搜档网
当前位置:搜档网 › 高二数学二项分布及其应用

高二数学二项分布及其应用

数学高考复习点拨:二项分布与超几何分布辨析

二项分布与超几何分布辨析 二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析. 例 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求: (1)有放回抽样时,取到黑球的个数X的分布列; (2)不放回抽样时,取到黑球的个数Y的分布列. 解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到 黑球的概率均为,3次取球可以看成3次独立重复试验,则1~35X B ?? ???,. 3 03 1464(0)55125P X C ????==?= ? ?????∴;1 2 131448(1)55125 P X C ????==?= ? ? ????; 2123 1412(2)55125P X C ????==?= ? ?????;30 33141(3)55125 P X C ????==?= ? ? ????. 因此,X 的分布列为 2.不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有: 03283107 (0)15 C C P Y C ===;12283107(1)15C C P Y C ===;21283101(2)15C C P Y C ===. 因此,Y 的分布列为 辨析:通过此例可以看出:有放回抽样时,每次抽取时的总体没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样. 超几何分布和二项分布都是离散型分布,超几何分布和二项分布的区别: 超几何分布需要知道总体的容量,而二项分布不需要; 超几何分布是不放回抽取,而二项分布是放回抽取(独立重复) 当总体的容量非常大时,超几何分布近似于二项分布........

二项分布知识在日常生活中的应用分析

二项分布知识在日常生活中的应用分析 二项分布是在n 次独立重复试验中引入的一个概念,它是一种常见的、重要的离散型随机变量的概率分布,引入他们实际上是对独立重复试验从概率分布角度的进一步研究。然而我们在利用二项分布原理解决实际问题时只注意到两点,即解释为什么可以看成二项分布模型,其次是考虑到它的计算,却往往忽视对计算结果进行解释,造成初学者无法摆脱知识上的种种困惑。鉴于此,我们选取几个典型案例进行剖析,供参考。 例1. 将一枚均匀硬币随机掷100次,相当于重复做了100次试验,每次有两个可能的结果(出现正面,不出现正面),出现正面的概率为1/2。 分析:如果令X 为硬币正面出现的次数,则X 服从2 1,100==p n 的二项分布,那么100100100100)2 1(C )211()21(C )(k k k k k X =-==-P 。 由此可以得到:“随机掷100次硬币正好出现50次正面”的概率为 080)2 1(C )50(10050100?≈==X P 。 在学习概率时我们会有一种误解,认为既然出现正面的概率为1/2,那么掷100次硬币出现50次正面是必然的,或者这个事件发生的概率应该很大。但计算表明这概率只有8%左右。 它说的是,许多人都投100次均匀硬币,其中大约有8%的人恰投出50次正面。另外有些人投出的正面次数可能是47次、48次、51次、52次等。总起来看,正面出现的次数约占二分之一,这和均匀硬币出现正面的概率是二分之一是一致的。 例2. 设某保险公司有10000人参加人身意外保险。该公司规定:每人每年付公司120元,若逢意外死亡,公司将赔偿10000元。若每人每年死亡率为0.006,试讨论该公司是否会赔本,其利润状况如何。 分析:在这个问题中,公司的收入是完全确定的,10000个投保人每人付给公司120元,公司的年收入为120万元。公司的支出取决于投保人中意外死亡的人数(这里略去有关公司日常性开支的讨论,如公司职工工资,行政开支等等),而这是完全随机的,公司无法在事前知道其确切人数。但公司可以知道死亡人数的分布。设X 表示这10000人中意外死亡的人数,由于每个人的死亡率为0.006,则X 服从n=10000,p=0.006的二项分布: k k k C k X P --==1000010000)006.01(006.0)( 死亡X 人时,公司要赔偿X 万元,此时公司的利润为(120-X )万元。尽管我们无法

高三数学(理)二轮复习高考作业卷(十八)超几何分布(含解析)

衡水万卷作业(十) 双曲线的标准方程和几何性质 考试时间:45分钟 姓名:__________班级:__________考号:__________ 一、选择题(本大题共12小题,每小题6分,共72分。在每小题给出的四个选项中,只有一个选项 是符合题目要求的) 1.与双曲线221y x -=有共同的渐近线, 且经过点(-的双曲线方程为( ) A.2241y x -= B.2241y x -= C.2241y x -= D.2241y x -= 2.已知0a b >>,椭圆1C 的方程为1x 2222=+b y a ,双曲线2C 的方程为1x 22 22=-b y a ,1C 与2C 的离心率 之积为 2 3 ,则2C 的渐近线方程为( ) (A )02x =±y (B )02=±y x (C )02y x =± (D )0y 2x =± 3.已知F 是双曲线22 221x y a b -=的右焦点,点,A B 分别在其两条渐近线上,且满足2BF FA =, 0OA AB ?=(O 为坐标原点) ,则该双曲线的离心率为( ) B. 2 1 4.已知F 1,F 2分别是双曲线C :22 221(0,0)x y a b a b -=>>的左右焦点,以F 1F 2为直径的圆与双曲线C 在第二象限的交点为P ,若双曲线的离心率为5,则21cos PF F ∠等于( ) A . 35 B .34 C .45 D .56 5.设21F F ,分别为双曲线)0,0(122 22>>=-b a b y a x 的左、右焦点,双曲线上存在一点P 使得 ,4 9 ||||,3||||2121ab PF PF b PF PF = ?=+则该双曲线的离心率为( ) A.34 B.35 C.49 D.3 6.已知双曲线22122x y -=的准线过椭圆22 214x y b +=的焦点,则直线2y kx =+与椭圆至多有一个交点的充 要条件( ) A.11,k ??∈-???? B.() 11,,2k ?? ∈-∞-+∞?? ?? C. k ?∈??? D. 2,,2k ??? ∈-∞+∞ ?????? 7.已知双曲线22 122 :1(0,0)x y C a b a b -=>>的左.右焦点分别为F1.F2抛物线C2的顶点在原点,它的准线与双曲线C1的左准线重合,若双曲线C1与抛物线C2的交点P 满足 2120PF F F ?=,则双曲线C1的离心率为( ) 8.已知双曲线22 21(0) 2x y b b -=>的左右焦点分别为12,F F ,其一条渐近线方程为y x =,点0)P y 在该 双曲线上,则12PF PF ×uuu r uuu r =( ) A.-12 B.-2 C .0 D. 4 9.已知12,F F 是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且123 F PF π ∠= ,则椭圆和双曲线 的离心率的倒数之和的最大值为( ) C.3 D.2 10.已知双曲线22 221(0,0)x y a b a b -=>>的右焦点为F ,若过点F 且倾斜角为60的直线与双曲线的右支 有且只有一个交点,则此双曲线离心率的取值范围是( ) A.(1,2) B.(-1,2) C.(2,+∞) D.[2,)+∞ 11.如图,21,F F 是椭圆14 :22 1=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二.四象限

二项分布应用举例说课讲解

二项分布应用举例

二项分布及其应用 知识归纳 1.条件概率及其性质 (1)对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做,用符号来表 示,其公式为P(B|A)= . 在古典概型中,若用n(A)表示事件A中基本事件的个 数,则P(B|A)= . (2)条件概率具有性质: ①; ②如果B和C是两互斥事件,则P(B+C|A)=. 2.相互独立事件 (1)对于事件A、B,若A的发生与B的发生互不影响,则称A、B是相互独立事件. (2)若A与B相互独立,则P(B|A)=, P(AB)=P(B|A)·P(A)=. (3)若A与B相互独立,则,,也都相互独立. (4)若P(AB)=P(A)P(B),则. 3.二项分布 (1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有两种相互对立的结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.

(2)在n 次独立重复试验中,事件A 发生k 次的概率为 (p 为事件A 发生的概率),若一个随机变量X 的分布列如上所述,称X 服从参数为n ,p 的 二项分布,简记为 . 自我检测 1.(2011·辽宁高考,5)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶 数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( ) A.18 B.14 C.25 D.12 解析:条件概率P (B |A )=P AB P A P (A )=C 23+1C 25=410=25,P (AB )=1C 25=110,∴P (B |A )=11025=1 4. 2.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直 到红球出现10次时停止,设停止时共取了ξ次球,则P (ξ=12)等于( ) A .C 1012? ????3810? ????582 B . C 911? ????389? ????58238 C .C 911? ????589? ????382 D .C 911? ????389? ?? ??582 解:事件{ξ=12}表示第12次取到红球,前11次取到9个红球,故P (ξ=12)=C 911? ????389·? ?? ??582·38. 3.(2011·广东高考)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军, 乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为( ) A.12 B.35 C.23 D.34 解析:∵甲、乙两队决赛时每队赢的概率相等,∴每场比赛甲、乙赢的概率均为12. 记甲获冠军为事件A ,则P (A )=12+12×12=34 4.(2010·福建高考,13)某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连 续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率

二项分布应用举例

二项分布及其应用 知识归纳 1.条件概率及其性质 (1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做 ,用符号 来表 示,其公式为P (B |A )= . 在古典概型中,若用n (A )表示事件A 中基本事件的个 数,则P (B |A )= . (2)条件概率具有性质: ① ; ②如果B 和C 是两互斥事件,则P (B +C |A )= . 2.相互独立事件 (1)对于事件A 、B ,若A 的发生与B 的发生互不影响,则称A 、B 是相互独立事件. (2)若A 与B 相互独立,则P (B |A )= , P (AB )=P (B |A )·P (A )= . (3)若A 与B 相互独立,则 , , 也都相互独立. (4)若P (AB )=P (A )P (B ),则 . 3.二项分布 (1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有两种相互对立的结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的. (2)在n 次独立重复试验中,事件A 发生k 次的概率为 (p 为事件A 发生的概率),若一个随机变量X 的分布列如上所述,称X 服从参数为n ,p 的二项分布,简记为 . 自我检测 1.(2011·辽宁高考,5)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( ) A.18 B.14 C.25 D.12 解析:条件概率P (B |A )= PAB PA P (A )=C 23+1 C 25=410=25,P (AB )=1C 25=110,∴P (B |A )=1 1025 =14 . 2.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10 次时停止,设停止时共取了ξ次球,则P (ξ=12)等于( ) A .C 1012????3810????582 B . C 911????389????58238 C .C 911 ????589????382 D .C 911????389??? ?582 解:事件{ξ=12}表示第12次取到红球,前11次取到9个红球,故P (ξ=12)=C 911????389·????582·38 . 3.(2011·广东高考)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢 两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为( )

《二项分布与超几何分布》复习课程

二项分布与超几何分布 ★ 知 识 梳理 ★ 1.条件概率:称)()()|(A P AB P A B P = 为在事件A 发生的条件下,事件B 发生的概率。 特别提醒: ①0≤P (B|A )≤1; ②P(B ∪C|A)=P(B|A)+P(C|A)。 2. 相互独立事件:如果事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件。 特别提醒: ①如果事件A 、B 是相互独立事件,那么,A 与_B 、_A 与B 、_A 与_ B 都是相互独立事件 ②两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。我们把两个事件A 、B 同时发生记作A ·B ,则有P (A ·B )= P (A )·P (B ) 推广:如果事件A 1,A 2,…A n 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积。即:P (A 1·A 2·…·A n )= P (A 1)·P (A 2)·…·P(A n ) 3.独立重复试验: 在同样的条件下,重复地、各次之间相互独立地进行的一种试验.在这种试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中发生的概率都是一样的. 4.如果在1次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率计算公式: P n (k )=C k n P k (1-P ) n -k ,其中,k =0,1,2,…,n 5.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是 k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1). 于是得到随机变量ξ 0 1 … k … n P n n q p C 00 111-n n q p C … k n k k n q p C - … 0q p C n n n 由于k n k k n q p C -恰好是二项展开式 011100)(q p C q p C q p C q p C p q n n n k n k k n n n n n n +++++=+--ΛΛ 中的各项的值,所以称这样的随机变量ξ服从二项分布, 记作ξ~B (n ,p ),其中n ,p 为参数,并记k n k k n q p C -=b (k ;n ,p ). 6. 两点分布: X 0 1 P 1-p p 特别提醒: 若随机变量X 的分布列为两点分布, 则称X 服从两点分布,而称P(X=1)为成功率. 7. 超几何分布: 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则

高考数学 二项分布及其应用

高考数学 二项分布及其应用 1.已知盒中装有3着,现需要一只卡口灯泡,电工师傅每次从中任取一只并不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为 ( ) A.310 B.29 C.78 D.79 解析:设事件A 为“第1次抽到是螺口灯泡”,事件B 为“第2次抽到是卡口灯泡”,则P (A )=310,P (AB )=310×79=2190=7 30.在已知第1次抽到螺口灯泡的条件下,第2次抽 到卡口灯泡的概率为P (B |A )=P (AB )P (A )=7 30310=7 9 . 答案:D 2.设A 、B 为两个事件,若事件A 和B 同时发生的概率为3 10,在事件A 发生的条件下, 事件B 发生的概率为1 2,则事件A 发生的概率为________________. 解析:由题意知,P (AB )=310,P (B |A )=1 2, ∴P (A )=P (AB )P (B |A )=3 1012=3 5 . 答案:35 3.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________. 解析:设种子发芽为事件A ,种子成长为幼苗为事件AB (发芽,又成活为幼苗),出芽后的幼苗成活率为: P (B |A )=0.8,P (A )=0.9. 根据条件概率公式P (AB )=P (B |A )·P (A )=0.9×0.8=0.72,即这粒种子能成长为幼苗的概率为0.72.

答案:0.72 题组二 相互独立事件 4.(2010·抚顺模拟)国庆节放假,甲去北京旅游的概率为1 3,乙、丙去北京旅游的概率分别 为14,1 5 .假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为 ( ) A.5960 B.35 C.12 D.160 解析:因甲、乙、丙去北京旅游的概率分别为13,14,1 5.因此,他们不去北京旅游的概 率分别为23,34,45,所以,至少有1人去北京旅游的概率为P =1-23×34×45=3 5. 答案:B 5.如图所示的电路,有a ,b ,c 三个开关,每个开关开或关的概率 都是1 2 ,且是相互独立的,则灯泡甲亮的概率为 ( ) A.18 B.14 C.12 D.116 解析:理解事件之间的关系,设“a 闭合”为事件A ,“b 闭合”为事件B ,“c 闭合”为事件C ,则灯亮应为事件ACB - ,且A ,C ,B 之间彼此独立,且P (A )=P (B )=P (C ) =12,所以P (AB - C )=P (A )·P (B )·P (C )=18 . 答案:A 6.甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题,规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格. (1)分别求甲、乙两人考试合格的概率; (2)求甲、乙两人至少有一人考试合格的概率. 解:(1)设甲、乙两人考试合格的事件分别为A 、B ,则 P (A )=413428310C C C C +213 646 310C C C C +=23. P (B )=213 828310 C C C C +=14 15. (2)因为事件A 、B 相互独立,所以甲、乙两人考试均不合格的概率为

二项分布知识在日常生活中的应用分析

二项分布知识在日常生活中的应用分析 山东黄丽生 二项分布是在n次独立重复试验中引入的一个概念,它是一种常见的、重要的离散型随 机变量的概率分布,引入他们实际上是对独立重复试验从概率分布角度的进一步研究。然而我们在利用二项分布原理解决实际问题时只注意到两点,即解释为什么可以看成二项分布模 型,其次是考虑到它的计算,却往往忽视对计算结果进行解释,造成初学者无法摆脱知识上 的种种困惑。鉴于此,我们选取几个典型案例进行剖析,供参考。 例1.将一枚均匀硬币随机掷100次,相当于重复做了100次试验,每次有两个可能的结果 (出现正面,不出现正面),出现正面的概率为1/2。 1 分析:如果令X为硬币正面出现的次数,则X服从n 100 p -的二项分布,那么 2 P(X k) C k00(^k(1 1)100k Cw0(l)100。 由此可以得到:“随机掷100次硬币正好出现50次正面”的概率为 1 P(X 50) C;00(3)1000 08。 在学习概率时我们会有一种误解,认为既然出现正面的概率为1/2,那么掷100次硬 币出现50次正面是必然的,或者这个事件发生的概率应该很大。但计算表明这概率只有8% 左右。 它说的是,许多人都投100次均匀硬币,其中大约有8%的人恰投出50次正面。另外 有些人投出的正面次数可能是47次、48次、51次、52次等。总起来看,正面出现的次数 约占二分之一,这和均匀硬币出现正面的概率是二分之一是一致的。 例2.设某保险公司有10000人参加人身意外保险。该公司规定:每人每年付公司120元, 若逢意外死亡,公司将赔偿10000元。若每人每年死亡率为0.006,试讨论该公司是否会赔本,其利润状况如何。 分析:在这个问题中,公司的收入是完全确定的,10000个投保人每人付给公司120元,公司的年收入为120万元。公司的支出取决于投保人中意外死亡的人数(这里略去有关公司日 常性开支的讨论,如公司职工工资,行政开支等等) ,而这是完全随机的,公司无法在事前 知道其确切人数。但公司可以知道死亡人数的分布。设X表示这10000人中意外死亡的人数,由于每个人的死亡率为0.006,贝U X服从n=10000,p=0.006的二项分布:

超几何分布

选修2-3 第2章概率 §2.2 超几何分布(理科)(第1课时) 总第30教案 一、【学习目标】 1、通过实例,理解超几何分布及其特点。 2、通过对实例的分析,掌握超几何分布列及其导出过程,并能简单应用。 二、【概念解读】 1.一般地,若一个随机变量X的分布列为__________________________________________ 则称X服从超几何分布。记为_________________________。并将______________________ 称为__________________。 2.超几何分布是一种常见的离散型随机变量的分布。H(r;n,M,N)中的各个字母都有其具体的含义:r表示样本中次品数,n表示样本容量,M表示次品总数,N表示总体中的个体总数。 3当一批产品共N件,其中有M件不合格品,随机取出n件产品中,则不合格品数X的概率 三、【实例分析】 例题1、生产方提供50箱的一批产品,其中有2箱不合格产品。采购方接收该批产品的准则是:从该批产品中任取5箱产品进行检测,若至多有一箱不合格产品,则接收该 批产品。问:该批产品被接收的概率是多少? 例题2、高三(1)班的联欢会上设计了一项游戏:在一个口袋中装有10个红球,20个白球,这些球除颜色外完全相同。现一次从中摸出5个球,(1)若摸到4个红球1个白球的就中一等奖,求中一等奖的概率。(2)若至少摸到3个红球就中奖,求中奖的概率。

例题3、盒中装着标有1,2,3,4的蓝色卡片4张,标有1,2,3,4的红色卡片4张,现从盒中任 意抽取3张,每张卡片被抽出的可能性相等,设取到一张红色卡片记2分,取到一张蓝色卡片记1分,以X 表示抽出的3张卡片的总得分,Y 表示抽出的3张卡片上的最大数字,求X 和Y 的概率。 例题4、10只灯泡中含有)82(≤≤n n 只不合格品,若从中一次任取4只,问:恰含有2只 不合格品的概率)(n f 是多少?当n 为何值时,f(n)取得最大值?并求此时取到的不合格品只数X 的概率分布。 四、【巩固练习】 1、袋中有4个红球,编号为1,2,3,4;3个黑球,编号为5,6,7,从袋中随机取球,设取到一个红球得2分,取到一个黑球得1分,从袋中任取4个球,以X 表示取出的4个球的总得分,Y 表示取出的4个球的最大号码。则: ① P(X=5)=____________________________ 。 ② P(Y=5)=____________________________ 。 ③ X 与Y 是否服从超几何分布__________________ 。

二项分布、超几何分布数学期望与方差公式的推导

二项分布、超几何分布数学期望与方差公式的推导 高中教材中对二项分布和超几何分布数学期望与方差公式没有给出推导公式,现笔者给出一推导过程仅供参考。 预备公式一 11--=k n k n nC kC (1≥n ) ,利用组合数计算公式即可证明。 预备公式二 []2 2)()()(ξξξE E D -=,证明过程可见教材。 预备公式三 2 2)1()1(---=-k n k n C n n C k k (2,2≥≥k n ) ,利用组合数计算公式即可证明。 预备公式四 ),,,,(022110n k m k N k n m C C C C C C C C C k n m m k n k m n k m n k m n ≤≤∈=++++++--Λ,利用恒等 式m n n m x x x )1()1() 1(++=++的二项展开式中k x 的系数相等可证。 一、二项分布 在n 次独立重复试验中,每次试验中事件A 发生的概率为p (10<

超几何分布教学案

2.1.3超几何分布 教学目标:1、理解理解超几何分布;2、了解超几何分布的应用. 教学重点:1、理解理解超几何分布;2、了解超几何分布的应用 教学过程 一、复习引入: 1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母ξ、η等表示 2. 离散型随机变量: 随机变量 只能取有限个数值 或可列无穷多个数 值 则称 为离散随机变量,在高中阶段我们只研究随机变量 取有限个 数值的情形. 3. 分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 4. 分布列的两个性质:任何随机事件发生的概率都满足:1)(0≤≤A P ,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: ⑴P i ≥0,i =1,2,...; ⑵P 1+P 2+ (1) 对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和 即 ?? ?+=+==≥+)()()(1k k k x P x P x P ξξξ 5.二点分布:如果随机变量X 的分布列为: 二、讲解新课: 在产品质量的不放回抽检中,若N 件产品中有M 件次品,抽检n 件时所得次品数X=m 则()m M m n N n M N C C P X m C --==.此时我们称随机变量X 服从超几何分布 1)超几何分布的模型是不放回抽样 2)超几何分布中的参数是M,N,n

2.2 二项分布及其应用(2)

作业: 一.选择题 1.甲、乙两人独立地解同一问题,甲能解决这个问题的概率是1p ,乙能解决这个问题的概率是2p ,那么其中至少有1人能解决这个问题的概率是 ( D ) A .21p p +; B .21p p ?; C .211p p ?-; D .121(1)(1)p p ---. 2.在一个盒子中有大小相同的10个球,其中6个红球,4个白球,两人无放回地各取一个球,则在第一个人摸出红球的条件下,第二个人也摸出红球的概率是 ( A ) A .13; B .23; C .49; D .59 . 【解析】设“第一个人摸出红球”为事件A ,“第二个人摸出红球”为事件B ,则()11692105490 C C P A A ?==,()11652103090C C P AB A ?==,则()()()5|9 P AB P B A P A ==。 3.两个独立事件1A 和2A 发生的概率分别为1p 和2p ,则有且只有一个发生的概率为 .()()122111p p p p -+- 4. (04年重庆) 甲、乙、丙三人每次射击命中目标的概率分别为0.7、0.6和0.5,计算: ⑴三人各向目标射击一次,求恰有两人命中目标及至少有一人命中目标的概率; ⑵若甲连续射击三次,求他恰好一次命中的概率. 解:⑴设i A (3,2,1=i )表示事件“第i 人命中目标”,显然1A 、2A 、3A 相互独立,且7.0)(1=A P ,6.0)(2=A P ,5.0)(3=A P . 三人中恰有两人命中目标的概率为 44.0)(321321321=??+??+??A A A A A A A A A P . 三人中恰有至少有一人命中目标的概率为 94.0)(1321=??-A A A P . ⑵设k A 表示“甲在第k 次命中目标”,3,2,1=k .显然1A 、2A 、3A 相互独立,且7.0)()()(321===A P A P A P . 甲连续射击三次,恰好一次命中的概率为 203.0)(321321321=??+??+??A A A A A A A A A P .

人教新课标版数学高二-人教选修2-3学案设计独立重复试验与二项分布

2.2.3 独立重复试验与二项分布 问题导学 一、独立重复试验 活动与探究1 某气象站天气预报的准确率为80%,计算:(结果保留到小数点后面第2位) (1)5次预报中恰有2次准确的概率; (2)5次预报中至少有2次准确的概率; (3)5次预报中恰有2次准确,且其中第3次预报准确的概率. 迁移与应用 1.(2013四川广元模拟)打靶时,某人每打10发可中靶8次,则他打100发子弹有4发中靶的概率为() A.C41000.84×0.296B.0.84 C.0.84×0.296D.0.24×0.296 2.某市公租房的房源位于A,B,C三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的.该市的4位申请人中恰有2人申请A片区房源的概率为__________. (1)n次独立重复试验的特征: ①每次试验的条件都完全相同,有关事件的概率保持不变; ②每次试验的结果互不影响,即各次试验相互独立; ③每次试验只有两种结果,这两种可能的结果是对立的. (2)独立重复试验概率求解的关注点: ①运用独立重复试验的概率公式求概率时,要判断问题中涉及的试验是否为n次独立重复试验,判断时可依据n次独立重复试验的特征. ②解此类题常用到互斥事件概率加法公式,相互独立事件概率乘法公式及对立事件的概率公式. 二、二项分布 活动与探究2 某市医疗保险实行定点医疗制度,按照“就近就医,方便管理”的原则,参加保险人员

可自主选择四家医疗保险定点医院和一家社会医院作为本人就诊的医疗机构.若甲、乙、丙、丁4名参加保险人员所在地区有A,B,C三家社区医院,并且他们的选择相互独立.设4名参加保险人员选择A社区医院的人数为X,求X的分布列. 迁移与应用 1.某射手每次射击击中目标的概率是0.8,现在连续射击4次,则击中目标的次数X 的概率分布列为__________. 2.如图,一个圆形游戏转盘被分成6个均匀的扇形区域,用力旋转转盘,转盘停止转动时,箭头A所指区域的数字就是每次游戏所得的分数(箭头指向两个区域的边界时重新转动),且箭头A指向每个区域的可能性都是相等的.在一次家庭抽奖的活动中,要求每位家庭派一位儿童和一位成人先后分别转动一次游戏转盘,得分情况记为(a,b)(假设儿童和成人的得分互不影响,且每个家庭只能参加一次活动).若规定:一个家庭的得分为参与游戏的两人得分之和,且得分大于等于8的家庭可以获得一份奖品. (1)求某个家庭获奖的概率; (2)若共有5个家庭参加家庭抽奖活动,记获奖的家庭数为X,求X的分布列. 利用二项分布来解决实际问题的关键在于在实际问题中建立二项分布的模型,也就是看它是否是n次独立重复试验,随机变量是否为在这n次独立重复试验中某事件发生的次数,满足这两点的随机变量才服从二项分布,否则就不服从二项分布. 三、二项分布的综合应用 活动与探究3 甲、乙两队参加世博会知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一 分,答错者得零分.假设甲队中每人答对的概率均为2 3,乙队中3人答对的概率分别为 2 3, 2 3, 1 2,且各人答对正确与否相互之间没有影响.用ξ表示甲队的总得分. (1)求随机变量ξ的分布列; (2)用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB). 迁移与应用

二项分布及其应用教案(绝对经典)

§12.5二项分布及其应用 会这样考 1.考查条件概率和两个事件相互独立的概念;2.考查n次独立重复试验及二项分布的概念;3.考查利用二项分布解决一些简单的实际问题. 1.条件概率及其性质 (1)对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫作条件概率,用符号 P(B|A)来表示,其公式为P(B|A)=P(AB) P(A) (P(A)>0). 在古典概型中,若用n(A)表示事件A中基本事件的个数,则P(B|A)=n(AB) n(A) . (2)条件概率具有的性质: ①0≤P(B|A)≤1; ②如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A). 2.相互独立事件 (1)对于事件A、B,若A的发生与B的发生互不影响,则称A、B是相互独立事件. (2)若A与B相互独立,则P(B|A)=P(B), P(AB)=P(B|A)P(A)=P(A)P(B). (3)若A与B相互独立,则A与B,A与B,A与B也都相互独立. (4)若P(AB)=P(A)P(B),则A与B相互独立. 3.二项分布 (1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一 次试验只有__两__种相互对立的结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的. (2)在n次独立重复试验中,事件A发生k次的概率为C k n p k(1-p)n-k(k=0,1,2,…,n)(p为事件A发生的 概率),若一个随机变量X的分布列如上所述,称X服从参数为n,p的二项分布,简记为X~B(n,p).期望:EX=n p 方差:DX=n p(1-p) [难点正本疑点清源] 1.“互斥事件”与“相互独立事件”的区别与联系 (1)“互斥”与“相互独立”都是描述的两个事件间的关系. (2)“互斥”强调不可能同时发生,“相互独立”强调一个事件 的发生与否对另一个事件发生的概率没有影响. (3)“互斥”的两个事件可以独立,“独立”的两个事件也可以互斥. 2.计算条件概率有两种方法 (1)利用定义P(B|A)=P(AB) P(A) ;

二项分布及其应用(答案)

二项分布及其应用 【知识要点】 一、条件概率及其性质 1、条件概率 一般地,设A ,B 为两个事件,且0)(>A P ,称) ()()(A P AB P A B P = 为在事件A 发生的条件下,事件B 发生的条件概率。 2、性质 (1)任何事件的条件概率都在0和1之间,即1)(0≤≤A B P . (2)如果B 和C 是两个互斥事件,则)()()(A C P A B P A C B P ==Y 。 【例题1—1】从1,2,3,4,5中任取2个不同的数,事件A 为“取到的2个数之和为偶数”,事件B 为“取到的2个数均为偶数”,则=)(A B P ( B ) A 、81 B 、41 C 、52 D 、21 【例题1—2】在一次考试的5道题中,有3道理科题和2道文科题,如果不放回地依次抽取2道题,则在第一次抽到理科题的条件下,第二次抽到理科题的概率为 2 1 。 【例题1—3】某地区空气质量监测表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( A ) A 、0.8 B 、0.75 C 、0.6 D 、0.45 【例题1—4】从混有5张假钞的20张一百元钞票中任意抽取2张,将其中一张在验钞机上检验发现是假钞,则这两张都是假钞的概率为( A ) A 、172 B 、152 C 、51 D 、10 3 【例题1—5】把一枚硬币连续抛掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,则=)(A B P ( A )

A 、21 B 、4 1 C 、61 D 、81 【例题1—6】1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则在从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是 9 4 。 二、相互独立事件及n 次独立重复事件 1、相互独立事件同时发生的概率 (1)相互独立事件的定义:如果事件A (或B )是否发生对事件B (A )发生的概率没有影响,这样的两个事件叫做相互独立事件。 一般地,事件A 与B 相互独立,那么事件A 与B ,A 与B ,A 与B 也都是相互独立的。 (2) 相互独立事件同时发生的概率: 对于事件A 和事件B ,用A ·B 表示事件A 与B 同时发生的事件。 如果事件A 与B 相互独立,那么事件A ·B 发生的概率,等于每个事件发生的概率的积。即:P(A ·B) =P(A) ·P(B)。 一般地,如果事件n A A A ,,,21???相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即:)()()()(2121n n A P A P A P A A A P ???=???. 2、独立重复试验与二项分布 (1)独立重复试验的意义:做n 次试验,如果它们是完全同样的一个试验的重复,且它们相互独立,那么这类试验叫做独立重复试验。 (2)一般地,在n 次独立重复实验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概 率为n k p p C k X P k n k k n ,,2,1, 0,)1()(???=-==-。此时称随机变量X 服从二项分布,记作:X ~B(n ,p),并称p 为成功概率。 【例题2—1】甲,乙两人射击的命中率分别是0.8和0.7,两人同时射击互不影响,结果都命中的概率为( A ) A 、0.56 B 、0.06 C 、0.14 D 、0.24

专题36 超几何分布与二项分布-2021年高考数学一轮复习专题讲义附真题及解析

考点36 超几何分布与二项分布【思维导图】

【常见考法】 考点一超几何分布 1.在中华人民共和国成立70周年之际,《我和我的祖国》、《中国机长》、《攀登者》三大主旋律大片在国庆期间集体上映,拉开国庆档电影大幕.据统计《我和我的祖国》票房收入为31.71亿元,《中国机长》票房收人为29.12亿元,《攀登者》票房收入为10.98亿元.已知国庆过后某城市文化局统计得知大量市民至少观看了一部国庆档大片,在已观影的市民中随机抽取了100进行调查,其中观看了《我和我的祖国》的有49人,观看了《中国机长》的有46人,观看了《攀登者》的有34人,统计图如下. a b c的值; (1)计算图中,, (2)文化局从只观看了两部大片的观众中采用分层抽样的方法抽取了7人,进行观影体验的访谈,了解到他们均表示要观看第三部电影,现从这7人中随机选出4人,用X表示这4人中将要观看《我和我的祖国》的人数,求X的分布列及数学期望.

2.在一次运动会上,某单位派出了由6名主力队员和5名替补队员组成的代表队参加比赛. (1)如果随机抽派5名队员上场比赛,将主力队员参加比赛的人数记为X,求随机变量X的数学期望;(2)若主力队员中有2名队员在练习比赛中受轻伤,不宜同时上场;替补队员中有2名队员身材相对矮小,也不宜同时上场,那么为了场上参加比赛的5名队员中至少有3名主力队员,教练员有多少种组队方案?

3.为了减少雾霾,还城市一片蓝天,某市政府于12月4日到12月31日在主城区实行车辆限号出行政策,鼓励民众不开车低碳出行,某甲乙两个单位各有200名员工,为了了解员工低碳出行的情况,统计了12月5日到12月14日共10天的低碳出行的人数,画出茎叶图如下: (1)若甲单位数据的平均数是122,求x ; (2)现从如图的数据中任取4天的数据(甲、乙两单位中各取2天),记其中甲、乙两单位员工低碳出行人数不低于130人的天数为1ζ,2ζ,令12=ηζζ+,求η的分布列和期望.

二项分布及其应用

二项分布及其应用 ◇条件概率◇ 一、条件概率的定义与性质 如果事件A发生与否,会影响到事件B的发生,在知道事件A发生的条件下去研究事件B时,基本事件空间发生了变化,从而B发生的概率也随之改变,这就条件概率要研究的问题。 1.定义:一般地,设A、B为两个事件,且P(A)>0,称P(B|A)=为在事件A发生的条件下,事件B发生的条件概率,一般把P(B|A)读作A发生的条件下B的概率. 2.性质:(1)条件概率具有概率的性质,任何事件的条件概率都在0和1之间,即. (2)如果B和C是两个互斥事件,则P(B∪C|A)= 二、典型例题 1、利用定义求条件概率 例1:抛掷两颗均匀的骰子,问 (1)至少有一颗是6点的概率是多少? (2)在已知两颗骰子点数不同的条件下,至少有一颗是6点的概率是多少? 例2:抛掷红蓝两颗骰子,设事件A为“蓝色骰子的点数为3或6”,事件B为“两颗骰子的点数之和大于8”。 (1)求P(A),P(B),P(AB); (2)在已知蓝色骰子的点数为3或6时,求两颗骰子的点数之和大于8的概率。 2、利用缩小基本事件空间的方法求条件概率 例1:一个口袋内装有4个白球和2个黑球,若不放回地抽取3次,每次抽一个小球,求 (1)第一次摸出一个白球的情况下,第二次与第三次均是白球的概率。 (2)第一次和第二次均是白球的情况下,第三次是白球的概率。

例2:设10件产品中有4件次品,从中任取2件,那么 (1)在所取得产品中发现是一件次品,求另一件也是次品的概率。 (2)若每次取一件,在所得的产品中第一次取出的是次品,那么求第二件也是次品的概率。 3、条件概率的性质及应用 例1:在某次考试中,要从20道中随机地抽出6道题,若考试至少答对其中4道即可通过;若至少答对其中5道就获得优秀,已知某生能答对其中10道题目,且知道他在这次考试中已经通过,求他获得优秀的概率。 例2:把一副扑克牌(不含大小王)随机均分给赵、钱、孙、李四家,A={赵家得到6张梅花},B={孙家得到3张梅花} (1)求P(B|A)(2)求P(AB) 三、课堂练习 1、把一颗骰子连续抛掷两次,已知在第一次抛出偶数点的情况下,第二次抛出的也是偶数点的概率是多少? 2、一个盒子中装有6件合格产品和4件次品,不放回地任取两次,每次取一件。若已知第一件是合格品的情况下,求第二件也是合格品的概率。

相关主题