搜档网
当前位置:搜档网 › 车辆路径问题优化算法

车辆路径问题优化算法

车辆路径问题优化算法
车辆路径问题优化算法

车辆路径问题优化算法

美国物流管理学会(Council of Logistics Management,CLM)对物流所作的定义为:“为符合顾客的需要,对原料、制造过程中的存货与制成品以及相关信息,从其起运点至最终消费点之间,做出的追求效率与成本效果的计划、执行与控制过程。”

而有关资料显示,物流配送过程(包含仓储、分拣、运输等)的成本构成中,运输成本占到52%之多。因此,如何在满足客户适当满意度的前提下,将配送的运输成本合理地降低,成为一个紧迫而重要的研究课题,车辆路径问题正是基于这一需求而产生的。

2.1车辆路径问题的定义

车辆路径问题可以描述为:给定一组有容量限制的车辆的集合、一个物流中心(或供货地)、若干有供货需求的客户,组织适当的行车路线,使车辆有序地通过所有的客户,在满足一定的约束条件(如需求量、服务时间限制、车辆容量限制、行驶里程限制等)下,达到一定的目标(如路程最短、费用极小、时间尽量少、使用车辆数尽量少等)。[4] 因此研究车辆的路径问题,就是要研究如何安排运输车辆的行驶路线,使运输车辆依照最短的行驶路径或最短的时间费用,依次服务于每个客户后返回起点,总的运输成本实现最小。

车辆路径问题已被证明是NP-Hard问题,因此求解比较困难。然而,由于其在现实生活中应用非常广泛,使得它无论在理论上还是在实践上都有极大的研究价值。

Penousal Machado等人[5]指出车辆路径问题(vehicle routing problem,简称VRP)是一个复杂的组合优化问题,是古老的旅行商问题和背包问题的综合。实际上,车辆路径问题通常可被分解或转化成一个或几个已经研究过的基本问题,再采用相应比较成熟的基本理论和方法,以得到最优解或满意解。

这些与车辆路径问题相关的常用基本问题有;旅行商问题、运输问题、背包问题、最短路问题、最小费用最大流问题、中国邮路问题、指派问题等。

旅行商问题可被描述为:一个推销员欲到n个城市推销商品,每2个城市之间的距离是已知的。如何选择一条路径使推销员依次又不重复地走遍每个城市后,回到起点且所走的路径最短。

运输问题关心的是(确实的或是比喻的)以最低的总配送成本把供应中心(称为出发地,sources)的任何产品运送到每一个接受中心(称为目的地,destinations)。运输问题需要的数据仅仅是供应量、需求量和单位成本。

背包问题是指有一只固定容量的背包和若干体积、重量不等的物品,背包的容量不允许装下这所有的物品,那么如何选择适当的物品装入背包,使得背包的装载量(所装物品的重量之和)最大。

最短路径问题解决的是在一个网络中,如何寻找两点之间的最短路径。这两点之间通常没有直接的通路可达,但可经由若干中间结点相通。

最小费用流问题主要解决如何以最小成本在一个配送网络中运输货物。最小费用流问题又称为网络配送问题。

最大流问题和最小费用流问题一样,也与网络中的流有关。但是它们的目标不同,最大流问题不是使得流的成本最小化,而是寻找一个流的方案,使得通过网络的流量最大。

中国邮路问题是由我国管梅谷同志在1962年首先提出的,它可描述为:一个邮递员负责某一个地区的信件投递。每天要从邮局出发,走遍该地区所有的街道再返回邮局,问应该怎样安排送信路线可以使所走的路程最短。

指派问题解决将n件工作安排给m个人完成的问题。已知不同人完成不同工作的效率(或成本)不同,指派问题要求以最高的效率(或最小的人工成本)完成工作的安排。

2.2车辆路径问题的分类

车辆路径问题当不考虑时间要求,仅根据空间位置安排路线时称为车辆路线安排问题(Vehicle Routing Problem简记VRP);当考虑时间要求安排路线时称为车辆调度问题(Vehicle Scheduling Problem简记VSP);当同时考虑空间位置和时间要求时称为路线和调度混合问题[6]。

车辆调度问题即有时间要求的车辆路径问题(VSP)又被称为带时间窗的车辆路径问题(Vehicle Routing Problem with Time Windows,简记为VRPTW)。VRPTW是在VRP的基础上增加了客户要求访问的时间窗口,是一般车辆路径问题的扩展。其简单的描述如下:用于服务的若干车辆从站点出发,为处在不同地理位置、具有不同货物需求和不同服务时间窗要求的所有顾客提供服务,然后返回站点,其中为每个顾客仅提供一次服务。其目标是在时间窗内为顾客提供服务时,使车辆的行驶时间和等待时间之和最短。

根据时间约束的严格与否,带时间窗的车辆路径问题被分为两类:软时间窗车辆路径问题和硬时间窗车辆路径问题。软时间窗车辆路径问题要求配送车辆尽可能在时间窗内到达访问,否则将给予一定的惩罚。该惩罚包括两部分:(1)车辆在要求的最早到达时间之前到达,必须在任务点处等待而损失的成本;(2)车辆在要求的最迟到达时间之后到达,必须付给客户预先约定的罚金。而硬时间窗车辆路径问题则要求必须在时间窗内到达访问,否则服务被拒绝。

Koskosidis等人(1992)[7]指出,软时间窗模式比硬时间窗更具优势是因为:第一、软时窗模式较传统硬时窗模式更为一般化,且软时窗的求解演算法较具弹性(因限制式较少)。而且若要提高准点服务频率,只需适当的提高惩罚成本即可;第二、在现实世界中,时窗限制大多属于软时窗限制。配送服务商没有在约定的时间内送达顾客端,并非一定不可服务,而是可以服务但必须付出双方约定的惩罚成本。有较高准点送达要求的顾客的惩罚成本大,不准时但是在可以忍受的时间内送达的顾客的惩罚成本相对小些;第三、软时窗模式可以有效的反应配送商在车队营运成本、规模和服务水准两者之间的关系;第四、软时窗模式可以发现硬时窗模式无法找到的可行解。特别是在小规模车队服务多数顾客以及严苛的时间限制条件状况下。在上述的情形得到软时窗限制下的可行解后,可再调整时间窗让违反时间窗的情况得到改善。

车辆路径问题还有确定性(Deterministic)模式和随机性(Stochastic)模式之分[8]。确定性模式假设:其一、客户的数目在配送开始前是已知且固定的;其二、客户的需求量在配送开始前是已知且固定的;其三、两点之间的旅行时间仅取决于这两点之间的距离。而随机性模式不要求以上一个或多个假设。随机性模式又称为随机需求车辆路径问题。

如果考虑装卸工人的调配问题,则车辆路径问题就称为带装卸工调配的车辆路径问题。带装卸工调配的车辆路径问题描述如下[9]:设配送中心有n辆货车都要向b个客户装卸货物。配送中心可以安排位装卸工跟着车辆,也可以安排位装卸工固定在客户处。已知在客户处需要的装卸工人数是,配送中心应该考虑如何调配装卸工,使总的装卸工人数最少。

除了以上分类,车辆路径问题还可以按任务特征分为装货问题、卸货问题及装卸混合问题;按任务性质分为对弧服务问题(如中国邮递员问题)和对点服务问题(如旅行商问题)以及混合服务问题(如校车路线安排问题);按车辆载货状况分为满载问题和非满载问题;按车场数目分为单车场问题和多车场问题;按车辆类型数分为单车型问题和多车型问题;按车辆对车场的所属关系分为车辆开放问题(车辆可不返回车场)和车辆封闭问题(车辆必须返回车场);按优化目标可分为单目标问题和多目标问题,等等。

针对上述不同的分类方法,车辆路径问题的模型构造及求解算法有很大差别。

2.3车辆路径问题的构成要素

物流配送车辆路径问题的构成因素主要包括货物、车辆、配送中心、客户、运输网络、约束条件和目标函数等要素[10]。

2.3.1货物

货物是配送的对象。可将每个客户需求(或供应)的货物看成一批货物。每批货物包括品名、包装、重量、体积、要求送到(或取走)的时间和地点、能否分批配送等属性。货物的品名和包装,是选用配送车辆的类型以及决定该批货物能否与其他货物装在同一车辆内的依据。例如,一些货物因性质特殊需要使用专用车辆装运;而一些货物虽然性质特殊,但由于包装条件很好,故也能与其它货物装在同一车辆内。另外,货物的重量和体积也是进行车辆装载决策的重要依据。当某个客户的需求量(供应量)的货物的重量或体积超过车辆的最大装载量或体积时,则对该客户需要采用多台车辆进行配送。

2.3.2车辆

车辆是货物的运载工具,其主要包括:车辆的类型、装载量、一次配送的最大行驶距离、配送前以及完成任务后车辆的停放位置等。

其一、车辆的类型有通用车辆和专用车辆之分,通用车辆适于运载大多数普通货物,专用车辆适于载运一些性质特殊的货物。

其二、车辆的装载量是指车辆的最大装载重量和最大装载容积,是进行车辆装载决策的依据。在某个配送系统中,车辆的装载量可以相同也可以不同。

其三、对每台车辆一次配送的行驶距离的要求可以分为以下几种情况: 第一、无距离限制; 第二、有距离限制; 第三、有距离限制,但可以不遵守。

其四、车辆在配送前可以是停放在某个停车场、配送中心或者是客户所在地。完成任务后,其停放位置一般可以分为以下几种情形: 一是必须返回出发点; 二是必须某个停车场或配送中心; 三是可返回任意停车场; 四是可停放在任何地点。

2.3.3配送中心

配送中心是从事货物配备(集货、加工、拣选、配货)和组织对客户的送货,以提高水平实现销售或供应的现代流通设施。在某个配送系统中,配送中心的个数可以是一个也可以是多个,这涉及到配送网络问题,如在某些配送网点多而且配送范围广的情形下,往往采用多级配送中心进行配送,通过一级配送中心配送到下一级配送中心再配送,在多个二级配送中心下,究竟由哪个配送中心配送,这涉及到配送的优化问题。其配送示意图见图2-1:

图2-1 分级配送示意图

2.3.4客户

也称为用户,包括各盆景展览馆、陈列中心、公司、家庭用户等。单个客户一次所需的盆景数量可能大于盆景配送车某车辆的最大装载量,也可能小于该车辆的最大装载量。而该系统全部客户的货物需求(或供应)总量可能超过全部车辆的总装载量。在以上情形下,当货物一次性需求(或供应)总量超过运输能力时,需要多次(多辆)分批配送;当货物一次性需求(或供应)量小于某车辆的最大装载量时,在可能的情况下,应进行货物配载。

客户的需求(或供应)盆景的时间,是指要求盆景送达(或取走)的时间,对配送时间的要求可分为以下几种情况: 第一、无时间限制;第二、要求在指定的时间区间(也称为时间窗)内完成运输任务;第三、有时间限制,但可以不遵守,只是不遵守时要给予一定的惩罚。

2.3.5运输网络

运输网络是由顶点(指配送中心、客户、停车场等)、无向边和有向弧组成的,边、弧的属性包括方向、权值和交通流量限制等。运输网络中边或弧的权值可以表示距离、时间或费用。边或弧的权值变化可分为以下几种情况: 一是固定,即不随时间和车辆的不同而变化;

二是随时间而变化;三是随车辆不同而变化;四是既随时间不同而变化,又随车辆不同而变化。

对运输网络权值间的关系可以要求其满足三角不等式,即两边之和大于第三边。也可以不加限制。运输网络见示意图2-2.

图2-2 运输网络示意图

对运输网络中顶点、边或弧的交通流量要求分为以下几种: 其一、交通流量随时间不同而变化; 其二、边、弧限制,即每条边、弧上同时行驶的车辆数有限制; 其三、顶点限制,即每个顶点上同时装、卸的车辆数有限;其四、边、弧、顶点都有限制。

2.3.6约束条件

通常说来,物流配送车辆路径问题应满足的约束条件主要包括:第一,满足所有客户对货物品种、规格、数量的要求;第二,满足客户对货物发到的时间范围的要求;第三,在允许通行时间进行配送(如有时规定白天不能通行货车等);第四,车辆在配送过程中的实际载货量不得超过车辆的最大允许装载量;第五,在配送中心现有的运力范围内。

2.3.7目标函数

对物流配送车辆路径问题,可以只选用一个目标,也可以是多个目标。经常选用的目标函数主要有: 第一,配送总里程最短。配送里程与配送车辆的耗油量、磨损程度以及司机疲劳程度等直接相关,它直接决定运输的成本,对配送业务的经济效益有很大影响。由于配送里程计算简便,它是确定配送路线时用得最多的指标。第二,配送车辆的吨位公里数最少。该目标将配送距离与车辆的载重量结合起来考虑,即以所有配送车辆的吨位数(最大载重吨)与其行驶距离的乘积的总和最少为目标。第三,综合费用最低。降低综合费用是实现配送业务经济效益的基本要求。在物流配送中,与取送有关的费用包括:车辆维护和行驶费用、路桥费用、车队管理费用、货物装卸费用、有关人员工资费用等。第四,准时性最高。由于客户对交货时间有较严格的要求,为提高配送服务质量,有时需要将准时性最高作为确定配送路线目标。第五,运力利用最合理。该目标要求使用的较少的车辆完成配送任务,并使车辆的满载率最高,以充分利用车辆的装卸能力。第六,劳动消耗最低。即以司机人数最少、司机工资时间最短为目标。

2.4车辆路径问题的求解方法

车辆路径问题通常被构造成整数规划模型、图论或其它模型,这些模型之间存在着某种联系。但从建立模型时的出发点考虑,大多数模型都可看成是下面三种模型的变形与组合:第一,以车流为基础的模型;第二,以物流为基础的模型;第三,集覆盖模型。

求解方法上,常用的基本理论和方法有:分枝定界法、割平面法、线性规划法、动态规划法、匹配理论、对偶理论、组台理论、线搜索技术、列生成技术、拉格朗日松弛技术、状态空间松弛技术、Benders分解技术、扶梯度(sub gradient)优化技术、概率分析、统计分析、最差情况分析、经验分折等.

常用算法基本上可分为优化算法和启发式算法两大类。优化算法求解时间长,算法效率低且不适合求解规模较大的问题,因此在实际应用中受到限制;启发式算法效率较高且能逼近最优解,为此专家们主要把精力花在构造高质量的启发式算法上。目前已提出的启发式算法相当多,大体上可分为传统启发式算法(Heuristic)和巨集启发式算法(Meta-Heuristic)两大类[11]。

传统启发式算法具有求解速度快、求得的解较为固定的特点。已被证明会陷入局部优化解中[11]。巨集启发式算法则尝试以不同的方式跳出局部解,在可接受的时间内,求得近似最优解,甚至是全局最优解。所以在近年来的研究中,多用巨集启发式算法来求解车辆路径问题,或者混合使用传统启发式算法和巨集启发式算法。

2.4.1传统启发式算法

根据Bodin等人[12]的研究,用于求解车辆路径问题的传统启发式算法可分为:

第一,先分组后安排路线的方法(Cluster-First Route-Second):这种方法先把节点(或弧)的需求进行分组或划群,然后对每一组设计一条经济的路线。如Gillett和Miller于1974年提出的扫描(sweep)算法[13,14,15]。方法是先以极坐标的方式表示各个客户点的区域位置,再任取一个客户点作为起点以顺时针方向,以车辆容量为限制条件(或再加入其它限制条件)对区域进行分割,使不超过车辆容量(或满足其它限制条件)的需求点组成一个区域,一个区域就是一个组。当形成一系列这样的组后,再对每一组中的各点安排线路。这种算法一般仅适用于装货(或卸货)问题,且车辆是封闭的。

第二,先安排路线后分组的方法(Route-First Cluster-Second):在不考虑约束条件的前提下进行路线的构建,然后再根据约束条件对路线进行切割。这种方法首先构造一条或几条很长的路线(通常不可行),它包括了所有需求对象,然后再把这些很长的路线划分成一些短而可行的路线。具体进行时,一般是先解一个经过所有点的旅行商问题,形成一条路线,然后根据一定的约束(如车辆容量等)对它进行分划。典型的有由Rosenkrantz等人[16]于1977年提出的最临近点法。思路是以车场为起点,寻找离车场距离成本最小且没有加入路线的节点为起始路线,重复以上步骤直至找不到可以满足车辆限制条件的节点时,回到车场重新出发,另外构建一条新的路径。

第三,节约插入算法(Saving or Insertion):根据节约值的大小来构建路线,直至无法改善或达到停止条件为止。该算法的每一步,把当前的线路构形(很可能是不可行的)跟另外的构形(也可能是不可行的)进行比较,后者或是根据某个判别函数(例如总费用)会产生最大程度的节约的构形,或是以最小代价把一个不在当前构形上的需求对象插人进来的掏形,最后得到一个较好的可行构形。

节约算法最早是由Clark和Wright于1964年提出的[11]。根据三角形两边之和大于第三边的性质,以一部车服务一个客户作为初始解,一部车服务一个客户然后就返回车场为其起始状况,计算路径间的合并节约值。将算出的节约值按照降幂排序并依次合并路径。若找不到满足限制条件的节点,便回到车场,重新构建新的路径,直到没有大于零的节约值为止。

节约算法是利用节约值的大小和是否满足限制条件来决定两节点是否相连的。节约值的计算如下:设0表示示车场,i和j为两个任务点,定义点对i和j的节约值为

其含义为点i和点j在同一条线路上的距离成本与点i和点j各在不同线路上的距离成本相比得到的距离成本的节约值。这种算法与Sweep算法的适用范围差不多。

2.4.2巨集启发式算法

巨集启发式算法主要基于改进或交换(Improvement or Exchange)的思路,即先构建一个初始解,再用贪婪算法(Greedy)[17],进行路线的优化,直至无法改进或达到停止条件为止。该算法在始终保持解可行的情况下,力图向最优目标靠近,每一步都产生另一个可行解以代替原来的解,使目标函数值得以改进,一直继续到不能再改进目标函数值为止。

经典的遗传算法、模拟退火算法、禁忌搜索算法、蚁群算法都属于这一类方法。

遗传算法(Genetic Algorithm, GA)最早由Holland [18]于1975年提出,是根据达尔文进化论中“物竞天择,适者生存”的自然进化法则发展而来。其基本精神是进化与选择,利用复制(reproduction)、交配(crossover)、突变(mutation)三个基本运算元重复运作,以达到淘汰较差解的目的。其做法是:先由数个可行解个体产生一母体集合,其中的元素即为基因(gene)。再通过计算第一代母体中个体目标值的方式,选出较优秀的个体,以交配、突变等方式产生下一代。最后依据停止条件结束演算。遗传算法具有多点平行搜寻可行解的特性,已逐渐被运用于高度空间搜寻的组合最佳化问题上。

(2) 模拟退火算法(Simulated Annealing,SA),其最初的思想由Metropolis在1953年提出,Kirkpatrick等人[19]在1983年成功地将其应用在组合最优化问题中。模拟退火算法来源于固体退火原理:将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,由初始解i和控制参数t的初值开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,逐步衰减t值,并设定终止条件,即得到解组合优化问题的模拟退火算法。算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。

模拟退火算法具有能往目标值较差处移动的机会,这种随机过程产生的机会使得该算法有能力避免陷入局部优化,而得到全局最优解。

禁忌搜索法(Tabu Search, TS),是由Glover[20]于1977年提出的,Willard [21]于1989年将其用于车辆路径问题上。其求解的过程是先求得一初始解,然后在邻域中搜索较佳解或是移动到较差的区域搜索该区域最佳解,并且记录曾经搜寻的路径,作为下次搜索的依据,以避免陷入局部最优解中。禁忌搜索算法主要包含移步(Move)、候选列表(Candidate List)、禁忌列表(Tabu List)、渴望准则(Aspiration Level)及搜寻停止准则(Stopping Criterion)等五种要素。

蚁群算法(Ant System, AS)最早由Macro Dorigo[22]于1992年提出,其灵感来自蚂蚁觅食时可以在食物和巢穴间找到最短路径的能力。蚂蚁觅食时会在走过的路线上留下一种称为费洛蒙(pheromone)的化学物质,费洛蒙的浓度与遗留时间成反比,与走过该路线的蚂蚁的数量成正比。当一只蚂蚁面临路线的选择时,它会优先选取费洛蒙浓度高的路线。就是说,费洛蒙残留的浓度越高,则吸引蚂蚁前来的能力越强,越多的蚂蚁经过某条路线时,该路线的费洛蒙浓度就越高,从而吸引更多的蚂蚁前来。通过这种方式,蚂蚁就可找出食物与巢穴间的最短路径。

2.4.3混合启发式算法

一是、基于数学规划的算法(Mathematical-Programming Based)[6]是把问题直接描述成一个数学规划问题,根据其模型的特殊构形,应用一定的技术(如分解)进行分划,进而求解已被广泛研究过的子问题。

典型的有Fisher和Jaikumar提出的算法。该算法把车辆路线问题构造为一个广义分派问题,并提出下述启发式算法:首先把问题描述为一个数学规划问题,再将问题分解成一个旅行商问题和一个分派问题。对每一辆车将顾客进行分派,这通过解一般分派问题来得到。每辆车为它的顾客服务,以一个近似等于旅行商线路的费用为目标,分派一旦做出,通过应用一些旅行商问题的启发式算法或优化算法来得到每辆车的行车路线。

二是、交互式优化法[6]。即把人的因素结合到问题的求解过程中,其思想是;有经验的决策者应具有确定和修改参数的能力,并且根据知识经验,把主观的估计加到优化模型中去。这通常会增加模型最终实现并被采用的可能性。如Cuilew,Jarvis和Ratfiff提出的两段法:第一阶段:由有经验的调度员或是根据自动生成规则选定一些“组”点,目标函数定义为线性近似(),其中定义为需求点i和“组点”v之间的欧氏距离,根据确定的“组”点坐标求解得出的分派问题,由求出的结果再求解得出的定点问题,即重新确定每个“组”点的位置,以使分派给它的各需求点离它的总距离最小。交替求解分派问题和定点问题,直到目标没有进一步的改进。第二阶段:用列生成技术生成新解,直到不能进一步改进为止。

这几种启发式算法常不是绝对划分的,有的方法同属于好几类。

4.1.1算法描述

模拟退火算法是一种用于求解大规模优化问题的随机搜索算法,它以优化问题求解过程

与物理系统退火过程之间的相似性为基础;优化的目标函数相当于金属的内能;优化问题的自变量组合状态空间相当于金属的内能状态空间;问题的求解过程就是找一个组合状态,使目标函数值最小。大量的研究证明,模拟退火算法可在多项式时间内求解全局优化问题的目标。

模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。

模拟退火算法需要一个构建好的初始解作为算法的输入参数,在进入迭代后,每一次迭代都需要构建新解。本文用最临近点法来构建初始解,用区域搜索法来求得每一次迭代的新解[28]。分别论述如下:

1)最临近点法构建初始解:从盆景养护基地出发,寻找距离它最近的客户,生成一条线路;再从该客户出发,寻找他的最临近客户,加入该线路。重复该过程直到满足车辆的最大装载容量限制(同时考虑时间窗限制和车辆的最大行驶距离限制),即完成一条线路的构建。返回盆景养护基地,重复以上步骤继续构建线路,直到所有的客户都被加入线路中,则初始解的构建就完成了。

2)区域搜索法产生新解:区域搜索法是通过不断改善路经来求得更佳的解,并以贪婪法则决定是否接受新的改善解。改善的方法是在同一条线路中随机交换节点,或在相邻线路中随机交换节点。有2-opt交换法、3-opt交换法以及Cross-opt交换法,本文采用2-opt交换法。

4.1.2算法步骤

模拟退火算法的主要步骤如下[29]:

1)初始化:初始温度(充分大),初始解状态(是算法迭代的起点),每个值的迭代次数;

2)对重复以下第(3)至第(6)步;

3)产生新解;

4)计算增量,其中为评价函数;

5)若则接受作为新的当前解,否则以概率接受作为新的当前解;

6)如果满足终止条件则输出当前解作为最优解,结束程序。终止条件通常取为连续若干个新解都没有被接受时终止算法。否则执行下面第(7)步;

7)逐渐衰减(趋于零),然后转第(2)步。

4.1.3重点抽样与Metroplis准则

模拟退火的主要思想是:在搜索区间(二维平面中)随机游走(即随机选择点),再以Metropolis准则抽样,使随机游走逐渐收敛于局部最优解。

Metropolis抽样准则是一种有效的重点抽样法。其思想为:系统从一种状态变到另一种状态时,相应的能量从变化到,如果,系统接收此状态,否则,以的概率接收或丢弃此状态。经过一定次数的迭代,系统会逐渐趋于稳定状态。

重点抽样时,新状态如果向下则接受(局部最优),若向上(全局搜索),以一定概率接受。模拟退火方法从某个初始解出发,经过大量解的变换后,可以求得给定控制参数值时组合优化问题的相对最优解。然后减小控制参数的值,重复执行Metropolis算法,就可以在控制参数T趋于零时,最终求得组合优化问题的整体最优解。控制参数的值必须缓慢衰减。

温度是Metropolis算法的重要控制参数。开始时温度高( 值大),算法可能接受较差的恶化解;随着值的减小,只能接受较好的恶化解;最后当趋于0时,就不再接受任何恶化解了。

当值足够大时(即无限高温),系统立即均匀分布,接受所有提出的变换。衰减得越小,到达终点的时间就越长,但可使马可夫链缩短,使到达准平衡分布的时间缩短。

4.1.4算法重点和难点

模拟退火算法的重点是新解的产生和接受。主要有以下四个步骤:

其一、由一个产生函数从当前解产生下一个位于解空间的新解。为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等。产生新解的变换方法决定了当前解的邻域结构,因而对冷却进度表的选取有一定的影响。

其二、计算与新解所对应的目标函数差。因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。事实表明,对大多数应用而言,这是计算目标函数差的最快方法。

其三、判断新解是否被接受,判断的依据是一个接受准则。最常用的接受准则是Metropo1is准则:若则接受作为新的当前解,否则以概率接受作为新的当前解。

其四、当新解被确定接受时,用新解代替当前解,同时更新目标函数值。此时,当前解实现了一次迭代。可在此基础上开始下一轮试验。而当新解被判定为舍弃时,则在原当前解的基础上继续下一轮试验。

模拟退火算法的难点是参数的控制,主要有以下三点问题:

一是、温度的初始值设置问题。温度的初始值设置是影响模拟退火算法全局搜索性能的重要因素之一。初始温度高,则搜索到全局最优解的可能性大,但因此要花费大量的计算时间;反之,则可节约计算时间,但全局搜索性能可能受到影响。实际应用过程中,初始温度一般需要依据实验结果进行若干次调整。

二是、退火速度问题。模拟退火算法的全局搜索性能也与退火速度密切相关。一般来说,同一温度下的“充分”搜索(退火)是相当必要的,但这需要计算时间。实际应用中,要针对具体问题的性质和特征设置合理的退火平衡条件。

三是、温度管理问题。温度管理问题也是模拟退火算法难以处理的问题之一。实际应用中,由于必须考虑计算复杂度的切实可行性等问题,常采用如下所示的降温方式:,式中为正的略小于1.00的常数,为降温的次数。

4.1.5算法参数选择

本文研究中所用模拟退火算法的参数选择如下:

第一、初始温度的选取:本文参照ymhui[30]在“模拟退火算法求解TSP问题”中建议的方法来确定初始温度。即,初始温度等于客户距离矩阵中的最大值和最小非零值之差乘以客户数目,再乘上一个可在实验中调整的初始温度系数。由于Metropolis的接收概率等于,足够大的初始值可保证Metropolis抽样的接收率在初始迭代阶段接近1。然而,初始温度也不能一味地大,否则很难在可接受的计算时间内求得结果;

第二、衰减函数的选取:衰减函数用于控制温度的退火速度,本文采用模拟退火算法常用的衰减函数:,其中应是一个非常接近于1的常数,本文取0.95作为初始试验值,并用A公司实际配送数据进行验证,以求得适合A公司不同配送规模的值;

第三、退火速度的选取:退火速度指同一温度下的搜索(退火)次数,亦即马可夫链长度[28],原则是在温度参数的衰减函数已选定的前提下,退火速度的取值应使得算法在的每一取值上都能恢复准平衡。本文参照ymhui在“模拟退火算法求解TSP问题”中建议的方法来确定该值,即取客户数目的3次幂作为该长度的初始试验值,然后通过试验最终确定

A公司不同配送规模下的适合值;

第四、终止条件:有很多种终止条件的选择,各种不同的条件对算法的性能和解的质量有很大影响。本文采用常用的零度法终止条件,即当温度衰减到某个接近零的值时,终止算法。该值在本文中取0.01,终止条件为。

车辆路径优化问题的均衡性

!""#$%%%&%%’( )#$$&***+,#清华大学学报-自然科学版. /012345678329-":2;0<:5.= *%%>年第(>卷第$$期 *%%>=?@A B(>=#@B$$ +C,+C $C(’&$C(D 车辆路径优化问题的均衡性 但正刚=蔡临宁=杜丽丽=郑力 -清华大学工业工程系=北京$%%%D(. 收稿日期E*%%’&%>&%F 基金项目E国家自然科学基金资助项目-F%*%$%%D. 作者简介E但正刚-$C F D&.=男-汉.=重庆=博士研究生G 通讯联系人E蔡临宁=副教授=H&I72A E:72A3J K1234567B.$$&$C(’&%( P Q R ST R U R V W X V YQ Z[\]^]\X W U] _Q‘[X V Ya_Q T U]b c d ef g h i j j k i j=l d m n o i i o i j=c pn o q o=f r s e t n o -u]a R_[b]V[Q Z v V S‘w[_X R U x V Y X V]]_X V Y=y w X V Y\‘R z V X^]_w X[{= |]X}X V Y~!!!"#=$\X V R. %T w[_R W[EO37A4@&2K5I’71L<9:G 本文利用文9F:的)A7&*<&-&245K-)&-.算法=并结合打包原则和装配线线均衡算法的思想=设计出一种新的启发式算法;;/01算法来解决?78配送均衡问题G ~模型建立 对于带有容积限制的?78问题=在图<=->= ?.上=>=@A%=A$=B=A C D代表节点集合=A%代表停车场=A E -E=$=B=C.代表第E个客户=每个客户的 需求为F E G对客户进行服务的车辆数为G=每辆车的 容积为H G G对于图<的每条弧-A E=A I.J?=都有一 个费用或距离值K E I G若两点间没有弧-A E=A I.相连= 则相应K E I 值为无穷大G该问题的可行解是=所有点 被服务且仅被服务$次=每条路径都开始和终止于A%=每辆车的负载不超过车辆的容积H G G具体数学模型如下E I23L=M E M I M G K E I N E I G B-$. M E F E O G E P H G=QG B-*. M G O G E=$=E=$=B=C B-+. O G E=%或$=E=%=$=B=C M QG= 点E任务由车辆G完成为$=否则为%B-(. N E I G=%或$=E=I=%=$=B=C M QG= 车辆G从E到I为$=否则为%B-’. 式-*.表示某单一路线的总运输量不超过车辆 的承载量=式-+.表示一个需求点仅被一辆车服务G 本文假设E$.车辆行驶时间与行驶路线长度成线 性关系=可简单按一定比例折算M*.车辆到达每个 需求点仅执行卸载操作M+.在工作时间约束范围 内=每辆车仅完成一个回路M(.某单一路线的总运  万方数据

物流配送中几种路径优化算法

捕食搜索算法 动物学家在研究动物的捕食行为时发现,尽管由于动物物种的不同而造成 的身体结构的千差万别,但它们的捕食行为却惊人地相似.动物捕食时,在没有 发现猎物和猎物的迹象时在整个捕食空间沿着一定的方向以很快的速度寻找猎物.一旦发现猎物或者发现有猎物的迹象,它们就放慢步伐,在发现猎物或者有 猎物迹象的附近区域进行集中的区域搜索,以找到史多的猎物.在搜寻一段时间 没有找到猎物后,捕食动物将放弃这种集中的区域,而继续在整个捕食空间寻 找猎物。 模拟动物的这种捕食策略,Alexandre于1998提出了一种新的仿生计算方法,即捕食搜索算法(predatory search algorithm, PSA)。基本思想如下:捕食 搜索寻优时,先在整个搜索空间进行全局搜索,直到找到一个较优解;然后在较 优解附近的区域(邻域)进行集中搜索,直到搜索很多次也没有找到史优解,从 而放弃局域搜索;然后再在整个搜索空间进行全局搜索.如此循环,直到找到最优解(或近似最优解)为止,捕食搜索这种策略很好地协调了局部搜索和全局搜索 之间的转换.目前该算法己成功应用于组合优化领域的旅行商问题(traveling salesm an problem )和超大规模集成电路设计问题(very large scale integrated layout)。 捕食搜索算法设计 (1)解的表达 采用顺序编码,将无向图中的,n一1个配送中心和n个顾客一起进行编码.例如,3个配送中心,10个顾客,则编码可为:1一2一3一4一0一5一 6一7一0一8一9一10其中0表示配送中心,上述编码表示配送中心1负 贡顾客1,2,3,4的配送,配送中心2负贡顾客5,6,7的配送,配送中心3负贡顾 客8,9,10的配送.然后对于每个配送中心根据顾客编码中的顺序进行车辆的分配,这里主要考虑车辆的容量约束。依此编码方案,随机产生初始解。 (2)邻域定义 4 仿真结果与比较分析(Simulation results and comparison analysis) 设某B2C电子商务企业在某时段由3个配送中心为17个顾客配送3类商品,配送网络如图2所示。

物流配送管理中路径优化问题分析

摘要:经典的优化理论大多是在已知条件不变的基础上给出最优方案(即最优解),其最优性在条件发生变化时就会失去其最优性。本文提出的局内最短路问题,就是在已知条件不断变化的条件下,如何来快速的计算出此时的最优路径,文章设计了解决该问题的一个逆向标号算法,将它与传统算法进行了比较和分析,并针对实际中的物流配送管理中路径优化问题,按照不同的算法分别进行了详细的阐述与分析。 一、引言 现实生活中的许多论文发表经济现象通常都具有非常强的动态特征,人们对于这些现象一般是先进行数学上的抽象,然后用静态或统计的方法来加以研究和处理。从优化的理论和方法上看,经典的优化理论大多是站在旁观者的立场上看问题,即首先确定已知条件,然后在假设这些已知条件不变的基础上给出最优方案(即最优解)。条件一旦发生变化,这种方法所给出的最优方案就会失去其最优性。在变化的不确定因素对所考虑的问题影响很大的时候,经典的优化方法有:一是将可变化的因素随机化,寻求平均意义上的最优方案,二是考虑可变化因素的最坏情形,寻求最坏情形达到最优的方案。这两种处理方法对变化因素的一个特例都可能给出离实际最优解相距甚远的解,这显然是难以满足实际的要求的。那么是否存在一种方法,它在变化因素的每一个特例中都能给出一个方案,使得这一方案所得到的解离最优方案给出的解总在一定的比例之内呢? 近年来兴起的局内问题与竞争算法的研究结果在一定意义上给如上问题一个肯定的答案。其实本文所提出的逆向标号算法就是对应局内最短路问题的一个竞争算法,从本质上来说它是一种贪婪算法,在不知将来情况的条件下,求出当前状态下的最优解。[1]本文所考虑问题的实际背景是一个物流配送公司对其运输车辆的调度。假设物流公司需要用货车把货物从初始点O(Origin)运送到目的点D(Destination)。从日常来看,物流公司完全可以通过将整个城市交通网络看成一个平面图来进行运算,找到一条从O到D的最短路径以减少运输费用和节省运输时间。现考虑如下一个问题:如果当运输车辆沿着最短路径行驶到最短路径上的一点A,发现前方路径上的B点由于车辆拥塞而不能通过,车辆必须改道行驶,而此时物流配送公司应如何应对来保证其花费最低。问题推展开去,如果不是单个堵塞点,而是一个堵塞点序列,那物流配送公司又将如何来设计其最短路算法来在最短的时间内求出已知条件发生变化后的最优路径,从而有效的调度其运输车。本文首先建立了物流配送公司动态最短路的数学模型,相比较给出了求本文所提出的动态最短路问题的传统算法和作者提出的逆向标号算法,并分析了各自的算法复杂度。 二、数学模型假设城市交通网络是一个平面图,记为G,各个交通路口对应于图G上的各个顶点,令G=(G,V)为一边加权无向图,其中V为顶点的集合,E为边的集合,|G|=n,对于一般平面图上的三点之间,一定满足三角不等式,即任意三角形的两边之和一定不小于另外一边。对于本文要讨论的城市交通网络来说,即,任意三个结点之间的距离一定满足三角不等式。我们用O来表示运输的起始点,D表示运输的目的点。SP表示在没有路口堵塞情况下的最短路径,W(SP)表示沿着最短路径所要花费的运输费用。以下的讨论都是基于如下的基本假设:第一,去掉堵塞点后图G仍是连通的。第二,只有当运输车走到前一点后,才能发现后面的一点发生堵塞而不能通过。 三、算法分析 对于本文的上述问题,有两种算法一(传统算法)和二(逆向标号算法)可以满足要求,但两种算法在求动态最短路的过程中都将会用到Dijkstra算法[2],通过对Dijkstra算法的分析我们知道,Dijkstra算法采用了两个集合这样的数据结构来安排图的顶点,集合S表示已

家乐福超市物流配送路线优化

学年论文之 家乐福超市物流配送路线优化 专业物流工程 班级 姓名 学号 日期

在物流配送业务中,合理确定配送路径是提商服务质量,降低配送成本,增加经济效益的重要手段。物流配送系统中最优路线的选择问题一直都是配送中心关注的焦点,针对当前家乐福物流配送体系不完善等方面的现状,本文从可持续发展的角度,用系统的观念,来研究家乐福物流配送体系,优化配送路线,使配送体系合理化。 通过对家乐福超市现有物流配送路径的分析研究,发现其中存在的一些问题,并由此提出解决办法,结合背景材料,建立了数学模型,运用遗传算法对家乐福物流配送路线进行优化选择,并得出结果。由此可见,家乐福超市原有的物流配送路线还可以进行再优化,从而达到运输成本最小化的目标。 关键词:物流配送;路径优化;节约里程算法

1.绪论 (1) 1.1选题目的和意义 (1) 1.2国内外物流配送路线优化研究现状 (2) 2. 家乐福超市配送路线现状 (3) 2.1家乐福超市概况 (3) 2.2家乐福超市配送路线作业现状 (4) 2.2.1 配送距离分析 (4) 2.2.2 车辆数分析 (5) 2.2.3 需求量分析 (6) 2.2.4 商品品种分析 (6) 2.3家乐福超市配送现有路线问题分析 (7) 3.配送路线优化建模与求解 (9) 3.1研究对象目标设定 (9) 3.2模型的构建 (11) 3.3节约算法 (12) 3.3.1节约算法的基本原理 (12) 3.3.2节约里程算法主要步骤 (13) 3.3.3基于节约算法的配送路线优化 (13) 3.3.4优化后的配送线 (24) 4.优化结果分析 (25) 4.1优化前结果 (25) 4.2优化后结果 (25) 4.3结论 (26) 5.总结与建议 (27) 参考文献: (28)

时间窗车辆路径问题【带有时间窗约束的车辆路径问题的一种改进遗传算法】

系 统 管理学报 第19卷 不同,文献[6]中100,本文30;③文献[6]中没有给出20次求解中有多少次求得最优解,本文算法在软硬2种时间窗下,求得最优解的概率分别为90%和75%。由此可以看出本文算法具有较快的收敛速度和较高的稳定性。 表2实例l。软时间窗下算法运行结果 第2个实例[6],该问题有8个客户,顾客的装货或卸货的时间为Ti,一般将t作为车辆的行驶时间的一部分计算费用,gf和[n,,6i]的含义同前,具体数据见表4。这些任务由仓库发出的容量为8t的车辆来完成,车辆行驶速度为50,仓库以及各个顾客之间的距离见表5。 6),达到最优解的概率为80%,其最终结果与文献[6]中相同最优解其费用值为910,对应的子路径

为(O一3一l一2—0)、(O一6—4一O)、(O一8—5—7一O)。然而,文献 [6]是在maxgen=50、popsize一20的情况下,达到最优解的概率为67%。这又说明了本文算法的有 效性。 表6实例2的算法运行结果 4 结语 尽管用带有子路径分隔符的自然数编码作为遗传算法解决VRPTW问题的编码方式有其优点,但缺陷也是显而易见的,为了弥补该缺陷,本文去掉了 子路径中的分隔符,并采用Split作为解码方式,就此设计了求解VRPTW的遗传算法,并进行了数值试验的对比分析,试验结果表明,该算法是十分有

效的。参考文献 DantziqG,Ramser J.Thetruckdispatchingproblem [J].Management science,1959,13(6)80一91. 谢秉磊,李军,郭耀煌.有时间窗的非满载车辆调 度问题的遗传算法[J].系统工程学报,2000,15 (3)290一294. 宋伟刚,张宏霞,佟玲.有时间窗约束非满载车辆调度问题的遗传算法[J].系统仿真学报,2005,17 (11)2593—2597. 刘诚,陈治亚,封全喜.带软时间窗物流配送车辆路径问题的并行遗传算法

动态路径优化算法及相关技术

》本文对在GIS(地理信息系统)环境下求解动态路径优化算法及相关技术 进行了研究。最短路径问题是网络分析中的基本的问题,它作为许多领域中选择 最优值的一个基本却又是一个十分重要的问题。特别是在交通诱导系统中占有重 要地位。本文分析了GIS环境下动态路径优化算法的特点,对GIS环境下城市 路网的最优路径选择问题的关键技术进行了研究和验证。 》考虑现实世界中随着城市路网规模的日益增大和复杂程度不断增加的情况,充分利用GIS 的特点,探讨了通过限制搜索区域求解最短路径的策略,大大减少了搜索的时间。 》另一方面,计算机技术的进步,地理信息系统(GIS)得到了飞速的发展。地理信息系统是采集、存储、管理、检索、分析和描述整个或部分地球表面与空间地理分布数据的空间信息系统。它是一种能把图形管理系统和数据管理系统有机地结合起来的信息技术,既管理对象的位置又管理对象的其它属性,而且位置和其它属性是自动关联的。它最基本的功能是将分散收集到的各种空间、非空间信息输入到计算机中,建立起有相互联系的数据库。当外界情况发生变化时,只要更改局部的数据,就可维持数据库的有效性和现实性[3][4],GIS为动态路径优化问题的研究提供了良好的环境。目前GIS带动的产业急剧膨胀,已经应用到各个方面。网络分析作为地理信息系统最主要的功能之一,在电子导航、交通旅游、城市规划以及电力、通讯等各种管网、管线的布局设计中发挥了重要的作用[5]。文献[6][7]说明了GIS 在城市道路网中的应用情况。而路网分析中基本问题之一是动态路径优化问题。所谓动态路径,不仅仅指一般地理意义上的距离最短,还可以应用到其他的参数,如时间、费用、流量等。相应的,动态路径问题就成为最快路径问题、最低费用问题等。 》GIS因为其强大的数据分析功能、空间分析功能,已被广泛应用于各种系统中与空间信息有密切关系的各个方面.各种在实际中的系统如电力系统,光缆系统涉及到最佳、最短抢修等问题都可以折合到交通网络中来进行分析,故而交通网络中最短路径算法就可以广泛的应用于其它很多的最佳、最短抢修或者报警系统中去[5]。最短路径问题是GIS网络分析功能的应用。最短路径问题可分为单源最短路径问题及所有节点间最短路径问题,其中单源最短路径更具有普遍意义[9]。 》2.1地理信息系统的概念 地理信息系统(Geographical Information System,简称GIS)是一种将空间位置信息和属性数据结合在一起的系统,是一种为了获取、存储、检索、分析和显示空间定位数据而建立的计算机化的数据库管理系统(1998年,美国国家地理信息与分析中心定义)[4]。这里的空间定位数据是指采用不同方式的遥感和非遥感手段所获得的数据,它有多种数据类型,包括地图、遥感、统计数据等,它们的共同特点都有确定的空间位置。地理信息系统的处理对象是空间实体,其处理过程正是依据空间实体的空间位置和空间关系进行的[25]。地理信息系统的外在表现为计算机软硬件系统,其内涵却是由计算机程序和地理数据组织而成的地理空间信息模型。当具有一定地理学知识的用户使用地理空间分析非空间分析等处理工具输入输出GIS数据库信息系统时,他所面对的数据不再是毫无意义的,而是把客观世界抽象为模型化的空间数据。用户可以按照应用的目的观测这个现实世界模型的各个方面的内容,取得自然过程的分析和预测的信息,用于管理和决策,这就是地理信息系统的意义。一个逻辑缩小的、高度信息化的地理系统,从视觉、计量和逻辑上对地理系统在功能上进行模拟,信息流动以及信息流动的结果,完全由计算机程序的运行和数据的变换来仿真。地理学家可以在地理信息系统支持下提取地理系统各个不同侧面、不同层次的空间和时间特征,也可以快速地模拟自然过程演变成思维过程的结果,取得地理预测或“实验”的结果,选择优化方案,用于管理与决策[26]。 一个完整的GIS主要有四个部分构成,即计算机硬件系统、计算机软件系统、地理数据(或空间数据)和系统管理操作人员。其核心部分是计算机系统(硬件和软件),地理数据反映

车辆路径问题

一、车辆路径问题描述和建模 1. 车辆路径问题 车辆路径问题(Vehicle Routing Problem, VRP ),主要研究满足约束条件的最优车辆使用方案以及最优化车辆路径方案。 定义:设G={V,E}是一个完备的无向图,其中V={0,1,2…n}为节点集,其中0表示车场。V ,={1,2,…n}表示顾客点集。A={(i,j),I,j ∈V,i ≠j}为边集。一对具有相同装载能力Q 的车辆从车场点对顾客点进行配送服务。每个顾客点有一个固定的需求q i 和固定的服务时间δi 。每条边(i,j )赋有一个权重,表示旅行距离或者旅行费用c ij 。 标准车辆路径问题的优化目标为:确定一个具有最小车辆数和对应的最小旅行距离或者费用的路线集,其满足下列约束条件: ⑴每一条车辆路线开始于车场点,并且于车场点约束; ⑵每个顾客点仅能被一辆车服务一次 ⑶每一条车辆路线总的顾客点的需求不超过车辆的装载能力Q ⑷每一条车辆路线满足一定的边约束,比如持续时间约束和时间窗约束等。 2.标准车辆路径的数学模型: 对于车辆路径问题定义如下的符号: c ij :表示顾客点或者顾客点和车场之间的旅行费用等 d ij :车辆路径问题中,两个节点间的空间距离。 Q :车辆的最大装载能力 d i :顾客点i 的需求。 δi :顾客点i 的车辆服务时间 m:服务车辆数,标准车辆路径问题中假设所有的车辆都是同型的。 R :车辆集,R={1,2….,m} R i :车辆路线,R i ={0,i 1,…i m ,0},i 1,…i m ?V ,,i ?R 。 一般车辆路径问题具有层次目标函数,最小化车辆数和最小化车辆旅行费用,在文献中一般以车辆数作为首要优化目标函数,在此基础上使得对应的车辆旅行费用最小,下面给出标准车辆路径问题的数学模型。 下面给出标准车辆路径问题的数学模型。 对于每一条弧(I,j ),定义如下变量: x ijv = 1 若车辆v 从顾客i 行驶到顾客点j 0 否则 y iv = 1 顾客点i 的需求由车辆v 来完成0 否则 车辆路径问题的数学模型可以表述为: minF x =M x 0iv m i=1n i=1+ x ijv m v=1n j=0n i=0.c ij (2.1) x ijv n i=0m v=1≥1 ?j ∈V , (2.2)

数学建模供应链网络物流配送与车辆路径问题

配送是指对局域范围内的客户进行多客户、多品种、按时联合送货活动。 配送活动是指根据一定区域范围内各个客户所需要的各个品种要求,对配送中心 的库存物品进行拣选、加工、包装、分割、组配、分装上车,并按一定路线循环 依次送达各个用户的物流活动。物流配送是供应链网络中一个重要的直接与消费 者相连的环节,是货物从物流节点送达收货人的过程。配送是在集货、配货基础上,按货物种类、品种搭配、数量、时间等要求所进行的运送,是“配”和“送”的有机结合。配送的实质是现代送货,是以低成本、优质服务为宗旨,是一种先进 的物流形式。 供应链网络的物流配送过程主要包括:从生产工厂进货并集结的集货作业; 根据各个用户的不同需求,在配送中心将所需要的货物挑选出来的配货作业;考虑配送货物的质量和体积,充分利用车辆的载重和容积的车载货物的配装及路线 的确定。随着供应链管理系统的集约化、一体化的发展,常将配送的各环节综合 起来,核心部分为配送车辆的集货、货物装配及送货过程。进行配送系统优化, 主要是配送车辆优化调度,包括集货线路优化、货物配装及送货线路优化,以及集货、货物配装和送货一体化优化。物流配送车辆优化调度,是供应链系统优化 中关键的一环,也是电子商务活动不可缺少的内容。对配送车辆进行优化调度, 可以提高供应链管理的经济效益、实现供应链管理科学化。

配送车辆优化调度实际上也就是车辆路径问题(V ehicle Routing Problem,简称VRP),是Dantzig和Ramse]80[于1959年提出来的,该问题被提出来之后, 很快就引起了运筹学、应用数学、组合数学、图论、网络分析、物流学、管理学、 以及计算机科学等学科专家和运输计划制订者的极大重视,成为了运筹学和组合 优化领域的前沿和研究热点问题。各学科专家对该问题进行了大量的理论研究及 实验分析,取得了很大的进展。 车辆路径问题是径旅行商问题(Travel Salesman Problem,简称TSP)衍生 而出的多路TSP问题,即为K-TSP。VRP的一般定义为]81[:对一系列送货点和 (或取货点),组织适当的行车路线,使车辆有序地通过它们,在满足一定的约 束条件下(如货物需求量、发送量、交发货时间、车辆容量限制、行驶里程限制、 时间限制等),达到一定的目标(如路程最短、费用最少、使用车辆数最少等)。见图1。

路径优化的算法

摘要 供货小车的路径优化是企业降低成本,提高经济效益的有效手段,供货小车路径优化问题可以看成是一类车辆路径优化问题。 本文对供货小车路径优化问题进行研究,提出了一种解决带单行道约束的车辆路径优化问题的方法。首先,建立了供货小车路径优化问题的数学模型,介绍了图论中最短路径的算法—Floyd算法,并考虑单行道的约束,利用该算法求得任意两点间最短距离以及到达路径,从而将问题转化为TSP问题,利用遗传算法得到带单行道约束下的优化送货路线,并且以柳州市某区域道路为实验,然后仿真,结果表明该方法能得到较好的优化效果。最后对基本遗传算法采用优先策略进行改进,再对同一个供货小车路径网进行实验仿真,分析仿真结果,表明改进遗传算法比基本遗传算法能比较快地得到令人满意的优化效果。 关键字:路径优化遗传算法 Floyd算法

Abstract The Path Optimization of Goods Supply Car is the effective way to reduce business costs and enhance economic efficiency.The problem of the Path Optimization of Goods Supply Car can be seen as Vehicle routing proble. This paper presents a solution to Vehicle routing proble with Single direction road by Researching the Way of Path Optimization of Goods Supply Car. First, This paper Establish the mathematics model of Vehicle routing proble and introduced the shortest path algorithm-Floyd algorithm, then taking the Single direction road into account at the same time. Seeking the shortest distance between any two points and landing path by this algorithm,then turn this problem in to TSP. Solving this problem can get the Optimize delivery routes which with Single direction road by GA,then take some district in the state City of LiuZhou road as an example start experiment.The Imitate the true result showed that this method can be better optimize results. Finally improving the basic GA with a priority strategy,then proceed to imitate the true experiment to the same Path diagram. The result expresses the improvement the heredity calculate way ratio the basic heredity calculate way can get quickly give satisfaction of excellent turn the result. Keyword: Path Optimization genetic algorithm Floyd algorithm

粒子群优化算法车辆路径问题

粒子群优化算法 计算车辆路径问题 摘要 粒子群优化算法中,粒子群由多个粒子组成,每个粒子的位置代表优化问题在D 维搜索空间中潜在的解。根据各自的位置,每个粒子用一个速度来决定其飞行的方向和距离,然后通过优化函数计算出一个适应度函数值(fitness)。粒子是根据如下三条原则来更新自身的状态:(1)在飞行过程中始终保持自身的惯性;(2)按自身的最优位置来改变状态;(3)按群体的最优位置来改变状态。本文主要运用运筹学中粒子群优化算法解决车辆路径问题。车辆路径问题 由Dan tzig 和Ram ser 于1959年首次提出的, 它是指对一系列发货点(或收货点) , 组成适当的行车路径, 使车辆有序地通过它们, 在满足一定约束条件的情况下, 达到一定的目标(诸如路程最短、费用最小, 耗费时间尽量少等) , 属于完全N P 问题, 在运筹、计算机、物流、管理等学科均有重要意义。粒子群算法是最近出现的一种模拟鸟群飞行的仿生算法, 有着个体数目少、计算简单、鲁棒性好等优点, 在各类多维连续空间优化问题上均取得非常好的效果。本文将PSO 应用于车辆路径问题求解中, 取得了很好的效果。 针对本题,一个中心仓库、7个需求点、中心有3辆车,容量均为1,由这三辆车向7个需求点配送货物,出发点和收车点都是中心仓库。 1233,1,7. k q q q l =====货物需求 量12345670.89,0.14,0.28,0.33,0.21,0.41,0.57g g g g g g g =======, 且 m a x i k g q ≤。利用matlab 编程,求出需求点和中心仓库、需求点之间的各 个距离,用ij c 表示。求满足需求的最小的车辆行驶路径,就是求 m i n i j i j k i j k Z c x = ∑∑∑ 。经过初始化粒子群,将初始的适应值作为每个粒子的个

物流配送的车辆路径优化

物流配送的车辆路径优化 专业:[物流管理] 班级:[物流管理2班] 学生姓名:[江东杰] 指导教师:[黄颖] 完成时间:2016年6月30日

背景描述 物流作为“第三利润源泉”对经济活动的影响日益明显,越累越受到人们的重视,成为当前最重要的竞争领域。近年来,现代物流业呈稳步增长态势,欧洲、美国、日本成为当前全球范围内的重要物流基地。中国物流行业起步较晚,随着国民经济的飞速发展,物流业的市场需求持续扩大。特别是进入21世纪以来,在国家宏观调控政策的影响下,中国物流行业保持较快的增长速度,物流体系不断完善,正在实现传统物流业向现代物流业的转变。现代物流业的发展对促进产业结构调整、转变经济增长方式和增强国民经济竞争力等方面都具有重要意义。 配送作为物流系统的核心功能,直接与消费这相关联,配送功能完成质量的好坏及其达到的服务水平直接影响企业物流成本及客户对整个物流服务的满意程度。配送的核心部分是配送车辆的集货、货物分拣及送货过程,其中,车辆配送线路的合理优化对整个物流运输速度、成本、效益影响至关重要。 物流配送的车辆调度发展现状 VRP(车辆调度问题)是指对一系列装货点和卸货点,组织适当的行车线路,使车辆有序的通过,在满足一定的约束条件(如货物需求量、发送量、交发货时间、车辆容量等限制)下,达到一定的目标(如路程最短、费用最少、时间最少、使用车辆数最少等)。一般认为,不涉及时间的是路径问题,涉及时间的是调度问题。VRP示意图如下 当然,VRP并不止是这样的一个小范围,而是又更多的客户点与一个仓库链接,从而达

到一整个物流集群。 根据路径规划前调度员对相关信息是否已知,VRP可分为静态VRP和动态VRP,动态VRP 是相对于静态VRP而言的。静态VRP指的是:假设在优化调度指令执行之前,调度中心已经知道所有与优化调度相关的信息,这些信息与时间变化无关。一旦调度开始,便认为这些信息不再改变。 而VRP发展到现在的问题也是非常突出的,例如,只有一单货物,配送成本远高于一单的客户所给的运费,在这种情况下,该如何调度车辆?甚至还有回程运输的空载问题,在这些问题之中,或多或少都涉及到了VRP的身影,那么在这样的配送中怎么有效的解决车辆的路径优化问题就是降低运输和物流成本的关键所在。 解决怎么样的问题? 现如今对于VRP研究现状主要有三种静态VRP的研究、动态VRP的研究以及随机VRP的研究。 而我对于VRP的看法主要有以下几点。 有效解决VRP或者优化车辆调度路径优化问题,那么将非常有效的降低物流环节对于成本的比重,有效的增大利润。 而我想到的方法,就是归类总结法。 建立完善的信息系统机制,将订单归类总结出来,可以按地区划分出来,一个地区一个地方的进行统一配送,这样也有效的降低了物流配送的车辆再使用问题,降低了成本。如下图所示。 仓库 客户 变换前 由上图可以看出来这样的路径,车辆需要来回两次,严重增加了配送成本,也增加了运输成本,使得利润并不能最大化。

物流系统优化——定位——运输路线安排问题LRP研究评述

——第6届全国青年管理科学与系统科学学术会议论文集 2001年·大连 437 物流系统优化中的定位—运输路线安排问题 (LRP)研究评述* 林岩 胡祥培** (大连理工大学系统工程研究所, 116023) 摘要 本文概述了物流优化问题中的定位—运输路线安排问题 (Location-Routing Problems, LRP )的发展历程,并对LRP 的分类和解决方 法加以评述,最后就这一问题的发展方向进行简单地探讨。 关键词 LRP 物流 系统优化 运筹学 1 引言 新技术的迅速发展,特别是电子商务的风起云涌,为我国经济的快速发展提供了契机。目前我国电子商务得到政府和民众的支持,发展势头强劲,但是,由于它是一套全新的技术,同时还是一种全新的管理理念,所以其发展过程中必然存在一些难题。在电子商务“三流”(信息流、物流、资金流)中,随着网络基础设施建设的成熟、电子商务网站的蓬勃发展以及有效利用网络资源观念的普及,信息流的发展已经比较成熟了;而随着各大银行纷纷开展网上业务,以及支付网关的建立和加密技术的成熟,网上支付已经在许多网站上成为现实;然而,我国传统的物流体系是在计划经济环境下建立、发展起来的,与目前的电子商务环境已经无法相容。现今物流体系的落后现状已经成为我国社会经济快速发展的重要制约因素之 一。所以对物流系统优化的研究将会具有很大的现实意义。 国外许多学者在电子商务出现之前就已经研究物流系统优化的问题了,为各类实际问题构建了优化模型,并形成了许多解决问题的算法。依据实际问题的不同,可以对物流系统优化问题进行分类,比如,运输车辆路线安排问题(VRP )、定位—配给问题(LA )、定位—运输路线安排问题(LRP )等等,其中LRP 更贴近目前的物流系统复杂的实际特征,所以对它的研究是十分有意义的。 本文先从VRP 和LA 的集成来探讨LRP 的由来,然后讨论LRP 的分类,同时探讨LRP 的研究现状,并对LRP 的解决方法进行概述,最后就LRP 的未来发展方向作简要的讨论。 2 从VRP 、LA 到LRP ——物流系统的集成 依据实际问题的不同,可以对物流系统优化问题进行分类,比如确定设施(指的是物品流动的出发点和终到点,如配送中心、仓库、生产工厂、垃圾回收中心等)位置、运输路线 * 国家自然科学基金重点项目(70031020) ** 林岩, 硕士研究生, 1972年出生, 主要研究方向: 电子商务, 信息系统工程。 胡祥培, 1962年出生, 教授,博导, 主要研究方向: 电子商务, 智能运筹学, 信息系统集成。

物流配送路径优化开题报告

海南大学应用科技学院(儋州校区) 毕业设计(论文)开题报告书(学生用表) 一、选题的目的、意义(理论、现实)和国内外研究概况 目的:随着经济全球化的不断发展,作为“第三利润源泉”的物流对经济活动的影响 日益明显,引起了人们越来越多的重视,成为当前“最重要的竞争领域”。配送是现代物流的一个重要环节,随着物流的全球化、信息化及一体化,配送在整个物流系统中的作用变得越来 越重要。物流配送路线的优化,又是物流配送中的一个关键环节。因此,在配送过程中,配送线路合理与否对配送速度、成本、效益影响很大。设计合理、高效的配送路线方案,不仅可以减少配送时间,降低作业成本,提高企业的效益,而且可以更好地为客户服务,提高客户的满意度,维护企业良好的形象 意义:配送合理化与否是配送决策系统的重要内容,配送线路的合理与否又是配送合 理化的关键。选择合的理配送路线,对企业和社会都具有很重要的意义。对企业来说,(1)优 化配送路线,可以减少配送时间和配送里程,提高配送效率,增加车辆利用率,降低配送成本。 (2)可以加快物流速度,能准时、快速地把货物送到客户的手中,提高客户满意度。(3)使配送 作业安排合理化,提高企业作业效率,有利于企业提高竞争力与效益。对社会来说,它可以节省运输车辆,减少车辆空载率,降低了社会物流成本,对其他企业尤其是生产企业具有重要 意义。与此同时,还能缓解交通紧张状况,减少噪声、尾气排放等运输污染,对民生和环境也有不容忽视的作用。 国内外研究概况:物流配送路径优化问题最早是由Dnatzig和Rmaser于1959年首次提出, 自此,很快引起运筹学、应用数学、组合数学、图论与网络分析、物流科学、计算机应用等学 科的专家与运输计划制定者和管理者的极大重视,成为运筹学与组合优化领域的前沿与研究热 点问题。各学科专家对该问题进行了大量的理论研究及实验分析,取得了很大的进展。目前, 对于解决配送路径优化问题主要有两类方法,一类是精确算法,主要有动态规划法、分支定界法、节约算法、邻接算法、扫除算法、禁忌搜索算法等;另一类是启发式算法,主要有人工 神经网络算法、蚁群算法、人工免疫系统算法、粒子群算法、遗传算法等

《物流车辆路径算法的优化与设计》

物流车辆路径算法的优化与设计 【摘要】:随着物流业向全球化、信息化及一体化发展,配送在整个物流系统中的作用变得越来越重要。运输系统是配送系统中最重要的一个子系统,运输费用占整体物流费用的50%左右,所以降低物流成本首先要从降低物流配送的运输成本开始。 一个车辆集合和一个顾客集合,车辆和顾客各有自己的属性,每辆车都有容量,所装载货物不能超过它的容量。起初车辆都在中心点,顾客在空间任意分布,车把货物从车库运送到每一个顾客(或从每个顾客处把货物运到车库),要求满足顾客的需求,车辆最后返回车库,每个顾客只能被服务一次,怎样才能使运输费用最小。而顾客的需求或已知、或随机、或以时间规律变化,这正是本文要研究的课题。 【关键词】:物流配送;路径;车辆路径问题(VRP);MATLAB 1 前言 1.1 课题研究背景 运输线路是否合理直接影响到配送速度、成本和效益,特别是多用户配送线路的确定是一项复杂的系统工程。选取恰当的车辆路径,可以加快对客户需求的响应速度,提高服务质量,增强客户对物流环节的满意度,降低服务商运作成本。因此,自从1959年Danting和Rams er提出车辆路径问题(Vehicle Routing Problem,VRP)以来,VRP便成为近年来物流领域中的研究热点。 VRP一般定义为:对一系列发货点和/或收货点,组织适当的行车路线,使车辆有序地通过它们,在满足一定的约束条件(如货物需求量、发送量、交发货时间、车辆容量限制、行驶里程限制、时间限制等)下,达到一定的目标(如路程最短、费用最小、时间尽量少、使用车辆尽量少等)。本文围绕VRP展开了研究,共包括五章内容。首先,本文收集国内外关于

matlab_蚁群算法_机器人路径优化问题

用ACO 算法求解机器人路径优化问题 4.1 问题描述 移动机器人路径规划是机器人学的一个重要研究领域。它要求机器人依据某个或某些优化原则(如最小能量消耗,最短行走路线,最短行走时间等),在其工作空间中找到一条从起始状态到目标状态的能避开障碍物的最优路径。机器人路径规划问题可以建模为一个有约束的优化问题,都要完成路径规划、定位和避障等任务。 4.2 算法理论 蚁群算法(Ant Colony Algorithm,ACA),最初是由意大利学者Dorigo M. 博士于1991 年首次提出,其本质是一个复杂的智能系统,且具有较强的鲁棒性,优良的分布式计算机制等优点。该算法经过十多年的发展,已被广大的科学研究人员应用于各种问题的研究,如旅行商问题,二次规划问题,生产调度问题等。但是算法本身性能的评价等算法理论研究方面进展较慢。 Dorigo 提出了精英蚁群模型(EAS),在这一模型中信息素更新按照得到当前最优解的蚂蚁所构造的解来进行,但这样的策略往往使进化变得缓慢,并不能取得较好的效果。次年Dorigo 博士在文献[30]中给出改进模型(ACS),文中 改进了转移概率模型,并且应用了全局搜索与局部搜索策略,来得进行深度搜索。 Stützle 与Hoos给出了最大-最小蚂蚁系统(MAX-MINAS),所谓最大-最小即是为信息素设定上限与下限,设定上限避免搜索陷入局部最优,设定下限鼓励深度搜索。 蚂蚁作为一个生物个体其自身的能力是十分有限的,比如蚂蚁个体是没有视觉的,蚂蚁自身体积又是那么渺小,但是由这些能力有限的蚂蚁组成的蚁群却可以做出超越个体蚂蚁能力的超常行为。蚂蚁没有视觉却可以寻觅食物,蚂蚁体积渺小而蚁群却可以搬运比它们个体大十倍甚至百倍的昆虫。这些都说明蚂蚁群体内部的某种机制使得它们具有了群体智能,可以做到蚂蚁个体无法实现的事情。经过生物学家的长时间观察发现,蚂蚁是通过分泌于空间中的信息素进行信息交流,进而实现群体行为的。 下面简要介绍蚁群通过信息素的交流找到最短路径的简化实例。如图 2-1 所示,AE 之间有

动态车辆路径问题的优化方法

第29卷第4期2008年4月 东北大学学报(自然科学版) JournalofNortheasternUniversity(NaturalScience) V01.29.No.4 Apr.2008动态车辆路径问题的优化方法 刘士新,冯海兰 (东北大学流程工业综合自动化教育部重点实验室,辽宁沈阳110004) 摘要:设计了在动态环境下进行车辆路径优化的导向局域搜索算法.算法在产生初始解以后的动态求解过程中,不再做车辆之间的顾客调整,而只应用2-opt局域搜索算子更新车辆服务顾客的顺序,即针对每辆车辆的旅行路线求解一个旅行商问题.建立了在动态环境下车辆执行运输任务过程的仿真模型.仿真过程中,应用算法根据交通路网实际情况实时优化车辆路径。并采用4种接受准则判别是否接受新的车辆路径.仿真结果表明:算法具有实时、高效的特点,满足动态车辆路径问题的求解要求. 关键词:智能交通系统;动态车辆路径问题;交通模拟;导向局部搜索 中图分类号:C934文献标识码:A文章编号:1005—3026(2008)04—0484—04 OptimizationApproachtoSolvingDynamicVehicleRoutingProblems L儿,Shi.xin,FENGH.口i—lan (KeyLaboratoryofIntegratedAutomationDfProcessIndustry,MinistryofEducation,NortheasternUniversity,Shenyang110()04,China.Correspondent:LIUShi—xin,E-mail:sxliu@mail.neu.edu.cn) Abstract:Aguidedlocalsearch(GLS)algorithmispresentedtosolvedynamicvehicleroutingproblems(DVRP).Inthedynamicsolvingprocessafterallinitialsolution,theGLSdoesnotexchangecustomersbetweenvehiclesbutappliesthe2一optlocalsearchoperatortoupdatingtheservicingsequenceforcustomers,i.e.,tosolveatravelingsalesmanproblemoftravelingroutingofeachvehicle。Asimulationmodelisthusdevelopedforthedynamicprocessduringwhichvehiclesareintraffic.InthesimulationmodeltheGLSalgorithmisappliedtooptimizingthevehicleroutesinaccordancetothereal—timetrafficsituation,andfourrulesayeappliedtojudgingifthenewlyoptimizedvehicleroutesareaccepted.ThesimulationresultsrevealthattheGLS algorithmcanprovidereal-timeresponsetodynamicinformationtosatisfytherequirementsofsolvingDVI王P. Keywords:intelligenttransportationsystem;DVRP;trafficsimulation;GLS 物流优化已经成为当代企业的一个重要利润源泉.车辆路径问题(vehicleroutingproblems,Ⅵ冲)是物流领域的核心和热点研究问题,吸引了众多学者和业者的研究和关注.现代物流市场的激烈竞争和顾客的个性化需求不断提高,使得现代物流配送运作更加复杂,要求物流配送系统更加灵活、高效地针对变化的环境调整作业计划.计算机及通讯技术的迅速发展,使得交通状况及运输工具的实时信息更易获取,为解决物流配送面对的新问题提供了基础.动态VRP(dynamicVRP,DvRP)正是在这样的背景下开始受到了关注和研究.现有研究主要是针对环境变化,对车辆路径计划进行重计划或局部调整,涉及的方法有元启发式算法和局域搜索算法等【1-2J.本文针对城市复杂交通系统的环境变化,提出了一种DVRP中更新车辆路径的导向局域搜索(guidedlocalsearch,GLS)算法,设计了动态交通环境的仿真模型,通过对71个节点交通路网的仿真实验,得出了咖车辆路径的更新原则,研究成果对于现代城市智能交通系统中的车辆路径优化 收稿日期:2007一04—05 基金项目:国家自然科学基金资助项目(70301007,70771020,70431003);新世纪优秀人才支持计划项目(NCET-06-0286).作者简介:刘士新(1968一),男,辽宁调兵山人,东北大学教授.  万方数据

相关主题