搜档网
当前位置:搜档网 › 给排水英语论文

给排水英语论文

给排水英语论文
给排水英语论文

PARTICLE EXPOSURE THROUGH THE INDOOR AIR ENVIRONMENT

GYULA DURA? and BRIGITTA SZALAY

Fodor Jozsef National Centre for Public Health, National

Institute of Environmental Health, Gyali ut 2-6, Budapest 1097,

Hungary

Abstract: Sources, exposure and measuring techniques for indoor particulate matters (PM) are overviewed. To evaluate indoor air quality in two subway sta-tions in Budapest, concentrations of PM10, PM2.5 and total suspended particu-lates (TSP) were measured during a 5-day period in a preliminary study. The following results were found: PM10 pollution was 2–3 times higher in the metro station than in matched sampling in the street. The levels of PM2.5 were much less. PM pollution level was not influenced by the depth of the platforms. Keywords: indoor environment, particulate matter, exposure, PM on subway

1.Introduction

It is well known that air quality has a significant impact on human health. We can drink bottled water if piped water contains too much chlorine. We can select higher-quality food, so-called bio-products currently on the market, if we are afraid of chemical residuals. However, we cannot choose the air we breathe. We spend a large part of our life indoors, at home, or other public environ-ments, such as schools or restaurants. Having clean indoor air is very important for the health of the population as a whole and it becomes particularly impor-tant for infants, children and the elderly or people predisposed to disease, parti-cularly respiratory or cardiovascular diseases.

The public health significance of indoor air pollutants, including particulate matter (PM), is studied worldwide and scientific evidence shows a significant impact on the health of the population (https://www.sodocs.net/doc/2214125265.html,/pages/publica-tions/factsheets.asp). Environmental tobacco smoke (ETS), combustion products, volatile organic compounds and biological pollutants are all responsible for, or increasing respiratory diseases and in some cases, cardiovascular diseases ? To whom correspondence should be addressed.

271

P.P. Simeonova et al. eds.,Nanotechnology – Toxicological Issues and Environmental Safety, 271–276.

? 2007 Springer.

PARTICLES AND THE INDOOR AIR ENVIRONMENT

272

(Gamble, 1998). When exposures are sufficient to cause acute health effects in a population (as may occur in certain accidental catastrophes) causal rela-tionships are easier to demonstrate. However, low-level exposure environ-mental or occupational exposure is difficult to investigate. In principle, there are two basic approaches commonly used to address indoor air issues. The most obvious is to reduce indoor exposure to known air pollutants for which health impacts have been established or are strongly suspected. The second is to promote investigations aimed at a better understanding the exposure – health effect relationship in order to support policy development and implementation (WHO/Euro, 2006). Regarding PM, we have to reduce sources of emissions or take measures, such as optimizing building design and ventilation, to keep indoor concentrations of pollutants as low as possible. There is also a need to conduct investigations on the source, hazard, exposure and effect of different types of airborne particles and informing the populations at risk on behaviours that minimizes exposure. This strategy is already followed by many national and international organizations such as WHO and EU.

2.Sources of Indoor PM

The major indoor source of fine-particle exposure, besides smoking, is cooking, particularly from frying and broiling. For ultra-fine particles, gas-burners, gas ovens, and electric toasters are also important point sources (Ott and Siegmann 2006). Other sources of indoors air polluatants are derived from the day-to-day activities of humans and dosmestic animals, as well as handling of organic materials like firewood. Biological particles that have settled indoors, along with other particulate matter, may become resuspended into the ambient air through normal household activities and other mechanical disturbances. The relative importance of these sources depends on the environment and lifestyle of the occupants. Particles present in the indoor environment may also be bound to surfaces, attached to dust accumulated in the building, or present in internal parts of the building structure or their operating system, such as air-condi-tioning units, and ducts (Morawska and Salthammer 2003).

Besides active indoor sources, particles generated by outdoor sources can penetrate from outdoor into indoor air either through open windows or doors, or through cracks, gas or holes in the building envelope. Particle deposition on indoor surfaces is related to particle size and surface characteristics, with rough surfaces resulting in higher deposition than smooth ones. The depositing parti-cles contribute to the surface accumulation, and thus the process of deposition can also be described in terms of an increase in deposited materials on the sur-faces. The deposition of house dust has been the subject of many studies.

There is a significant difference in the role of outdoor air, as a source of indoor particles, compared to the role of indoor sources. Indoor sources, while

PARTICLES AND THE INDOOR AIR ENVIRONMENT 273 affecting outdoor characteristics to varying degrees, have a direct effect only in houses in which they are present. Since the characteristics of the sources and pattern of their usage differ from house to house, the resulting particle-concen-tration levels and other characteristics will differ from house to house as well. Outdoor air, however, provides the same background levels for all houses in the area. Although the fraction of outdoor particles penetrating a building differs due to differences in air-exchange rates or the filtering systems, the time variation of this background tends to remain the same.

The indoor/outdoor (I/O) relationship for mechanically ventilated buildings is even more complex than that for naturally ventilated buildings. The mechani-cally ventilated buildings investigated, in most cases, have been non-industrial workplaces or public buildings, such as offices, hospitals, restaurants, schools, shopping centers or public transport buildings (Poupard et al. 2005). A common characteristic of indoor areas in all such buildings is that the mechanical venti-lation and filtration systems affect the characteristics of PM entering the build-ing in terms of concentration and size distribution.

3.Exposure to Indoor PM

Human movement has frequently been shown to result in an increase in particle-mass concentration. Activities such as walking, cleaning or dressing can significantly increase the concentration of PM in the air. It has been demon-strated that even light activities could be a significant source of PM. However, such physical activities do not contribute to PM in the air, which are basically non-resuspendable under conditions present in residential environments.

In addition, the impact of cigarette smoking on particle concentrations has been investigated in terms of the increase in particle concentrations in the houses of smokers compared to the houses of non-smokers based upon various averaging periods, number of cigarettes smoked and indoor/outdoor ratios for houses with and without smokers. Increased concentrations of PM2.5, as a result of cigarette smoking, have been found in many places. Moreover like smoking, the effect of cooking on indoor particle mass concentration levels has been in-vestigated and expressed in a number of ways (Saraga et al. 2006).

For the assessment of human exposure to indoor pollutants, the analysis of settled house dust and adsorbed organic, inorganic, and biologically active compounds is of increasing scientific and medical interest. Particulates pass into the body through oral and dermal intake. The main mechanism for intake of airborne particles by the human body is through inhalation of particulates and deposition in the respiratory tract (Morawska et al. 2005). Large-sized particulates mainly deposit in the upper part of the respiratory tract due to impaction, interception, gravitational sedimentation as well as turbulent dispersion (Oberdorster et al. 2005). Very fine particles, such as those generated

PARTICLES AND THE INDOOR AIR ENVIRONMENT

274 through combustion processes, have a high probability of deposition in deeper parts of the respiratory tract, due to their high diffusivities. An understanding of the mechanisms of particle deposition in the human respiratory tract and the ability to quantify the deposition in individual parts of the respiratory tract is of fundamental importance for dose assessment from inhalation of particles, which can then be used for risk assessment (Gwinn and Vallyathan 2006). Over the last three decades, a large number of studies have been conducted to investi-gate particle deposition in the human respiratory tract (Donaldson et al. 1998, Oberdorster et al. 2005).

4. Measurement Techniques for Indoor PM

Electronmicroscopy is the most common technique used for particle analysis at both the morphological and chemical levels. Scanning electron microscopy men. Characterization of indoor PM, by combining scanning and transmission et al. 2005). It should be noted, however, that no single electron-microscope technique will provide a total elemental characterization of a specimen and a synergistic approach is generally required, which includes several other micro- analytical techniques.

5. Preliminary Results on Indoor Air-Quality Assessment

on Underground Platforms in Budapest

As people spend about 10% of their time per day with transportation, and a large number of people are exposed to traffic-related pollution in big cities every day (http://www.levego.hu/caag.htm). Nowadays the underground trans-port mode has an important role in Budapest as 23% of the inhabitants make use of the metro. This represents 863,140 persons travelling by underground lines on average in 1 day last year. The main sources of respirable tunnel dust in the underground rail system are particles from abrasive forces acting on rails and wheels from traction and braking. These are likely to contain iron and par-ticles shed from humans and their clothes. The results of a study by Hurley et al. (2003) showed that dust in the London Underground differs from outdoor particles and accordingly risks from outdoor particles are misdirecting for esti-mating its health effects. Tunnel dust is coarser, being generated by interaction

(SEM) can provide information on particle surface structures or 3D interpre-tations. The added advantage of SEM is the capacity to determine the elemental levels that yield specific information about the elemental features of a speci-composition of airborne particles at both the individual and bulk-particle electron-microscopy, yields additional information about the size, morpho-logy, and the chemical and phase composition of individual particles (Hoflich

PARTICLES AND THE INDOOR AIR ENVIRONMENT 275 of brakes, wheels and rails rather than by combustion, with higher-mass con-centrations and lower-particle numbers. It contains about 90% iron, 1–2% quartz and the remains of other metals. One of the main aims of their work was to characterize the physical quality and composition of the dust and to make measurement that would allow evaluation of the exposure levels of the London underground workers.

The goal of our investigation was to establish the passenger’s exposure to PM on two metro platforms being at different depths (deep and subsurface) of stations in Budapest. Manual sampling was carried out using a high-volume sampler (TSP) and a Harvard impactor (PM10 and PM2.5) during 24 h on 5 con-secutive days. Gravimetry analysis was performed. Energy-dispersive x-ray SEM was used for the characterization of particles morphology as well as for the elemental composition.

It was found that the differences for PM2.5 between the metro stations and the above-ground sampling location were less than for PM10. Five-day means of the PM10 were 200 ug/m3 on the subsurface and deep metro stations. The outdoor (ambient-air) concentrations were between 55 and 95 ug/m3. Five-day means of the PM2.5 were 60 and 80 ug/m3 on the subsurface and deep metro stations, respectively. The ambient air concentrations were under 50 ug/m3. Hourly TSP concentrations exceeded the national standard (200 ug/m3) for ambient-air.

Morphology and element composition was analysed by SEM. Regarding the composition of particulates the major components of PM10 fractions sampled in metro stations were Fe (30%), O (23%) and C (29%). PM2.5 fractions contained less Fe (10%) and more C (50%) than PM10 particles. These outcomes in some ways are similar to the composition of tunnel dust received in the London underground. Morphology of particles with iron content was found in amor-phous and needle forms as well. Mutagenicity assay of TSP samples taken on metro platforms showed moderate mutagenic activity with responses varying from 1,47 (1,19) to 4,42 (3,31) revertants per metric cube depending on depth of the station.

Our preliminary results indicate absences of elevated risk to the traveling public from exposure to PM in Budapest metro and have firmed that the dust metro is mainly from abrasion comprised of iron. Since concentrations of PM found in the subway indicate meaningful presence of these contaminants, fur-ther control measures should be considered.

Acknowledgments

Authors thank Mrs. Eva Vask?vi for kindly providing data of the measurements on metro stations.

PARTICLES AND THE INDOOR AIR ENVIRONMENT

276

References

Donaldson, K., Li, X.Y., and MacNee, W., 1998, Ultrafine (nanometre) particle mediated lung injury, J. Aerosol. Sci.29(5/6):553–560.

Gamble, J.F., 1998, PM2.5 and mortality in long-term prospective cohort studies: cause-effect or statistical associations? Environ. Health Perspect.106(9):535–549.

Gwinn, M. and Vallyathan, V., 2006, Nanoparticulates: Health Effects - Pros and Cons, Environ.

Health Perspect. 114:1818–1825.

Hoflich, B.L., Weinbruch, S., Theissmann, R., Gorzawski, H., Ebert, M., Ortner, H.M., Skogstad,

A., Ellingsen, D.G., Drablos, P.A., and Thomassen, Y., 2005, Characterization of individual

aerosol particles in workroom air of aluminium smelter potrooms, J. Environ. Monit.

7(5):419–424.

Hurley, J.F., Cherrie, J.W., Donaldson, K., Seaton, A., and Tran, C.L., 2003, Assessment of health effects of long-term occupational exposure to tunnel dust in the London Underground, Institute of Occupational Medicine Research Report TM/03/02.

Morawska, L., Hofmann, W., Hitchins-Loveday, J., Swanson, C., and Mengersen, K., 2005, Ex-perimental study of the deposition of combustion aerosol in the human respiratory tract, J. Aerosol Sci.36:939–957.

Morawska, L. and Salthammer, T., 2003, Indoor Environment, Airborne Particles and Settled Dust. Wiley-VCH, Weinheim, Germany.

Oberdorster, G., Oberdorster, E., Oberdorster, J., 2005, Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles, Environ. Health Perspect. 113:823–839.

Ott, W.R. and Siegmann, H.C., 2006, Using multiple continuous fine particle monitors to charac-terize tobacco, incense, candle, cooking, wood burning, and vehicular sources in indoor, out-door and in-transit settings, J. Atmos. Env.40:821–843.

Poupard, O., Blondeau, P., Iordache, V., and Allard, F., 2005, Statistical analysis of parameters influencing the relationship between outdoor and indoor air quality in schools, J. Atmos. Env.

39:2071–2080.

Saraga, D., Maggos, T., Vassilakos, C., Michopoulos, J., Helmis, C.G., and Bartzis, J.G., 2006, Contribution from smoking to PM2.5, PM1 particles and VOCs concentrations in residential houses in Athens, Greece WIT, Trans. Ecol. Environ.86:355–364.

WHO/Euro, 2006, Health risk of particulate matter from long range transboundary air pollution.

ECEH, Bonn, Germany. http://www.euro.who.int/document/E88189.pdf

https://www.sodocs.net/doc/2214125265.html,/pages/publications/factsheets.asp

Particulates small but dangerous, 2006, Environmental Fact Sheet No 20.

http://www.levego.hu/caag.htm

给排水专业英语词汇汇总

给排水专业英语词汇汇总Distribution system 分配系统 Grid system 环状管网 ring system 环状管网 loop feeder 环状管网 branching system 枝状管网 combination system 联合管网combined system Topography 地形学,地形,地貌,地势 dead end 死水点 feeder 给水管,进料管 elevation 地面标高 valve 阀门,真空管 water supply 给水,自来水,供水系统 service reservoir 配水池(调节水池) pump 泵 storage element (储水)构筑物 70 m head 70米水煮 leakage rate 泄漏量(泄漏率) hydraulic 水力的,水压的 hydraulic analysis 水力分析 field measurement 现场测量(实测) field date 实测数据 key point 管网节点 pipe junctions 管网节点 node (key point, junction) 节点 sign convention 符号规约 positive clockwise 取顺时针方向为正 head loss 水头损失 iterative solution 迭代解 loop method 环路法 flow, runoff, discharge 流量 sanitary 环境卫生的(尤指清除废物) Sewer 下水道,污水管 Connection 连接管,排出管 Cast-iron pipe 铸铁管 PVC 聚氯乙烯 Grade line 坡度线 slope 倾斜度,坡度 collecting sewer 污水支管 Interceptor 截流污水管(intercepting sewer) domestic 民用的,生活的 manhole 人孔,检查井 drainage 排污系统,排水装置,下水道 sewerage system 污水工程系统

给排水专业英语(上)

1】 Professional English on Water Supply and Sewerage Engineering 给水排水工程专业英语drains for water-carried wastes 污水处理(排污水的排水管道) a settling reservoir 预沉池aqueduct 渠道,导水管 filtration 过滤distillation 蒸馏clarification 澄清coagulation血凝 stone-grated 格栅、格网turbidity 浊度cistern 蓄水池、槽gpcd 每日每人加仑数coagulant 混凝剂combined sewers 合流制排水管道prehistoric word 石器时代rapid-sand filter 快砂滤池water supply and wastewater disposal facilities给排水处理设施per capita 按人口平均计算ferment 发酵toxic 有毒的 These cisterns provided a daily average supply of about 4.2 gallons per capita per day(gpcd).这些贮水池仅能提供每人每天4.2加仑的水量 The connection was established between a contaminated water supply and spread of the disease, and it was determined that the absence of effective sewerage was a major hindrance in combating the problem. 人们发现疾病的传播和饮用水受到污染有关,并由此确定缺少有效的排水系统是解决这一问题的主要障碍。 2】 The exterior network 室外管网distribution systems 配水系统 communication pipe引入管 a meter box 水表节点/盒pressure booster增压装置storage tank 储水箱 a piping line管道water-dispensing fixtures配水器具water meter 水表flange 法兰;阀门gate valve 闸阀deaerator除氧器incorporate 合并fixture trap 存水弯plumbing fixture 卫生器具manhole 检查井fire-protection 消防 The function of a drainage system in a building is to remove safely and quickly sanitary sewage, industrial wastes, and rainwater.室内排水系统的作用是为了安全快速地排出生活污水、工业废水和雨水。 The pressure boosters serve to raise pressure in the house system when the guaranteed pressure in the supply main is lower than required to feed water to high-level and remote consumers.当市政给水管提供的压力低于较高或较远处用户需要的压力时,可在室内给水系统中设增压装置来提高压力。 A sanitary drainage system(Fixture4) consists essentially of plumbing fixtures 3(which receive and discharge water, liquid , or water-borne wastes) , fixture traps 2 (which maintain a water seal against gases, air , and odours), and drainage piping 1.生活排水系统(图4)的基本组成包括:卫生器具3(用于接收和排出污水、液体或水中携带的废物)、存水弯2(保存一定量的水以防止有害气体、空气和臭味逸出)和排水管系1。 3】 Infiltrate 渗入penetrate渗透hydrology 水文学urban hydrologic cycle 城市水文循环surface runoff 地表径流water distribution systems 给水管网/分配系统configuration形式grid systems环状管网branching systems 枝状管网elevation高度、扬程 leakage rates漏损率booster pumps增压泵pressure reducing valves 减压阀an essential prerequisite 必要条件hydraulic analysis 水力分析the continuity equation 连续性方程grid 格子the energy equation能量方程/伯努利方程head loss水头损失the dimensionless number无量纲数eliminate消去external discharges外部流量 a correction factor 校正因子/流量topography地形学The summation “q” sub “i” is zero.

自来水公司资料专业词汇汇总

A 岸边泵房riparian pump house 氨氮Ammonia Nitrogen 安监局Administration of Work Safety B 白英竹solanum lyratum bamboo 白鲟Psephurus gladius (Martens) 稗草Echinochloa crusgalli 板框式污泥脱水机plank sludge dewatering equipment 板框压滤机plate and frame filter press 斑竹mottled bamboo 泵站pump station 包气带vadose zone 包装袋pakaging bag 背贴式止水带Back paste-type water stops 倍频带声压级Octave Band Sound Pressure Level 背斜anticline 边角料leftover bits and pieces (of industrial material) 剥离表土topsoil stripping 柏努利方程Bernoulli equation 不冲流速non-scouring velocity 不可预见费用Contingency 补救措施remedial measure 不淤流速non-silting velocity 不锈钢集水堰stainless steel impoundment weir 不锈钢网格板stainless steel gridding C 材料消耗materials consumption 彩砖azulejo 侧渗side leaching 拆迁安置区Relocation area 厂界噪声noise at boundary of industrial enterprises 产卵场spawning ground 产业结构调整指导目录(2011年本)catalog of guidance of industrial structural adjustment 场地清理site clearance

给排水环工 专业英语(华南理工大学)课文翻译 下

Unit 12 水的净化 水分子是没有记忆的,所以去讨论你所喝的水是被污染了并净化了多少次是可笑的(市没有意义的),好像水分子逐渐厌烦了(逐渐被耗尽了)。最重要的是你喝的水纯度如何。 对水的净化方法已发展到了很详细并且尖端的技术。然而通常采用的净化水的方法对水污染的性质的通常的理解应该是容易理解的,并在某些情况下是显而易见的。 水中的杂质可分为悬浮的,胶体态的或溶解态的。由于悬浮的颗粒大足以被沉淀或被过滤掉。胶体态的或溶解态的杂质较难以去除掉。去除他们的一个可能的方法是以某种方法把这些微小的颗粒物结合成比较大的颗粒然后采用去除悬浮物的方法来处理。另一种可能的方法是把他们转变为气态然后是他们从水中散发到大气中,无论采用哪一种方法,有一点必须记住的是提升水或用泵将水输送通过滤床都需要能量。 根据这些原则,来考虑用于净化城市污水的步骤。第一步是废水的收集系统。从家庭、医院、学校排放的水中的污染物包含食物残渣、人类排泄物、纸张、肥皂、洗涤剂、污垢、织物和其他混杂的残骸,当然还有微生物。这些混合物被称为厕所污水或生活污水。这里Sanitary 这个形容词比较不恰当,因为它几乎没有描述污水的情况,他只笼统地指人产生的污染物被污水管所排走)。这些污水,有时与污水管网中从商业建筑来的污染物、工业污染物及雨水污染物合流。有些体系把污水与雨水分流而有些是合流。合流制的管道便宜,并在旱季时是合理的,但在暴雨期时的总流量容易超过处理厂的容量,结果应允许有些水溢流而直接进入受体河流中。 初级处理 当污水进入处理厂时,首先通过一系列的格栅以去除其中大的物体如老鼠或葡萄柚,然后通过一个磨碎装置以便把剩余的物体的大小减小至足够小以至在后续的工艺中可以有效的处理。下一步是一系列的沉淀室来去除重的粗沙例如雨水冲刷路面带入的沙粒,然后其他悬浮的固体(包括有机营养物)缓慢的沉淀而得到去除,这个过程需耗时大约一小时。从开始到这个过程的整个工艺称为处级处理,这一级处理的费用相对低,但是没有完成多少任务。 二级处理 接下来的一系列步骤是企图通过某些强化的生物作用来减少大部分溶解态或细小的悬浮有机物质。分解有机物需要氧气和生物体及有利于提供营养的环境。可达到上述目的的一个装置是滴滤池。在此装置中,石头滤床上布有回转布水器,以便把污水(均匀的)连续的分布。当污水以水滴流过石头滤料时,在有氧的情况下向大量的没有驯化过得生物体提供了营养。 另一种方法是活性污泥法。在这里,污水在经过初级处理后被泵到一个曝气池中,然后与空气及含有细菌的污泥混合几个小时。在活性污泥法中进行的生物反应与滴滤池中的相似。污泥中的细菌代谢有机物; 而作为二级消费者的原生动物以细菌为食。经二级处理过的水流入沉淀池,在那里进行充满细菌的污泥沉淀下来然后回流到反应器中。并且为了操持稳定必须去除掉一部分污泥。与滴滤池相比活性污泥法所需的土地面积小,并且由于活性污泥法暴露于空气的面积小结果他发出的臭味也比滴滤池的少。 从生物处理过的出水仍然含有细菌,不宜于排放入地表水,更不用说排放入水源地。既然微生物已经完成了任务,现在可以把他们杀死了。所以最后的步骤是进行消毒,通常采用氯来处理。在处理水最后排放前把氯气通入15分钟,这样可以杀死99%的有害的细菌。 三级处理或高级处理 尽管污水经过初级处理和二级处理后已经在很大程度上得到了净化,但对有些复杂的水污染来说仍然不够。第一在生活污水中的许多污染物没有被去除掉,并且一些硝酸盐和磷酸盐等无机离子仍然留在处理过的水中,正如我们知道的,这些污染物作为植物营养物,是造成富营养化的因素。 1.絮凝沉淀 在讨论生物处理前提到过把细小的颗粒物转变为大的颗粒有利于他们的快速沉淀。对无机污染物来说也是如此。许多无机胶体颗粒是亲水性的,他们比较易于吸附于水分子;在他们吸附于水分子过程中又会席卷许多其他胶体颗粒从而不容易在合理(较短的)时间内沉淀下去。

蓝梅主编 给排水科学与工程专业英语部分课文翻译中文版

第四单元给水系统 一般来说,供水系统可划分为四个主要组成部分:(1)水源和取水工程(2)水处理和存储(3)输水干管和配水管网。常见的未处理的水或者说是原水的来源是像河流、湖泊、泉水、人造水库之类的地表水源以及像岩洞和水井之类的地下水源。修建取水构筑物和泵站是为了从这些水源中取水。原水通过输水干管输送到自来水厂进行处理并且处理后的出水储存到清水池。处理的程度取决于原水的水质和出水水质要求。有时候,地下水的水质是如此的好以至于在供给给用户之前只需消毒即可。由于自来水厂一般是根据平均日需求流量设计的,所以,清水池为水需求日变化量提供了一个缓冲区。 水通过输水干管长距离输送。如果输水干管中的水流是通过泵所产生的压力水头维持的,那么我们称这个干管为增压管。另外,如果输水干管中的水流是靠由于高差产生的可获得的重力势能维持的,那么我们称这个干管为重力管。在输水干管中没有中间取水。与输水干管类似,在配水管网中水流的维持要么靠泵增压,要么靠重力势能。一般来说,在平坦地区,大的配水管网中的水压是靠泵提供的,然而,在不平坦的地区,配水管网中的压力水头是靠重力势能维持的。 一个配水管网通过引入管连接配水给用户。这样的配水管网可能有不同的形状,并且这些形状取决于这个地区的布局。一般地,配水管网有环状或枝状的管道结构,但是,根据当地城市道路和街区总体布局计划,有时候环状和枝状结构合用。城市配水管网大多上是环状形式,然而,乡村地区的管网是枝状形式。由于供水服务可靠性要求高,环状管网优于枝状管网。 配水管网的成本取决于对管网的几何形状合适的选择。城市计划采用的街道布局的选择对提供一个最小成本的供水系统来说是重要的。环状管网最常见的两个供水结构是方格状、环状和辐射状;然而,我们不可能找到一个最佳的几何形状而使得成本最低。 一般地,城镇供水系统是单入口环状管系统。如上所说,环状系统有一些通过系统相互连接的管道使得通过这些连接接的管道,可以供水到同一个需水点。与枝状系统不同,在环状系统中,由于需水量在空间和时间上的变化,管道中的水流方向并非不变。 环状管网可为系统提供余量,提高系统应对局部变化的能力,并且保证管道故障时为用户供水。从水质方面来说,环状形状可减少水龄,因此被推广。管道的尺寸和配水系统的设计对减少水龄来说是重要的因素。由于多方向水流模式和系统中流动模式随时间的变化,水不会停留在一个地方,这样减少了水龄。环状配水系统的优缺点如表4.1所述。 优点:1.Minimize loss of services.as main breaks can be isolated due to multidirectional flow to demand points.2.Reliability for fire protection is higher due to redundancy in the system.3.Likely to meet increase in water demand -higher capacity and lower velocities.4.Better residual chlorine due to in line mixing and fewer dead ends. 5.Reduced water age. 在文献中曾记载过,只考虑最低成本设计的环状管网系统会转化成树状似的结构,这一做法导致在最终的设计中失去最初的几何形状。环状保证了系统的可靠性。因此,一个只考虑最低成本为依据的设计打败了在环状管网中所提供的基本功能。有文献记载设计环状管网系统的方法。尽管这个方法也是仅以考虑最低成本为基础,它通过对管网中所有管道最优化规划从而保持了管网的环状结构。

给排水中常用的英语专业词汇

9 主要术语说明 9.1 排水工程 sewerage engineering,wasterwater engineering 收集、输送、处理、再生和处置污水和雨水的工程。 9.2 排水系统 sewer system 收集、输送、处理、再生和处置污水和雨水的设施以一定方式组合成的总体。 9.3 排水制度 sewerage system 在一个地区内收集和输送城镇污水和雨水的方式。它有合流制和分流制两种基本方式。 9.4 排水设施 wastewater facilities 排水工程中的管道、构筑物和设备等的统称。 9.5 合流制 combined system 用同一管渠系统收集和输送城镇污水和雨水的排水方式。 9.6 分流制 separate system 用不同管渠系统分别收集和输送各种城镇污水和雨水的排水方式。 9.7 城镇污水 urban wastewater 城镇中排放各种污水和废水的统称,它由综合生活污水、工业废水和入渗地下水三部分组成。在合流制排水系统中,还包括被截留的雨水。 9.8 城镇污水系统 urban wastewater system 收集、输送、处理、再生和处置城镇污水的设施以一定方式组合成的总体。 9.9 城镇污水污泥 urban wastewater sludge 城镇污水系统中产生的污泥。 9.10 流污水 dry weather flow,DWF 合流制排水系统晴天时输送的污水。 9.11 生活污水 domestic wastewater,sewage 居民生活活动所产生的污水。主要是厕所、洗涤和洗澡产生的污水。 9.12 综合生活污水 comprehensive sewage 由居民生活污水和公共建筑污水组成。 9.13 工业废水 industrial wastewater 工业生产过程中产生的废水。 9.14 入渗地下水 infiltrated ground water 通过管渠和附属构筑物破损处进入排水管渠的地下水。 9.15 总变化系数 peak variation factor 最高日最高时污水量与平均日平均时污水量的比值。 9.16 径流系数 runoff coefficient 一定汇水面积内地面径流水量与降雨量的比值。 9.17 暴雨强度 rainfall intensity 在某一历时内的平均降雨量,即单位时间内的降雨深度。工程上常用单位时间单位面积内的降雨体积来表示。 9.18 重现期 recurrence interval 在一定长的统计期间内,等于或大于某降雨强度的降雨出现一次的平均间隔时间。 9.19 降雨历时 duration of rainfall

建筑工程及给排水专业中英文对照翻译

Laminar and Turbulent Flow Observation shows that two entirely different types of fluid flow exist. This was demon- strated by Osborne Reynolds in 1883 through an experiment in which water was discharged from a tank through a glass tube. The rate of flow could be controlled by a valve at the outlet, and a fine filament of dye injected at the entrance to the tube. At low velocities, it was found that the dye filament remained intact throughout the length of the tube, showing that the particles of water moved in parallel lines. This type of flow is known as laminar, viscous or streamline, the particles of fluid moving in an orderly manner and retaining the same relative positions in successive cross- sections. As the velocity in the tube was increased by opening the outlet valve, a point was eventually reached at which the dye filament at first began to oscillate and then broke up so that the colour was diffused over the whole cross-section, showing that the particles of fluid no longer moved in an orderly manner but occupied different relative position in successive cross-sections. This type of flow is known as turbulent and is characterized by continuous small fluctuations in the magnitude and direction of the velocity of the fluid particles, which are accompanied by corresponding small fluctuations of pressure. When the motion of a fluid particle in a stream is disturbed, its inertia

给排水专业英语词汇(上)

Trench n.沟,渠 Cistern n.蓄水池,储水器Drainage n.排水,排水设备,排水的水 Foul n.污浊的 Siphon n.虹吸(管);用虹吸管输送Settle n.澄清,(使)沉淀Hydraulic a.水力学的 Distillation n.蒸馏(法) Still n.蒸馏器 Filtration n.过滤 Clarification n.澄清,净化Coagulation n.絮凝,混凝 Sanitation n.(环境)卫生Sedimentation n.沉淀,沉积 Grate v.装格栅于 Basin n.水池,水槽 Catch basin 集水池,沉水池Lagoon n.污水池 Patent vt,n.为……取得专利,专利,专利品 Anticipate vt.促进 Turbidity n.浑浊性,浑浊度Coagulant n.混凝剂,凝结剂Modification n.改变,改进,改良Toxic a.有毒的,中毒的Pathogenic a.致病的,病原的Microorganism n.微生物Congregate v.聚集 Contaminate v.污染,弄脏Precipitate v.降水,沉降Precipitation n.沉降物(如雨,雪等)Contaminant n.污染物质Hydrological a.水文学的 Nutrient n.养分,养料 Medium n.介质,培养基 Microbial a.微生物的,细菌的Algae n.藻类,海藻 Protozoa n.原生动物 Inorganics n.无机物 Seep vi.渗入 Effluent n.污水,废水 Epidemic n.流行病,时疫 Trace n.痕量,微量,微量金属Monitor v.检验(放射性污染物)Bacteriology n.细菌学 Discharge n.排泄(水汽),排泄物Annual a.一年一度的,每年的Typhoid n.伤寒 Cholera n.霍乱 Round n.循环,周期 Eradicate vt.根除,杜绝 Lay down 制定,提出Superimpose vt.添加,附加 Distil v.蒸馏 Distillation n.蒸馏法Electrodialysis n.电渗析 Brackish a.稍咸的 Estuary n.河口,海湾 Osmosis n.渗透性 Estuarine a,河口的,港湾的Barrage n.拦河坝 Sterilize vt.消毒,杀菌 Wholesome a.卫生的,有益于健康的Injurious a.有害的 Conductive a.有助于……的,促进的Be conductive to 对……有益的Constituent n.组成物,构成物 Turbid a.浑浊的,混乱的 Pathogen n.病原体,病菌Sedimentation n.沉积法,沉积作用Flocculate v.絮凝,绒聚Flocculating agent 絮凝剂 Settlting n.沉淀 Settling out 沉淀出来 Coarse a.粗粒的,大的 Floc n.絮体,絮凝物体 Filtration n.过滤,澄清 Chlorinate vt.用氯消毒 Sanitary properties 卫生系数(性能,特点等) Colloidal a.胶体(状,质)的Suspension n.悬浮(液),悬浮(体)Portability a.可饮用 Detract v.降低,减损 Rayon n.人造丝 Cellulose n.纤维素 Starch n.淀粉

给排水专业英语汇总88209

UNIT 1 给水工程water supply engineering 排水工程sewetage engineering 市政工程civil engineering 市政工程师civil engineer 环境工程environmental engineering 水文学hydrology 水力学hydranlies 水环境natural aquatic environment 流域watershed 水体waterbody 地表水surface water 新鲜水freshwater 地下水groundwater 含水层aquifer 天然含水层natural aquifer 地下含水层underground aquifer 水文循环natural hydrologic cycle 渗滤infiltration 降水precipitation 渗入precolation 蒸发evaporation 蒸腾transpiration 城市水文循环urban hydrologic cycle 水源water source 水资源water resource 取水water withdrawal 水处理water treatment 配水water distribution 用水water use 污水wastewater 废水abwasser 废水收集wastewater collection 废水处理wastewater disposal 受纳水体receiving waters 污染pollution pollute 污染物pollntant 玷污、污染contamination 致污物contaminant 未污染uncontaminated 水污染water pollution 水污染控制water pollution control 水污染防治water pollution prevention 污水回用wastewater reuse UNIT 2 水短缺water scarcity 地表水资源surface water resource 管网Pipe Network 供水系统water supply system 市政配水系统municipal distribution system 建筑给水系统house water supply system 分区供水系统dual distribution system 小区micro district 小社区small community 冷水供水系统cold water supply system 热水供水系统hot water supply system 消防系统fire protection system 喷淋系统fire protection sprinkler system 自动水幕系统automatic drencher system 半自动水幕系统 semi automatic drencher system 消火栓hydrant 排水系统drainage system 生活排水系统sanitary system 工业排水系统industrial system 雨水排水系统stormwater system 合流制combined sewers 分流制separate sewers 建筑排水系统building drainage system 卫生洁具plumbing fixtures 卫浴设备bathroom fixtures 输水系统water transmission system 漏水率leakage rate 配水系统water distribution system 环状管网grid system 支状管网branching system 下水管道sanitary sewer 污水节流管intercepting sewer 污水节流系统intercepting sewer system 污水节流井sewage intercepting cell 支管collection sewer collector sewer 生活污水sanitary sewage domestic sewage domestic wastewater 工业污水industrial wastewater 工业污水/液/物industrial wastes 农业用水agricultural wastewater/wastes 雨水rainwater stormwater 水位waterlevel 海拔、标高elevation 坡度grade 倾斜度slope 明渠Open channel

给排水专业英语汇总.docx

. UNIT1污水wastewater 给水工程water supply engineering废水abwasser 排水工程sewetage engineering废水收集wastewater collection 市政工程civil engineering废水处理wastewater disposal 市政工程师civil engineer受纳水体receiving waters 环境工程environmental engineering污染pollutionpollute 水文学hydrology污染物pollntant 水力学hydranlies玷污、污染contamination 水环境natural aquatic environment致污物contaminant 流域watershed未污染uncontaminated 水体waterbody水污染water pollution 地表水surface water水污染控制water pollution control 新鲜水freshwater水污染防治water pollution prevention 地下水groundwater污水回用wastewater reuse 含水层aquifer UNIT2 天然含水层natural aquifer水短缺water scarcity 地下含水层underground aquifer地表水资源surface water resource 水文循环natural hydrologic cycle管网Pipe Network 渗滤infiltration供水系统water supply system 降水precipitation市政配水系统municipal distribution system 渗入precolation建筑给水系统 house water supply system 蒸发evaporation分区供水系统dual distribution system 蒸腾transpiration小区micro district 城市水文循环urban hydrologic cycle小社区small community 水源water source冷水供水系统cold water supply system 水资源water resource热水供水系统hot water supply system 取水water withdrawal消防系统fire protection system 水处理water treatment喷淋系统 fire protection sprinkler system 配水water distribution自动水幕系统automatic drencher system 用水water use半自动水幕系统 semi automatic drencher system 消火栓hydrant 排水系统drainage system 生活排水系统sanitary system 工业排水系统industrial system 雨水排水系统stormwater system 合流制combined sewers 分流制separate sewers 建筑排水系统building drainage system 卫生洁具plumbing fixtures 卫浴设备bathroom fixtures 输水系统water transmission system 漏水率leakage rate 配水系统water distribution system 环状管网grid system 支状管网branching system 下水管道sanitary sewer 污水节流管intercepting sewer 污水节流系统intercepting sewer system 污水节流井sewage intercepting cell 支管collection sewer collector sewer 生活污水sanitary sewage domestic sewage domestic wastewater 工业污水industrial wastewater 工业污水 / 液 / 物 industrial wastes 农业用水agricultural wastewater/wastes 雨水rainwater stormwater 水位waterlevel 海拔、标高elevation

英文阀门词汇

Y型过滤器Y-type strainer 蝶阀butterfly valve 球阀ball valve 止回阀checke valve 手柄蝶阀hand lever butterfly valve 蜗轮蝶阀worm gear butterfly valve 闸阀gate valve 隔膜阀septum valve 旋启式止回阀Swing check valve 浮动球阀floating ball valve 固定球阀fixed ball valve 直通式球阀through way valve 三通式球阀three way type valve(T-Coke valve)揳式闸阀wedge type gate valve 软密封闸阀flexible seal gate valve 蝶式双瓣止回阀butterfly double lamella checke valve 阀体body 球墨铸铁ductile cast iron 灰铸铁cast iron 铸钢cast steel 不锈钢stainless steel 铝aluminum 合金钢alloy steel 铬钼钢Cr-Mo steel 玛钢手柄malleable lever 蝶板disc 不锈钢CF8(304)stainless steel CF8 不锈钢CF8M(316)stainless steel CF8M 球墨铸铁镀镍磷(电镀)plated nickel 球墨铸铁镀尼龙(喷塑)coated nylon 铝青铜albronze=aluminum bronze 聚四氟乙烯Teflon 不锈钢stainless steel 合金钢alloy steel 铬钼钢Cr-Mo steel 阀杆stem(Rod)不锈钢416 stainless steel416 不锈钢316 stainless steel316 不锈钢304 stainless steel304 碳钢镀镍磷carbon steel plated with nickel phosphid 阀座seat(liner,sealing)丁晴橡胶NBR 乙丙橡胶EPDM 氟橡胶VITON 硅橡胶SEP 耐热EPDM 耐磨EPDM 聚四氟乙烯PTFE polytetrafluoroethylene coat 喷涂epoxy环氧的filter screen 过滤网 密封副材质 阀座丁晴NBR 三元乙丙EPDM 氟橡胶VITON 耐腐蚀三元乙丙Anti-corrosion EPDM 蝶板球铁电镀plated 球铁尼龙复层coated 铝青铜albronze=aluminumbronze 不锈钢stainless steel 驱动装置actuator,operator 手动manual 手柄hand lever 蜗轮(带手轮)wormgear(with hand wheel)电动electrical actuatorl,motorized 气动pneumatic actuator 技术术语 公称通径nominal diameter 公称压力nominal pressure 壳体试验压力Shell test pressure 密封试验压力seal test pressure 喷涂painting 覆coated 银拉丝silver color 钢板冲压steel plate pressing 蜗轮worm-gear 螺栓nut bolt 螺母screws 齿盘teeth plates 安装指南mounting instruction 橡胶软连接rubber expansion 丝扣连接thread ends 阀门零配件及相关术语主手柄main handle 套桶socket adapter 垫片washer 副手柄auxiliary 齿轮箱gear box 粉末冶金powder metallurgy 销pin 法兰密封flange sealing 永久性粘贴permanent sticker 球面密封副spherical seal 舌槽式(阀座)tongue and groove 轴套axle box 轴向axle direction 定位装置picke/pick device 卡圈垫圈gaskets 阀腔valve cavity 称套bush 填料压盖filling gland 介质medium 出口端outlet end 有弹性的stretchy 导出enduce 有润滑作用的lubricated 阻力resistance 阻力(牵引)系数resistance cooficient 技术参数technical parmeter 摩擦系数friction cooficient 等长(轴,面积)的isometric 双斜面double inclined plane/double beveling 推力thrust 耐火材料fire proof material 硬质的flinty 合金alloy 碳素钢carbon steel 石油化工厂petrochemical plant 焊接式welded 套合式thimble flange 摩擦力friction 膨胀dilate 潜在影响potential affection 防拉伸stretch proofing(resistance)防腐corrosion proofing(resistance)防静电static proofing(resistance)耐氯化物anti-chloride 耐氟化物anti-fluorid 无毒的innocuous 零部件component 铜合金copper alloy 直通式straight way type 积水的water logged 球铁电镀板ductile iron plated coated水头损失trash rack loss 下水道sewer 污水管道sewer network水流通路water access 阀瓣valve flap/lamella 锥形taper cone 动态平衡homeostasis 给排水工程water supply and drainage 导向轴guiding axis 导向架guiding braket 润滑套lubricant 冲刷scour 高层建筑hi-rise building 火力发电thermal power plant 水蒸气管网vapor pipe networks 超短的ultrashort 强度intensity 奥氏体austenite 环氧树脂ethoxyline 污泥sludge 变形deformation 磨损abrasion 蓄水池water resevior 消防水池fire protection pool 出水口outlet沉积物sediment 强/弱碱/酸Strong/thin alkali/filter

相关主题