搜档网
当前位置:搜档网 › 第九讲 三共定理之共角定理

第九讲 三共定理之共角定理

第九讲   三共定理之共角定理
第九讲   三共定理之共角定理

第九讲“三共定理”——共角定理

新知探索共角定理

思考:如图在前面两讲中,两个三角形有共同的高或者有公共的边,我们能够请两个三角形的面积比,若两个三角形既没有公共的高也没有公共边,能求其面积比吗?

现我们还是给定一个条件,如果两个三角形有一对角相等或互为补角,我们来求一求两三角形的面积比!如下图:

第一种情况:如图1,当有一组角对应相等,即:∠ABC=∠DAE时。

【分析】:连接DB。构造两组共高三角形

解:由共高定理得:

AD

AC

S

S

DAB

ABC=

?

?;

AE

AB

S

S

DAE

DAB=

?

?

AE

AB

AD

AC

S

S

S

S

DAE

DAB

DAB

ABC?

=

?

?

?

?

?

AE

AB

AD

AC

S

S

DAE

ABC?

=

?

?

想一想:在这种情况下,两个三角形的面积比与它们的边有何关系?

第二种情况:如图1,当有一组角互补,即:∠ABC+∠DAE=180°时。

【分析】:连接DB 。构造两组共高三角形

解:由共高定理得:AD AC S S DAB ABC =??;AE

AB S S DAE DAB =?? ∴AE

AB AD AC S S S S DAE DAB DAB ABC ?=????? ∴

AE AB AD AC S S DAE ABC ?=?? 想一想:在这种情况下,两个三角形的面积比与它们的边有何关系?

通过思考,可以把这个事实概括为一个重要的结论:共角定理

【知识应用探究】

题型I 共角定理的应用

【例1】(三角形角平分线性质)如图,AD 是

ΔABC 的角平分线,

求证:CD

BD AC AB = 证明:∵AD 是ΔABC 的角平分线

∴AC

AB AD AC AD AB S S ACD ABD =??=??(共角定理) 又∵∠ADB+∠ADC=180°

∴CD

BD AD CD AD BD S S ACD ABD =??=??(共角定理) ∴

CD BD AC AB = 【同步提升训练】

基础训练

1、(等腰三角形等角对等边)已知△ABC 中,∠B=∠C ,求证:AB=AC

综合演练

2、如图,已知AB ∥DC ,AB=4,CD=8,梯形的面积为36。

求:ΔABE 、ΔBCE 、ΔCDE 、ΔDAE 的面积。

3、(用共角定理证明)已知△ABC 是等腰三角形,D 、E 分别是腰AB 及AC 的延长线上一点,且BD=CE ,连DE 交BC 于点F.求证:DF=EF

华东师大版九年级数学下册 圆周角教案

《圆周角》教案 教学目标: 一.知识技能 1.理解圆周角概念,理解圆周用与圆心角的异同; 2.掌握圆周角的性质和直径所对圆周角的特征; 3.能灵活运用圆周角的性质解决问题; 4.使学生掌握圆内接四边形的概念,掌握圆内接四边形的性质定理; 5.使学生初步会运用圆的内接四边形的性质定理证明和计算一些问题. 教学重点: 1.圆周角与圆心角的关系,圆周角的性质和直径所对圆周角的特征. 2.圆内接四边形的性质定理. 教学难点: 1.发现并证明圆周角定理. 2.理解“内对角”这一重点词语的意思. 教学过程: 一.创设情景 如图是一个圆柱形的海洋馆,在这个海洋馆里,人们可以通过其中的圆弧形玻璃窗⌒ AB观看窗内的海洋动物.大家请看海洋馆的横截面的示意图,想想看:同学甲站在圆心O的位置,同学乙站在正对着下班窗的靠墙的位置C,他们的视角(∠AOB和∠ACB)有什么关系?如果同学丙、丁分别站在其他靠墙的位置D和E,他们的视角(∠ADB和∠AEB)和同学乙的视角相同吗? 二.认识圆周角. 1.观察∠ACB、∠ADB、∠AEB,这样的角有什么特点? 2.给出定义,顶点在圆上,并且两边都与圆相交的角叫做圆周角.(注意两点:1.角的顶点在圆上;2.角的两边都与圆相交,二者缺一不可.) 3.辩一辩,图中的∠CDE是圆周角吗?引导学生识别,加深对圆周角的了解.

4.圆周角与圆心角的联系和区别是什么? 三.探究圆周角的性质. 1.如图所示图中,∠AOB=180°,则∠C等于多少度呢?从中你发现了什么?(推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.可用圆周角定理说明.) B 如图,AB为⊙O的直径,弦CD交AB于点P,∠ACD=60°,∠ADC=70°,求∠APC的度数. 解:连接BC,则∠ACB=90°, ∠DCB=∠ACB-∠ACD=90°-60°=30°. 又∵∠BAD=∠DCB=30°,∴∠APC=∠BAD+∠ADC=30°+70°=100°. 2.在下图中,同弧⌒ AB所对的圆周角有哪几个?观察并测量这几个角,你有什么发现?大胆说出你的猜想.同弧⌒ AB所对的圆心角是哪个角?观察并测量这个角,比较同弧所对的圆周角你有什么发现呢?大胆说出你的猜出想. 3.由学生总结发现规律:同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半,教师再利用几何画板从动态的角度进行演示,验证学生的发现. 四.证明圆周角定理及推论. 1.问题:在圆上任取一个圆周角,观察圆心角顶点与圆周角的位置关系有几种情况? 2.学生自己画出同一条弧的圆心角和圆周角,将他们画的图归纳起来,共有三种情况:①圆心在圆周角的一边上;②圆心在圆周角的内部;③圆心在圆周角的外部.如下图

小学奥数平面几何五种面积模型(等积,鸟头,蝶形,相似,共边)

小学奥数平面几何五种模型(等积,鸟头,蝶形,相似,共边) 目标:熟练掌握五大面积模型等积,鸟头,蝶形,相似(含金字塔模型和沙漏模型),共边(含燕尾模型和风筝模型), 掌握五大面积模型的各种变形 知识点拨 一、等积模型 ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如右图12::S S a b = 【 ③夹在一组平行线之间的等积变形,如右图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD . ④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. 二、鸟头定理 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比. 如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上), 则:():()ABC ADE S S AB AC AD AE =??△△ 》 E D C B A E D C B A 图⑴ 图⑵ 三、蝶形定理 任意四边形中的比例关系(“蝶形定理”): ①1243::S S S S =或者1324S S S S ?=?②()()1243::AO OC S S S S =++ 蝶形定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造 b a S 2 S 1 D C B A S 4 S 3 S 2 S 1 O D C B A

垂径定理和圆周角定理的复习

二、同步题型分析 关于垂径定理 例题1、如图,⊙O 的半径OD⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB=8,CD=2,则EC 的长为( ) 【变式练习】1如图,AB 是⊙O 的直径,弦CD⊥AB,垂足为P .若CD=8,OP=3,则⊙O 的半径为( ) 【变式练习】2、如图,在⊙O 中,OC⊥弦AB 于点C ,AB=4,OC=1,则OB 的长是( ) 例题2、如图,⊙O 的直径AB=12,CD 是⊙O 的弦,CD⊥AB,垂足为P ,且BP :AP=1:5,则CD 的长为( ) 【变式练习】1、如图.Rt△ABC 内接于⊙O,BC 为直径,AB=4,AC=3,D 是弧AD 的中点,CD 与AB 的交点为E ,则 DE CE 等于( ) 【变式练习】2如图,AB 是⊙O 的直径,弦CD 交AB 于点E ,且AE=CD=8,∠BAC= 2 1 ∠BOD,则⊙O 的半径为( ) 【变式练习】3在半径为13的⊙O 中,弦AB∥CD,弦AB 和CD 的距离为7,若AB=24,则CD 的长为( ) 例题3、如图,以M (-5,0)为圆心、4为半径的圆与x 轴交于A 、B 两点,P 是⊙M 上异于A 、B 的一动点,直线PA 、PB 分别交y 轴于C 、D ,以CD 为直径的⊙N 与x 轴交于E 、F ,则EF 的长( ) 【变式练习】1、已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB⊥CD,垂足为M ,且AB=8cm ,则AC 的长为( ) 【变式练习】2如图所示,在圆⊙O 内有折线OABC ,其中OA=8,AB=12,∠A=∠B=60°,则BC 的长

人教版九年级数学上册教案《圆周角》

《圆周角》 《圆周角》这节内容是在学生学习了圆心角、弧、弦之间关系的基础上的延续,圆周角 定理在圆的有关证明、作图、计算中应用十分广泛。本节内容既可以巩固圆心角与弧、弦之间的关系,又为后面研究圆与其它几何图形的关系提供了条件。 圆周角定理及其推论是本章的重点内容之一,圆周角定理的分情况证明是本章的教学难点。教材一开始先给出圆周角的概念,紧接着安排了一个探究活动,从介绍圆周角概念的图形出发,让学生探究同弧所对的圆周角和圆心角的数量关系,然后分三种情况证明定理。通过对圆周角定理的探讨,达到培养学生严谨的思维品质的目的。同时,还可以让学生掌握从特殊到一般以及分类讨论的思维方法。 圆内接四边形的四个内角都是圆周角,利用圆周角定理可以把圆的内接四边形的四个内角和相应的圆心角联系起来,得到圆内接四边形的性质,圆内接四边形的性质在圆中探索相关角相等或互补时常常用到。 【知识与能力目标】

1、理解圆周角的概念; 2、掌握圆周角定理及其推论; 3、能运用圆周角定理及其推论进行简单计算和证明; 4、掌握圆内接四边形的相关概念以及圆内接四边形的性质定理。 【过程与方法目标】 在探索圆周角和圆心角的关系的过程中,让学生学会运用分类讨论的数学思想、转化的数学思想来解决问题。 【情感态度价值观目标】 在探索圆周角定理过程中,帮助学生树立运动变化和对立统一的辩证唯物主义观点,增强学好数学的信心。 【教学重点】 圆周角定理及其推论。 【教学难点】 圆周角定理证明方法的探讨。 多媒体课件、教具等。 一、创设情境,引入新课 问题1 在圆中,满足什么条件的角是圆心角? 顶点在圆心的角叫做圆心角。 问题2 在同圆或等圆中,弧、弦、圆心角之间有什么关系? 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等; 在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等; 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等。 问题3 足球训练场上教练在球门前划了一个圆圈,进行无人防守的射门训练。如图,甲、乙两名运动员分别在C、D两地,他们争论不休,都说自己所在位置对球门AB的张角大。如果请你来评判,你知道他们的位置对球门AB的张角大小吗?

最新中考数学共边定理及其应用与推广

共边定理及其应用与推广 几何一直是初中数学的重难点,初中几何主要研究边角关系,并要求对边,角关系进行严格的证明、推理.学生普遍感觉几何好学但解题难,难在思维的深度,尤其难在辅助线的添加,许多几何题目往往受制于这神来一笔的辅助线.如何攻克这座堡垒呢?本文将介绍共边定理这一用途极广的几何解题工具,以供广大读者参考. 一、共边定理 共边定理建立在共边三角形的基础上,它是指,共边三角形的面积比等于第三个顶 点的连线被公共边所截得的线段比. 定理 如图1,设直线AB 与CD 交于M ,则有ABC ABD S CM S DM ??= (共有四种情形 ). 这个定理的证明基于一个基本的事实:共高三角形的面积比等于底的比.具体证明如下. 证明 ABC ABC ACM ADM ABD ACM ADM ABD S S S S S S S S ????????=g g AB CM AM CM AM DM AB DM ==g g . 由于共边定理有四种位置情形却对应同一个比值,所以,如何选择两个合适的三角形,是运用共边定理解决间题的关键,而图形的选择差异使得解法往往不唯一 共边定理虽然是对等高等底三角形面积相等这一基本性质的推广,但是它的用途却相当的广泛.它在线段和面积之间建立了天然的桥梁,由此可利用这两种几何量的反复转化,证明一大批几何问题,尤其是在没有特别条件下只涉及直线相交、平行、同一直线上的线段比以及面积比等问题中,运用共边定理会得到易想不到的效果.下面通过几个例题来说明共边定理的应用. 二、共边定理的应用 1.有关线段的问题 例1 凸四边形ABCD 的两边,AD BC 延长后交于点K ;两边,AB CD 延长交于L ,对角线 ,BD AC 延长后分别与直线KL 交于,F G ,如图2.求证: KF KG LF LG =.

垂径定理圆周角与圆心角的关系复习题

【知识点总结】 1.圆是 到定点的距离等于定长 的所有点组成的图形. 2.圆是轴对称图形,它的直径所在的直线都是对称轴;又时中心对称图形,它的中心是圆心. 3.垂径定理:(图1)垂直于弦的直径平分弦,并且平分弦所对的弧. 推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧 推论2:平分弧的直径垂直平分弧所对的弦 4.圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等. 关于弦的问题,常常需要过圆心作弦的垂线段,这是一条非常重要的辅助线。 圆心到弦的距离、半径、弦长构成直角三角形,便将问题转化为直角三角形的问题。 5.顶点在圆周上,并且两边都和圆相交的角叫做圆周角. 6.圆周角定理: 一条弧所对的圆周角等于它所对的圆心角的一半。 也可以理解为:一条弧所对的圆心角是它所对的圆周角的二倍;圆周角的度数等于它所对的弧的度数的一半。 7. 推论:半圆(或直径)所对的圆周角是直角;?90的圆周角所对的弦是直径. 8.在同圆或等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧也相等。 圆易错点 1.注意考虑点的位置 在解决点与圆的有关问题时,应注意对点的位置进行分类,如点在圆内圆外、点在优弧劣弧等. 例1.点P 到⊙O 上的最近距离为cm 3,最远距离为cm 5,则⊙O 的半径为 cm . 例2.BC 是⊙O 的一条弦, ?=∠120BOC ,点A 是⊙O 上的一点(不与B 、C 重合),则BAC ∠的度数为 . 2.注意考虑弦的位置 在解决与弦有关的问题时,应对两条的位置进行分类,即注意位于圆心同侧和异侧的分类. 图3 图4

例3.在半径cm 5为的圆中,有两条平行的弦,一条为cm 8,另一条为cm 6,则这两条平行弦的距离是 . 例4.AB 是⊙O 的直径,AC 、AD 是⊙O 的两条弦,且?=∠30BAC ,?=∠45BAD ,则CAD ∠的度数为 . 考点1:基本概念和性质 考查形式:主要考查圆的对称性、直径与弦的关系、等弧等有关命题,常以选择题的形式出现. 例5.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( ). A .4个 B .3个 C . 2个 D . 1个 考点2:圆心角与圆周角的关系 例6.如图1,A 、B 、C 为⊙O 上三点,若∠OAB=46°,则∠ACB=_______度. B A A (1) (2) (3) 例7..如图2,AB 是⊙O 的直径, BC BD =,∠A=25°,则∠BOD 的度数为________. 例8..如图3,AB 是半圆O 的直径,AC=AD,OC=2,∠CAB= 30 °, 则点O 到CD 的距离OE=______. 考点3:垂径定理 考查形式:主要考查借助垂径定理的解决半径、弧、弦、弦心距之间的计算和证明,填空题、选择题或解答题中都经常出现它的身影.解决是应注意作出垂直于弦的半径或弦心距,构造直角三角形进行解决. 例9.如图,在⊙O 中,有折线OABC ,其中8=OA ,12=AB ,?=∠=∠60B A ,则弦BC 的长为( )。 A.19 B.16 C.18 D.20 1.下列命题中,正确命题的个数为( ). ①平分弦的直径垂直于弦;②圆周角的度数等于圆心角度数的一半;③?90的圆周角所对的弦是直;④圆周角相等,则它们所对的弧相等. A .1个 B .2个 C . 3个 D . 4个 2.下列说法中,正确的是( ) A. 到圆心的距离大于半径的点在圆内 B. 圆的半径垂直于圆的切线 C

几何五大模型汇总

小学平面几何五大模型 一、 共角定理 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在ABC △中,,D E分别是, AB AC上的点如图⑴(或D在BA的延长线上,E在AC上),则:():() S S AB AC AD AE =?? △△ 证明:由三角形面积公式S=1/2*a*b*sinC可推导出 若△ABC和△ADE中, ∠BAC=∠DAE 或∠BAC+∠DAE=180°, 则 ADE ABC S S ? ? = AE AD AC AB ? ? 二、等积模型 ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如下图 12 :: S S a b = ③夹在一组平行线之间的等积变形,如右图 ACD BCD S S= △△ ; 反之,如果 ACD BCD S S = △△ ,则可知直线AB平行于CD. ④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. b a S2 S1 D C B A

三、蝶形定理 1、任意四边形中的比例关系(“蝶形定理”): ①1243::S S S S =或者1324S S S S ?=? ②()()1243::AO OC S S S S =++ 速记:上×下=左×右 蝶形定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面 可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系. 2、梯形中比例关系(“梯形蝶形定理”): ①2213::S S a b = ②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +. 四、相似模型 (一)金字塔模型 (二) 沙漏模型 G F E A B C D A B C D E F G ①AD AE DE AF AB AC BC AG ===; ②22:ADE ABC S S AF AG =△△:. 相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下: ⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; A B C D O b a S 3 S 2 S 1S 4 S 4 S 3 S 2 S 1O D C B A

怎样判定三角形全等——边角边说课稿

《三角形全等的判定——角边角定理》说课稿 一、教材分析 北京师范大学出版社出版的义务教育课程标准实验教科书数学七年级下册第五章第四节第2课时的内容. 形及其性质,以及探究出另一个三角形全等的判定定理——边边边定理的基础上进行的。 (2)一方面引导学生从动手操作出发探索出角边角定理,体会利用操作、归纳获得数学结论的方法;另一方面让学生能够运用“角边角定理”解决实际问题。 (3)另外判定三角形全等在初中几何学习中对于证明线段及角相等是一个非常重要而且有效的方法。 3、教学目标: (1)知识与技能: 使学生在分组探究的过程中得出“角边角定理”。 使学生会运用”角边角定理”解决实际问题。 (2)过程与方法: 在探究的过程中提高学生观察、分析能力,体会利用数学建模解决实际问题的方法; 提高学生的发散思维能力与创新意识。 (3)情感与态度: 让学生经历数学活动,体验主动探究的成功与快乐,感受数学活动充满探索与创新的机遇; 培养学生总结知识内容,使之条理化的良好学习习惯。 4、教材重点:角边角定理的探究和它在实际问题中的运用。 ①“角边角定理”是“角角边定理”探究的基础; ②探究和运用过程中,渗透了建模的解题思想。 5、教材难点:运用“角边角定理”解决实际问题。理由是:在实际问题中运用“角边角定理”来建模的分析过程比较复杂。 二、说教法、学法: 1、教法:针对七年级学生的心理特点和认知规律,大胆应用生活中的素材,充分体现数学是源于实践又运用于实践。因此,在本节课的教学中,以学生为中心,让学生主动参与积极思维,勇于实践,利用学生自己动手操作,激发学生探索的兴趣,使整个课堂活起来,提高课堂效率。本节课以动手操作为中心,让学生亲历亲为,敢于接受问题的挑战,展示自己的见解,给学生创造一个宽松愉快的学习氛围,让学生体验成功的快乐,为终身学习和发展打下坚实的基础。 2、学法:学生渴望与他人交流,合作探究可使学生感受到合作的重要和团队的力量,增强集体意识,本节课主要采用动手操作、合作学习的方法,让学生遵循“操作——观察——猜想——验证——归纳——反馈——应用”的主线学习,让学生在活动中观察、探索、归纳,经历知识发生、发展的过程,实现对知识的主动构建,不仅学习了知识,能力也能得到培养,素质得到提高。 三、说教学过程 (一)创设情境,引入新知 1.由生活中遇到的全等问题情境自然引入。

中考技巧圆幂定理 、共高定理、共角定理、共边定理

中考技巧圆幂定理、共高定理、共角定理、共边定理 圆幂定理是平面几何中的一个定理,是相交弦定理、切割线定理及割线定理(切割线定理推论)的统一,例如如果交点为P的两条相交直线与圆O相交于A、B与C、D,则PA·PB=PC·PD。 圆幂定理是一个总结性的定理。 根据两条与圆有相交关系的线的位置不同,有以下定理: 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。则有AE·CE=BE·DE。 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。则有PA2=PC·PD。

割线定理:从圆外一点P引两条割线与圆分别交于A、B、C、D,则有PA·PB=PC·PD。 从上述定理可以看出,两条线的位置从内到外,都有着相似的结论。 经过总结和归纳,便得出了圆幂定理。 点对圆的幂 定义:P点对圆O的幂定义为OP2—R2。 性质: 点P对圆O的幂的值,和点P与圆O的位置关系有下述关系: 点P在圆O内→P对圆O的幂为负数; 点P在圆O外→P对圆O的幂为正数; 点P在圆O上→P对圆O的幂为0。 注意:以上关系除正向应用通过点和圆的位置关系判断点对的圆的幂的符号,还可以逆向应用,通过点对圆的幂的符号反推点和圆的位置关系。 在某些书中,点P对圆O的幂表示为 |OP2—R2|。 共高定理 如图1,延长△PAM的边AM至点B,得△PBM,根据面积公式可以证明以下定理.

图1 共高定理: 若M在直线AB上,P为直线AB外一点, 则有S△PAM:S△PBM=AM:BM. 证明:如图1, 因为S△PAM=1/2AM·PM,S△PAM=1/2BM·PM, 所以S△PAM:S△PBM=AM:BM. 【举一反三】 如图2,点P在△ABC的边BC上,且∠BAP=∠CAP,试用共高定理推出PB:PC=AB:AC. 图2 共角定理 中考数学压轴题 昨天

垂径定理,圆周角定理练习题

C A P O D C E O A D B 九年级 垂径定理、弦、弧、圆心角、圆周角练习 一,填空题 1. 如图所示,OA 是圆O 的半径,弦CD ⊥OA 于点P ,已知OC=5,OP=3,则弦CD=____________________。 2.. 如图所示,在圆O 中,AB 、AC 为互相垂直且相等的两条弦,OD ⊥AB ,OE ⊥AC ,垂足分别为D 、E ,若AC=2cm ,则圆O 的半径为____________cm 。 3. 如图所示,AB 是圆O 的直径,弦CD ⊥AB ,E 为垂足,若AB=9,BE=1,则CD=_________________。 (2题图 ) ( 1题图 ) (3题图) 4. 如图所示,在△ABC 中,∠C =90°,AB =10,AC =8,以AC 为直径作圆与斜边交于点P ,则BP 的长为________________。 5. 如图所示,四边形ABCD 内接于圆O ,∠BCD=120°,则∠BOD=____________度。 6. 如图所示,圆O 的直径为10,弦AB 的长为6,M 是弦AB 上的一动点,则线段的OM 的长的取值范围是( ) (4题图) (5题图) (6题图) (9题图) 7. 若圆的一条弦把圆分成度数的比为1:3的两条弧,则劣弧所对的圆周角等于( ) 8. 如图所示,A 、B 、C 三点在圆O 上,∠AOC=100°,则∠ABC 等于( ) 9. △ABC 中,∠C=90°,AB=cm 4,BC=cm 2,以点A 为圆心,以cm 5.3长为半径画圆,则点C 在圆A___________,点B 在圆A_________; 10. 圆的半径等于cm 2,圆内一条弦长 23cm ,则弦的中点与弦所对弧的中点的距离等于_____________; 11. 在△ABC 中,∠C=90°,AC=BC=4cm ,D 是AB 边的中点,以点C 为圆心,4cm 为半径作圆。则A 、B 、C 、D 四点在圆内有_____________。

小学奥数几何知识点整理【三篇】

小学奥数几何知识点整理【三篇】 【第一篇:几何图形的认知】 【第二篇:常见定理】 鸟头定理即共角定理。 燕尾定理即共边定理的一种。 共角定理: 若两三角形有一组对应角相等或互补,则它们的面积比等于对应角两边乘积的比。 共边定理: 有一条公共边的三角形叫做共边三角形。 共边定理:设直线AB与PQ交与M则S△PAB/S△QAB=PM/QM 这几个定理大都利用了相似图形的方法,但小学阶段没有学过相似图形,而小学奥数中,常常要引入这些,实在有点难为孩子。 为了避开相似,我们用相应的底,高的比来推出三角形面积的比。 例如燕尾定理,一个三角形ABC中,D是BC上三等分点,靠近B点。连接AD,E是AD上一点,连接EB和EC,就能得到四个三角形。 很显然,三角形ABD和ACD面积之比是1:2 因为共边,所以两个对应高之比是1:2 而四个小三角形也会存在类似关系

三角形ABE和三角形ACE的面积比是1:2 三角形BED和三角形CED的面积比也是1:2 所以三角形ABE和三角形ACE的面积比等于三角形BED和三角形CED的面积比,这就是传说中的燕尾定理。 以上是根据共边后,高之比等于三角形面积之比证明所得。 必须要强记,只要理解,到时候如何变形,你都能会做。至于鸟头定理,也不要死记硬背,掌握原理,用起来就会得心应手。 【第三篇:平面图形】 1、长方形 (1)特征 对边相等,4个角都是直角的四边形。有两条对称轴。 (2)计算公式 c=2(a+b) s=ab 2、正方形 (1)特征: 四条边都相等,四个角都是直角的四边形。有4条对称轴。 (2)计算公式 c=4a s=a2 3、三角形 (1)特征

中考数学一轮专题复习垂径定理圆心角圆周角定理

垂径定理圆心角圆周角定理 一选择题: 1、如图,⊙O是△ABC的外接圆,∠OBC=42°,则∠A的度数是() A.42°B.48°C.52°D.58° 2.如图,A、B、C、D四个点均在⊙O上,∠AOD=50°,AO∥DC,则∠B的度数为( ) A.50° B.55° C.60° D.65° 3.如图,点B、D、C是⊙O上的点,∠BDC=130°,则∠BOC是() A.100° B.110° C.120° D.130° 4.如图,⊙O的半径为5,弦AB的长为8,点M在线段AB(包括端点A,B)上移动,则OM取值范围是() A.3≤OM≤5 B.3≤OM<5 C.4≤OM≤5 D.4≤OM<5 5、如图所示,AB是⊙O的直径,AD=DE,AE与BD交于点C,则图中与∠BCE相等的角有() A.2个 B.3个 C.4个 D.5个 6.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠

A.15°B.28° C.29°D.34° 7.如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D、E两点,且∠ACD=45°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时,设AF=x,DE=y,下列中图象中,能表示y与x的函数关系式的图象大致是( ) 8.如图.⊙O 中,AB、AC是弦,O在∠ABO的内部,,,,则下列关系中,正确的是() A. B. C. D. 9.如图,四边形ABCD内接于⊙O,BC是直径,AD=DC,∠ADB=20o,则∠ACB,∠DBC分别为() A.15o与30o B.20o与35o C.20o与40o D.30o与35o 10.图中∠BOD的度数是() A.55° B.110° C.125° D.150° 11.如图,点I为△ABC的内心,点O为△ABC的外心,∠O=140°,则∠I为()

最新浙教版九年级数学上册《圆周角1》教学设计(精品教案).docx

3.5圆周角 教学目标: 1.经历探索圆周角定理的另一个推论的过程. 2.掌握圆周角定理的推论”在同圆或等圆中,同弧或等弧所对的 圆周角相等,相等的圆周角所对的弧也相等” 3.会运用上述圆周角定理的推论解决简单几何问题. 重点: 圆周角定理的推论”在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等” 难点:例3涉及圆内角与圆外角与圆周角的关系,思路较难形成,表述也有一定的困难 例4的辅助线的添法. 教学过程: 一、旧知回放: 1、圆周角定义: 顶点在圆上,并且两边都和圆相交的角叫圆周角. 特征:①角的顶点在圆上. ②角的两边都与圆相交. 2、圆心角与所对的弧的关系 3、圆周角与所对的弧的关系 4、同弧所对的圆心角与圆周角的关系 圆周角定理: 一条弧所对的圆周角等于它所对的圆心角的一半.

二. 课前测验 1.100o的弧所对的圆心角等于_______,所对的圆周角等于_______。 2、一弦分圆周角成两部分,其中一部分是另一部分的4倍,则这弦所对的圆周角度数为________________。 3、如图,在⊙O 中,∠BAC=32o,则∠BOC=________。 4、如图,⊙O 中,∠ACB = 130o,则∠AOB=______。 5、下列命题中是真命题的是( ) (A )顶点在圆周上的角叫做圆周角。 (B )60o的圆周角所对的弧的度数是30o (C )一弧所对的圆周角等于它所对的圆心角。 (D )120o的弧所对的圆周角是60o 三, 问题讨论 问题1、如图1,在⊙O 中,∠B,∠D,∠E 的大小有什么关系?为什么? 问题2、如图2,AB 是⊙O 的直径,C 是⊙O 上任一点,你能确定∠BAC 的度数吗? 问题3、如图3,圆周角∠BAC =90o,弦BC 经过圆心O 吗?为什么? A O C B A O C ● O B A C D E ● O B C A 图3

共边定理典型题解析

?APB 面积︰?AQB 面积=PM ︰QM 1如图,△ABC 中,D 、E 分别是AB 、AC 边上的中点,用面积方法证明:DE ∥BC 且DE = 1 2 BC . 证明:∵D 、E 分别是AB 、AC 边上的中点, ∴△ADE ﹕△BDE =△ADE ﹕△CDE =1﹕1 ∴△BDE =△CDE ∴ DE ∥BC ∴∠DBC =∠ADE 由共角定理得:△ADE/△ABC =AD·DE/AB·BC =1/4 ∵AD = 1 2 AB ∴DE = 1 2 BC . 这里,证明平行用到了平行的基本命题,证明线段的比值用到了共角定理. 传统证法中,要用到全等三角形、平行四边形或相似三角形,同时要作辅助线构成全等、相似、或平行四边形. 例2:(1983年美国中学数学竞赛题) 如图的三角形ABC 的面积为10,D 、E 、F 分别在边BC 、CA 、AB 上,且BD =2,DC =3,若△BCE 与四边形DCEF 的面积相等,则这个面积是( ) A .4 C .5 D .6 B E.不确定 解:由△BCE 与四边形DCEF 的面积相等,在四边形BCEF 中分别减去这 两个面积,得△BFD 与△BFE 同底且面积相等,所以BF ∥DE ,可以得到AB 为边的两个三角形△ABD 与△ABE 面积相等,因为三角形ABC 的面积为10,且BD =2,DC =3,所以△ABD 的面积等于4,即△ABE 面积等于4,所以△BCE 的面积等于10-4=6,故选C . 这是一道由面积相等推知两线平行的典型题目. 例3:对角线互相平分的四边形是平行四边形. 证明:∵OA =OC ,OB =OD ,由共角定理得:△AOB/△COD =OA·OB =OC·OD =1 即△AOB =△COD ,∴共底的两个三角形△ACB =△CBD ,∴AD ∥BC ; 同理可证AB ∥ CD A A B B P P M M 共边定理图:四种位置关系 Q Q A B C D O

9 垂径定理 圆心角 圆周角定理(

垂径定理圆心角圆周角定理 垂径定理: 垂直于弦的直径平分弦且平分这条弦所对的两条弧 1、平分弦所对的两条弧) 2、平分弦(不是直径) 3、垂直于弦 4、过圆心 推论一:平分弦(非直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧。 推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧 推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧。 推论四:在同圆或者等圆中,两条平行弦所夹的弧相等 [垂径定理是圆的重要性质之一,它是证明圆内线段、角相等、垂直关系的重要依据,也为圆中的计算、证明和作图提供了依据、思路和方法。] 圆心角 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。 (1)圆心角相等,(2)所对弧相等,(3)所对弦相等,(4)所对弦的弦心距相等。 圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半。 1.在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等。 2.半圆(直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。 3.圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。 切线定理 (定义)和圆有且只有一个公共点的直线是圆的切线。 (数量法d=r)圆心到直线的距离等于半径的直线是圆的切线。 判定定理:1、经过半径的外端并且垂直于这条半径的直线是圆的切线。 判定性质:圆的切线垂直于过切点的半径。 有交点,连半径,证垂直;无交点,作垂线,证半径(d=r)

练习 一选择题: 1、如图,⊙O是△ABC的外接圆,∠OBC=42°,则∠A的度数是() A.42°B.48° C.52°D.58° 2.如图,A、B、C、D四个点均在⊙O上,∠AOD=50°, AO∥DC,则∠B的度数为( ) A.50° B.55° C.60° D.65° 3.如图,点B、D、C是⊙O上的点,∠BDC=130°, 则∠BOC是() A.100° B.110° C.120° D.130° 4.如图,⊙O的半径为5,弦AB的长为8,点M在线段AB(包括端点A,B)上 移动,则OM取值范围是() A.3≤OM≤5 B.3≤OM<5 C.4≤OM≤5 D.4≤OM<5 5、如图所示,AB是⊙O的直径,AD=DE,AE与BD交于点C,则图中与∠BCE相等的角有() A.2个 B.3个 C.4个 D.5个 6.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为( ) A.15°B.28° C.29°D.34°

著名的15个平面几何定理

1、欧拉(Euler)线: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半 证明:利用向量,简单明了 设H,G,O,分别为△ABC的垂心、重心、外心.,D为BC边上的中点。 ∵向量OH=向量OA+向量AH =向量OA+2向量OD (1) =向量OA+向量OB+向量BD+向量OC+向量CD =向量OA+向量OB+向量OC; 而向量OG=向量OA+向量AG =向量OA+1/3(向量AB+向量AC) (2) =1/3[向量OA+(向量OA+向量AB)+(向量OA+向量AC)] =1/3(向量OA+向量OB+向量OC). ∴向量OG=1/3向量OH, ∴O、G、H三点共线且OG=1/3OH。 2、九点圆: 任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。

证明:如右图所示,△ABC的BC边垂足为D,BC边中点为L。证法为以垂心H为位似中心,1/2为位似比作位似变换。 连结HL并延长至L',使LL'=HL;做H关于BC的对称点D'。 显然,∠BHC=∠FHE=180°-∠A,所以∠BD'C=∠BHC=180°-∠A,从而A,B,D',C四点共圆。 又因为BC和HL'互相平分于L,所以四边形BL'CH为平行四边形。故∠BL'C=∠BHC=180°-∠A,从而A,B,L',C四点共圆。 综上,A,B,C,D',L'五点共圆。显然,对于另外两边AB,AC边上的F,N,E,M也有同样的结论成立,故A,B,C,D',L',F',N',E',M'九点共圆。此圆即△ABC的外接圆⊙O。 接下来做位似变换,做法是所有的点(⊙O上的九个点和点O本身)都以H为位似中心进行位似比为1/2的位似变换。那么,L'变到了L(因为HL'=2HL),D'变到了D(因为D'是H关于BC的对称点),B变到了Q,C变到了R(即垂心与顶点连线的中点)。其它各点也类似变换。O点变成了OH中点V。 位似变换将圆仍映射为圆(容易用向量证明),因此原来在⊙O上的九个点变成了在⊙V上的九个点,且⊙V 的半径是⊙O的一半。 这就证明了三角形三边的中点,三高的垂足和三个欧拉点都在一个圆上。 3、费尔马点: 已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC的费尔马点。 证明:如图,以△ABC三边为边向外作等边△ABD、△BCE、△ACF, 连接CD、BF、AE交于点O,试证:O是费马点。 证明:在△ACD、△ABF中, AD=AB,∠DAC=∠BAF,AC=AF ∴△ACD≌△ABF(SAS)

九年级数学圆周角定理

圆周角定理及其运用 1、如图,抛物线过点A(2,0)、B(6,0)、C(1,3),平行于x轴的直线CD交抛物线于C、D,以AB为直径的圆交直线CD于点E、F,则CE+FD的值是。 2、如图,AB为⊙O的直径,点C为半圆上一点,AD平分∠CAB交⊙O于点D。 (1)求证:OD∥AC;(2)若AC=8,AB=10,求AD。 知识点一圆周角定理及其推论 【知识梳理】 1、圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。 (1)定理有三个方面的意义:A、圆心角和圆周角在同圆或等圆中;B、它们对着同一条弧或所对的弧是等弧; C、具备A、B两个条件的圆周角都是相等的,且等于圆心角的一半。 (2)因为圆心角的度数与它所对的弧的度数相等,所以圆周角的度数等于它所对的弧的度数的一半。

(3)定理中的“同弧或等弧”改为“同弦或等弦”结论就不成立。因为一条弦所对的弧有两段。 2、圆周角定理的推论: 推论①:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧。 推论②:半圆或直径所对的圆周角是直角;圆周角是直角(90°的圆周角)所对的弧是半圆,所对的弦是直径。 推论③:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 【例题精讲一】 例1.1、如图,已知A (32 ,0)、B (0,2),点P 为△AOB 外接圆上的一点,且∠AOP =45°,则P 点坐标 为 。 (第1题) (第2题) 2、如图,点A 、B 、C 在⊙O 上,∠A =36°,∠C =28°,则∠B =( ) A .46° B .72° C .64° D .36° 3、如图,A 、B 、C 、D 四个点均在⊙O 上,∠AOD =70°,AO ∥DC ,则∠B 的度数为 。 (第3 题) (第4 题) 4、如图,∠A 是⊙O 的圆周角,则∠A +∠OCB = 。 O E D A B C O A B C C B A O

共高、共边、共角定理的初步应用教学设计

共高、共边、共角定理的初步应用教案 一、本节课的设计理念 新课程的理念阐述的是“数学的学习是学生的主体性、能动性、独立性不断生成、张扬、发展、提升的过程”.院士数学教育创新实验班的课程设计是在遵循《课程标准》四基(基础知识、基本技能、基本思想、基本活动经验)教学的同时,融入张景中院士研发的《一线串通的初等数学》的内容,使得数学课变得生动有趣、变得更为高效.更重要的是这样的课程设置,打破了学生传统的思维定式,给学生提供了更多、更高效的解决问题的途径,从而增强了学生学习数学的信心,最终形成应用意识和创新意识. 二、教材分析 (一)本节课在教材中的地位和作用 张景中院士在《从数学教育到教育数学》一书中提到:“抓住面积,从小学到大学的数 学内容就可以一线相串抓住面积,结合代数与三角来开展初等几何,就极有希望提供一种 足以和欧几里德体系争夺课堂的几何教材.”. 三角形的面积是在学生掌握了三角形的特征以及长方形、平行四边形面积的计算方法,以及初步认识图形的平移、旋转等基础上进行教学的.所以这部分内容的教学,可以加深学生对三角形与长方形、平行四边形之间内在联系的认识,也为学生进一步探索并掌握其他平面图形的面积计算方法打下基础. 利用面积,学生可以更好的学习平面解析几何,为学习更为深入的数学内容奠定了重要的基础. 学生用共高定理探索出共边定理,再用共边定理探索出共角定理.这三个定理是新体系教材与现行教材融合的基石,为后面用面积法引入正弦等一系列内容做了铺垫. 更重要的是,本节课的设置是打破学生传统思维定式的典型案例,为学生解决简单几何问题奠定了夯实的基础. (二)学生情况 本次授课的班级是初一(5)班,该班层次是中等班级(其中一名心理疾病学生).因为 不是自己任课的班级,所以与孩子们并不熟悉.该班共有50名学生,学生个人能力参差较大,对实验研究常规数据的收集有信度保障. (三)教学目标 (1)知识与技能

圆周角圆心角垂径定理练习

江苏通海中学周飞 初三数学周末练习 班级:姓名:学号: 一.选择题(共8小题) 1.(2013?丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是() 5C 2.(2012?茂名)如图,AB是⊙O的直径,AB⊥CD于点E,若CD=6,则DE=() 则OP的长为() 4.(2013?黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为() .. 6.(2007?仙桃)如图,已知:AB是⊙O的直径,C、D是上的三等分点, ∠AOE=60°,则∠COE是()

二.填空题(共8小题) 9.(2009?郴州)如图,在⊙O中,,∠A=40°,则∠B=_________度. 10.如图,在⊙O中,=,如果∠AOC=65°,则∠BOD=_________. 11.(2011?阜新)如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于E点,若AB=2DE,∠E=18°,则∠AOC的度数为_________度. 12.(2010?湘西州)如图,在⊙O中,半径为5,∠AOB=60°,则弦长AB=_________.13.(2013?漳州)如图,一个宽为2厘米的刻度尺(刻度单位:厘米),放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是3和9,那么玻璃杯的杯口外沿半径为_________厘米. 14.(2013?西宁)如图,AB为⊙O的直径,弦CD⊥AB于点E,若CD=6,且AE:BE=1:3,则AB=_________.

角边角以及角角边判定

11.2 三角形全等的判定(3) 教学目标 ①探索并掌握两个三角形全等的条件:“ASA”“AAS”,并能应用它们判别两个三角形是否全等. ②经历作图、比较、证明等探究过程,提高分析、作图、归纳、表达、逻辑推理等能力;并通过对知识方法的总结,培养反思的习惯,培养理性思维. ③敢于面对教学活动中的困难,能通过合作交流解决遇到的困难. 教学重点 理解,掌握三角形全等的条件:“ASA”“AAS”. 教学难点 探究出“ASA”“AAS”以及它们的应用. 教学过程(师生活动) 创设情境 复习: 师:我们已经知道,三角形全等的判定条件有哪些? 生:“SSS”“SAS” 师:那除了这两个条件,满足另一些条件的两个三角形是否 也可能全等呢?今天我们就来探究三角形全等的另一些条件。 探究新知: 一张教学用的三角形硬纸板不小心 被撕坏了,如图,你能制作一张与原来 同样大小的新教具?能恢复原来三角形 的原貌吗? 1.师:我们先来探究第一种情况.(课件出示“探究5……”) (1)探究5 先任意画出一个△ABC,再画一个△A'B'C',使A'B'=AB,∠A'=∠A,∠B'=∠B(即使两角和它们的夹边对应相等).把画好的△A'B'C'剪下,放到△ABC 上,它们全等吗? 师:怎样画出△A'B'C'?先自己独立思考,动手画一画。 在画的过程中若遇到不能解决的问题.可小组合作交流解决. 生:独立探究,试着画△A'B'C',(有问题的,可以小组内交流解决……)…… (2)全班讨论交流 师:画好之后,我们看这儿有一种画法:(课件出示画法,出现一步,画一步) 你是这样画的吗? 师:把画好的△A'B'C'剪下,放到△ABC上,看看它们是否全等. 生:(剪△A'B'C',与△ABC作比较……) 师:全等吗? 生:全等. 师:这个探究结果反映了什么规律?试着说说你的发现. 生1:我发现…… 生2:…… 生3:两角和它们的夹边对应相等的两个三角形全等.

相关主题