裂要合成大量蛋白质要求有大量核糖体的需要。又如MTX (methotrexate)是叶酸的结构类似物,能竞争性抑制细胞对叶酸的还原利用,因而对细胞有毒性,但当缓慢提高MTX浓度时,一些哺乳类细胞会对含有利用叶酸所必需的二氢叶酸还原酶(dihydrofolate reductase,DHFR)基因的DNA区段扩增40-400倍,使DHFR的表达量显著增加,从而提高对MTX的抗性。基因的扩增无疑能够大幅度提高基因表达产物的量,但这种调控机理至今还不清楚。 真核基因的转录与染色质的结构变化相关 真核基因组DNA绝大部分都在细胞核内与组蛋白等结合成染色质,染色质的结构、染色质中DNA和组蛋白的结构状态都影响转录,至少有以下现象: 染色质结构影响基因转录细胞分裂时染色体的大部分到间期时松开分散在核内,称为常染色质(euchromatin),松散的染色质中的基因可以转录。染色体中的某些区段到分裂期后不像其他部分解旋松开,仍保持紧凑折叠的结构,在间期核中可以看到其浓集的斑块,称为异染色质(hetrochromatin),其中从未见有基因转录表达;原本在常染色质中表达的基因如移到异染色质内也会停止表达;哺乳类雌体细胞2条X染色体,到间期一条变成异染色质者,这条X染色体上的基因就全部失活。可见紧密的染色质结构阻止基因表达。 组蛋白的作用早期体外实验观察到组蛋白与DNA结合阻止DNA上基因的转录,去除组蛋白基因又能够转录。组蛋白是碱性蛋白质,带正电荷,可与DNA链上带负电荷的磷酸基相结合,从而遮蔽了DNA分子,妨碍了转录,可能扮演了非特异性阻遏蛋白的作用;染色质中的非组蛋白成分具有组织细胞特异性,可能消除组蛋白的阻遏,起到特异性的去阻遏促转录作用。 发现核小体后,进一步观察核小体结构与基因转录的关系,发现活跃进行基因转录的染色质区段常有富含赖氨酸的组蛋白(H1组蛋白)水平降低、H2A、H2B组蛋白二聚体不稳定性增加、组蛋白乙酰化(acetylation)和泛素化(obiquitination)、以及H3组蛋白巯基等现

基因的克隆、表达载体构建与功能验证

基因的克隆、表达载体构建及功能验证(一般性方法) 一、基因克隆 ★事前三问 a.克隆这个基因干什么?它有什么功能? b.这个基因在哪种材料中扩增? c.材料需要怎么处理? ◎实验前准备工作 a.设计引物,准备材料, b.购置试剂:Taq酶、反转录试剂盒、凝胶回收试剂盒、质粒提取试剂盒、连接试 剂盒 c.实验试剂及用具:枪头、离心管、培养皿、滤纸灭菌;Amp+ 、Kan+等抗生素准 备 ※基本流程 提取和纯化RNA—cDNA第一条链合成—PCR—凝胶电泳—胶回收—连接—转化—涂平板—挑单菌落—摇菌—提质粒—测序 1.总RNA的提取、纯化及cDNA第一链合成 1.1叶片、根总RNA的提取 Trizol是一种高效的总RNA抽提试剂,内含异硫氰酸胍等物质,能迅速裂解植物细胞,抑制细胞释放出的核酸酶,所提取的RNA完整性好且纯度高,以利于下一步的实验。 1)实验前准备 预先配制0.1%的DEPC水(ddH2O中含0.1%DEPC,V/V,37 ℃过夜处理12 h),高温灭菌后,用DEPC水配制75%乙醇,研钵、量筒、试剂瓶等需200℃灭菌至少4 h,所用枪头和枪盒均去RNA酶处理(直接购买)。 2)Trizol 法(小麦)叶片或根的总RNA实验步骤如下: (1)提前在1.5 ml离心管中加入1 mlTrizol,然后将200 mg样品液氮中研磨成白色粉末,

移入管内,用力摇15 s,在15-30℃温育5 min,使核酸蛋白复合物完全分离。 (2)4℃,12000g离心10min,取上清,离心得到的沉淀中包括细胞外膜、多糖、高分子量DNA,上清中含有RNA。 (3)吸取上清液加0.2 ml氯仿,盖好盖,用力摇15 s,15~30 ℃温育2~3 min。(4)在≤12000g,4℃离心10 min,样品分为三层:底层为黄色有机相,上层为无色水相和一个中间层,RNA主要在水相中,水相体积约为所用TRIzol试剂的60%。 (5)将上层水相转移到新的1.5 ml离心管中,加2倍体积的无水乙醇沉淀RNA,室温静止30 min。 (6)在≤12000g,4℃离心10 min,离心前看不出RNA沉淀,离心后在管侧和管底出现胶状沉淀。 (7)用≥1 ml的75%乙醇洗RNA,涡旋振荡样品,在≤7500g,4℃离心5 min,弃上清。(8)室温放置干燥或真空抽干RNA沉淀,大约晾5-10分钟,加无RNase的水100μl用枪头吸几次,55~60℃温育10 min使RNA溶解。 (9)配制以下体系: 10×DNase buffer 5 μl DNase I (RNase-free)(40 μg/μl) 1 μl RNasin Inhibitor(40 μg/μl) 1 μl Total RNA 70 μg 加去RNase水至总体积为50 μl (10)37 ℃水浴1h,加DEPC处理的水至总体积为100 μl,加入等体积氯仿抽提一次。(11)取上清,加入10 μl的3 mol/L NaAC溶液,200 μl的无水乙醇,-80 ℃沉淀30 min。 (12)2~8 ℃,12000g离心10 min,弃清液,干燥后取50μl无RNase的水溶解RNA。3)RNA的质量及纯度检测 (1)电泳检测取2ul RNA 与1 ul 10×Loading buffer上样缓冲液混合均匀在1% 的琼脂糖凝胶上电泳,在紫外灯下观察RNA 条带并记录实验结果。 (2)分光光度计RNA纯度检测 取1ul RNA液,以DEPC水为空白对照,测定A260/ A280 比值,估测RNA质 量。 4)cDNA第一条链的合成 按照以下体系将提取的总RNA反转录成第一链cDNA: 1)在Eppendorf管中配制下列混合液:

真核细胞表达系统的类型与常用真核细胞表达载体

真核细胞表达系统的类型与常用真核细胞表达载体 标签:真核细胞酵母表达系统细胞表达载体真核表达系统昆虫表达系统动物表达系统 摘要: 原核表达系统是常被用来研究基因功能的成熟系统,由于原核表达系统具有包涵体蛋白不易纯化、蛋白修饰不完整等缺陷,人们也开始利用真核细胞表达系统来研究基因。 原核表达系统是常被用来研究基因功能的成熟系统,由于原核表达系统具有包涵体蛋白不易纯化、蛋白修饰不完整等缺陷,人们也开始利用真核细胞表达系统来研究基因。 自上世纪70年代基因工程技术诞生以来,基因表达技术已渗透到生命科学研究的各个领域。并随着人类基因组计划实施的进行,在技术方法上得到了很大发展,时至今日已取得令人瞩目的成就。随着人类基因组计划的完成,越来越多的基因被发现,其中多数基因功能不明。利用表达系统在哺乳动物细胞内表达目的基因是研究基因功能及其相互作用的重要手段。 在各种表达系统中,最早被采用进行研究的是原核表达系统,这也是目前掌握最为成熟的表达系统。该项技术的主要方法是将已克隆入目的基因DNA段的载体(一般为质粒)转化细菌(通常选用的是大肠杆菌),通过iptg诱导并最终纯化获得所需的目的蛋白。其优点在于能够在较短时间内获得基因表达产物,而且所需的成本相对比较低廉。但与此同时原核表达系统还存在许多难以克服的缺点:如通常使用的表达系统无法对表达时间及表达水平进行调控,有些基因的持续表达可能会对宿主细胞产生毒害作用,过量表达可能导致非生理反应,目的蛋白常以包涵体形式表达,导致产物纯化困难;而且原核表达系统翻译后加工修饰体系不完善,表达产物的生物活性较低。 为克服上述不足,许多学者将原核基因调控系统引入真核基因调控领域,其优点是: ①根据原核生物蛋白与靶DNA间作用的高度特异性设计,而靶DNA与真核基因调控序列基本无同源性,故不存在基因的非特异性激活或抑制; ②能诱导基因高效表达,可达105倍,为其他系统所不及; ③能严格调控基因表达,即不仅可控制基因表达的“开关”,还可人为地调控基因表达量。 因此,利用真核表达系统来表达目的蛋白越来越受到重视。目前,基因工程研究中常用的真核表达系统有酵母表达系统、昆虫细胞表达系统和哺乳动物细胞表达系统。 1.酵母表达系统 最早应用于基因工程的酵母是酿酒酵母,后来人们又相继开发了裂殖酵母、克鲁维酸酵母、甲醇酵母等,其中,甲醇酵母表达系统是目前应用最广泛的酵母表达系统。目前甲醇酵母主要有H Polymorpha,Candida Bodini,Pichia Pastris3种。以Pichia Pastoris应用最多。

真核生物基因表达的调控

真核生物基因表达的调控 一、生物基因表达的调控的共性 首先,我们来看看在生物基因表达调控这一过程中体现的共性和一些基本模式。 1、作用范围。生物体内的基因分为管家基因和奢侈基因。管家基因始终表达,奢侈基因只在需要的时候表达,但二者的表达都受到调控。可见,调控是普遍存在的现象。 2、调控方式。基因表达有两种调控方式,即正调控与负调控,原核生物和真核生物都离不开这两种模式。 3、调控水平。一种基因表达的调控可以在多种层面上展开,包括DNA水平、转录水平、转录后加工水平、翻译后加工水平等。然为节省能量起见,转录的起始阶段往往作为最佳调控位点。 二、真核生物基因表达调控的特点 真核生物与原核细胞在结构上就有着诸多不同,这决定了二者在运行方面的迥异途径。真核生物比原核生物复杂,转录与翻译不同时也不同地,基因组与染色体结构复杂,因而有着更为复杂的调控机制。 1、 2、 3、 4、多层次。真核生物的基因表达可发生在染色质水平、转录起始水平、无操纵子和衰减子。 大多数原核生物以负调控为主,而真核生物启动子以正调控为主。 个体发育复杂,而受环境影响较小。真核生物多为多细胞生物,在转录后水平、翻译水平以及翻译后水平。

生长发育过程中,不仅要随细胞内外环境的变化调节基因表达,还要随发育的不同阶段表达不同基因。前者为短期调控,后者属长期调控。 从整体上看,不可逆的长期调控影响更深远。 三、真核生物基因表达调控的机制 介于真核生物表达以多层次性为最主要特点,我们可以分别从它的几个水平着眼,剖析它的调控机制。 1、染色质水平。真核生物基因组DNA以致密的染色质形式存在,发生在染色质水平的调控也称作转录前水平的调控,产生永久性DNA序列和染色质结构的变化,往往伴随细胞分化。染色质水平的调控包括染色质丢失、基因扩增、基因重排、染色体DNA的修饰,等等。a.基因丢失:丢失一段DNA或整条染色体的现象。在细胞分化过程中,可以通过丢失掉某些基因而去除这些基因的活性。某些原生动物、线虫、昆虫和甲壳类动物在个体发育中,许多体细胞常常丢失掉整条或部分的染色体,只有将来分化产生生殖细胞的那些细胞一直保留着整套的染色体。如马蛔虫2n=2,但染色体上有多个着丝粒。第一次卵裂是横裂,产生上下2个子细胞。第二次卵裂时,一个子细胞仍进行横裂,保持完整的基因组,而另一个子细胞却进行纵向分裂,丢失部分染色体。目前,在高等真核生物(包括动物、植物)中尚未发现类似的基因丢失现象。 b.基因扩增:基因扩增是指某些基因的拷贝数专一性增大的现象,它使得细胞在短期内产生大量的基因产物以满足生长发育的需要,是基因活性调控的一种方式。如非洲爪蟾卵母细胞中rDNA的基因扩增是因发育需要而出现的基因扩增现象;基因组拷贝数增加,即多倍性,在植物中是非常普遍的现象。基因组拷贝数增加使可供遗传重组的物质增多,这可能构成了加速基因进化、基因组重组和最终物种形成的一种方式。 c.基因重排:将一个基因从远离启动子的地方移到距它很近的位点从而启动转录,这种方式被称为基因重排。通过基因重排调节基因活性的典型例子是免疫球蛋白结构基因的表达。在人类基因组中,所有抗体的重链和轻链都不是由固定的完整基因编码的,而是由不同基因片段经重排后形成的完整基因编码的。

红色荧光蛋白的原核表达

红色荧光蛋白(RFP )的原核表达 生物学实验教学中心 报告题目 红色荧光蛋白(RFP )的原核表达 作者姓名 饶慧 班级学号 0802班/2008114010214 指导教师 王友如 完成时间 2011年02月

目录 引言 (1) 1实验材料及实验仪器 (4) 1.1实验材料 (4) 1.2实验仪器 (5) 2实验方法 (7) 2.1 重组质粒的构建 (7) 2.2工程菌株的活化 (7) 2.3诱导表达 (8) 2.4 SDS-PAGE检测表达蛋白 (8) 3 结果与分析 (9) 总结 (10) 参考文献 (11) 致谢 (13)

红色荧光蛋白的原核表达 饶慧 (指导老师:王友如) (湖北师范学院生命科学学院生物科学0802班湖北黄石435002) 摘要实验目的:研究红色荧光蛋白(Red Fluorescent Protein,RFP)基因在大肠杆菌中原核表达。实验方法:通过分别将DH-5ɑ(pDsRed-N1)和DH-5ɑ(pET-28ɑ)提取质粒、酶切并连接形成重组质粒pET-28a-RFP,将重组质粒通过转化的方法把含红色荧光蛋白(RFP)外源基因转入大肠杆菌体内进行表达,再用IPTG诱导RFP基因表达,可以看到显现红色,最后根据SDS-PAGE电泳结果,判断RFP基因在大肠杆菌中是否成功表达。实验结果:结果显示构建的重组质粒pET-28ɑ-RFP在E.coli中成功表达。 关键词红色荧光蛋白;质粒重组;原核表达;诱导表达

分子生物学综合实验 Prokaryote Expression of Red Fluorescent Protein (RFP) Rao Hui (Class 0802, College of Biology Science ,Hubei Normal University, Huangshi, Hubei,435002 ) Abstract Objective: To study the expression of the RFP gene in the E.coli. Methods: Extract the plasmid of the DH-5ɑ (pDsRed-N1) and DH-5ɑ (pET-28ɑ). Then the two plasmids are cut by enzyme and are connected to form pET-28a-RFP recombined plasmid. Guiding the recombined plasmid, which contains exogenous genes of RFP, into E.coli for expression, through transformative method. The expression of RFP gene can be induced by the IPTG and then we can see red. Finally, judging whether the RFP gene has expressed successfully in E.coli according to the results of SDS-PAGE electrophoresis. Results: The results suggest that pET-28ɑ-RFP recombined plasmid has successfully expressed in E.coli. Keywords Red Fluorescent Protein; Recombined Plasmid; Prokaryote Expression; Induced Expression

真核表达载体

真核细胞常见表达载体 1、pCMVp-NEO-BAN载体 特点: 该真核细胞表达载体分子量为6600碱基对,主要由CMVp启动子、兔β-球蛋白基因内含子、聚腺嘌呤、氨青霉素抗性基因和抗neo基因以及pBR322骨架构成,在大多数真核细胞内都能高水平稳定地表达外源目的基因。更重要的是,由于该真核细胞表达载体中抗neo基因存在,转染细胞后,用G418筛选,可建立稳定的、高表达目的基因的细胞株。 插入外源基因的克隆位点包括Sal1、BamH1和EcoR1位点。注意在此载体中有二个EcoR1位点存在。 2、pEGFP, 增强型绦色荧光蛋白表达载体(Enhanced Fluorecent Protein Vector) 特点: pEGFP表达载体中含有绿色荧光蛋白,在PCMV启动子驱动下,在真核细胞中高水平表达。载体骨架中的SV40 origin使该载体在任何表达SV40 T 抗原的真核细胞内进行复制。Neo抗性盒由SV40早期启动子、Tn5的neomycin/kanamycin抗性基因以及HSV-TK基因的聚腺嘌呤信号组成,能应用G418筛选稳定转染的真核细胞株。此外,载体中的pUC origin 能保证该载体在大肠杆菌中的复制,而位于此表达盒上游的细菌启动子能驱动kanamycin抗性基因在大肠杆菌中的表达。 用途: 该表达载体EGFP上游有Nde1、Eco47111和Age1克隆位点,将外源基因扦入这些位点,将合成外源基因和EGFP的融合基因。借此可确定外源基因在细胞内的表达和/或组织中的定位。 亦可用于检测克隆的启动子活性(取代CMV启动子,Acet1-Nhe1)。 3、pEGFT-Actin, 增强型绿色荧光蛋白/人肌动蛋白表达载体 特点: pEGFP-Actin表达载体中含有绿色荧光蛋白和人胞浆β-肌动蛋白基因,在PCMV启动子驱动下,在真核细胞中高水平表达。载体骨架中的SV40 origin使该载体在任何表达SV40 T 抗原的真核细胞内进行复制。Neo抗性盒由SV40早期启动子、Tn5的neomycin/kanamycin抗性基因以及HSV-TK基因的聚腺嘌呤信号组成,能应用G418筛选稳定转染的真核细胞株。此外,载体中的pUC origin 能保证该载体在大肠杆菌中的复制,而位于此表达盒上游的细菌启动子能驱动kanamycin抗性基因在大肠杆菌中的表达。 用途: pEGFP-Actin载体在真核细胞表达EGFP-Actin融合蛋白,该蛋白能整合到胞内正在生的肌动蛋白,因而在活细胞和固定细胞中观察到细胞内含肌动蛋白的亚细胞结构。 4、pSV2表达载体 特点:该表达质粒是以病责SV40启动子驱动在真核细胞目的基因进行表达的,克隆位点为Hind111。SV40启动子具有组织/细胞的选择特异性。此载体不含neo基因,故不能用来筛选、建立稳定的表达细胞株。5、CMV4 表达载体 特点:该真核细胞表达载体由CMV启动子驱动,多克隆区域酶切位点选择性较多。含有氨苄青霉素抗性基因和生长基因片段以及SV40复制原点和fl单链复制原点。但值得注意的是,该表达载体不含有neo基因,转染細胞后不能用G418筛选稳定的表达细胞株。 其他常用克隆Vector: pBluscript II KS DNA 15 ug pUC18 DNA 25 ug pUC19 DNA 25 ug

真核细胞基因表达的调控Word版

MCB课程 真核细胞的基因表达和调控 一,生物体内遗传物质的基本结构和功能单位是基因 上个世纪70年代在细胞生物学,细胞遗传学和生物化学的基础上,经过一系列重大发现而奠定基础,逐步发展形成了分子生物学(molecular biology)这一现代生命学科。分子 生物学认为生物体内存在着决定生物体性状的遗传物质,其基本的结构和功能单位是基因(gene)。基因的本质是一段携带着能合成功能蛋白质所需的全部信息的DNA,其中包括着蛋白质的编码序列,也包括非编码的调控序列。基因主要具有两大功能。一是指导合成蛋白质,通过蛋白质发挥的功能将遗传信息转换成具体的细胞性状和功能;二是通过细胞有丝分裂过程中的DNA复制(replication),将遗传信息传递给子代细胞,从而保持子代细胞与母代细胞性状的一致性。基因在双螺旋结构的DNA长链组成的染色体 上呈线性排列。在哺乳动物的真核细胞中线性排列的基因以核小体 (nucleosome) 的形式被紧密包绕存在于细胞核中,组成核染质(chromatin)。核小体的核心是由H2a,H2b,H3和 H4四组组蛋白形成的八聚体,核心外包绕着1又3/4圈的DNA长链。因此在电镜下核 染质呈“串珠样“结构。由于基因的本质是呈双螺旋结构的方向相反的两条脱氧核糖核酸(DNA)分子,因此基因的排列具有方向性,其DNA分子的5’端为基因的上游,3’端为基因的下游。构成基因DNA分子序列的有腺嘌呤(A)胸腺嘧啶(T)胞嘧啶(C)和鸟嘌呤(G)4种碱基。在双链DNA分子中一条DNA分子上的A总是以两条氢键与另一条DNA分子上的T相结合,而C总是以三条氢键与G相结合。A与T,C与G 之间称为互补关系(complementary)。双链DNA分子中A,T,C,G的不同组合排列形成了三联密码,每一个三联密码都代表着一种相应的氨基酸。然而,基因中的编码序列往往并不连续,其中间隔着非编码的序列。这些编码的序列称为基因结构中的外显子,而非编码序列称为内含子。在基因的上游端具有启动基因表达作用的特殊序列称为启动子,它们的序列中富含A,T,C, 在基因的上游,下游较远处,乃至基因内部还有某些序列对基因的表达有明显的促进作用,称为增强子。基因的下游端往往还有基因表达的终止信号。上述基因本身的主要结构统称为基因的顺式元件,而参与基因表达过程的基因外的蛋白质因子称为基因的反式元件(见下节)。上述排列着基因的DNA成为基因组DNA,真 核细胞中除了基因组DNA携带遗传信息外,线粒体中能独立复制的DNA也携带着遗传 信息。

浅谈原核表达

浅谈原核表达的技巧 摘要:原核表达是表达外源基因常用的方法,具有操作简单、快捷,需时较短,表达产量高,适合工业化等优点。本文作者根据自己的实践经验,总结了原核表达的一些技巧。 关键词:原核表达表达载体限制性内切酶 将植物、动物、微生物等的目的基因插入合适载体后导入大肠杆菌用于表达大量蛋白质的方法一般称为原核表达。这种方法在蛋白纯化、定位及功能分析等方面都有应用。大肠杆菌用于表达重组蛋白有以下优点:易于生长和控制;易于培养,实验耗费少;可选择多种大肠杆菌菌株及与之匹配的具各种特性的质粒。原核表达是近年来表达外源蛋白常用的方法,本文根据自己的实践经验,着重谈谈对原核表达中的技巧问题。 一、原核表达一般程序 表达前准备-获得目的基因-构建含目的片段的表达载体(测序验证)-转化表达宿主菌-诱导靶蛋白的表达-表达蛋白的分析。 二、原核表达中各操作步骤的关键因素及技巧 1.表达前的准备要素:原核表达注重表达前对目的片段、表达载体及表达菌株的分析、选择。正所谓“磨刀不误砍柴功”,经过细致、周全的分析、准备、设计可带来较为顺当的实验,可免去许多不必要的麻烦。 (1)对表达载体的分析 载体的选择:同样的载体,同样的系统,很可能表达这个蛋白表达量起高,但另外一个就是做不出来,所以表达载体的选择非常重要,没有万能的载体。选择载体通常我们关心质粒上的几个功能组件及所带来的问题:是否为诱导表达型载体,启动子的强弱、多克隆位点、限制性内切酶的位置、终止密码子的有无及位置,融合Tag的有无,筛选报告基因的位置等。所选载体一定要保持原来的遗传背景(有些载体经过多次交换已变异)。选择表达载体时,要根据所表达蛋白的最终应用考虑,如果为了方便纯化,可选择融合表达;如果为了获得天然蛋白,可选择非融合表达。融合表达时在选择外源DNA同载体分子连接反应时,对转录和转译过程中密码结构的阅读不能发生干扰。 翻译的起始位点:要表达目的蛋白,在该基因的5’端必须有一起始位点,现在大部分的表达载体都提供起始位点,起始密码子与核糖体结合位点的距离都已被优化,一般情况下不需要自己再加,实际操作时要留意载体图谱上是否注明有起始密码子和终止密码子,如无,还得根据自己的实际情况加上。 在起始密码子附近的mRNA二级结构:外源基因其始转录后,保持mRNA的有效延伸、终止及稳定存在是外源基因有效表达的关键,尤其是在起始密码子附近的mRNA二级结构可能会抑制翻译的起始或者造成翻译暂停从而产生不完全的蛋白。如果利用Primer Premier软件分析DNA或RNA结构上有柄(stem)结构,并且结合长度超过8个碱基,这种结构会因为位点专一突变等因素而变得不稳定,影响正常的翻译。 (2)对目的片段的分析 基因(或蛋白)的大小:原核表达的成功与否与所要表达的蛋白(或基因)大小有关,一般说来小于5kD或者大于100kD的蛋白都是难以表达的。蛋白越小,越容易被内源蛋白水解酶所降解。在这种情况下可以采取串联表达,在每个表达单位(即单体蛋白)间设计蛋白水解或者是化学断裂位点。如果蛋白较小,那么加入融合标签GST、Trx、MBP或者其它较大的促进融合的蛋白标签就较有可能使蛋白正确折叠,并以融合形式表达。如果蛋白较大,大于60kD的蛋白建议使用较小的标签(如6×组氨酸标签)。对于结构研究较清楚的蛋白可以采取截取表达。当然表达时要根据目的进行截取,如果是要进行抗体制备而截取,那么一定要保证截取的部位抗原性较强。对于抗原性也可

真核生物的基因表达调控机制

一、真核基因组的复杂性 与原核生物比较,真核生物的基因组更为复杂,可列举如下。 1. 真核基因组比原核基因组大得多,大肠杆菌基因组约4×106bp,哺乳类基因组在 109bp数量级,比细菌大千倍;大肠杆菌约有4000个基因,人则约有10万个基因。 2. 真核生物主要的遗传物质与组蛋白等构成染色质,被包裹在核膜内,核外还有遗传 成分(如线粒体DNA等),这就增加了基因表达调控的层次和复杂性。 3. 原核生物的基因组基本上是单倍体,而真核基因组是二倍体。 4. 如前所述,细菌多数基因按功能相关成串排列,组成操纵元的基因表达调控的单元, 共同开启或关闭,转录出多顺反子(polycistron)的mRNA;真核生物则是一个结构基因转录生成一条mRNA,即mRNA是单顺反子(monocistron),基本上没有操纵元的结构,而真核细胞的许多活性蛋白是由相同和不同的多肽形成的亚基构成的,这就涉及到多个基因协调表达的问题,真核生物基因协调表达要比原核生物复杂得多。 5. 原核基因组的大部分序列都为基因编码,而核酸杂交等实验表明:哺乳类基因组中 仅约10%的序列为蛋白质、rRNA、tRNA等编码,其余约90%的序列功能至今还不清楚。 6. 原核生物的基因为蛋白质编码的序列绝大多数是连续的,而真核生物为蛋白质编码 的基因绝大多数是不连续的,即有外显子(exon)和内含子(intron),转录后需经剪接(splicing)去除内含子,才能翻译获得完整的蛋白质,这就增加了基因表达调控的环节。 7. 原核基因组中除rRNA、tRNA基因有多个拷贝外,重复序列不多。哺乳动物基因组 中则存在大量重复序列(repetitive sequences)。用复性动力学等实验表明有三类重复序列:1)高度重复序列(highly repetitive sequences),这类序列一般较短,长10-300bp,在哺乳类基因组中重复106次左右,占基因组DNA序列总量的10-60%,人的基因组中这类序列约占20%,功能还不明了。2)中度重复序列(moderately repetitive sequences),这类序列多数长100-500bp,重复101-105次,占基因组10-40%。例如哺乳类中含量最多的一种称为Alu的序列,长约300bp,在哺乳类不同种属间相似,在基因组中重复3×105次,在人的基因组中约占7%,功能也还不很清楚。在人的基因组中18S/28SrRNA基因重复280次,5SrRNA基因重复2000次,tRNA基因重复1300次,5种组蛋白的基因串连成簇重复30-40次,这些基因都可归入中度重复序列范围。3)单拷贝序列(single copy sequences)。这类序列基本上不重复,占哺乳类基因组的50-80%,在人基因组中约占65%。绝大多数真核生物为蛋白质编码的基因在单倍体基因组中都不重复,是单拷贝的基因。 从上述可见真核基因组比原核基因组复杂得多,至今人类对真核基因组的认识还很有限,使现在国际上制订的人基因组研究计划(human gene project)完成,绘出人全部基因的染色体定位图,测出人基因组109bp全部DNA序列后,要搞清楚人全部基因的功能及其相互关系,特别是要明了基因表达调控的全部规律,还需要经历很长期艰巨的研究过程。 二、真核基因表达调控的特点 尽管我们现在对真核基因表达调控知道还不多,但与原核生物比较它具有一些明显的特点。

真核生物基因表达调控

第十章作业 1. 简述真核生物基因表达调控的7个层次。 ①染色体和染色质水平上的结构变化与基因活化 ②转录水平上的调控,包括基因的开与关,转录效率的高与低 ③RNA加工水平的调控,包括对出事转录产物的特异性剪接、修饰、编辑等。 ④转录后加工产物在从细胞核向细胞质转运过程中所受到的调控 ⑤在翻译水平上的控制,即对哪一种mRNA结合核糖体进行翻译的选择以及蛋白质成量的控制 ⑥对蛋白质合成后选择性地被激活的控制,蛋白质和酶分子水平上的剪接等的控制 ⑦对mRNA选择性降解的调控 2. 真核基因表达调控与原核生物相比有何异同? 相同点:①与原核基因的调控一样,真核基因表达调控也有转录水平调控和转录后水平的调控,并且也以转录水平调控为最重要; ②在真核结构基因的上游和下游(甚至内部)也存在着许多特异的调控成分,并依靠特异蛋白因子与这些调控成分的结合与否调控基因的转录。 不同点:①原核细胞的染色质是裸露的DNA,而真核细胞染色质则是由DNA与组蛋白紧密结合形成的核小体。 ②在原核基因转录的调控中,既有激活物参与的正调控,也有阻遏物参与的负调控,二者同等重要。 ③原核基因的转录和翻译通常是相互偶联的,即在转录尚未完成之前翻译便已开始。 ④真核生物大都为多细胞生物,在个体发育过程中发生细胞分化后,不同细胞的功能不同,基因表达的情况也就不一样,某些基因仅特异地在某种细胞中表达,称为细胞特异性或组织特异性表达,因而具有调控这种特异性表达的机制。 3. DNA 甲基化对基因表达的调控机制。 甲基化抑制基因转录的机制:DNA甲基化会导致某些区域DNA构象改变,包括甲基化后染色质对于核酸酶或限制性内切酶的敏感度下降,更容易与组蛋白H1相结合,DNaseⅠ超敏感位点丢失,使染色质高度螺旋化, 凝缩成团, 直接影响了转录因子与启动区DNA的结合效率的结合活性,不能启始基因转录。DNA的甲基化不利于模板与RNA聚合酶的结合,降低了转录活性。 4. 转录因子结合DNA的结构基序(结构域)有哪几类? ①螺旋-转折-螺旋 ②锌指结构 ③碱性-亮氨酸拉链 ④碱性-螺旋-环-螺旋 5. 真核基因转调控中有几种方式能够置换核小体? ①占先模式:可以解释转录时染色质结构的变化。该模型认为基因能否转录取决于特定位置上组蛋白和转录因子之间的不可逆竞争性结合。 ②动态模式该模型认为转录因子与组蛋白处于动态竞争之中,基因转录前染色质必须经历结构上的改变,即转换核小体中的全部或部分成分并重新组装,这个耗能的基因活化过程称为染色质重构 6. 简述真核生物转录水平调控过程。 真核生物在转录水平的调控主要是通过反式作用因子、顺式作用元件和RNA聚合酶的相互作用来完成的,主要是反式作用因子结合顺式作用元件后影响转录起始复合物的形成过程:①转录起始复合物的形成:真核生物RNA聚合酶识别的是由通用转录因子与DNA形成的

相关主题