搜档网
当前位置:搜档网 › 浅析网络时间同步方法及其安全性

浅析网络时间同步方法及其安全性

浅析网络时间同步方法及其安全性
浅析网络时间同步方法及其安全性

龙源期刊网 https://www.sodocs.net/doc/2211022598.html,

浅析网络时间同步方法及其安全性

作者:谢彦民

来源:《硅谷》2009年第19期

[摘要]随着计算机技术以及网络通信技术的快速发展,网络环境中各节点的时钟同步问题变得越来越重要。介绍时钟同步的方法及其相关协议,并对其安全性进行分析和探讨。

[关键词]网络通信技术同步相关协议

中图分类号:TP3文献标识码:A文章编号:1 671—7597(2009)1010076—01

随着计算机技术和网络技术的迅猛发展,特别是Internet与Intrauet的普及,管理信息系统已经步入基于网络系统的分布式环境。要使分布在各个计算机中的应用程序相互协调、共同合作完成一项任务,就需要这些系统之间有一个统一的、标准的时间。当前人们活动的很多领域的两络系统如金融业(证券、银行)、广电业(广播、电视)、交通业(火车、飞机)、电子商务(交易、认证、加密)、电信(计费、IP电话、网间结算)、大型分布式商业数据库等需要在大范围保持计算机间的时间同步和时间准确。所以,网络时间同步技术是当前网络应用系统所需要的一项关键性技术。

一、时钟同步的方法概述

时间同步是很多基于网络的关键应用的基础。时钟同步包括逻辑时钟同步和物理时钟同步。逻辑时钟同步是指,在分布式系统中,所有进程在事件发生的顺序上要完全一致,而时序上没有要求,即时间上并不需要完全一致。物理时钟同步包括外同步和内同步。外同步是通过某种算法,使得系统内的时钟与系统外的某个标准时钟相一致。内同步则是实现系统内时钟间的相互偏差不超过一个既定的范围。绝对物理时钟同步方法一般有三种硬件同步方法、软件同步方法和分层式混合同步方法。

(一)硬件同步方法

硬件同步有两种一种是借助于接收机或接收机来实现。网络中每个节点各自引入接收机或接收机。第二种是各网络节点都联入专用的时钟信号线,进行时钟同步。硬件同步法精度很高,但成本很高、操作不便。适用于小规模网络系统,在大规模分布式网络系统中完全采用硬件同步方法是不现实的。

小波神经网络的时间序列预测短时交通流量预测.doc

%% 清空环境变量 clc clear %% 网络参数配置 load traffic_flux input output input_test output_test M=size(input,2); %输入节点个数 N=size(output,2); %输出节点个数 n=6; %隐形节点个数 lr1=0.01; %学习概率 lr2=0.001; %学习概率 maxgen=100; %迭代次数 %权值初始化 Wjk=randn(n,M);Wjk_1=Wjk;Wjk_2=Wjk_1; Wij=randn(N,n);Wij_1=Wij;Wij_2=Wij_1; a=randn(1,n);a_1=a;a_2=a_1; b=randn(1,n);b_1=b;b_2=b_1; %节点初始化 y=zeros(1,N); net=zeros(1,n); net_ab=zeros(1,n); %权值学习增量初始化 d_Wjk=zeros(n,M); d_Wij=zeros(N,n); d_a=zeros(1,n);

d_b=zeros(1,n); %% 输入输出数据归一化 [inputn,inputps]=mapminmax(input'); [outputn,outputps]=mapminmax(output'); inputn=inputn'; outputn=outputn'; %% 网络训练 for i=1:maxgen %误差累计 error(i)=0; % 循环训练 for kk=1:size(input,1) x=inputn(kk,:); yqw=outputn(kk,:); for j=1:n for k=1:M net(j)=net(j)+Wjk(j,k)*x(k); net_ab(j)=(net(j)-b(j))/a(j); end temp=mymorlet(net_ab(j)); for k=1:N y=y+Wij(k,j)*temp; %小波函数 end end

NTP网络时间服务器(时间同步装置)使用手册

NTP网络时间服务器使用手册 北京华人开创科技发展有限公司 2012年10月

第一部分NTP网络时间服务器说明书 一、产品功能 NTP网络时间服务器是一款安全可靠的高精度的网络时间服务器。安装简便(天线放置时能提示可见卫星数),接口可支持以太网10/100Mbps和串口(波特率可设置),用户可修正精度(依据天线长度、串口线长度、客户端软件开销等),网络时间精度1~10mS(秒服务能力3000次/秒),串口时间精度8.33uS。 本产品运行具有较强的健壮性,当授时模块某一时段失效或天线失灵时,系统能自动启用守时机制(4小时内,精度影响甚微),确保NTP服务器能连续可靠工作。当授时模块或天线转为正常时,系统能自行将时间同步精度恢复。 二、产品外观 2.1前视板 2.2后视板

三、产品安装 3.1 连接天线 天线连接到“天线-主”口。 3.2 连接电源 将220V电源线连到AC220V座上或将电源适配器(7.5V~12V)接到DC口上。也可以同时接上,提高供电可靠性。 3.3 LAN网口 支持10/100Mbps以太网,NTP遵循SNTP4.0协议,符合RFC2030要求。 四、开机 4.1 加电 打开电源开关,液晶屏会显示“初始化中。。。。。”、“卫星数:X”。根据卫星数多少、捕获时间,调整天线的位置,最好确保可见卫星数10个以上。 4.2 指示灯说明 报警灯--GPS时间无效 时统1—NTP模块工作 4.3 液晶屏说明 左大部为时间显示,严格按秒脉冲同步(误差小于10uS)。 右上角为系统工作状态指示,第1个字符表示时区(B-北京时间,G-格林威治时间,U-其它时区),但当出现“L”时,意味着NTP进入守时状态;第2个字符表示串口和无线口同步时刻(R-每秒,S-即时5分钟内同步,F-深夜2:00开始8分钟同步);第3个字符表示NTP网口设置与否(N-NTP网口打开,空白-NTP网口关闭)。默认方式显示“BRN”。 右下角指示同步方式和时间精度修正值,第1个字符表示同步方式(T-尾同步,H-头同步);第2~4个字符表示以10ms、1ms、us为单位的精度修正值。缺省配置为“T000"。 五、设备参数设置 关于参数设置,根据显示屏提示,由功能键操作来实施。当显示屏信息提示时,若及时“按”键,表示不选该功能;若2秒内不按“功能键”,默认当前参数选择。首次按下功能键,首先显示“校准时刻:”。 5.1 校准时刻(跳过) 按键跳过该选项转5.2,否则进入该子项选择,依次可选“实时校准”、“即时校准”、“定时校准”、“守时参与校准”、“不再校准”。 注:“实时”指,UART每秒发送时间;

时钟同步网教材

4 时钟同步网 4.1 一般规定 4.1.1 铁路时钟同步网(又称“频率同步网”)用于为铁路数字通信等网络提供基准频率信号。 4.1.2铁路时钟同步网由一级时钟节点、二级时钟节点、三级时钟节点、定时链路、网管系统及配套设备组成。 4.1.3铁路时钟同步网分为骨干同步网和铁路局内同步网。铁路骨干同步网由全网基准时钟(简称PRC、一级时钟节点)、区域基准时钟(简称LPR、一级时钟节点)、定时链路和网管系统组成;铁路局内同步网由LPR、二级时钟节点(SSU-T)、三级时钟节点(SSU-L)、定时链路和网管系统组成。原则上骨干同步网为一个同步区,每个铁路局为一个同步区。全路采用混合同步方式,每个同步区内采用主从同步方式。 4.1.4 时钟同步网的网络管理分为二级。一级网管设置在通信中心,负责铁路骨干同步网的管理;二级网管设置在各铁路局,负责铁路局内同步网的管理,在同步时钟设备所在地根据需要设置本地维护终端。 4.2 设备管理 4.2.1 时钟同步专业与其他专业的维护界面以同步时钟设备配线架上的连接器为界,连接器(含)至同步时钟设备由同步专业维护。 4.2.2 维护部门应根据时钟同步网维护需要,配备原子钟、时频测试仪、频率计、SDH分析仪(具备抖动、漂移测试功能)等相关仪表。 4.2.3 维护部门应具备以下技术资料: (1)相关工程竣工资料、验收测试记录; (2)时钟同步网网图; (3)机架面板图; (4)端口运用台账;

(5)应急预案; (6)设备及仪表技术资料(含说明书、维护手册、操作手册等)。 4.3 设备及网络维护 4.3.1时钟同步网维修项目与周期见表4.3.1。 表4.3.1 时钟同步网维修项目与周期 类别序号项目与内容周期备注 日常检修1 设备状态检查 日 网管或机房 2 告警等事件检查分析处理网管 3 卫星接收机运行状态检查 月 网管 4 地面输入链路的频偏统计 5 时钟设备(含卫星信号)频率偏差检查 季 网管或仪表6 设备表面清扫机房(雷雨 后天馈线及 防雷检查)7 卫星接收机天线馈线及周边环境检查 8 定时链路状态检查 网管 9 系统数据备份并转储 集中检修1 时钟设备输出口频率偏差测试 年 开通3年及 以上设备每 种类型端口 使用仪表抽 测1路 2 时钟设备输出口MTIE、TDEV测试 3 时钟设备输出口抖动测试 4 设备地线检查、天馈线防雷装置检查雨季前 5 配线及标签检查 重点整修1 承担定时链路的SDH网元SEC时钟输出口抖 动测试 根据需 要 仪表 2 承担定时链路的SDH网元SEC时钟输出 MTIE、TDEV测试 3 定时链路SDH网元数检查、调整网管 4 系统隐患整治可根据需要 检查各项质 量指标 5 系统版本升级 6 网络优化调整 4.4 质量标准 4.4.1时钟同步设备、SDH设备应具备正确标示、识别、传送同步状态信息(SSM)的功能。各级时钟同步设备、SDH网元时钟均应处于正常跟踪状态,且主备用时钟输入口的时钟质量等级均应达到一级时钟等级。

基于BP神经网络的时序预测及其应用

目录 摘要 (1) 前言 (2) 第一章时间序列的预测函数及其评价指标 (4) 第一节预测函数 (5) 第二节评价预测的数量指标 (5) 第二章 BP神经网络 (6) 第一节 BP神经网络的结构 (6) 第二节 BP神经网络算法及公式推导 (7) 第三节 BP神经网络算法的步骤 (9) 第三章基于BP神经网络的时间序列预测及其应用 (11) 第四章结论 (14) 总结与体会 (15) 致谢词 (15) 参考文献 (15) 附录 (16)

摘要 首先,本文介绍了时间序列的含义和时间序列预测在国内外的研究情况,列举了两个时间序列预测的实际例子。文中阐述了时间序列预测及其评价指标,比较了各评价指标之间的长处和短处。其次, 本文阐述了BP神经网络算法及其公式推导。给出了BP神经网络算法的流程图。最后,本文从实用出发,列出了1993年至2006年我国GDP的数据,此组数据呈现出增长趋势,这种增长趋势反映了近十几年我国经济的快速增长。用BP神经网络预测出我国2007年的GDP是200790亿元, 这表明今后我国经济有减缓的迹象,这也说明我国近几年宏观经济调控获得了一定的成果。 【关键词】时间序列神经网络预测 GDP Abstract This grade paper, times series, and the development of times series forecast are introduced at first, and then the practical examples of times series forecast are enumerated. The function of times series forecast and its evaluative index are given. We compare the advantage and disadvantage of these evaluative indexes. Secondly, The principles of BP neural network and BP neural network’s algorithm are presented. Finally, we particularize our country GDP statistics, which it increases, which it indicates economy’s fast increasing, year by year, from 1993 to 2006. We also study BP neural network’s forecast algorithm. Our country GDP in 2007,wiche it is about 200790 hundred millions is forecasted by BP neural network, and it shows that the Chinese macro-economy policy in ten years are succeed. Keywords time series neural network prediction GDP

MATLAB动态神经网络在时间序列预测中的应用

MATLAB动态神经网络在时间序列预测中的应用 摘要:本文在介绍了Matlab神经网络工具箱的基础上,主要对时间序列预测工具箱的使用作了说明,并用实例仿真说明如何进行时间序列预测的调用实现,通过不断的调整参数,最后使训练的模型比较理想,满足实际的需求,表明了直接使用时间序列预测的有效性,并为Matlab神经网络工具箱的使用提供了新的方法。 关键词:Matlab;神经网络;时间序列;预测 引言 时间序列是根据时间顺序得到跟时间相关的变量或者参数的观测数据[1]。对时间序列的研究主要是挖掘其中有价值的信息,找到其中变化的内在规律[2]。时间序列预测是时间序列分析研究的主要内容,是指根据现有的和历史的时间序列的数据,建立能反映时间序列中所包含的动态依存关系的数学模型[3],从而能对序列未来的趋势做出合理的预测。简单的说,时间序列预测就是用已有的数据预测下一个时间段的值。目前,时间序列预测已经广泛应用在自然界、经济、化学、科学工程等各个领域。 随着Matlab版本的不断更新,神经网络工具箱不断的完善,使得仿真的实现日益简单,R2010b后的版本对时间序列预测的实现不需要手动写代码,网络训练完毕,从Simple Script可看到网络代码,并可对代码进行编辑、改编,因此,只要调用就可应用在各个领域。本文结合时间序列预测的特点,将Matlab神经网络工具箱中的时间序列预测应用到温度预测的实例中,通过快速的仿真及不断的调整参数,从而形成较理想的数学模型,为后期进行温度的预测奠定了基础。 1Matlab神经网络工具箱简介 神经网络分为静态和动态两类。静态神经网络是无反馈、无记忆的,输出仅依赖于当前的输入,例如BP神经网络和RBF神经网络。动态神经网络是有记忆的神经网络,其输出依赖于当前和以前的输入。动态神经网络又分为有反馈和无反馈,有反馈指输出依赖于当前输入和前一个输入输出,无反馈指输出依赖于当前和之前的输入。因此,动态神经网络比静态神经网络功能强,本文选择动态神经网络进行时间序列预测。 Matlab神经网络工具箱提供了一系列用于模型训练的工具,包括曲线拟合工具箱、模式识别工具箱、聚类工具箱和时间序列工具箱,利用这些工具箱可进行快速的调整参数,通过仿真得到直观的结果。另外,Matlab神经网络工具箱还提供人机交互界面,可根据提示一步一步的完成模型的训练,并对仿真的结果进行分析,直到满足要求为止。 选择时间序列工具箱或者直接在命令窗口中输入ntstool,可打开时间序列预测工具箱界面,根据数据选择符合哪种情况,根据人机交互界面的提示,将数据

浅析网络时间同步方法及其安全性

龙源期刊网 https://www.sodocs.net/doc/2211022598.html, 浅析网络时间同步方法及其安全性 作者:谢彦民 来源:《硅谷》2009年第19期 [摘要]随着计算机技术以及网络通信技术的快速发展,网络环境中各节点的时钟同步问题变得越来越重要。介绍时钟同步的方法及其相关协议,并对其安全性进行分析和探讨。 [关键词]网络通信技术同步相关协议 中图分类号:TP3文献标识码:A文章编号:1 671—7597(2009)1010076—01 随着计算机技术和网络技术的迅猛发展,特别是Internet与Intrauet的普及,管理信息系统已经步入基于网络系统的分布式环境。要使分布在各个计算机中的应用程序相互协调、共同合作完成一项任务,就需要这些系统之间有一个统一的、标准的时间。当前人们活动的很多领域的两络系统如金融业(证券、银行)、广电业(广播、电视)、交通业(火车、飞机)、电子商务(交易、认证、加密)、电信(计费、IP电话、网间结算)、大型分布式商业数据库等需要在大范围保持计算机间的时间同步和时间准确。所以,网络时间同步技术是当前网络应用系统所需要的一项关键性技术。 一、时钟同步的方法概述 时间同步是很多基于网络的关键应用的基础。时钟同步包括逻辑时钟同步和物理时钟同步。逻辑时钟同步是指,在分布式系统中,所有进程在事件发生的顺序上要完全一致,而时序上没有要求,即时间上并不需要完全一致。物理时钟同步包括外同步和内同步。外同步是通过某种算法,使得系统内的时钟与系统外的某个标准时钟相一致。内同步则是实现系统内时钟间的相互偏差不超过一个既定的范围。绝对物理时钟同步方法一般有三种硬件同步方法、软件同步方法和分层式混合同步方法。 (一)硬件同步方法 硬件同步有两种一种是借助于接收机或接收机来实现。网络中每个节点各自引入接收机或接收机。第二种是各网络节点都联入专用的时钟信号线,进行时钟同步。硬件同步法精度很高,但成本很高、操作不便。适用于小规模网络系统,在大规模分布式网络系统中完全采用硬件同步方法是不现实的。

全厂网络时钟同步方案

全厂网络时钟同步方案 陈银桃,陆卫军,张清,章维 浙江中控技术股份有限公司,浙江杭州,310053 摘要:当前工控领域石化项目如乙烯、炼油日益趋向大型化、一体化和智能化。一个大型石化项目往往集成多套独立系统如DCS、SIS、CCS等,同时要求所有系统使用同一套网络时钟同步系统。本文提供了几种全厂网络时间同步方案,并分析了每个方案的优缺点和适用场合。 关键词:全厂网络时钟同步,SNTP,二级网络时钟同步方案,Private VLAN,ACL,路由,NAT Ways to Implement The Network Time Synchronization In The Plant Chen Yintao Zhejiang SUPCON Co., Ltd., Hangzhou, Zhejiang, 310053 Abstract:The petrochemical projects in the industrial control area run to large, integrative and intelligentized.A large petrochemical project always need to be integrated with many systems like DCS, SIS, CCS and so on .The network of these systems must be independent,while they should use the same network time synchronizer to achieve time synchronization.This article propose several implements of the network time synchronization in the whole plant. Keywords:Network Time Synchronization, NTP, Private VLAN, ACL, Route, NAT. 引言 随着国民经济发展,工控领域也随之蓬勃发展,石化项目如乙烯、炼油等日益趋向大型化、一体化和智能化。大型化体现在项目规模的剧增,典型项目如百万吨乙烯、千万吨炼油。一体化体现在一个大型石化项目往往集成多套系统如DCS、SIS、CCS,这些系统在功能、网络上分别独立,但需要实现全厂统一的时钟同步,以保持全厂所有系统的时钟同步。 普通的网络时钟同步服务器提供的网口较少,一般都在4个以下,同时可支持1-4个网络的系统时钟同步。当需要同步的子系统较多时,则需要配置可同时支持二三十个网络的特殊网络时钟同步服务器。但是在企业建设初期,往往很难准确预计将来的网络发展规模,这就需要事先规划设计

基于神经网络的Mackey-Glass时间序列预测

目录 1引言 (1) 2MG时间序列 (1) 2.1MG时间序列简介 (1) 2.2利用dde23函数求解MG时间序列 (1) 3BP神经网络 (3) 3.1神经网络总体思路 (3) 3.2MATLAB中的newff函数 (3) 3.3BP神经网络的训练 (4) 3.4构建输入输出矩阵 (6) 3.5对MG时间序列未来值预测 (6) 4参考文献 (7) 5附录 (8)

1 引言 本文选用的神经网络的是BP 神经网络,利用MATLAB 编程实现。首先通过求解Mackey-Glass 方程得到具有513个数据的Mackey-Glass 时间序列,其中一半用于训练神经网络,一半用于检测预测值。BP 神经网络输入层神经元个数为4,隐含层为8,输出层为1。利用BP 神经网络工具箱构建神经网络并对其进行训练,然后利用训练好的神经网络对未来值进行预测,画出比较图。 2 MG 时间序列 2.1 MG 时间序列简介 Mackey-Glass 混沌系统一类非常典型的混沌系统,混沌系统模型由以下的时滞微分方程来描述: )() (1) ()(t x t x t x dt t dx βτταγ--+-= 其中 α =0.2,β =0.1,γ =10,τ是可调参数,x(t)是在t 时刻的时间序列的值。MG 方程表现出了某种周期性与混沌特性,在τ<16.8时,表现出周期性,在 τ>16.8时,则表现出混沌特性。 2.2 利用dde23函数求解MG 时间序列 本课程设计中取τ=10,也就是说MG 时间序列会表现为周期性。可以利用MATLAB 求解MG 方程,MG 方程是一个时滞微分方程,其中一种求解方法是利用MATLAB 的dde23函数。具体求解方法是:首先建立MG .m 函数文件,代码如下 function y = MG(t,x,z) %UNTITLED Summary of this function goes here % Detailed explanation goes here

时钟同步技术概述

作为数字通信网的基础支撑技术,时钟同步技术的发展演进始终受到通信网技术发展的驱动。在网络方面,通信网从模拟发展到数字,从TDM网络为主发展到以分组网络为主;在业务方面,从以TDM话音业务为主发展到以分组业务为主的多业务模式,从固定话音业务为主发展到以固定和移动话音业务并重,从窄带业务发展到宽带业务等等。在与同步网相关性非常紧密的传输技术方面,从同轴传输发展到PDH,SDH,WDM和DWDM,以及最新的OTN和PTN技术。随着通信新业务和新技术的不断发展,其同步要求越来越高,包括钟源、锁相环等基本时钟技术经历了多次更新换代,同步技术也在不断地推陈出新,时间同步技术更是当前业界关注的焦点。 2、时钟技术发展历程 时钟同步涉及的最基本技术包括钟源技术和锁相环技术,随着应 用需求的不断提高,技术、工艺的不断改进,钟源技术和锁相环 技术也得到了快速的演进和发展。 (1) 钟源技术

时钟振荡器是所有数字通信设备的基本部件,按照应用时间的先后,钟源技术可分为普通晶体钟、具有恒温槽的高稳晶振、原子钟、芯片级原子钟。 一般晶体振荡器精度在nE-5~nE-7之间,由于具有价格便宜、尺寸小、功耗低等诸多优点,晶体振荡器在各个行业和领域中得到广泛应用。然而,普通晶体钟一般受环境温度影响非常大,因此,后来出现了具有恒温槽的晶体钟,甚至具有双恒温槽的高稳晶体钟,其性能得到很大改善。随着通信技术的不断发展,对时钟精度和稳定性提出了更高的要求,晶体钟源已经难以满足要求,原子钟技术开始得到应用,铷钟和铯钟是其中最有代表性的原子钟。一般来说,铷钟的精度能达到或优于nE-10的量级,而铯钟则能达到或优于1E-12的量级。 然而,由于尺寸大、功耗高、寿命短,限制了原子钟在一些领域的应用,芯片级原子钟有望解决这个难题。目前民用的芯片级原子钟基本上处于试验阶段,其尺寸只有立方厘米量级,耗电只有百毫瓦量级,不消耗原子,延长了使用寿命,时钟精度在nE-10量级以上,具有很好的稳定性。芯片级原子钟将在通信、交通、电力、金融、国防、航空航天以及精密测量等领域有着广泛的应用前景。 (2) 锁相环技术 锁相环技术是一种使输出信号在频率和相位上与输入信号同步的电路技术,即当系统利用锁相环技术进入锁定状态或同步状态后,系统的震荡器输出信号与输入信号之间相差为零,或者保持为常数。锁相环路技术是时钟同步的核心技术,它经历了模拟锁相环

神经网络预测时间序列

神经网络预测时间序列 如何作预测?理想方法是利用已知数据建立一系列准则,用于一般条件下预测,实际上由于系统的复杂性而不太可能,如股票市场预测。另一种途径是假设一次观测中过去、未来值之间存在联系。其中一种选择是发现一个函数,当过去观测值作为输入时,给出未来值作为输出。这个模型是由神经网络来实现的。 1.2 神经网络预测时间序列 (1) 简单描述 在时间序列预测中,前馈网络是最常使用的网络。在这种情形下,从数学角度看,网络成为输入输出的非线性函数。记一个时间序列为}{n x ,进行其预测可用下式描述: ),,(1+-1-+=m n n n k n x x x f x (1) 时间序列预测方法即是用神经网络来拟合函数)(?f ,然后预测未来值。 (2) 网络参数和网络大小 用于预测的神经网络性质与网络参数和大小均有关。网络结构包括神经元数目、隐含层数目与连接方式等,对一个给定结构来说, 训练过程就是调整参数以获得近似基本联系,误差定义为均方根误差,训练过程可视为一个优化问题。 在大多数的神经网络研究中,决定多少输入与隐层单元数的定量规则问题目前尚未有好的进展,近有的是一些通用指导:首先, 为使网络成为一个完全通用的映射,必须至少有一个隐层。1989年证明一个隐层的网可逼近闭区间内任意一个连续函数。其次,网络结构要尽可能紧致,即满足要求的最小网络最好。实际上,通常从小网络开始。逐步增加隐层数目。同样输入元数目也是类似处理。 (3) 数据和预测精度 通常把可用的时间序列数据分为两部分:训练数据和检验数据。训练数据一般多于检验数据两倍。检验过程有三种方式: 短期预测精度的检验。用检验数据作为输入,输出与下一个时间序列点作比较,误差统计估计了其精度。 长期预测中迭代一步预测。以一个矢量作为输入,输出作为下一个输入矢量的一部分,递归向前传播。 直接多步预测。即用1+-1-m n n n x x x ,,直接进行预测,输出k n x +的预测值,其中 1>k 。

Linux同步网络时间的方法

Linux自带了ntp服务 -- /etc/init.d/ntpd, 没有可以yum install ntp 可以选择2种方法同步时间 一下操作使用root用户进行: ①安装ntp后不运行ntpd服务,通过命令 ntpdate https://www.sodocs.net/doc/2211022598.html, 来实现时间同步 具体操作为: https://www.sodocs.net/doc/2211022598.html,为网络时间服务器 通过命令 ntpdate https://www.sodocs.net/doc/2211022598.html, 可以使服务器的时间与 https://www.sodocs.net/doc/2211022598.html,这台服务器的时间同步 输入命令后如果提示成功则可以把命令添加到定时任务中如: 执行命令:crontab -e 然后加入 */30 * * * * /usr/sbin/ntpdate https://www.sodocs.net/doc/2211022598.html, 表示每30分钟同步一次时间。 该种方法需要服务器能连接网络 测试时间是否同步的方法: 先修改时间例如: date -s 12:30:00

然后手动执行命令,或把同步时间的脚步设置为1分钟执行一次及*/1,然后使用命令 date 查看时间是否有变化。 ②如果多台服务器需要同步成一致时间或自己创建一台时间服务器,使其他服务器与改服务器进行时间同步 设时间服务器的IP为192.168.1.1 ;客户端服务器IP为 192.168.20.50 ; 需要使客户端服务器自动通过时间服务器的时间,时间服务器自动与网络时间服务器同步时间。 首先设置时间服务器 安装完ntp后修改/etc/ntp.conf vi /etc/ntp.conf 注释掉原来的restrict default ignore这一行,这一行本身是不响应任何的ntp更新请求,其实也就是禁用了本机的ntp server的功能,所以需要注释掉。 加入:restrict 192.168.0.0 mask 255.255.0.0 ##表示 192.168.0.0~192.168.254.254段的IP都可以连接该服务器进行同步时间

同步网时钟及等级

同步网时钟及等级 基准时钟 同步网由各节点时钟和传递同步定时信号的同步链路构成?同步网的功能是准确地将同步定 时信号从基准时钟传送给同步网的各节点,从而调整网中的各时钟以建立并保持信号同步, 满足通信网传递各种通信业务信息所需的传输性的需要,因此基准时钟在同步网中至关重 要. 基准时钟源由网络中心基准时钟(NPRC)提供.它由两个铯原子钟或二套接收 GPS/GLONASS 的同步时钟设备或二套接收双GPS的同步时钟设备组成?本地基准时钟 (LPRC)设置在大区或重要的汇接节点上,配置一套接收GPS/GLONASS 双星或双GPS的 同步时钟设备,具有双备份铷钟,并可通过地面同步链路接收邻近区域内的基准定时信号.由 于铯原子钟价格较高,维护管理不方便,作为备用;双星接收机同步时钟设备(包括双GPS)作为主用,它可以提供频率稳定度优于1X 10-11长期精度(实际可达1X 10-12/ 天,N X 10-13/周),时间精度小于300 ns(实际可达100ns),同时还可利用中国电信国际局基准信号同步本站时钟设备作为备用基准输入. 在各大区中心和重要汇接中心,配置本地基准时钟(LPRC),具有同时接收GPS和 GLONASS 卫星的同步时钟设备,同时通过PDH 2Mb/s 传输链路或SDH的STM-N线路信号接收来自邻近的基准定时信号. 基准时钟信号的传送与分配 在数字同步网中,高稳定度的基准时钟是同步网的最高基准源,通过等级分配结构提供同步 信息?例如根据光缆干线网络示意图,设置于一级节点(NPRC)网络中心基准时钟通过PDH 或SDH传输系统向二级节点和三级节点传递定时信号?这些数字延伸和基准时钟一起称为 基准分配网络?基准分配网络应当设置主用和备用,如果某个二级时钟失去了与基准时钟的同步,它将以保持方式工作,并且在必要时使用备用传输路由满足滑动率指标?因此,在基准分 配网络内短时间的中断对同步影响很小,甚至没有影响? 局内综合定时供给 局内综合定时供给发生器,受来自冋步链路的至少两个2048Kb/s 信号冋步,定时供给发生 器向楼内的所有被冋步的时钟提供2048Kb/s,2048KHZ等多种定时信号? 楼内同步链路选择: (1)为安全可靠起见,楼内同步链路尽可能分散?例如,主备用定时尽可能来自不同路由

神经网络对时间序列的处理(1)

神经网络对时间序列的处理 Georg Dorffner 奥地利维也纳大学人工智能研究所医疗控制论和人工智能部门 摘要: 本文介绍了神经网络在时间序列处理的最常见类型,即模式识别和时空模式的预测。重视神经网络模型和更多经典时间序列的处理方法之间的关系,尤其是预测。文章首先通过介绍基本的时间序列加工、讨论了前馈以及递归神经网络,和他们非线性模型在时空模式的依赖能力方面。 1.介绍 世界是一直在变的。无论我们观察还是措施——个物理价值,诸如温度和自由交易的价格好—在不同的时间点。经典模式识别,并且与它的很大一部分神经网络应用中,主要涉及了检测系统模式以一个数组的形式返回(静态模式)。典型的应用包括输入向量的分类成多个类别之一(判别分析),或近似描述之间的可见的依赖关系(倒退)。当随时间变化而变化也被考虑进去,额外的,时间维就是补充。虽然在很大程度上这一问题仍然可以被经典模式识别,一些附加的重要方面仍然起作用。统计领域的时空数据分析这种关注(例如具有一定的时空维度的数据),通常是被称为时间序列处理。 本文旨在介绍利用神经网络的基本原理为时间序列处理。作为一个教程,它自然只能触及表面的这个行业,留下许多重要的细节都没动。不过,概述最相关方面的工作基础,形成了这个领域的佼佼者。这篇文章是很有参考价值的一个指南,并给出了更远、更详细的文学。关于神经网络学习算法的基本知识建筑已被假定。 2.时间序列处理 2.1.基本要素 在正式的条件,时间序列是一系列向量,根据t:~x(t):t =0;1;…… (1)。 向量的组成部分可以是任何可观察变量,诸如: 1)在一幢建筑里的空气温度 2)在给定的证券交易所的某些产品价格 3)在一个特定城市新出生的人数 4)在一个特定社区的水的总消费金额 从理论上讲,x ~可以被看作是时间变量t的连续函数。然而用于实际目的时,时间是通常被看作离散的时间间隔,这就导致在每个时间间隔的终点产生x的实体。这就是为什么一个人说话的时间顺序或系列。时间间隔的尺寸通常依手边问题,可以是任何东西,从几秒,几小时到几天,甚至几年。 在许多情况下,可观察量只有在离散的时间间隔(例如,在每一个小时,或天某一商品的价格)必然会形成时间序列。在其他情况下(例一个城市的新出生的人数),价值观必须累积或均一段时间间隔(如每月引起的出生人数)得到系列。在时间确实是连续的领域(例如当温度在某一地点是可见) 一个人必须点测量变量的藉所选择的时间间隔来获得一个系列(如每个小时的温度)。这就是所谓的抽样。取样频率就是所测量时段的点个数,在这种情况下是一个非常重要的参数,因为不同频率能从本质上改变所获得时间序列的主要特点。 值得注意的是,有另一个领域非常密切相关,即加工时间序列信号处理。例如语音识别,即异常模式心电图的发现(ECGs),或脑电图的自动分级(EEGs)。一个信号,当采样成一串值的离散的时间间隔时,构成上述定义的时间序列。因此和时间序列信号处理没有一个正式的区别。在普遍的应用程序中可以发现不同(例如单个信号的识别和滤波;时间序列处理的预测),自然的时间序列(一个采样间隔时间信号通常是一小段时间,而在时间序列处理区间常是小时)。但这只是一个从原型中的应用的观察,并没有明确的边界。因此,时间序列处理可借鉴对信号处理的方法探索,反之亦然。神经网络应用程序在信号处理的概述在文献【54,51】。 如果矢量~ x只含有一个组件,在许多应用场合情况中,有的说是一个单变量的时间序列,否则它就是一个多元。它非常仰赖棘手问题的单变量治疗是否会导致图案识别的结果。如果几个可观察量相互影响(例如空气温度和消耗的水量)一个多变量分析治疗(即基于几个可观察量的分析{~x超过一个变量})将被标明。在大多数讨论中,我们依然遵循单变量的事件序列处理。 2.2处理类型 根据时间序列分析的目的,时间序列分析的典型应用可以分为: 1.时间序列未来发展的预测 2.时间序列的分类或分成几类的一部分 3.根据参数模型对时间序列的描述

无线传感器网络的时间同步问题

无线传感器网络的时间同步问题 摘要 时间同步对任何分布式系统都是一个关键的基础问题。分布式无线传感器网络广泛使用的同步时间,往往在范围,寿命和精度同步实现等方面有特殊要求,以及实现同步所需的时间和所需的能源。现有的时间同步方法需要扩展,以满足这些新的需求。我们列举了传感器网络未来的同步要求,并提出了我们自己的低能耗同步方案,事后同步。我们还描述了一个实验,其性能特点是使用很少的能量创造短暂的,局部的,但高精度的同步。 1.介绍 最近的发展小型化和低成本,低能耗设计导致积极研究在大规模,高度分散的小系统,无线,低功耗,无人值守传感器和致动器[ 1,7, 4 ] 。许多研究人员提出了创造传感器丰富的“聪明环境”的设想。通过有计划或临时部署数千个传感器,每一个短距离无线通信通道,并能够检测环境条件如温度,运动,声,光,或存在某些物体。 时间同步对任何分布式系统都是一个关键的基础设施。分布式,无线传感器网络使特别是广泛使用的同步时间:例如,将时间序列的接近侦测到的速度估计[ 3 ] ;测量声音的运行时间定位其来源[ 5 ] ;分发波束阵列[ 13 ] ;或制止重复邮件,由认识到他们所描述重复检测同一事件不同的传感器[ 6 ] 。传感器网络也有许多相同的要求,传统的分布式系统:精确的时间戳,往往需要在加密计划,以协调活动定于今后,供订购记录的事件在系统调试,等等。传感器网络应用的广泛性导致时间要求的范围,寿命和精度不同于传统的系统。此外,许多节点新兴的传感器系统将非系留,因此有小型的能源储备。所有通讯,甚至被动的听,将产生重大的影响,这些储备时间同步方法的传感器网络 因此,必须也考虑到他们消费的时间和精力。 在本文中,我们认为,非均质性要求在传感器网络应用的需要能源效率和其他方面的限制没有发现在常规分布式系统,甚至是各种硬件而传感器网络将部署,使目前的同步计划不足以完成这项任务。传感器网络,现有的计划将需要扩大和合并后新的方式,以便提供服务,以满足应用的需要与可能的最低能量支出。 在此框架内,我们提出我们的想法事后同步,极低功耗同步方法时钟在一个地方时,准确的时间戳记是需要具体的事件。我们还提出了实验这表明这个多式联运计划能够精确在1微秒。为了更好地级比的两种模式,它的组成。这些结果是令人鼓舞的,但仍是初步的,表现实验室条件下的理想化。 第2节中,我们提出了一些指标,可以用来区分两种类型所提供的服务同步 方法和要求的应用使用这些方法。第3节介绍我们的事后同步的想法,并介绍了实验的特点其表现。第4节描述今后的工作中,我们的结论在第5节。 2.时间同步的特征 许多不同的方法分配的时间同步在共同使用。如美国全球定位系统(GPS )[ 8 ]和WWV / WWVB广播电台由国家研究所标准与技术[ 2 ]提供参考美国时间和频率标准。网络时间协议,特别是在Mills的NTP [ 10 ] ,从这些主要来源的网络连接电脑分配时间。 在研究适用于传感器网络,我们已发现有用的特点是不同类型的时间沿线各轴同步。我们认为某些指标特别重要: 精密,无论是分散之间的一组同龄人,或最大误差对外部标准。 生命周期,这可以从持续同步持续只要网络运营,几乎瞬时(有益的,例如,如果节点要比

用小波神经网络来对时间序列进行预测

/* Note:Your choice is C IDE */ #include"stdio.h" void main() { }/*用小波神经网络来对时间序列进行预测 */ /*%File name : nprogram.m %Description : This file reads the data from %its source into their respective matrices prior to % performing wavelet decomposition. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %Clear command screen and variables */ clc; clear; /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % user desired resolution level (Tested: resolution = 2 is best)*/ level = menu('Enter desired resolution level: ', '1',... '2 (Select this for testing)', '3', '4'); switch level case 1, resolution = 1; case 2, resolution = 2; case 3, resolution = 3; case 4, resolution = 4; end msg = ['Resolution level to be used is ', num2str(resolution)]; disp(msg); /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % user desired amount of data to use */ data = menu('Choose amount of data to use: ', '1 day', '2 days', '3 days', '4 days',... '5 days', '6 days', '1 week (Select this for testing)'); switch data case 1, dataPoints = 48; /*%1 day = 48 points */ case 2, dataPoints = 96; /* %2 days = 96 points */ case 3, dataPoints = 144; /*%3 days = 144 points */ case 4, dataPoints = 192; /*%4 days = 192 points */ case 5, dataPoints = 240; /* %5 days = 240 points */

电脑与Internet时间同步

电脑与Internet时间同步与Internet时间同步1.与Internet时间同步时间不准的问题依然困扰着朋友 "硬"的不行咱来"软"的。每天手动校正时间 不但麻烦也不准确 那就使用"自动与Internet时间同步"功能让电脑来自动完成 双击桌面右下角系统托盘中的时间 单击"Internet时间"选项卡 勾选"自动与Internet时间服务器同步" 在列表框中选择一个服务器即可。如果需要马上调整 可以连接到互联网上 单击旁边的"立即更新"按钮。虽然这样设置能自动修正时差 但间隔时间太长 系统默认为每周自动进行一次。打开"注册表编辑器" 依次展开[HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\W32Time\TimePro viders\NtpClient]项 在右边窗格中找到"SpecialPollInterval"子键并双击 修改键值为十进制的"86400"(单位为秒) 也就是每24小时同步一次。 2.借用 Windows Server 2003中的时间服务器本来以为解决问题了 可没过多久 朋 友来电说每天在进行时间同步时特别慢 不但影响网速有时还会出错。同步速 度慢可能是因为服务器太忙所致 于是让他在服务器列表中换另外一个服务器 试试 但效果并不理想。前一段时间安装了Windows Server 2003 发现它使 用的时间服务器与Windows XP下的不同 于是就想能否替换一下。打开"注册 表编辑器" 找到 [HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\DateTim e\Servers]项 在右边的窗格中会看到两个子键 键值即为原有的两个服务器 地址。新建一个字符串值 按顺序重命名为"3" 双击它后在数值数据栏中输入"https://www.sodocs.net/doc/2211022598.html,"(不带引号)。再依次新建"4"和"5"子键 数值分别为"time- https://www.sodocs.net/doc/2211022598.html,"和"https://www.sodocs.net/doc/2211022598.html," 最后按F5刷新使之生效后退出 这样就 可以在服务器列表框中看到新增了三个地址(见图)。选择其中一个试一下 果 然同步时间明显缩短 只要三四秒即可完成 估计该服务器使用的人较少。 1. 与Internet时间同步时间不准的问题依然困扰着朋友 "硬"的不行咱来"软"的。 每天手动校正时间 不但麻烦也不准确 那就使用"自动与Internet时间同步" 功能让电脑来自动完成 双击桌面右下角系统托盘中的时间 单击"Internet 时间"选项卡 勾选"自动与Internet时间服务器同步" 在列表框中选择一个 服务器即可。如果需要马上调整 可以连接到互联网上 单击旁边的"立即更新"按钮。虽然这样设置能自动修正时差 但间隔时间太长 系统默认为每周自动进行一次。打开"注册表编辑器" 依次展开 [HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\W32Time\TimePro viders\NtpClient]项 在右边窗格中找到"SpecialPollInterval"子键并双击 修改键值为十进制的"86400"(单位为秒) 也就是每24小时同步一次。 2.借用 Windows Server 2003中的时间服务器本来以为解决问题了 可没过多久 朋 友来电说每天在进行时间同步时特别慢 不但影响网速有时还会出错。同步速 度慢可能是因为服务器太忙所致 于是让他在服务器列表中换另外一个服务器 试试 但效果并不理想。前一段时间安装了Windows Server 2003 发现它使用的时间服务器与Windows XP下的不同 于是就想能否替换一下。打开"注册编辑器" 找到 [HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\DateTim e\Servers]项 在右边的窗格中会看到两个子键 键值即为原有的两个服务器

相关主题