搜档网
当前位置:搜档网 › 酚醛树脂高性能化改性研究进展

酚醛树脂高性能化改性研究进展

酚醛树脂高性能化改性研究进展
酚醛树脂高性能化改性研究进展

Ξ

酚醛树脂高性能化改性研究进展

伊廷会

(兵器工业五三研究所,山东济南250031)

摘 要:介绍了酚醛树脂增韧、耐热改性研究及改性后的高性能酚醛树脂作为摩擦材料的应用。增韧改性方法包括:橡胶改性,腰果壳油改性,热塑性树脂改性,桐油改性,新型固化剂改性,马来酰亚胺改性及腰果壳油/双马来酰亚胺复合改性;而耐热改性方法包括:胺类改性,硼酸改性,芳烃改性,钼改性,聚酰亚胺改性,磷改性,苯并

嗪化合物改性及氰酸酯化改性。

关键词:酚醛树脂;增韧;耐热性;改性

中图分类号:TQ32311 文献标识码:A 文章编号:1002-7432(2001)04-0029-05

1 前 言

酚醛树脂是世界上最早实现工业化的合成树脂,迄今已有近百年的历史。由于其原料易得,价格低廉,生产工艺和设备简单,而且产品具有优异的机械性、耐热性、耐寒性、电绝缘性、尺寸稳定性、成型加工性、阻燃性及烟雾性,因此它已成为工业部门不可缺少的材料,具有广泛的用途。

但是,酚醛树脂结构上的薄弱环节是酚羟基和亚甲基容易氧化,耐热性受到影响。随着工业的不断发展,特别是各种车辆和机械使用工况条件及航空、航天和其它国防尖端技术的发展,对高性能摩擦材料提出了新的要求,如较高的热分解温度、良好的热恢复性能、足够的摩擦系数、较好的耐磨性能及较低的噪音等。用纯酚醛树脂作为摩擦材料,如高级轿车、摩托车刹车片和离合器片的基材,还不能满足这些要求。传统未改性的酚醛树脂脆性大、韧性差、耐热性不足,限制了高性能摩擦材料的开发,目前,高性能摩擦材料用酚醛树脂主要靠从国外进口。因此,为适应汽车、电子、航空、航天及国防工业等高新技术领域的需要,对酚醛树脂进行改性,提高其韧性及耐热性是酚醛树脂的发展方向。2 增韧改性的研究

普通酚醛树脂的脆性大,通常由其制得的摩擦材料硬度大、模量高、韧性差、易在界面上产生应力裂纹。提高酚醛树脂韧性的途径主要有如下几种: a.在酚醛树脂中加入外增韧物质,如天然橡胶、丁腈橡胶、丁苯橡胶及热塑性树脂等; b.在

酚醛树脂中加入内增韧物质,如使酚羟基醚化、在酚核间引入长的亚甲基链及其他柔性基团等; c.用玻璃纤维、玻璃布及石棉等增强材料来改善脆性。这些方法虽然提高了韧性,耐热性等却下降了。为了使酚醛树脂的耐热性进一步提高,目前一直在探讨其改性方法,如增加酚醛中固化剂的添加量,严格成型条件或后固化条件的方法,或者导入亚胺环或三嗪环等刚性环结构的方法。这些方法虽然提高了耐热性,但韧性却又降低了。由此可见,很多情况下酚醛树脂的韧性和耐热性的提高是难以并存的。近年来,曾进行过在不降低酚醛树脂耐热性的前提下提高其韧性的探讨,如通过添加碳酸钙和粘土等无机填料来保持其耐热性;采用热塑性酚醛树脂六次甲基四胺固化体系,并对改性剂及酚醛固化物的结构进行设计,以同时提高酚醛树脂的韧性和耐热性,均取得了一定进展。211 橡胶改性酚醛树脂

橡胶增韧酚醛是最常见的增韧体系,国内外早有研究报导。多选用大分子丁腈、丁苯、天然橡胶对酚醛树脂增韧。从工艺角度看,橡胶增韧酚醛树脂属物理掺混改性,但在固化过程中存在着不同程度的接枝或嵌段共聚反应。以最常用的丁腈橡胶增韧酚醛树脂体系为例,不管酚醛树脂是热固性的还是热塑性的,在固化过程中都可能发生橡胶与树脂间的接枝反应,增韧效果除与酚醛橡胶间化学反应程度有关外,与两组分的相容性、共混物形态结构、共混比例等都有关系,橡胶增韧酚醛树脂效果显著,是兼顾增韧、耐热、价格等综合性能的最有

?

92?Ξ收稿日期:2001-02-12

 第16卷第4期Vol.16No.4 

2001年7月J uly 2001热固性树脂

Thermosetting R esin

效途径之一。但若橡胶含量较高,也会影响耐热性。因此橡胶的加入量一般宜控制在6%~15%。

向可熔性和线型酚醛树脂的混合物中加入含羧基的丁腈橡胶,因可熔性酚醛树脂中的羟甲基和丁腈橡胶中的丁二烯双键、羧基起反应,使酚醛树脂和丁腈橡胶之间由化学键而紧密联接,所以既能提高弯曲强度、拉伸强度,又能提高冲击强度及断裂延伸率,耐热性也有提高。表1是用丁腈橡胶及羧基丁腈橡胶增韧酚醛树脂所得固化物的性能。

表1 丁腈橡胶增韧酚醛树脂的力学性能性 能羧基丁腈橡胶丁腈橡胶

冲击强度/kJ?m-21115410

弯曲强度/MPa24101610

弹性模量/MPa14001100

拉伸强度/MPa1110710

热变形温度/℃285235

除了丁腈橡胶外,含有活性基团的橡胶如环氧基液体丁二烯橡胶(BR)、羧基丙烯酸橡胶、环氧羧基丁腈加成物都可以增韧酚醛树脂,且增韧效果显著,同时由于改性体系交联密度的增加,耐热性也提高。特别在液体橡胶增韧体系中,由于液体橡胶容易形成海岛结构,即酚醛树脂构成连续相,橡胶形成分散相,这种形态结构既保证了材料的冲击强度提高,硬度下降,且对摩擦材料的耐热性影响不大,是一种理想的增韧体系。增韧后的酚醛树脂其性能完全可满足作为制造摩擦材料用的基体要求。

212 腰果壳油(CNSL)改性酚醛树脂

CNSL改性酚醛树脂系化学改性,属分子内增韧。CNSL是一种天然产物,是从成熟的腰果壳中萃取而得的粘稠性液体,其主要结构是在苯酚的间位上带一个15个碳的单烯或双烯烃长链,因此CNSL既有酚类化合物的特征,又有脂肪族化合物的柔性,用其改性酚醛树脂,韧性有明显改善,而且改性产物用于摩擦材料中,摩擦性能优良,摩擦过程中表面形成的碳化膜柔软而又有韧性不易脱落,使摩擦材料表面的组成和发热状态均匀,保证了稳定的摩擦性能,在欧美和日本等国现已普遍应用,国内也有批量生产。例如湖北省化学所曾于80年代末用腰果壳油改性酚醛树脂,制造摩擦材料取得了可喜成绩。武汉工业大学也选用CNSL作改性剂,从分子结构上引进长链性基团,与苯酚、甲醛反应,在复合催化剂存在下,用直接法制得改性酚醛树脂,其热分解温度高、韧性好、耐热、耐磨。

CNSL改性酚醛树脂有3种改性方法:

a.直接法 将CNSL、苯酚、甲醛在酸性条件下缩合制成热塑性酚醛树脂,在六亚甲基四胺作用下经加热交联固化。表2是直接法改性酚醛摩擦材料制品的力学性能。

表2 CNSL改性酚醛树脂摩擦材料的力学性能

名 称布氏硬度/GPa冲击强度/(kJ?m-2)

CNSL改性酚醛树脂216~310410~416纯酚醛树脂315~410311~317

b.苯酚法 将苯酚、甲醛反应制成线型酚醛树脂,然后CNSL与其发生加成反应,制成树脂。

c.双酚法 苯酚与CNSL在酸性条件下进行阳离子芳烷基化反应,生成双酚,然后再与甲醛作用生成树脂,由于双酚中两个酚核间由8~10个碳相连,分子柔韧性好,增韧效果明显,有专利报道改性树脂的冲击强度可提高10倍以上。CNSL增韧酚醛树脂确有一定效果,但由于CNSL中的杂质(非聚合组分)较多,且成分及含量不固定,常导致摩擦制品性能不稳定,另外,由于CNSL脂肪侧链R对树脂的耐热性有一定影响,当温度为400~500℃时失重(TG A)明显,因此用量一般控制在20%以下,CNSL 用量在此范围内控制得当,改性树脂耐热性也可能会得到改善。

213 热塑性树脂改性酚醛树脂

采用溶解度参数(SP)7~15的热塑性树脂与酚醛树脂共混,也是一种简单易行的增韧途径。采用的热塑性树脂主要有聚乙烯醇、聚乙烯醇缩醛、聚酰胺、聚苯醚等。聚乙烯醇改性酚醛树脂系化学改性,即在苯酚和甲醛缩聚反应期间加入,使聚乙烯醇分子中的羟基与酚醛缩聚物中的羟甲基发生化学反应,形成接枝共聚物。聚乙烯醇改性酚醛树脂粘接力较大,在摩擦材料配方中用量可相应减少。

采用聚酰胺(尼龙3)增韧酚醛树脂用于摩擦材料的制造已获得良好的效果,聚酰胺分子中含有酰胺基,可以与酚醛树脂中的羟甲基发生化学反应。改性效果如表3所示。其摩擦材料制件耐热性好,较橡胶改性材料在高温下(300℃)更加稳定。表4是聚对苯二甲酸丁二醇脂(PBT)、聚酰胺(PA)、聚苯醚(PPO)等与酚醛树脂熔融共混所得的力学性能。

表3 PA增韧酚醛树脂摩擦材料的力学性能项 目

硬 度/

GPa

冲击强度/

(kJ?m-2)

压缩强度/

MPa

拉伸强度/

MPa 酚醛体系315~415315~41570~907~11

PA/酚醛315~4105~1290~12015~20

?

3

?热固性树脂第16卷 

表4 PBT、PA、PPO增韧酚醛树脂的力学性能

组分及配比弯曲强度/

MPa

冲击强度/

(kJ?m-2)

m(酚醛)/m(PA)=90∶10

80∶20

180

183

400

450

m(酚醛)/m(PBT)=90∶10

80∶20

176

178

430

480

m(酚醛)/m(PPO)=90∶10

80∶20

178

180

480

500

酚醛树脂174370

214 桐油改性酚醛树脂

桐油改性酚醛树脂系化学改性,亦属分子内增韧,主要有2种方法:

a.桐油中的共轭三烯在酸催化下与苯酚发生阳离子烷基化反应,其中残留的双键由于空阻效应,参加反应的几率很小。反应产物在碱催化下进一步与甲醛反应,生成了桐油改性酚醛树脂,该树脂固化后,不但硬度降低,韧性提高,耐热性也有一定的改善,热分解活化能较改性前提高了60%~80%,耐热指数提高了30%。

b.桐油与线型酚醛树脂进行加成反应,反应温度大于140℃,在高温下,桐油能与羟甲基树脂起加成反应,生成苯并二氢化呋喃结构,由其制得的摩擦制件具有较理想的硬度和抗热衰退性能。但桐油改性PF树脂也具有CNSL增韧PF树脂的缺点。

桐油改性酚醛树脂的研究国内也有报道。例如重庆合成化工厂和四川大学合作研究的桐油改性酚醛树脂已通过鉴定。由其制得的制品用作强度、韧性、耐磨要求很高的磨擦材料———刹车制动片和离合器面片,改性效果优于丁腈橡胶改性的同类产品。刹车片衬片缺口冲击强度、300℃高温磨损率、离合器面片弯曲强度均超过了国家标准。

215 新型固化剂改性酚醛树脂

酚醛树脂固化剂除六亚甲基四胺外,工业上应用最广的是三羟甲基苯酚、多羟甲基三聚氰胺及多羟甲基双氰胺、环氧树脂等。为获得高性能酚醛树脂,对新型固化剂改性酚醛树脂进行了研究和开发,并取得一定成果。日本、美国对其研究较为活跃。用唑啉类化合物固化酚醛树脂,所得到的固化物在保持难燃、低烟、耐热性高的同时,又提高了韧性。AsnLand公司的CuLbertson等以苯撑二唑啉(PBOX)为固化剂开发了一系列酚醛树脂,通常采用1132PBOX为固化剂,用游离酚含量低的线型酚醛树脂,采用稀释法实施工艺。

216 马来酰亚胺系聚合物改性酚醛树脂

为了同时提高酚醛树脂的韧性和耐热性,采用对羟基苯基马来酸酐缩亚胺(HPMI)系聚合物作为酚醛树脂的改性剂,改性效果明显,日本对其进行了一些研究并研制成功了具有高冲击强度和耐高温性能的酚醛材料。改性剂是按如下设计的:一方面,为了提高酚醛树脂的韧性,改性剂可与热塑性酚醛树脂相容,且其玻璃化温度低于室温,为含有柔软链段的聚合物;热塑性酚醛树脂和改性剂的混合物可与固化剂六亚甲基四胺(乌洛托品)反应,在进行固化反应时,可诱发改性剂中柔软链段的凝聚,凝聚体以微细粒子的形式分散于基体中,形成海岛结构。另一方面,为使酚醛树脂耐热性同时得以提高,改性剂的分子质量要大于热塑性酚醛树脂,且改性剂是与六亚甲基四胺反应的聚合物,即热塑性酚醛树脂与六亚甲基四胺反应生成微凝胶体凝聚在一起,形成固化体系,而分子质量较一般热塑性酚醛树脂分子质量大的改性剂聚合物分子与六亚甲基四胺反应并形成凝胶时,还会产生许多未形成凝胶的分子絮凝物,这些絮凝物形成均匀、交联密度高的固化物的可能性要比“热塑性酚醛-六亚甲基四胺”固化体系还要高。另外,由于凝胶间絮凝物缠结的增多,固化体系的韧性也可望得到提高;在作为改性剂使用的聚合物主链上,通过导入亚胺或苯环等刚性环来降低主链的自由度很重要。因此,为满足以上设计要求,作为改性剂使用了由在苯酚核上含耐热性骨架的马来酰胺基取代对羟基苯基的马来酰胺(HPMI)与丙烯酸正丁酯(n2BuA)合成的聚合物。将HPMI系聚合物按不同配比混入热塑性酚醛树脂中,再在这些混合物中加入100质量份的六亚甲基四胺作为固化剂,用热辊(100~110℃)混炼,制成成型材料后,加热加压(170℃,10MPa、10min)便得到HPMI系聚合物改性的酚醛树脂。这样改性的酚醛树脂兼具高韧性及耐热性,可作为摩擦材料使用。217 腰果壳油/双马来酰亚胺(BM I)改性酚醛树脂由于腰果壳油是含有双键长碳链的酚结构,用其作树脂改性剂,可以增加树脂的柔韧性:另外因双马来酰亚胺(BM I)树脂是一种新型的具有优异耐热性及机械强度的树脂,因此同时采用腰果壳油和BM I树脂来改性酚醛树脂。这种新型的树脂既引进了BM I树脂的优良性能,又具有腰果壳油改性酚醛树脂的优点,其冲击强度得到了明显提高,耐热性优于腰果壳油改性酚醛树脂和纯酚醛树脂,其热分解温度超过了400℃,即使改性树脂在失重15%时温度也超过400℃,有效地抑制了摩擦材料热衰退现象的发生,使材料的摩擦性能得到了明显改善。

?

1

3

?

 第4期伊廷会:酚醛树脂高性能化改性研究进展

3 耐热改性的研究

普通酚醛树脂在200℃以下能够长期稳定使用,若超过200℃,便明显地发生氧化,从340~360℃起进入热分解阶段,到600~900℃时就释放出CO、CO2、H2O、苯酚等物质。改善酚醛树脂耐热性通常采用化学改性途径,如将酚醛树脂的酚羟基醚化、酯化、重金属螯合以及严格后固化条件、加大固化剂用量等。近年来,伴随拓宽酚醛树脂的应用领域,又进行了系统研究,取得了一些新成果。

311 胺类改性酚醛树脂

主要是将芳香胺类化合物与苯酚、甲醛在催化剂作用下进行共缩合反应,在酚醛树脂结构中引入耐热性较好的芳香胺结构单元,常用的芳香胺有三聚氰胺和苯胺以及三聚氰胺羟甲基化合物。胺类改性后的酚醛树脂,其耐热性有显著提高,热失重分析结果表明,苯胺改性酚醛树脂热分解温度为410℃,三聚氰胺改性树脂为438℃,都比纯酚醛树脂380℃要高,其耐热性提高的原因是引入了较稳定的杂环结构及固化树脂交联密度的提高。制得的摩擦材料在高温下有较好的摩擦性能,是应用较为普遍的改性方法。

312 硼酸改性酚醛树脂

采用硼化合物对酚醛树脂改性,改变其结构,生成键能较高的B-0键,是提高其耐热性能的有效方法之一。在国外已应用于耐热要求较高的刹车片、离合器片,其热分解温度比普通PF可提高100~140℃,它在700℃的分解残物还有63%。改性方法有3种:

a.苯酚先与硼酸在一定温度下生成硼酸酚酯,然后再与甲醛或多聚甲醛和催化剂反应到一定时间后真空脱水,生成硼酚醛树脂。

b.苯酚先与甲醛反应生成酚醇,然后在较高温度下(100~110℃)与硼酸反应,并蒸出反应中的水分,最终成为树脂。

c.将热塑性酚醛树脂与硼酸或硼酸与六亚甲基四胺的反应物共混后固化反应,可制得耐热性得到改善的酚醛树脂。以此制得的摩擦片耐热性高达450℃以上,而未改性的酚醛树脂制造摩擦片在300℃时性能就开始劣化。

硼改性酚醛树脂虽有优异的耐热性,但因工艺性差,成本高,而未能进一步实用化。

313 芳烃改性酚醛树脂

用于改性的芳烃有甲苯、二甲苯、取代苯、萘等。改性的原理是引入芳环使整个大分子的稳定性提高,刚性增加,从而提高了其耐热性,改性方法主要有2种:

a.芳烃(Ar)与甲醛反应生成芳醇化合物,然后再与苯酚、甲醛反应生成树脂。

b.芳烃、苯酚与甲醛同时进行反应生成树脂。

改性物耐热性好坏取决于芳烃化合物的结构。兵器工业五三研究所利用提炼二甲苯后的塔底物(芳烃化合物)改性酚醛获得满意的效果。改性路线采用第1种方法,改性酚醛热分解温度450℃以上,比普通酚醛树脂高50℃以上,而且高温下的失重率增长缓慢,适用于高温下使用,制得的摩擦材料具有良好的摩擦性能,高温下的摩擦系数高且稳定,磨损率低。314 钼改性酚醛树脂

钼酚醛树脂(Mo2PF)是在普通酚醛树脂中引入钼的一种改性酚醛树脂,是通过化学反应的方法,使过渡金属元素钼以化学键的形式键合于酚醛树脂分子主链中。由于一般PF主要通过C—C键连接苯环,而Mo2PF是以O2Mo2O键连接苯环,其键能大得多的原因,钼酚醛树脂的热分解温度和耐热性比普通酚醛树脂提高了;固化温度在160℃左右;故Mo2PF成型温度在160℃左右;六亚甲基四胺为10%的Mo2PF其热分解温度为522℃,600℃下的热失重率为1715%。

315 有机硅改性酚醛树脂

有机硅改性酚醛树脂具有耐热性高、热失重小、韧性高等优异性能,改性方法主要有2种:

a.将酚醛树脂与含有烷氧基的有机硅化合物进行反应,形成含硅-氧键结构的立体网络,反应过程中存在着酚醛自聚的竞争反应,因此两种反应之间的竞聚就成了改性成败的关键。

b.采用烯丙基化的酚醛树脂与有机硅化合物反应,形成耐热性能优异的有机硅改性酚醛树脂。

用有机硅改性酚醛树脂制得的摩擦材料摩擦性能稳定,磨损率低,在100~350℃温区内,摩擦系数变化很小(μ=0136~0140)。

316 聚酰亚胺改性酚醛树脂

聚酰亚胺是由芳香族二胺与二酐缩合而成,具有优异的耐热性和阻燃性,可显著提高酚醛树脂耐热性。改性方法主要有3种:

a.聚酰亚胺与酚醛树脂分子间发生化学反应,其中双马来酰亚胺最为常见。双马来酰亚胺反应特点是无小分子挥发物生成,可低压成型,将其用于线型酚醛树脂的改性,耐热性提高50℃以上,其摩擦材料制件热衰退明显改善,250~300℃摩擦系数0140~0141。

?

2

3

?热固性树脂第16卷 

b.直接合成主链上含有聚酰亚胺结构的酚醛树

脂,将酚类、芳香族胺及甲醛缩聚合成的酚醛树脂同芳香羧酸酐反应,即可得到分子内含有酰亚胺基团的改性酚醛树脂,其耐热性能优良。

c.将聚酰亚胺与热塑性酚醛树脂熔融共混改性,加入六亚甲基四胺,固化产物显示出优良的耐热性与弯曲强度。317 磷改性酚醛树脂

磷化合物改性酚醛树脂,具有优异的耐热性和突出的抗火焰性。常用的磷化物有磷酸、磷酸酯、氯化氧磷等。

磷化合物改性酚醛树脂和固化剂共混,不但效果显著,工艺也简单。磷酸酯改性酚醛树脂,其树脂固化物经400℃处理1h 和2h 后,失重率分别为57%和8012%。

318 苯并

嗪化合物改性酚醛树脂

苯并嗪化合物作为开环聚合酚醛新材料,具有较高的热稳定性,而且聚合时无挥发成分逸出,工艺性能好。苯并嗪化合物是一类含杂环结构的中间体,一般由酚类化合物、胺类化合物和甲醛经缩合制得。苯并嗪化合物只有在热和含有活泼氢的酚类化合物以及阳离子引发剂作用下,才能进行开环聚合反应,生成含氮且类似酚醛树脂的网状结构。为此,采用线型酚醛树脂为活泼氢化合物,同时加入六亚甲基四胺,与其共混,在催化剂作用下,进行树脂固化反应,改性树脂固化物热稳定性高,摩擦材料制件性能优良,100~300℃摩擦系数稳定。四川大学在这方面做了大量的研究工作,将其开环聚合酚醛树脂作为基体制作的制动材料具有优良的耐高温摩擦系数和热恢复性。319 酚三嗪树脂(PT )提高酚醛树脂耐热性最为显著的改性工作是酚三嗪树脂(PT )的研制,它是一种固化产物具有三嗪网状结构的改性酚醛树脂,具有双马来酰亚胺的高温

性能(t g >300℃)和酚醛树脂的阻燃特性以及环氧树脂的加工工艺性能(固化过程无挥发性小分子产

生,收缩率低)。PT 树脂的制备是氰化卤与酚醛反应生成氰酸酯树脂,再进一步交联成酚三嗪树脂。

PT 树脂作为高性能复合材料的基体,已取得令人满意的结果,其耐热性,弯曲强度和剪切强度在热固性树脂中称得上姣姣者。该树脂在摩擦材料中的应用正在进一步研究。4 结束语

综上所述,高性能酚醛树脂提高韧性的主要途径是:外加柔韧性聚合物或在酚醛结构中引入柔性结构单元;提高耐热性的主要途径是提高酚醛树脂结构中的芳杂环含量或引入其他聚合物的结构单元。显然,提高韧性和提高耐热性所采取的途径是相互矛盾的,二者难以并存。因此,研制既能提高韧性,又能提高耐热性的高性能酚醛树脂一直是人们追求的目标。目前在这方面的研究国内外已取得一定进展,并已作为高性能材料得到应用。今后,高性能酚醛树脂的改性研究仍将围绕增韧、耐热、阻燃及成型加工性等方面进行。相信,随着应用领域的拓宽和改性研究的不断深入,更多更好的高性能改性酚醛树脂将会在高新技术领域发挥更大的作用。参考文献:

[1]裴顶峰.高性能酚醛树脂的合成和改性[J ].化工新型材料,1994,

(10):12-17.

[2]范进忠,程恩,王翠珍.酚醛树脂的增韧方法[J ].塑料通讯,1993,

(2):9-10.[3]刘晓辉.摩擦材料用酚醛树脂胶粘剂的研究现状[J ].粘接,1999

增刊:27-32.

[4]陈孟恒.酚醛树脂的增韧化[J ].国外塑料,1997,15(4):39-43.[5]黄毅,顾宜,刘新华.耐热性汽车制动材料的研究[J ].工程塑料应用,1997,(4):1-6.

[6]刘晓洪,苟筱辉,王远亮.钼酚醛树脂的结构与耐热性研究[J ].化学世界,1998,(6):314-316.

[7]吴培熙.摩擦材料用树脂性能评述[J ].塑料科技,1999,(5):27~

30.

[8]赵颖,高新来,刘晓辉.汽车摩擦材料用酚醛树脂的研究概况[J ].化学与粘合,1999,(2):93-95.

MODIFICATION DEVE LOPMENT OF PHEN OL IC RESIN

YIN Ting 2hui

(the 53rd Research Instit ute of Chi na O rdnance Indust ry ,Ji nan 250031,Chi na )

Abstract :In this paper ,the toughening and heat resistant modification of phenolic resin and the application of the resin with high properties to friction resistant material were introduced.The toughening materials included rub 2ber ,CNSL ,thermoplastic resin ,tung oil ,new curing agent ,maleimide and CNSL/BM I ,The heat resistant mate 2rials included amine ,boric acid ,aromatic compound ,molybdenum ,organic silicon compound ,polyimide ,phos 2phide ,benzoxazine and PT resin.

K ey w ords :Phenolic resin ;Toughening ;Heat resistance ;Modifying

?

33? 第4期

伊廷会:酚醛树脂高性能化改性研究进展

有机硼改性酚醛树脂的耐热性研究

有机硼改性酚醛树脂的耐热性研究 ① 吴发超②1,邓海锋2 (11华北科技学院环境工程系,北京东燕郊 101601;21武警北京指挥学院,北京 100012) 摘 要:以苯酚、甲醛为原料,氢氧化钠(碳酸钠)为催化剂合成酚醛树脂,用硼酸锌改性使其成为具有耐高温性能、阻燃性能的硼酚醛树脂。通过热分析表明,有机硼改性酚醛树脂耐热性优于普通酚醛树脂;通过动力学分析表明,有机硼改性酚醛树脂主要热解阶段热解反应活化能高于普通酚醛树脂,难于反应。 关键词:酚醛树脂;改性;耐热性 中图分类号:TQ32311 文献标识码:A 文章编号:1672-7169(2007)02-0029-04 引言 酚醛树脂是世界上最早实现工业化的合成树脂,迄今已有近百年的历史。它原料易得,成本低廉,经固化后的产品具有良好的耐热性能和力学性能,且性能稳定。因此,酚醛树脂在汽车、电子、电气、交通、军事等许多领域逐步取代了工程塑料和一些金属及合金材料而占据主导地位,获得广泛的应用。但是还存在一些缺点,主要是脆性大、吸水性高,同时酚醛树脂结构中酚羟基与亚甲基易受高温热氧化降解,使其耐热性受到影响。 普通酚醛树脂在200℃以下能够稳定使用,若超过200℃,便明显地发生氧化,热失重较高。本文研究了在酚醛树脂中引入硼元素来进行改性,改性的酚醛树脂具有更好的耐高温性能。 1 实验内容 111 实验仪器和试剂 苯酚(分析纯),甲醛(分析纯),氢氧化钠(分析纯),硼酸锌(分析纯)。 仪器:D T240热分析仪(Shimadzu,日本)。112 酚醛树脂的制备 11211 实验步骤 1)在250ml三口瓶上装置机械搅拌器、回流冷凝管和Y形管,Y形管上口分别连接温度计和滴液漏斗; 2)将熔化了的苯酚加入反应器中,开动搅拌器,升温至40℃~50℃加入NaOH,保持20~30min; 3)在42℃~45℃下,在30min内缓慢的滴入甲醛;反应温度在45℃~50℃间保持30min; 4)在70min内升至87℃,然后在20~25min 内升温至95℃并在此温度下保持18~20min; 5)将其冷却至82℃并保持约20min,滴入4 g(37%)的甲醛(两次共加入甲醛16g); 6)逐步升温至92℃~96℃并继续反应20~60min,冷至室温即得到酚醛树脂。 11212 实验配方 表1 酚醛树脂的配比 原料名称摩 尔 比纯度(%)用量(g)苯酚19848甲醛溶液13716 氢氧化钠—404 113 硼酸锌改性酚醛树脂的制备 11311 实验步骤 1)在250ml三口瓶上装置机械搅拌器、回流冷凝管和Y形管,Y形管上口分别连接温度计和滴液漏斗; 2)将熔化了的苯酚加入反应器中,开动搅拌器,升温至40℃~50℃加入NaOH,保持20~30min; 3)在42℃~45℃下,在30min内缓慢的滴入甲醛;反应温度在45℃~50℃间保持30min; 4)在70min内升至87℃,然后在20~25min 内升温至95℃并在此温度下保持18~20min; 5)将其冷却至82℃并保持约20min,滴入4 g(37%)的甲醛(两次共加入甲醛16g); 6)逐步升温至92℃~96℃并继续反应20~60min,冷至60℃左右; 7)加入5g硼酸锌催化剂,在60℃~65℃溶 92 ① ②作者简介:吴发超(1979-),男,黑龙江桦南人,华北科技学院教师,中国地质大学(北京)在读硕士研究生。 收稿日期:2007203204

酚醛树脂

酚醛树脂 以酚类与醛类为原料,在催化剂作用下,缩聚而得到的树脂,统称为酚醛树脂。酚醛树脂是应用于工业上最早的一种合成树脂。 由于它原材料来源丰富,合成工艺简单,成本较低,而且具有良好的化学性能、物理性能、力学性能和电气绝缘性能,具有广泛的用途。它可以根据不同的使用要求,合成各种使用性能的酚醛树脂,例如,可制成耐热纤维、黏合剂、泡沫塑料等。 酚醛纤维 酚醛纤维具有优异的阻燃、抗烧蚀、高热稳定性和吸声等特性,得到了广泛应用。酚醛纤维是过量的苯酚与甲醛反应生成直线性酚醛树脂,酚醛树脂经熔融纺丝,在酸和醛的混合液中固化形成不溶不熔纤维。纺出纤维的固化反应,就是此聚合物纤维原丝在酸催化作用下进一步同甲醛发生的加成缩合反应,生成亚甲基桥键-CH2-和亚甲基醚键-CH2OCH2-化合物。 (l)酚醛纤维的制备在草酸催化作用下,使过量苯酚与甲酸反应,合成直线形热塑性酚醛树脂;进一步分馏,制备出软化点130℃、数均分子量2000和游 离酚含量小于0.3%的高纯可纺性热塑性酚醛树脂;再经熔融纺丝,纺制成平均 直径1Oum的纤维;将初生纤维固定在石墨夹板上,浸入盛有甲醛和盐酸水溶液的固化液的反应器内,按一定的升温速率升温至95℃,进行固化反应,得到酚 醛纤维。甲醛浓度、盐酸浓度、升温速率等因素对固化反应产生影响,最终影响酚醛纤维的性能。 (2)影响酚醛纤维性能的因素初生纤维的熔并温度随着甲醛浓度的增大而依次降低。其原因在于甲醛与酚醛树脂具有良好的相容性,甲醛的浓度越高,对酚醛树脂的渗透性越强;甲醛对酚醛树脂有显著的溶胀作用,并使其在甲醛浓溶液中的熔点降低。为提高+CH2OH在纤维内部的扩散速度,在+CH20H马初生纤维的液固反应体系中,选用高浓度的+CH30(18.5%),即HCHO (37%)与HCl(37%)各50%相混合。将初生纤维置于18.5%的盐酸溶液中,按10℃/h的速率升温至95℃,并在此温度下恒温2h。初生纤维在反应结束后变成棕红色纤维,将此反应生成 物用热台显微镜和IR进行分析,结果表明,初生纤维经盐酸处理后亚甲基-CH2-和酚羟基-OH 吸收峰相对强度减少,出现了新的吸收峰芳香醚键C-O-C和芳香酮键C-C=O。这可能是初生纤维在强酸作用下酚羟基之间、酚羟基与亚甲基之间发生了脱水缩合反应,导致了芳环中取代基数目增多,交联程度提高,酚醛纤维熔点的提高,热台显微镜分析结果显示,经过HCl处理的酚醛纤维依然为可熔融物,这说明在盐酸作用下只能发生部分交联,发生高度交联化必须存在交联基因的供应体。 纤维内部芳环之间的交联基团越多,宏观上反应在力学性能上拉伸强度越高。在较低的酸浓度下,酚醛纤维拉伸强度随酸浓度的提高而增大,在酸浓度为12%

酚醛树脂纤维的研究进展

酚醛树脂纤维的研究进展 *** 中北大学材料科学与工程学院,山西太原,030051 摘要:简单的介绍了酚醛树脂及其重要性能、合成原理,酚醛树脂改性的目的主要是改进它脆性或其它物理性能,提高它对纤维增强材料的粘结性能并改善复合材料的成型工艺条件等。最后对酚醛树脂纤维未来的发展方向进行了展望。 关键词:酚醛树脂、纤维、改性、复合材料 引言:酚醛树脂耐热性好,机械强度高,电绝缘性和耐高温蠕变性能优良,价格低廉且成型加工性好,特别是其良好阻燃性及很少产生有害气体的特性,使该种具有近百年历史的合成材料得到进一步发展,应用于塑料、复合材料、胶粘剂、涂料和纤维等各个领域。经过改性的酚醛树脂广泛应用于高尖端技术领域。所以,酚醛树脂纤维很受欢迎的。 一、酚醛树脂的简介 酚醛树脂也叫电木,又称电木粉,英文名称:phenolic resin, 简称PF。原为无色或黄褐色透明物,市场销售往往加着色剂而呈红、黄、黑、绿、棕、蓝等颜色,有颗粒、粉末状。耐弱酸和弱碱,遇强酸发生分解,遇强碱发生腐蚀。不溶于水,溶于丙酮、酒精等有机溶剂中。固体酚醛树脂为黄色、透明、无定形块状物质,因含有游离酚而呈微红色,比重 1.25~1.30,易溶于醇,不溶于水,对水、弱酸、弱碱溶液稳定。液体酚醛树脂为黄色、深棕色液体。 酚醛树脂由苯酚和甲醛在催化剂条件下缩聚、经中和、水洗而制成的树脂。因选用催化剂的不同,可分为热固性和热塑性两类。热固性酚醛树脂具有很强的浸润能力,成型性能好,体积密度大,气孔率低,用于耐火制品,该树脂在15℃- 20℃下可保持三个月。酚醛树脂制品优点主要是尺寸稳定,耐热、阻燃,电绝缘性能好,耐酸性强,它主要应用于运输业、建筑业、军事业、采矿业等多种行业,应用广泛。在NH4OH、NaOH或NaCO3等碱性物质的催化下,过量的甲醛与苯酚(其摩尔比大于1)反应生成热固性酚醛树脂。其反应过程如下:在碱性催化剂存在下使反应介质PH大于7,苯酚和甲醛首先发生加成反应生成一羟甲基苯酚。室温下,在碱性介质中的酚醇是稳定的,一羟甲基苯酚中的羟甲基与苯酚上的氢的反应速度比甲醛与苯酚的邻位和对位上的氢的反应速度小,因此一羟甲基苯酚不容易进一步缩聚,只能生成二羟甲基苯酚和三羟甲基苯酚。热塑性酚醛树脂(或称两步法酚醛树脂),为浅色至暗褐色脆性固体,溶于乙醇、丙酮等溶剂中,长期 姓名:*** 班级:*** 学号:***

酚醛树脂的改性研究

高分子化学 ——酚醛树脂的改性研究 姓名:李良伟 学号:2110912385 学院:化学化工学院 指导老师:刘晓国

摘要:酚醛树脂是人类最早实现工业化的一类合成树脂,迄今已有近百年的历史。它是由酚类化合物和醛类化合物经缩聚合成的,由于其原料价廉易得,制品具有较高的力学强度,电绝缘性能好,耐热性能良好,难燃等特点,在汽车、电气、电子、钢铁和住宅等相关产业中得到非常广泛的应用。但是,酚醛树脂也存在着缺点,即酚羟基和亚甲基容易氧化,耐热性、耐氧化性受到影响,固化后的酚醛树脂因芳核间仅由亚甲基相连,这种结构造成刚性基团(苯环)密度过大、空间位阻大、链节旋转自由度小,致使纯的酚醛树脂的耐冲击性能较差,即韧性差而显脆性。因此提高其韧性及耐热性一直以来是酚醛树脂改性研究的核心内容和突破口,现将近年来国内外酚醛树脂在增韧和耐热改性方面的主要研究及酚醛树脂合成工艺改性进行了综述。 关键词:酚醛树脂;改性;增韧;耐热 酚醛树脂是人类最早合成的一类热固性树脂,早在1872年,化学家在实验室制得了苯酚甲醛树脂,后来,比利时的L.H.Backdand在美国进行了系统的研究后,1909年就在美国实现了工业化生产。酚醛塑料工业的迅速发展,由于其原料多、价格低,良好的机械强度和耐热性能,尤其具有突出的瞬时耐高温烧蚀性能,而且树脂本身又有广泛改性的余地,制造简单,用途广泛,从生产日用的普通电器粉以发展到生产绝缘、高频、抗震、耐酸、耐湿热等十几种酚醛塑料粉,并己广泛应用在电器、仪表、航空以及国防(空间飞行器、火箭、导弹等)等国门经济的各部门。至今,酚醛树脂仍是热固性树脂中的主要产品。1醛树脂简介 酚醛树脂是高分子化合物,所以酚醛树脂具有高分子化合物的基本特点[1]分子量(相对分子量)大,并且呈现多分散性;(2)分子结构有多样性,在不同条件下可分别制成线型、支链型和网状结构;(3)酚醛树脂处于线型和支链型结构状态,具有可溶可熔可流动的加工性,当转变为体型(三向网状)结构状态,就固化定型且失去可溶可熔和加可工性;(4)酚醛树脂如同所有高分子化合物一样不能被加热蒸发,过高的温度只能使其裂解,甚至碳化。综上可知,即使是同一种类型的酚醛树脂产品,其性能也可能是多变的。 1.1 酚醛树脂的性能 酚醛树脂特有的化学结构和大分子交联网状结构赋予了它许多 优良性能。(1)卓越的粘结性酚醛树脂卓越的粘附性首选源于其大分

酚醛树脂MSDS

酚醛树脂(9003-35-4) 化学品简介 危险性概述 急救措施 消防措施 泄漏应急处理 操作处置与储存 接触控制/个体防护 理化特性 稳定性和反应活性 废弃处置 运输信息 化学品简介回目录【中文名称】 酚醛树脂 【英文名称】 phenolic resin 【中文同义词】 苯酚树酯 酚醛树脂 苯酚与甲醛的聚合物 酚醛树脂(热塑性) 水溶性酚醛树脂 直链酚醛树脂 酚醛树脂(203型) 松香改性酚醛树脂(2210型) 酚醛模塑料(PF2C3-431J)

酚醛模塑料(PF2C3-631) 酚醛模塑粉(PF2A1-131F) 快速模塑粉 酚醛模塑料(PF2S1-4602) 酚醛树脂(217型) 电木粉R131 胶木粉R131 普通酚醛压塑粉(日用类,R131型) 酚醛树脂(214型) 酚醛模塑料(PF2A2-161J) PET改性酚醛树脂 酚醛树脂(665型) 电木粉D141 【英文同义词】 NOVOLAC COPOLYMER RESIN PHENOL-FORMALDEHYDE RESIN Phenolic resin RESOLE RESOLE COPOLYMER RESIN phenol,polymerwithformaldehyde Phenol-formaldehydepolymer Phenol-formaldehydepolymer phenol-formaldehyderesins Phenolicresin,thermoplastic resole(phenol-formaldehyderesin) 【CAS No.】 9003-35-4 危险性概述回目录【健康危害】 接触加工或使用本品过程中所形成的粉尘,可引起头痛、嗜睡、周身无力、呼吸道粘膜刺激症状、喘息性支气管炎和皮肤病,还可发生肾脏损害。空气环境分析发现苯酚、甲醛和氨。在缩聚过程中,可发生甲醛、酚、一氧化碳中毒。

几种低成本改性酚醛树脂的研究

论文题目:木材加工剩余物的处理与应用研究 学院:材料工程学院 专业年级:木材科学与工程_2007级 学号: 071057011 姓名:叶培沐 指导教师、职称:陆继圣教授 2010年 11 月 29 日

目录 摘要 (1) 引言 (1) 1、尿素改性酚醛树脂 (2) 2、植物油改性酚醛树脂 (3) 2.1亚麻油改性酚醛树脂 (3) 2.2梓油改性酚醛树脂 (3) 3、植物蛋白改性酚醛树脂 (3) 4、植物多酚改性酚醛树脂 (4) 4.1木质素改性酚醛树脂胶黏剂 (4) 4.2 植物液化物改性酚醛树脂胶黏剂 (5) 5、粉状的单宁改性酚醛胶粘剂( T P F ) (6) 6、甲基葡萄糖贰母液改性酚醛树脂胶( M击一P F ) (6) 7、结论 (6) 8、参考文献 (7)

摘要:酚醛树脂胶粘剂是一种用途非常广泛的胶粘剂由于它具有较好的胶合强度和耐候性能在木材加工行业广泛用作室外用人造板的胶合材料。近几年来由于结构人造板的用途日益扩大, 酚醛树脂胶粘剂的用量也不断增加。但是由于酚醛树脂使用了大量的苯酚作原料, 因而成本较高、游离酚含量较大, 这不仅提高了人造板的制造费用, 同时严重影响人造板的生产和使用环境,本文研究了几种具有代表性的改性酚醛树脂在不同的处理条件下的胶合性能,从而为不同使用要求的人造板选择合适的低成本酚醛树脂提供依据。 关键词:酚醛树脂成本进展 1 引言: 酚醛树脂(PF树脂)首先由德国化学家A.Baeyer在1872年发现的,美国科学家L H.Baekeland于1907年对其进行了系统的研究,并在1910年成立了Bake—lite公司,首次实现了工业化生产¨。酚醛树脂以其胶接强度高、耐水、耐热、耐磨、耐化学药品腐蚀等优点而被用于诸多产业领域,现在仍是重要的高分子材料。在木材加工领域中酚醛树脂也是使用广泛的主要胶种之一,其用量仅次于脲醛树脂,特别是在生产耐水、耐候木制品方面具有脲醛树脂胶黏剂无可比拟的优势另外,随着人们对木制品等甲醛释放给健康造成危害的认识的提高,以及强制性国家标准GB18580-2001《室内建筑装饰装修材料一人造板及 其制品中甲醛释放限量》的颁布与实施,酚醛树脂胶黏剂及其胶接制品由于具有较小的甲醛释放,而必然会得到更进一步的发展,将成为最有希望最终取代脲醛树脂胶黏剂的有力候选之一。然而,酚醛树脂胶黏剂也存在着颜色较深、固化后的胶层硬脆、易龟裂、固化温度高固化速度慢等缺点,特别是酚醛树脂的成本比脲醛树脂高,这就在很大程度上限制了酚醛树脂胶黏剂更广泛的应用。在保证酚醛树脂优良物理、化学性能的前提下,降低酚醛树脂胶黏剂生产成本已成为当今研究的热点,因此,国内外许多科研工作者进行了广泛深入的研究并取得了一些显著的成果。从目前的研究情况看, 大体可分为下列几类: 单宁类改性酚醛树脂胶粘剂 尿素一苯酚一甲醛共聚树脂胶粘剂 甲基葡萄糖贰改性酚醛树脂胶粘剂仁 三聚氰胺( 尿素) 一苯酚一甲醛共聚树脂胶粘 剂

改性酚醛树脂复合材料的研究进展及应用

改性酚醛树脂复合材料的研究进展及应用 综述了改性酚醛树脂复合材料的研究进展,重点介绍了我国改性酚醛树脂复合材料的研究进展及应用,最后指出了我国改性酚醛树脂复合材料今后的发展方向。 标签:酚醛树脂;改性;复合材料 酚醛树脂(PF)由酚类(苯酚、甲酚、二甲酚和间苯二酚等)和醛类(甲醛、乙醛和糠醛等)在酸性或碱性催化剂作用下缩聚而成,是最早合成的热固性树脂。普通酚醛树脂由于受分子结构的限制,热稳定性和残炭率较低,限制了其应用。为了克服传统酚醛树脂脆性较大、交联度低、耐热性不佳、释放游离甲基和游离酚等缺陷,对酚醛树脂进行复合改性是常用的方法,以此获得性能优越的酚醛树脂复合材料,广泛应用于清漆、胶粘剂、涂料、模塑料、层压材料、泡沫材料、耐烧蚀材料等方面。 1.酚醛树脂的结构 酚醛树脂的结构主要有线型酚醛树脂和甲阶酚醛树脂。线型酚醛树脂在加热过程中逐渐软化,温度降至常温后又变硬,即在重复加热、冷却过程中重复塑化、硬化,表现出热塑性,而不具有热硬性。甲阶酚醛树脂含有水分,为聚合度不大的线型分子混合物,溶于水、乙醇、丙酮等溶剂中,具有高温固化性,属可溶性热固性酚醛树脂。 2.复合材料制备研究进展 酚醛树脂反应活性低,固化反应放出缩合水,且必须在高温条件下才能进行固化,制约了其在复合材料领域的应用。为弥补这一缺陷与不足,进一步提高其综合性能,在其分子链极性节点周围形成连接界面,使分子链间的键能增强,通常在酚醛树脂中引入高耐热性纳米材料,可提高其在高温下的质量保持率,降低其高温炭化率,从而使材料在高温下的基本性能得以提高。酚醛树脂的耐热性和增韧改性主要是通过共混或化学反应来实现。 2.1化学改性制备 酚醛树脂的化学改性是指应用化学反应改变苯酚甲醛树脂分子结构的一类改性方法,途径主要有:羟基醚化或环氧化、控制分子链交联状态的不均匀性及引进钼、硼、磷、有机硅等组分,可以提高树脂的耐热性尤其是瞬时耐高温的特性。环氧综合性能良好,能兼顾热固性酚醛树脂和双酚的优势,提高材料的粘接性与耐热性,改善树脂脆性;有机硅的耐热性和耐潮性良好,与酚羟基发生化学反应,可增强酚醛树脂的耐热性与耐水性;硼元素能显著改善酚醛树脂的耐热性、耐瞬间高温性、耐烧蚀性,增强其力学性能。

酚醛树脂的聚合原理、方法及运用

酚醛树脂的聚合原理、方法及其应用 应化1102班柳宗 0121114450208 摘要:酚醛树脂也叫电木,又称电木粉。原为无色或黄褐色透明物,市场销售往往加着色剂而呈红、黄、黑、绿、棕、蓝等颜色,有颗粒、粉末状。耐弱酸和弱碱,遇强酸发生分解,遇强碱发生腐蚀。不溶于水,溶于丙酮、酒精等有机溶剂中。苯酚与甲醛缩聚而得。酚醛树脂主要用于制造各种塑料、涂料、胶粘剂及合成纤维等。 关键词:酚醛树脂聚合原理聚合方法酚醛树脂的应用 正文: 酚醛树脂是世界上人工合成的第一类树脂材料,它具有良好的耐酸性能、力学性能、耐热性能,而且由于它原料易得,合成方便,目前仍被广泛应用。在高中教材里,酚醛树脂作为缩聚反应的典例,阐述了单体分子聚合成高分子的一种形式。与加聚反应不同,单体分子在发生缩聚反应时,生成的不仅仅是高分子化合物,还有小分子物质(如水)生成。也正是因为单体间缩去小分子物质,才成为有机物彼此连接成链状或体型的直接诱因。 缩聚反应是指单体间相互反应,生成高分子化合物同时生成小分子的聚合反应。酚醛树脂是由苯酚和甲醛在催化剂条件下缩聚而成。反应机理是苯酚羟基邻位上的两个氢原子比较活泼,与甲醛醛基上的氧原子结合为水分子,其余部分连接起来成为高分子化合物——酚醛树脂。如果采用不同的催化剂,苯酚羟基对位上的氢原子也可以和甲醛进行缩聚,使分子链之间发生交联,生成体型酚醛树脂。体型酚醛树脂绝缘性很好,是用作电木的原料。另外,以玻璃纤维作骨架,以酚醛树脂为肌肉,组合固化制成复合材料即玻璃钢。 苯酚和甲醛的合成反应是一个较复杂的反应过程,目前公认的看法认为苯酚和甲醛之间反应合成酚醛树脂的反应是一种缩聚反应。其生产工艺的基本原理是由一种或几种单体化合物合成聚合物的反应。缩聚反应具有逐步的性质,中间形成物具有相当稳定的性能。苯酚和甲醛两种物质发生反应时根据缩聚反应条件的差异可以形成两大类树脂,即热固性酚醛树脂和热塑性酚醛树脂。其中需要注意的是酚醛的化学结构是影响酚醛树脂合成及性能的主要因素。在选择原料时其中对酚类物质的要求是:酚分子中必须具有2个以上的官能度。酚环上连有供电子基时反应速度会加快;连有吸电子基时,反应速度会变慢。在选用醛类物质时,没有多高的要求,工业上一般都是使用甲醛的。 ( 一)合成反应酚醛树脂的合成反应分为两步,首先是苯酚与甲醛的加成反应,随后是缩合及缩聚反应。即: 1、加成反应在适当条件下,一元羟甲基苯酚继续进行加成反应,就可生成二 ( 一)合成反应 酚醛树脂的合成反应分为两步,首先是苯酚与甲醛的加成反应,随后是缩合及缩聚反应。即: 1、加成反应 在适当条件下,一元羟甲基苯酚继续进行加成反应,就可生成二元及多元羟甲基苯酚:

酚醛树脂及复合材料成型工艺的研究进展

酚醛树脂是最早工业化的合成树脂,已经有100年的历史。由于它原料易得,合成方便以及树脂固化后性能能满足很多使用要求,因此在模塑料、绝缘材料、涂料、木材粘接等方面得到广泛应用。近年来,随着人们对安全等要求的提高,具有阻燃、低烟、低毒等特性的酚醛树脂重新引起人们重视,尤其在飞机场、火车站、学校、医院等公共建筑设施及飞机的内部装饰材料等方面的应用越来越多[1]。 与不饱和聚酯树脂相比,酚醛树脂的反应活性低,固化反应放出缩合水,使得固化必须在高温高压条件下进行,长期以来一般只能先浸渍增强材料制作预浸料(布),然后用于模压工艺或缠绕工艺,严重限制了其在复合材料领域的应用。为了克服酚醛树脂固有的缺陷,进一步提高酚醛树脂的性能,满足高新技术发展的需要,人们对酚醛树脂进行了大量的研究,改进酚醛树腊的韧性、提高力学性能和耐热性能、改善工艺性能成为研究的重点。近年来国内相继开发出一系列新型酚醛树脂,如硼改性酚醛树脂、烯炔基改性酚醛树脂、氰酸酯化酚醛树脂和开环聚合型酚醛树脂等。可以用于smc/bmc、rtm、拉挤、喷射、手糊等复合材料成型工艺。本文结合作者的研究工作,介绍了酚醛树脂的改性研究进展及rtm、拉挤等酚醛复合材料成型工艺的研究应用情况。 1酚醛树脂的改性研究 1.1聚乙烯醇缩醛改性酚醛树脂 工业上应用得最多的是用聚乙烯醇缩醛改性酚醛树脂,它可提高树脂对玻璃纤维的粘结力,改善酚醛树脂的脆性,增加复合材料的力学强度,降低固化速率从而有利于降低成型压力。用作改性的酚醛树脂通常是用氨水或氧化镁作催化剂合成的苯酚甲醛树脂。用作改性的聚乙烯醇缩醛一般为缩丁醛和缩甲乙醛。使用时一般将其溶于酒精,作为树脂的溶剂。利用缩醛和酚醛羟甲基反应合成的树脂是1种优良的特种油墨载体树脂。 1.2聚酰胺改性酚醛树脂 经聚酰胺改性的酚醛树脂提高了酚醛树脂的冲击韧性和粘结性。用作改性的聚酰胺是一类羟甲基化聚酰胺,利用羟甲基或活泼氢在合成树脂过程中或在树脂固化过程中发生反应形成化学键而达到改性的目的。用该树脂制成的渔竿等薄壁管具有优良的力学性能。 1.3环氧改性酚醛树脂 用热固性酚醛树脂和双酚a型环氧树脂混合物制成的复合材料可以兼具2种树脂的优点,改善它们各自的缺点,从而达到改性的目的。这种混合物具有环氧树脂优良的粘结性,改进了酚醛树脂的脆性,同时具有酚醛树脂优良的耐热性,改进了环氧树脂耐热性较差的缺点。这种改性是通过酚醛树脂中的羟甲基与环氧树脂中的羟基及环氧基进行化学反应,以及酚醛树脂中的酚羟基与环氧树脂中的环氧基进行化学反应,最后交联成复杂的体型结构来达到目的,是1种应用最广的酚醛增韧方法。 1.4有机硅改性酚醛树脂 有机硅树脂具有优良的耐热性和耐潮性。可以通过使用有机硅单体与线性酚醛树脂中的酚羟基或羟甲基发生反应来改进酚醛树脂的耐热性和耐水性。 采用不同的有机硅单体或其混合单体与酚醛树脂改性,可得不同性能的改性酚醛树脂,具有广泛的选择性。

酚醛树脂

水性酚醛树脂胶粘剂的制备 酚醛树脂是苯酚或取代苯酚同甲醛的反应产物。改变酚和醛的种类,酚/酲摩尔比,催化剂的种类和用量,或者反应时间与温度,其反应生成物均会不同。重要的商品酚包括苯酚C6H5OH,甲苯酚CH3C6H4OH,二甲苯酚(CH3)2C6H3OH,对叔丁基苯酚等。所用酚/醛摩尔比与催化剂的种类,决定着酚醛树脂是酚端基还是羟甲基端基(-CH2OH)。酚端基型酚醛树脂常称为“线性酚醛树脂”(novolac)或“两步型树脂”;这种树脂不是热反应性的,除非另外加入更多的甲醛,它们一般用六次甲基四胺(简称“六次”)在加热下交联固化。如果分子链端为羟甲基,则可称为“甲阶酚醛树脂”(resole)或“一步型树脂”;这类树脂是热反应性的,在进一步加热下就会固化成热固性网状结构-除非将苯酚的邻位之一或对位预先封闭(例如采用对叔丁基苯酚)。两步型树脂在酚过量(即较高酚/酲摩尔比)与酸性催化剂存在下制备;一步型树脂在醛过量(即较低酚/醛摩尔比)与碱性催化剂存在下制备。 水性酚醛树脂包括低分子量的水溶性酚醛树脂(主要是甲阶树脂)和水分散性酚醛树脂两类,后者可从包括线性酚醛树脂在内的多种酚醛树脂制成,且稳定得多。 1.水溶性甲阶酚醛树脂的制备 一般甲阶酚醛树脂是否有水溶性或混溶性的关键是控制其加热反应的程度。在醛过量与碱性催化剂存在下,最初生成的产物主要是苯酚中两个邻位和一个对位上的氢部分或全部被羟甲基取代。在进一步加热下,可能发生两类缩合脱水反应导致分子量增大:一类为2个羟甲基之间缩合形成醚链节(-CH2-O-CH2),另一类为一个羟甲基同一个邻位或对位活泼氢原子之间反应产生次甲基链节。 在加热反应程度不大时,产物含有比例较多的亲水基团(如羟甲基等),是低粘度的水溶性液体;进一步反应脱水,在分子量增大的同时,亲水基团减少,就逐步变成同水混溶性很小或不混溶的高粘度液体,其后变成可粉碎的固体。 一般甲阶酚醛树脂的制备工艺,是把氢氧化钠催化剂加入到苯酚和甲醛中,然后逐步加热到80-100℃。用真空控制反应温度在100℃以下,反应时间一般为1-3h。因为甲阶树脂进一步加热反应会凝胶,故脱水温度用真空控制在105℃以下。通常在150℃热板上测试凝胶时间,以监测反应程度并决定是否结束反应和出料。 低分子量水溶性树脂应在尽可能低的温度下完成生产反应,通常在50℃左右(反应活性较低的对位取代型甲阶树脂可以在高达120℃的温度下完成反应)。这类水溶性树脂固含量范围40%-70%,pH范围7-7.5。其树脂分子量稍微增大(这在室温下也很难避免),对水溶性或混溶性都会产生重大影响。因此这类树脂常按订货单制造,并在冷冻下贮存或装运,并且要马上使用。液体甲阶酚醛树脂有两类: ①含树脂的可溶性盐; ②为用过滤脱除了不溶性盐的树脂。这些盐是在综合碱性催化时形成的。在前一种类型中不必脱除其可溶性盐,因此成本较低。 采用对叔丁基苯酚制备甲阶树脂时,一般在制造期间要经过洗涤脱盐。在最初的碱性反应阶段后,在脱水之前,反应物料用一种芳香溶剂稀释,经中和形成一种水溶性盐。当停止搅拌时,水层(含有大多数盐)沉降到底部,接着进行溶液分离。再加入更多的水进行反复多次的洗涤。其后将树脂在真空下脱除溶剂,在冷却前形成所希望的分子量。 在有些应用中,需要使液体水溶性甲阶树脂保持与水的高混溶性。例如当其用作绝热粘结剂时,它们要用相当多的水稀释后喷洒到玻璃和石棉纤维上。因此这类树脂也要求在冷冻下贮存和装运。 固态甲阶树脂较稳定,只在热天才需冷冻。从对位取代酚类(如丁基苯酚)所制得的甲阶树脂可稳定1年以上。 水溶性酚醛树脂一般可以用粘度、相对密度、固含量和水溶性来表征。典型树脂的性能

酚醛树脂的改性研究与进展讲解

酚醛树脂的改性研究与进展

摘要 摘要 酚醛树脂是首个应用于工业化生产的塑料,它具有较高的机械强度、良好的绝缘性、高残碳率、低烟低毒、耐热、耐腐蚀、抗化学性等特性。 本文主要综述世界各地的学者专家关于酚醛树脂进行改性的近几年的研究成果,通过对酚醛树脂改性来提高其耐热性和增强韧性,使其制品更加满足日益增长的市场需求。如通过利用橡胶、聚砜、梓油和合成树脂等改性酚醛树脂增强韧性;通过硼、有机硅、无机钠米粒子和纤维、聚酰亚胺树脂等改性酚醛树脂提高酚醛树脂的耐热性。 关键词:酚醛树脂;耐热性;韧性;改性 I

Abstract Abstract Phenolic resin is plastic first into a variety of industrial production, it has high mechanical strength, good insulation, high carbon residue rate, low smoke, low toxicity, heat resistance, corrosion resistance, chemical resistance and other characteristics. This paper mainly summarizes the domestic and foreign experts and scholars of phenolic resin were modified in recent years of research results, through the modified phenolic resin to improve its heat resistance and toughness enhancement, to make the products more to meet the growing market demand. For example through the use of rubber, polysulfone, stillingia oil, synthetic resin, and so strengthen toughness of modified phenolic resin; by boron, silicon, inorganic nano particles and fibers, polyimide resin modified phenol formaldehyde resin to improve the heat resistance of phenolic resin. Keywords: Phenolic resin ,Heat resistance ,Modification ,Toughening II

酚醛树脂改性研究

酚醛树脂改性研究 高美玲 大学化学与化工学院 摘要酚醛树脂在工业中应用广泛,但是普通的酚醛树脂脆性大,耐热性和韧性均有不足,因此限制了酚醛树脂在某些了领域的应用。综述了近5年来酚醛树脂耐热性和增韧性的研究进展,简要归纳了各种方法的改性机理以及研究现状,最后对酚醛树脂改性方法的发展前景做出了展望。 关键词酚醛树脂改性耐热性增韧性 Research of Modified Phenolic Resin Gao Meiling Chemistry Department of ShanDong University Abstract Phenolic resin is widely used in industry.But the traditional phenolic resin is brittle, and imperfect in heat resistance and toughness,thus limiting the phenolic resin to be used in some areas. The modification methods for improvement of the heat resistance and toughness in the past five years are summarized.The mechanism and research status of various modified methods are summed up.Finally outlook about prospects of modified phenolic resin are made. Keywords modified phenolic resin heat resistance toughness 目录: 1……………………………引言 2……………………………酚醛树脂改性研究进展 2.1…………………………改善酚醛树脂的耐热性 2.2…………………………改善酚醛树脂的韧性 3……………………………结语 4……………………………参考文献

酚醛树脂的性质和作用

酚醛树脂的性质和作用 酚类和醛类的缩聚产物通称为酚醛树脂,一般常指由苯酚和甲醛经缩聚反应而得的合成树脂,它是最早合成的一类热固性树脂。 酚醛树脂虽然是最老的一类热固性树脂,但由于它原料易得,合成方便,以及酚醛树脂具有良好的机械强度和耐热性能,尤其具有突出的瞬时耐高温烧蚀性能,而且树脂本身又有广泛改性的余地,所以目前酚醛树脂仍广泛用于制造玻璃纤维增强塑料、碳纤维增强塑料等复合材料。酚醛树脂复合材料尤其在宇航工业方面(空间飞行器、火箭、导弹等)作为瞬时耐高温和烧蚀的结构材料有着非常重要的用途。 酚醛树脂的合成和固化过程完全遵循体型缩聚反应的规律。控制不同的合成条件(如酚和醛的比例,所用催化剂的类型等),可以得到两类不同的酚醛树脂:一类称为热固性酚醛树脂,它是一种含有可进一步反应的羟甲基活性基团的树脂,如果合成瓜不加控制,则会使体型缩聚反应一直进行至形成不熔、不溶的具有三向网络结构的固化树脂,因此这类树脂又称为一阶树脂;另一类称为热塑性酚醛树脂,它是线型树脂,在合成过程中不会形成三向网络结构,在进一步的固化过程中必须加入固化剂,这类树脂又称为二阶树脂。这两类树脂的合成和固化原理并不相同,树脂的分子结构也不同。 酚醛树脂改性的目的主要是改进它脆性或其它物理性能,提高它对纤维增强材料的粘结性能并改善复合材料的成型工艺条件等。改性一般通过下列途径: 一、封锁酚羟基。酚醛树脂的酚羟基在树脂制造过程中一般不参

加化学反应。在树脂分子链中留下的酚羟基容易吸水,使固化制品的电性能、耐碱性和力学性能下降。同时酚羟基易在热或紫外光作用下生成醌或其它结构,造成颜色的不均匀变化。 二、引进其它组分。引进与酚醛树脂发生化学反应或与它相容性较好的组分,分隔或包围羟基,从而达到改变固化速度,降低吸水性的目的。引进其它的高分子组分,则可兼具两种高分子材料的优点。 1、聚乙烯醇缩醛改性酚醛树脂。工业上应用得最多的是用聚乙烯醇缩醛改性酚醛树脂,它可提高树脂对玻璃纤维的粘结力,改善酚醛树脂的脆性,增加复合材料的力学强度,降低固化速率从而有利于降低成型压力。用作改性的酚醛树脂通常是用氨水或氧化镁作催化剂合成的苯酚甲醛树脂。用作改性的聚乙烯醇缩醛是一个含有不同比例的羟基、缩醛基及乙酰基侧链的高聚物,其性质取决于:①聚乙烯醇缩醛的分子量;②聚乙烯醇缩醛分子链中羟基、乙酰基和缩醛基的相对含量;③所用醛的化学结构。由于聚乙烯醇缩醛的加入,使树脂混合物中酚醛树脂的浓度相应降低,减慢了树脂的固化速率,使低压成型成为可能,但制品的耐热性有所降低。 2、聚酰胺改性酚醛树脂。经聚酰胺改性的酚醛树脂提高了酚醛树脂的冲击韧性和粘结性,并改善了树脂的流动性,仍保持酚醛树脂优点。用作改性的聚酰胺是一类羟甲基聚酰胺,利用羟甲基或活泼氢在合成树脂过程中或在树脂固化过程中发生反应形成化学键而达到改性的目的。 3、环氧改性酚醛树脂。用40%的一阶热固性酚醛树脂和60%的

酚醛树脂改性研究doc

酚醛树脂改性研究 高美玲 山东大学化学与化工学院 摘要酚醛树脂在工业中应用广泛,但是普通的酚醛树脂脆性大,耐热性和韧性均有不足,因此限制了酚醛树脂在某些了领域的应用。综述了近5年来酚醛树脂耐热性和增韧性的研究进展,简要归纳了各种方法的改性机理以及研究现状,最后对酚醛树脂改性方法的发展前景做出了展望。 关键词酚醛树脂改性耐热性增韧性 Research of Modified Phenolic Resin Gao Meiling Chemistry Department of ShanDong University Abstract Phenolic resin is widely used in industry.But the traditional phenolic resin is brittle, and imperfect in heat resistance and toughness,thus limiting the phenolic resin to be used in some areas. The modification methods for improvement of the heat resistance and toughness in the past five years are summarized.The mechanism and research status of various modified methods are summed up.Finally outlook about prospects of modified phenolic resin are made. Keywords modified phenolic resin heat resistance toughness 目录: 1……………………………引言 2……………………………酚醛树脂改性研究进展 2.1…………………………改善酚醛树脂的耐热性 2.2…………………………改善酚醛树脂的韧性 3……………………………结语 4……………………………参考文献

酚醛树脂的增韧改性研究进展

酚醛树脂的增韧改性研究进展 王春秀 北京理工大学理学院,(100081) E-mail:wangcx102@https://www.sodocs.net/doc/2f2274281.html, 摘要:本文综述了酚醛树脂的增韧方法及其增韧机理。酚醛树脂的增韧改性主要有以下几种途径:外增韧、内增韧、增强材料增韧、纳米粉体增韧。 关键词:酚醛树脂,增韧改性,增韧机理 1.引言[1] 酚醛树脂是最早实现工业化的合成树脂,迄今已有近百年的历史。由于其原料易得,价格低廉,生产工艺和设备简单,具有优异的机械性、耐寒性、电绝缘性、尺寸稳定性、成型加工性、阻燃性及烟雾性,因此,它已成为工业部门不可缺少的材料,具有广泛的用途。 然而,由于酚醛树脂结构尚存在一些弱点,固化后的酚醛树脂芳核间仅有亚甲基相连,这种结构造成酚醛树脂脆性大,韧性差。为适应应用的需要,必须对其进行增韧改性。面对航天、航空、电子工业、汽车工业等高新技术领域的需要,科技工作者为充分发挥酚醛树脂固有的潜力,在其增韧改性方面做了大量的工作。直到现在,增韧改性仍是酚醛树脂研究的焦点,提高其韧性也是酚醛树脂发展的一个方向。 2.增韧改性的研究 提高酚醛树脂的韧性主要有以下几种途径[2]:(1)在酚醛树脂中加入外增韧物质,如天然橡胶、丁腈橡胶、丁苯橡胶及热塑性树脂等;(2)在酚醛树脂中引入内增韧物质,如使酚羟基醚化、在芳核间引入长的亚甲基链及其他柔性基团等;(3)用玻璃纤维、玻璃布及石棉等增强材料来改善脆性;(4)采用纳米粉体增韧。通常,在树脂韧性提高的同时,其耐热性下降,有些体系耐热性下降还比较大。因而,在提高韧性的同时,保证耐热性的稳定也一直是研究的重点,在这方面也取得了一些进展。 2.1 酚醛树脂的外增韧 所谓外增韧,就是在酚醛树脂中加入外增韧剂以达到增韧的目的,外增韧剂与酚醛树脂主要以物理共混为主,其中外增韧剂以颗粒相分散在酚醛树脂中。橡胶是常用的外增韧物质,多选用天然橡胶、丁腈橡胶和丁苯橡胶。另外,采用溶解度参数为7~15的热塑性树脂材料,因与酚醛树脂有良好的混溶性,也是可用的外增韧剂。这类热塑性树脂有聚酰胺、PBT、聚 1

酚醛树脂综述

酚醛树脂综述 简介 酚醛树脂也叫电木,又称电木粉,英文名称phenolic resin,简称PF,比重~,是酚与醛经聚合制得的合成树脂统称, 原为无色或黄褐色透明物,,因含有游离分子而呈微红色,市场销售往往加着色剂而呈红、黄、黑、绿、棕、蓝等颜色,有颗粒、粉末状。耐弱酸和弱碱,遇强酸发生分解,遇强碱发生腐蚀。不溶于水,溶于丙酮、酒精等有机溶剂中。对水、弱酸、弱碱溶液稳定。由苯酚和甲醛在催化剂条件下缩聚、经中和、水洗而制成的树脂。因选用催化剂的不同,可分为热固性和热塑性两类。主要包括:线型酚醛树脂、热固性酚醛树脂和油溶性酚醛树脂。 其中以苯酚-甲醛树脂最重要。酚醛树脂有热塑性和热固性两类。热塑性酚醛树脂(或称两步法酚醛树脂),为浅色至暗褐色脆性固体,溶于乙醇、丙酮等溶剂中,长期具有可溶可熔性,仅在六亚甲基四胺或聚甲醛等交联剂存在下,才固化(加热时可快速固化)。主要用于制造压塑粉,也用于制造层压塑料、清漆和胶粘剂。热固性酚醛树脂(或称一步法酚醛树脂),可根据需要制成固体、液体和乳液,都可在热或(和)酸作用下不用交联剂即可交联固化。为指导树脂合成和成型加工,常将其固化过程分为A、B、C三个阶段。具有可溶可熔性的预聚体称作A阶酚醛树脂;交联固化为不溶不熔的最终状态称C阶酚醛树脂;在溶剂中溶胀但又不完全溶解,受热软化但不熔化的中间状态称B阶酚醛树脂,热固性酚醛树脂存放过程中粘度逐渐增大,最后可变成不溶不熔的C阶树脂。因此,其存放期一般不超过3~6个月。热固性酚醛树脂可用于制造各种层压塑料、压塑粉、层压塑料;制造清漆或绝缘、耐腐蚀涂料;

制造日用品、装饰品;制造隔音、隔热材料等。常见的高压电插座、胶粘剂和改性其他高聚物。 酚醛树脂具有良好的耐酸性能、力学性能、耐热性能,广泛应用于防腐蚀工程、胶粘剂、阻燃材料、砂轮片制造等行业。 酚醛树脂的发展史 酚醛树脂综合性能优良,是一种人工合成的最古老树脂,拥有近百年的使用历史。早在1872年德国化学家拜耳(A,Baeyer)首先发现了酚和醛在酸的存在下反应可以得到结晶的产物,但当时没有对其开展研究。接着化学家克莱堡(W,Kleeberg,1891)和史密斯 (A,Smith,1899)对这个反应进行了研究。进入20世纪,1902年布卢默()合成了第一个商业化酚醛树脂,命名为Laccain 。然而直到1905~1907,被称为酚醛树脂创始人的美国化学家巴克兰()才对酚醛树脂进行了系统而广泛的研究,并于1907年申请了关于酚醛树脂“加压、加热”固化的专利,而且于1910年10月10日成立了Bakelite公司。巴克兰的功绩不仅首次合成了交联的聚合物,而且发现了树脂的模压过程,实现了酚醛树脂的实用化,这对酚醛树脂的生产和应用起了很重大的作用。因此此年(1910年)定为酚醛树脂元年(或者合成高分子元年),巴克兰被成为酚醛树脂之父。 20世纪40年代后,合成酚醛树脂的方法趋于成熟并多元化.出现很多改性酚醛树脂,综合性能明显提高,其应用也发展到航空航天工业。 20世纪70年代出现许多热固性和热塑性树脂。如乙烯基树脂、环氧树、聚酰亚胺、聚胺脂、聚乙烯、聚丙烯、聚氯乙烯、聚碳酸酯,ABS等,其量大、应用范围广,使酚醛树脂的发展受到一定限制,但是在这期间各国学者和企业界仍然对酚醛树脂进行深人研究,使酚醛树脂在化学合成、产品改性、树脂加工工艺和应用领域都有长足的发展,逐步向高性能、专用化方向发展,井取得实效。 20世纪80年代以后,随着经济繁荣、交通发达.建筑业兴旺,对酚醛树脂的社会需求明

相关主题