搜档网
当前位置:搜档网 › 电伴热计算书

电伴热计算书

电伴热计算书
电伴热计算书

电伴热工程方案介绍

设计方案

1、采用标准 2、设备主要技术要求 3、设计依据 4、设计选型 5、管道电伴热保温设计 6、主要部件技术要求 7、电伴热保温材料 8、安装工艺 9、电伴热原理及产品阻燃性能 10、质量保证 11、工程材料表 12、售后服务承诺

1.采用标准 电伴热管道防冻技术是一种国外应用多年,在我国逐渐普及的成熟的水管道保温防冻施工工艺。其原理:管道伴热是将自控温发热电缆贴附在管道外侧通电发热,将热量传导给管道内液体,配合管道外保温层,补偿并保持管道内液体温度到达设计温度水平。 自控温发热电缆的芯带原料是具有正温度系数效应的PTC高分子导电聚合物,其特性是能根据环境温度自我调节发热功率(即温度越高功率越低),能够主动适应伴热主体的温度变化,保持伴热主体稳定地维持在设计温度,并且不会发生过热、烧毁等安全事故。 2.设备主要技术要求 海拔高度:≤1000米。 应用环境温度:-45℃~+105℃ 要求管道流体维持温度为4℃≤T ≤10℃,启动温度5℃,停止温度10℃; 3.设计依据 1、《工业设备及管道绝热工程设计规范》(GB50264-97) 2、《工业设备及管道绝热工程施工及验收标准》(GBJ126) 3、《电气装置安装工程施工及验收规范》GB50254-96 4、《管道和设备保温、防结露及电伴热》03S401

5、《伴热设备安装》03D705-1 6、《建筑消防设施设计规范》 7、《安全防范工程规范》 8、《消防安全设计规范》 9、《GB-T 19518.2-2004 爆炸性气体环境用电气设备电阻式伴热器第2部分设计、安装和维护指南》 4.设计选型: 备注:本次设计采用20W/M电伴热带,具体参数如下。 (1)设计标准及规范 1.项目水平面及立面图 2.管道和设备保温防结露及电伴热设计图集03S401(91-122页) 3.建筑设计防火规范GB 50016-2006 4.GB-T 19518.2-2004 爆炸性气体环境用电气设备电阻式伴热器第2部分设计、安装和维护指南。 (2)、电伴热带选型及技术参数 1、管道现场每根管道长度为在100米以内,电伴热带原设计使用长度限制(最大为100米),伴热系统电源点采用就近原则,提供一种电伴热带供参考低温自控温发热电缆:DBR-RZ-JZ-20W-220V. 2、电伴热带回路使用电压为220V±10% 3、电伴热带技术参数:

电伴热的基础知识

电伴热的基础知识 一,前言 我把有关电伴热的一些基础知识整理出来供刚刚涉足这个行业的朋友参考,也可以作为给用户的技术讲座参考资料使用。 (一)为什么要伴热 在工业生产过程中为了保证生产的正常运行和节约能源,大多数的设备和管道都要采取隔热(保温)措施。但是,在工艺介质的存储和传输过程中散热损失还是不可避免的。散热就意味着设备和管道中介质温度的降低。 介质温度的降低将会带来好多的问题。例如,设备和管道中水的温度的降低会造成冻结;食用油管道中食用油温度的降低会造成黏度增加,阻力增大,流动困难。三聚氰氨如果温度降低将会析出结晶造成设备和管道的报废。沥青如果温度降低将会凝固造成灌肠。这些问题的产生都将使得生产无法正常运行。 为了保证生产的正常运行和节约能源,在生产、存储和运输的过程中就必须从设备和管道的外部或内部给介质补充热量。这就是伴热的目的。 伴热和加热不同,伴热只是补充介质热量的损失,维持一定的温度,避免介质温度的降低带来的问题,一般维持温度都低于操作温度。加热则要求给介质提供大量的热量,使得介质温度高于原来的温度(如管道介质的进口温度)。因此加热比较伴热需要消耗更多的能量。 (二)传统的办法和缺点 传统的办法是以蒸汽、热水或导热油为热媒,用内外伴管、夹套管或内外盘管的方式向设备和管道提供所需的热量。导热油需要建造专门的系统,还要定期更换导热油,费用太高。工厂厂区内,蒸汽来源方便,而且蒸汽潜热大,所以大多数选择蒸汽为热媒。 但是,蒸汽的供汽、疏水、凝液回收系统复杂,安装的工程量大。蒸汽的温度很难控制难以满足不同介质对维持温度的不同需要。蒸汽系统的热效率低,能耗比较大,能量利用不合理。蒸汽系统的阀门和疏水器等容易泄露会造成能量的大量浪费同时还会影响环境。蒸汽系统的设备和管道还容易腐蚀,维修的费用也很高。另外蒸汽系统的运行成本也比较高。(三)电伴热的产生和优势 正是因为上述的原因,五、六十年代,国外着手研究用电能转换热能的新产品。各种电伴热产品逐渐出现。我国八十年代后期在石油化工企业开始大量采用电伴热产品。近二十年来电伴热在我国的工业中的应用越来越广泛,国内外的各种电伴热产品也竞相在市场上出现。 电伴热产品之所以受到欢迎,是因为它比较别的伴热方式有以下优点: 1、电伴热产品体积小、柔性好、系统结构简单、设计和施工方便、维护量小; 2、使用寿命长,可达15-25年; 3、维持温度的范围广泛,最高可达450℃以上; 4、热效率高,节约能源; 5、维持温度可以有效的控制,控制精度比较高; 6、在没有蒸汽供应的装置电伴热是唯一的选择; 7、电伴热产品比蒸汽系统的设备更耐腐蚀; (四)电伴热产品的种类 在市场上最初出现的电伴热产品是利用电流流过电阻体(电阻丝或管道自身的电阻)发热的原理来开发的。这类产品当电流、电压、电阻确定以后,单位长度的电伴热输出功率就是恒定的,所以称恒功率型。

电伴热设计初探

电伴热设计初探 摘要:本文对电伴热在化学工艺中的初次设计、安装和运行进行了小结以供有关人员借鉴和参考。 1、前言 化学工艺中,有许多地方需要进行防冻。如:浓碱、浓磷酸盐溶液在常温条件下就会结晶;在冬季,室外的取样管道、加药管道和水管道在气温低于零度时也会发生冻结;衬胶管道和设备在低于零度时会发生衬胶层龟裂而破坏等。这一切都需要采用加热防冻工艺。 近期出现的“自限温电伴热带”产品是一种很好的用于防冻的加热产品。但是,从工艺上来看,此技术是介于化学和电气之间的。这里,仅将我们经历的设计、运行以及在现场使用中发现的问题介绍给大家,以供有关人员参考和改进,而起到抛砖引玉的作用。 2、“自限温电伴热带”的产品特点 自限温电伴热带的外表很象300Ω的电视机天线馈线,扁扁的。但是,两条金属导线之间的材料可不是一般的塑料,是很特殊的,其性能很象热敏电阻材料。当此电伴热带本身的温度低时(如10℃),则电阻小,电流大,发热量也大(常用的一种约15W/m,另一种约35W/m,也有其它品种的)。当温度上升到85℃时(这是防冻常用的一种),则其材料的电阻急剧上升,电流下降到十几毫安,达到几乎无电力消耗效果。这样一来,不需要另加自动控制,它自身就能根据温度的高低来自动调节发热量的功率大小,从而达到自限温的效果。 我们将它使用在防冻的设备或管道上时,当温度低到10℃及以下时,自限温电伴热带则有大电流通过,加热管道。当电伴热带温度因加热而上升时,则“自限温电伴热带”的电流就下降使加热功率也下降,从而达到一定的平衡值。这样一来就达到了既防冻又安全不过热的效果。 3、使用范围 ●浓烧碱溶液(如40~50%)在温度低于15℃时防止溶液结晶。 ●浓磷酸盐溶液(近饱和,约10%)的常温下防止结晶。 ●水管道和/或设备(包括各种水管道、加药管道、取样管道以及其它的 化学低浓度溶液管道)的冬季防冻。 ●衬胶设备和/或管道防冬季发生龟裂而永远损坏。 ●储存离子交换树脂的设备防冻。

冬季防冻凝小常识

冬季防冻凝小常识 防冻是化工企业冬季安全生产的最大问题。 防冻的重要性操作员工都是明白的,现在的问题是在保证防冻安全的前提下搞好节约,长流水不能开得过大。消防管道装置加电伴热,节能减排是我们的重要问题,也是我们检查的重点。 企业应时刻关注当地的天气预报,根据天气变化,早做准备,安排好班组的注意事项,一般的防冻防凝措施规定都会根据自己装置的特点制定,应特别关注班组做不到或想不到的方面。做好水、汽、风、油等关键部位的放空排凝、伴热,保持畅通,定时巡检。设备管道系统自动电伴热;其余防冻管线持续电伴热。 化工厂冬天防冻,主要考虑的就是工艺正常运转,使其正常工作,那就看设备,管道里面的介质,在冬天温度低的情况下是否影响工艺要求,主要方法,就是用岩绵保温,或是内加电伴热加热。 冬季防冻有几种方式,一是加伴热和保温,伴热有两种电伴热和蒸汽伴热。二是放空,有些不用的管线及时排空并吹扫干净。三是在低点作小排放或打循环保证流动。防冻常用有蒸汽伴热、电伴热、保温材料、热水伴热。 关于化工厂防冻的30个小知识 1.做好个人防护工作,穿暖,装置巡查过程中做好上塔下塔防滑工作。 2.加强脱水工作及时排掉各个脱水点的水分预防冻堵。

3.注意仪表液位计现场的液位计上下部角阀有一个出现冻堵将会影响到真实的液位,远传液位计表头处出现冻堵将会影响机械转动,电流传导,影响真实液位。 4.循环水的温度不易控制过低,不能低于8度,低于八度后,会造成冷却器副线冻堵现象,严重时冻裂管道。 5.对车间循环水死水区管道进行保温;停用的循环水泵采用倒流措施,并放净。 6.车间停用的设备,如:补水泵、循环水泵、冷却器、冷凝器等,要采用放水、定时巡检等措施。压缩机冷却水,由操作人员定期检查,确保水阀保持长开状态。 7.如果液态烃管线出现冻堵,蒸汽吹扫管线时,注意物理爆炸,不要强制吹扫,慢慢预热。 8.现场压力表在冻堵的情况也会出现假象,根据经验去判断。不能确定的要及时上报进行处理。 9.吹扫冻堵管线时,用蒸汽吹扫弯头处。 10.注意天然气管线的加强脱液,以免液体带入锅炉。检查好天然气线防止出现因冻的晶体结构造成不畅。 11.加强巡检检查好各点的温度情况。 12.生水管线应避免关死,保持长水流。 13.停用的设备,管线与生产系统连接处要加好盲板,并把积水排放,吹扫干净。露天闲置的设备和敞口设备,防止积水积雪结冰冻坏设备。露天设备需增加巡回检查及盘车次数。

电伴热电源设计要求

电伴热系统电源设计的要求 2013-10-14 来源:浏览:657 电伴热系统电源设计的要求 电源设计是电伴热工程同样需要考虑的问题,主要考虑的有供电电缆,配电箱等。所有单根电伴热都需要安装断路器。一般分路断路器有30MA的漏电保护,如果采用自限温电热带需考虑启动电流,保证不超过70%的CB(电路断路器)额定功率。电伴热供电电源需要设立独立的供电系统,例如:配电箱。主要包括有:一套主绝缘体、动力配电盘、开关、继电器、温控器、控制开关、指示灯、终端接线盒、接地总线以及所有动力和控制线路,对于维修和试验用的单独加热电路,应提供控制开关。具体要求如下: 1、所有电路断路器应安装人工复位器、常态关闭、备用触点只有在电路断路器断开时才打开。 2. 用于工艺管线要求保持温度控制及电路防冻保护的电路应安装在同一个配电盘的两 部分。防冻保护电路应由在每个配电盘上单独的控制器进行控制。 3. 所有电路断路器的启动和超温报警引起的连接均用线连接起来,以提供两种独立的遥控报警功能。(失效和温度控制)报警连接应用线连接到一个共同的终端装置,并提供外部报警的连接头。 4 终端接线盒为终端电源,控制及仪表电线进入每个控制配电盘。终端接线盒应安装导轨,带管状的旋压板接线头,定型标准生产。 5. 动力配电盘应提供型号目录,所有断路器应单独用铭牌进行确定以表示其电路号码。断路器铭牌应用背胶黏附到配电盘上,主铭牌置于每个控制盘前部,其上应表示盘号及说明。主铭牌上的铭文至少要12mm高的字母。 6、电伴热电路对于设备预伴热和预保温,如冲洗、安全喷淋器、仪表管等应通电并从防冻保护控制盘控制。 7、. 当定断路器和导线大小时采用在冷启动时电伴热的最大输出功率时的电流,对于在配电盘表上连续的负载采用持续的加热功率。

伴热带知识

第四章伴热带 电伴热带是为解决北方天气温度低,管道冻堵的问题而诞生的,目前大多数伴热带都带有自控 温功能,一般情况下,伴热带的温度达到70度时,伴热带就会自动减少加热电流,使伴热带自动 恒温。 一、工作原理:伴热带主要材料是半导电的高分子复合PTC,在其外面包裹一层绝缘材料作为护套。 当通电时,电流由一根线芯经过导电的PTC材料到另一根线芯形成回路,导电材料升温,电阻随之 增加。当温度升到一定程度,阻值大到几乎可以将电流阻断,伴热带便停止加热,向管道散热。自 限温伴热带每米功率大约25瓦(宽度不同功率也不同),随着温度升高,功率会随之降低,安装时

可随意剪断,取其不同长度。 二、伴热带安装注意事项: (一)、伴热带安装时遵循四原则: 1、长度足够:按照需要保温的管道,取足够的长度,中间不得接头。 2、线头错开:接头和盲头的两根线芯错开至少2cm ,不得平行。 3、注意防水:用防水胶布和防水密封胶按要求密封接头。 4、放在中间:将伴热带的接线端和盲端放在两层保温的中间。 (二)、伴热带五注意事项: 1、电伴热带的功率要同主控制器的功率相匹配,尽量最长敷设不超过50m 。 2、电伴热带敷设时必须紧贴管道,以减少热量丢失。 3、防冻感温探头不得与伴热带直接接触,感温探头应和伴热带分别

放在管道两侧,以免造成感温不准确。 4、施工过程中,伴热带表层不得划伤,破皮或有裂痕等。一旦发现,立即更换。 5、不得过度弯曲或折弯伴热带,其最小弯曲半径应大于五倍带宽。 三、故障检修: 故障迹象 可能原因 校正方法 线路断路器跳闸 1)断路器选型太小 2)线路需电量超过断路器所能提供 3)断路器在低于设计起动温度下起动 4)断路器故障 5)接线盒或其他配件有短路 6)电热带收到机械损坏 7)尾端处误将电热带两导线连接

电伴热施工方案(全)

电伴热施工方案.

目录 第1章工程概况 (3) 第2章编制说明 (3) 2.1编制目的 (3) 2.2适用范围 (3) 2.3编制依据 (3) 2.3.1 国家施工规范、规程、标准及建筑安装工程施工及验收规范 (3) 2.3.2 设计图纸 (4) SEI设计单位PP2装置仪表工程图纸 (4) SEI设计单位关于PP2装置仪表工程的设计变更 (4) 设备厂家图纸及说明书 (4) 2.3.3 相关文件 (4) 本工程相关施工合同 (4) 本工程《施工组织总设计》及《仪表专业施工组织设计》 (4) 相关技术协议 (4) 强制条文及质量通病防控条文关于仪表专业部分 (4) 仪表检试验计划第二版 (4) 第3章主要施工工程量 (4) 第4章施工工机具 (4) 4.1 工机具计划 (4) 4.2人员计划 (5) 第5章施工方法及技术要求 (5) 1.供汽与回水系统安装 (6) 2.蒸汽、热水伴热 (7) 第6章质量保证措施 (8) 第7章安全保证措施 (9) 第8章安装记录和质量检查记录 (10) 第9章工作危害性分析(JHA) (11) .

第1章工程概况 陕西石油靖边能源化工项目30万吨/年聚丙烯(二线)装置主要由现场装置变电所、现场机柜室、挤压造粒厂房、聚合框架、掺混料仓、街区、化学品库、废水池等单项装置组成。 仪表部分施工主要是:各类仪表(压力仪表、温度仪表、液位仪表、流量仪表、分析仪表、仪表阀门)安装、电缆配管安装、电缆桥架安装、电缆敷设、仪表管路安装(气源管、导压管、取样管、仪表管管配件等)、回路检测(单表调试、仪表管路吹扫和试压)、机柜室仪表盘柜安装等。 第2章编制说明 2.1编制目的 本方案为陕西石油靖边能源化工项目PP2装置仪表安装工程而编制,以明确技术要求和施工方案,指导施工,保证施工质量。 2.2适用范围 本方案适用于陕西石油靖边能源化工项目PP2装置施工范围内的仪表专业安装工程,参加仪表安装工程的施工人员应遵照执行。 2.3编制依据2. 3.1 国家施工规范、规程、标准及建筑安装工程施工及验收规范自动化仪表工程施工及验收规范(GB50093-2002) 石油化工仪表工程施工技术规程(SH/T3521-2007) .

电伴热技术方案消火栓

北京地区消火栓管道电伴热保温技术方案 一、设计条件的基本概况 1北京地理概况 北京属暖温带半湿润季风气侯区。本区处于北半球中纬度地带,所受太阳辐射一年四季比较大,大气环流以西风带和副热带系统为主。夏半年盛行偏南风,冬半年盛行偏北风,年平均风速1~2米/秒。8 月最热,1月最冷。年降水量为550~1000毫米。 2设备位置 消防管道系统位于地上位置,无危险区。 3设计参数 1.应用环境:消防管道,最低环境温度为-20 C。 2.被伴热设备情况:消防管道,维持温度:5C。 4设计要求 1.电气参数设定:管道的伴热电量统一取15W/m 2.敷设时需要将10%的膨胀量均布在管路上,以免通断过程中崩断发热元件造成断路 3.根据管道网络分布设置配电系统,整个工程分成数个配电系统。每个系统安装一个 温度控制箱,箱内有一套环境温控器,当环境温度低于5C时自动接通电源,高于15C时 自动关闭系统电源,详见附图。 二、技术方案 本技术方案是芜湖科特热控科技有限公司为北京地区消火栓管道采用电伴热产品而设计的。芜湖科特热控科技有限公司提供的自调控电伴热系统采用并联线路设计,长度可以根据需要裁剪,发热元件为特殊的导电塑料,功率可随管道温度的变化而变化,从而很好 地满足管线的防冻和保温要求。

1基本技术参数 管内介质:水 维持温度: 5 C 最低环境温度:-20 °C 最高环境温度:30 C 保温材料:橡塑海绵 保温层厚度:30mm 管道有无蒸汽吹扫:无 使用环境有无腐蚀:无 2热损计算及伴热线选型 2.1根据各系统中各管路参数进行计算,计算不同管径的散热量(见表一) 2.2.根据具体管线散热量选用功率为15W/m的电伴热带,且保证选择的电伴热线完全满足保温要求。综合以上的因素应选用DKT-P/JM5-220的电伴热带。 DKT-P/J Z-15-220(低温加强型自控温电伴热带)的基本参数:

电伴热施工方案

电伴热系统 施 工 方 案

一、施工所依据标准范围及要求: (1)03S401《管道和设备保温、防结露及电伴热》; (2)03D705-1《电热采暖、伴热设备安装》。 (二)管道水系统散热功率计算 各种管道经保温后最大散热功率P0如下: (三)、电伴热线型选择和安装系数N: 根据产品样本选用15DXY2-CT型自调控伴热线,其正常运行最大功率Pm及工艺安装系数等重要指标如下: 注:n为电伴热带与管道的比值,考虑现场的实际特点,保证现场施工消防安全,本工程实际采用安装系数为1.2,即1米管道安装电伴热带 为1.2米。 (四)相关配件: 电源接线盒:作电源供电用,每个回路不大于100m,安装在保温层

尾端电源接线盒:作电源供电用,每个回路尾部使用一套,安装在保 温层中 两通接线暗盒:作电源供电用,用来连接电伴热,安装在保温层中 胶带:将电伴热线固定于管道之上 二、电伴热带的安装 1、管道系统与配备都已施工测压完毕,具备电伴热安装 2、沿管道铺设电伴热带并避免:将电伴热带放置于毛刺和利角上、 用力拉扯电热带、脚踏或重物放置电伴热带上 3、胶带每隔80cm处将电伴热带固定于管道上、缠绕时尽可能将电 伴热带缠绕均匀,能使电伴热带紧贴管道和帮助散热 4、在线路的第一供电点和尾端各预留0.5m长的电热带、在使用二通或三通配件处,电热带各端应预留40cm长度、所有散热体(如支架、阀门、法兰等)应按要求预留所需电热带长度,将此段电热带缠绕于散 热主体上并固定 5、电热带一端接入电源,另一端线芯严禁短接或与导电物质接触,, 必须使用配套的尾端接线盒。 三、橡塑保温棉施工安装 1、本工程采用橡塑保温棉为保温材料,厚度为30mm。 2、电伴热带安装完成后进行施工,取一段橡塑保温棉,使其平敷管道上,在开口处涂上胶水,先粘接开口两端,再粘接中间,之后由两端 向中间粘合,直至全部粘合。 3、橡塑保温完成后,再用红色保温缠绕带进行缠绕,缠绕时使其充

电伴热管理规定

电伴热安装维护规定 安装、维修部分 1.1 在敷设时,不要打折,不得承受过大的拉力,禁止冲击锤打,以免损伤绝缘后,发生短路现象。安装时,安装处上空不再进行焊接、吊装等操作,以防止电焊熔渣溅落到电电伴热保温上损坏绝缘层。确认被电伴热保温的管道或设备已经试漏、清扫,其表面的无刺,尖锐边棱已经打磨光滑平整。 1.2 采用缠绕方式敷设时,请勿将电伴热保温超过最小弯曲半径(最小弯曲半径不小于电伴热保温厚度的六倍),过度弯曲或折叠,可能使局部分子结构改变发生击穿,着火现象。 1.3 电伴热保温应紧贴管道表面,以利散热,电伴热保温用铝箔胶带固定,一方面增大散热面,有利于热传导,另一方面便于安装。其方法是:先清除电伴热保温途经处的油污,水份,用固定胶带将电电伴热保温经向固定,然后敷设覆盖铝箔胶带,最后用布用力抹压,使电伴热保温平整粘贴在管道表面。 1.4 保温层和防水层施工必须在电伴热保温安装调试后,保温材料必须干燥,潮湿的保温材料不但影响保温效果,还有可能腐蚀普通型电电伴热保温,缩短使用寿命。保温材料安装后,必须立即包缠防水层,否则将降低保温性能,影响伴热系统的正常。 1.5 电伴热保温的安装长度不要超过其“最大允许使用长度”,最大允许长度随不同型号产品而不同。 1.6 屏蔽型电伴热保温接线时,电伴热保温系统除介质管路系统装有可靠的接地保护外,同时应将编织层全部连接在一起,安装可靠的接地,并且电伴热保温首尾端的导电线芯不得与屏蔽网相碰。 1.7 电伴热保温的尾端用尾端接线盒密封,不可将两根平行导线相连接,避免短路发生。 1.8 接线盒必须牢固固定在管壁上,避免引起短路发生火灾。 1.9 安装电电伴热保温应加装过溶保护装置,电路中必须设置可靠的过溶保护措施,对每个电伴热保温保温系统设置保险熔断器,使配电系统有过载,短路,漏电保护功能。 1.10

电伴热保温施工方案

电 伴 热 保 温 施 工 方 案 一、工程概况 本工程高速电伴热保温工程。新增需电伴热保温的管道包括:

隧道外阀门井内管道、洞口至阀门井内管道、泵房内管道。 二、编制依据 03S401《管道和设备保温、防结露及电伴热》 03D705-1《电热采暖、伴热设备安装》 三、工艺原理 电伴热系统工作原理 管道保温防冻的目的就是补充由于管道外壳内外温差引起的热散失。要达到管道防冻保温的目的,只需要提供给管路损失的热量,保持管道内流体的热量平衡,就可维持其温度几乎不变。发热电缆管道保温防冻系统就是提供给管路损失的热量,维持其温度基本不变。 管道电伴热保温系统由电伴热箱、发热电缆供电电源系统、发热电缆、保温材料等组成。工作状况下,温度传感器安置在被加热的管道上,可随时测量出其温度。温控器根据事先设定好的温度,与传感器测出的温度比较,通过伴热电缆控制箱内的空气开关与交流电流越限报警隔离变速器,及时切断与接通电源,以达到加热防冻目的。 四、施工工艺流程 管道及阀门安装→缠绕发热电缆→热敏胶带固定→保温→调试。 本管道防冻电伴热工程主要包括洞外管道及阀门井内管道电伴热系统。单向隧道每个洞外一个阀门井,每个阀门井需要一个电伴热

箱,一根发热电缆(每根长180米)及50米供电电缆,相应的保温材料。管道电伴热防冻系统布置示意图: 在管件安装发热电缆时,要确保发热电缆的最小弯曲半径,电伴热发热电缆安装时最小弯曲半径原则上应不小于其厚度的5倍;在管道阀门上安装发热电缆时,要尽可的方便今后的检修、维护。 管道弯头发热电缆安装如图:

管道三通发热电缆安装如图: 阀门发热电缆安装如图: 阀门

电伴热设计说明

1.电伴热设计说明 1.1 电伴热适用范围:适用于工业与民用建筑等行业众多场合,金属管道及设备工艺装置的保温和防冻。 1.2 由于电伴热工程目前暂无国家(或行业)规范(程)和产品标准可遵循,所以安装和调试应在供货方的指导下或严格遵循本手册及有关国家标准、图集和有关安全规范进行。 1.3 电伴热的设计和安装要求: 由于电伴热的电热带是安装在绝热层和管道(或设备)外壁之间,利用电热来补充输贮过程中所散失的热量,以维持在一定的温度范围内,达到保温和防冻的目的。所以电伴热仍需有绝热层、防潮层和保护层。绝热层的材质、厚度和结构的选择应先按保温和防结露要求的绝热层厚度计算和选择电热带功率,当功率过大时,再增加绝热层厚度。用于保温为目的的绝热设防潮层。只有在确保夏季管道、设备表面不结露的情况下才可不设防潮层。保护层的设置要求与非电伴热保护层的设置要求相同。 1.4 电热带分自控温和恒功率两种。 (1)自控温电热带是由导电聚合物和两条平行金属导线及绝缘层构成。其特点是导电聚合物具有很高的电阻正温度系数特性,且相互并联;能随被加热体系的温度变化自动调节输出功率,自动限制加热的温度。可以任意截短或在一定范围内接长使用,并允许多次交叉重叠而无高温度点及烧坏之虑。一般情况下,可不配温度控制器,仅在温度控制精度要求很高场合才配温控器。温控器的选择和安装要求与恒功率电热带相同。自控温电热带分屏蔽型和加强型。腐蚀区应采用加强型。在保温层内金属管道上放热量曲线见电伴热编制说明(一);电热带规格及技术特性见科华产品样本;电器保护开关的选用见电伴热编制说明(二)。 (2)恒功率电热带是以金属电阻丝或专用碳纤维束串联或并联与导电线芯及绝缘材料结合而制成,由于其输出功率恒定,温度积累必须采取通断电控温,因此使用时必须配置温控器,不允许交叉、重叠及任意接长、剪断使用,否则会出现过热、过载、燃烧等恶性事故,因此恒功率电热带常用于非重要(非防爆)场合,功率需要较大、温度较高的加热场合。 ● 2.电伴热设计 2.1散热量计算 散热量计算有两种方法:一是查表法;二是按公式直接计算法。 (1)查表法 首先根据需要伴热的维持温度(T0)和环境最低气温(Ta)计算温差:

电伴热设计.doc

电伴热设计 电伴热是利用电伴热产品所产生的热量来补偿需伴热的管道、容器、罐体等工艺装置所散耗的热量,以维持其相应的介质温度来满足工艺要求。所以正确计算出管道、容器、罐体等工艺装置的热耗散量,对伴热所需的介质温度是至关重要的。为此在计算热耗散量前,必须先找出有关的几个重要参数:如T A(管道、容器、罐体等介质维持温度)。T B(当地最低环境温度)、d(管道的外径)、do(管道内径)、S(容器或罐体表面积)δ(保温层厚度)。另外还需知道保温材料的名称和敷设环境(室内或室外、地面或埋地)。当知道了这些参数,再借助于有关的计算方式和表就能进行具体计算,从而得到所需的散热量。 管道及附件耗散热量的计算 确定管道的热耗散量 首先应知道管道的口径、保温层材料及厚度和所需维持温度之差△T,查管道散热量表,(乘以适当的保温系数),就能得到单位长管道的散热量,如果管子在室内则再乘以0.9。如果伴热的是塑料管道,因为塑料的导热性远低于碳钢(0.12:25),故可用0.6-0.7的系数对正常散热量加以修正。 例1:某厂有一管线,管径为1/2",保温材料是硅酸钙,厚度10mm,管道中流体为水,水温需保持10℃,冬季最低气温是-25℃,环境无腐蚀性,周围供电条件380V、220V均有,求管道每米热损失? 步骤一:△T = T A - T B =10℃-(-25℃)=35℃ 步骤二:查管道散热量表,管径1/2"。10mm保温层。 当△T =30℃热损失为11.0w/m,当△T =40℃热损失为14.9w/m,△T =35℃时,每米损失可采用中间插入法求得(因表中无Q B值)。

Q B=11.0w/m+(14.9w/m - 11.0w/m)[(35-30)÷(40-30)]=12.95w/m 步骤三:保温层采用硅酸钙,查保温材料修正数表乘以保温系数f及综合系数1.4 Qr=1.4Q B×f=1.4×12.95w/m×1.50=27.195w 答案:管道每米损失热量27.195W 保温材料修正数表 确定管道阀体的散热量 闸阀散热量通常是相联口径管道每米热损失的1.22倍;如果是球阀,则可用0.7乘以闸阀热耗量,如果蝶型阀(节流阀),则乘以0.5;如果是浮式球阀,则乘以0.6。 确定所需的电伴热带长度 从产品规格中可知电伴热带的工作电压,功率值。如算出单位长度热损失大于电伴热带单位长度的发热额定值,则可用以下方法来弥补: ●采用两条或更多条的平等电伴热带。 ●采用卷绕法(如果用此法,则要先求出热损失对电伴热带发热功率的比值。如在2"管道上热损失是24w/m,而电伴热带功率20w/m,则比值=24/20是1.2倍,查电伴热带跨

临时水方案

目录 一、工程概况 ................................. - 1 - 二、设计依据 ................................. - 1 - 三、临时用水设计内容 ......................... - 1 - 四、排水系统 ................................. - 2 - 五、消防车道的设置 ......................... - 3 - 六、组织机构和职责 ......................... - 3 - 七、消防器材设置 ........................... - 4 - 八、现场消防的一般性规定 ..................... - 4 - 九、现场消防保卫的具体规定 ................. - 5 -

一、工程概况 本项目用地位于天津公安警官职业学院校园西北部,北侧现状为空地,南侧为动力中心,东侧现状为围墙,西侧现状为学校院区,建筑周围6m范围内无其他多层民用建筑,9m范围内无其他高层民用建筑。建筑南侧、北侧、西侧、东侧设有宽度大于4m的消防车道,北侧、东侧道路与校区干道连接,形成环形道路;南侧的西侧近端设置消防回车场地。 本标段总建筑面积8832m2,最大单体建筑面积8756 m2,地上最高5层,首层层高5.1m,二~五层每层层高4.2m,最高高度为23.55米,最大基坑深度4.85米,最大单体跨度为9米,室内外最大高差0. 45m,结构类型为钢结构。 配建用房建筑为76㎡,地下1层,层高3.25m,覆土深度0.8m,消防水池地下建筑面积为155㎡。 二、设计依据 (1)《建筑设计防火规范》GB50016-2014; (2)《建筑工程施工现场消防安全技术规范》GB50720-2011; (3)《建筑给水排水设计手册》; (4)天津市现行的消防管理办法; 三、临时用水设计内容 1、施工用水水源 本工程现场施工用水取自市政取水点,加装水表计量,市政水直接补水至消防泵房。由施工现场及市政取水点的限制,消防泵房暂定位于施工现场的西南,办公区位于西南角。泵房内有水泵及加压泵等设备,现场加压泵采用加压泵设置能够满足现场充足的水源。 2、施工用水系统 1、施工现场用水组成 现场临时用水施工用水,主要是混凝土养护、二次结构墙砌筑、抹灰养护,装修贴墙地砖或石材板、机电管道安装试验用水等。 工人生活区、办公区单独计算用水量。 2.施工用水支管布置设计 环管内的水压利用远传压力表和加压泵自动调节管网压力,流量和水压达到

电伴热使用说明书

电伴热作业指导 一、目的 检验电缆在运输、存放、敷设过程中是否受到损伤,电缆头制作质量是否达到标准要求,保证电缆安全可靠地投入运行。 二、编制依据 (1)03S401《管道和设备保温、防结露及电伴热》 (2)GB/T 19835—2005 自限温电伴热带 (3)GB/T 20841—2007 额定电压 300/500V生活设施加热和防结冰用加热电缆 三、安装范围 管道电伴热用伴热电缆。 四、应具备的条件 1、电缆敷设到位,电缆头制作完毕。 2、环境相对湿度不高于80%,温度不低于-30℃。 3、试验所需仪器仪表配备齐全、在有效期内。 4、调试人员熟悉掌握试验方法、仪器的操作使用。 五、调试顺序与技术要求及标准: 安装的准备: 1)所有伴热电缆均须进行电路连续性和绝缘性能的测试,不符合规定的不能使用。2)电气设备和控制设备均须进行外观检查,有变形、有裂纹,器件不全又无法修复的,不能使用。 3)安装前,应先按照电件热系统图,逐一核对管道编号,确认无误后,才能进行安装。4)没有产品标记,或标记模糊不清,无法辨认的产品,不能安装。 5)电伴热系统安装前,被伴热管道必须全部施工完毕,并经水压试验(或气密试验)检查合格。 a、施放电加热电缆口寸不要打硬折或长距离在地面拖拉。 b、安装电加热电缆碰到锐利的边棱要先垫上铝胶带将其锐利处打磨光滑,以防将电加热电缆外层绝缘划破。 c、电加热电缆最小弯曲半径应不小于其厚度五倍。 d、电加热电缆应紧贴管道表面,以利散热。 e、安装电加热电缆应采用铝胶带粘贴,一则增大散热面,有利于热传导;二则方便安装。其方法是:先清楚电加热电缆途径处的油污、水分,最好能用汽油揩清。首先每隔八十厘米,用固定胶带将电加热电缆径向固定,然后敷设复盖铝胶带,最后将胶带用力抹压,使电加热电缆平整粘贴在管道表面。 f、安装电加热电缆附件时,应将电加热电缆留有一定富裕量,以使下次检修重复使用。 g、安装恒功率电加热电缆时,由于恒功率电加热电缆在整个长度上是一段段发热节组合而成,剪切时须特别注意电热带上发热区确保发热部分控制在需伴热的部位。

电伴热设计选型

电伴热设计选型 电加热是利用电伴热产品所产生的热量来补偿被伴热的管道、容器、罐体等工艺装置所散耗的热量,以维持具有相应的介质温度来满足工艺要求。正确计算出管道、容器、罐体等工艺装置的散热量,对准确维持介质温度是至关重要的。一、管道及附件散热量的计算 、工艺系数的确定 为确保计算的准确性,在计算前应正确确定各项系数,它们是管道、容积、罐体等介质要求维持的温度T,管道的直径d,容器的表面积S,保温材料的种类及厚度,环境温度(最低平均温度)TH,敷设环境(室内或室外、地面或埋地)。并计算维持温度TW与环境温度TH之差△T,△T=TW-TH 2、管道散热量的计算 Q=q×f×g×h Q-实际需要的伴热量 q-基本情况下单位长度管道的散热量(根据工艺系数查表3-1) f-保温材料修正系数(查表3-2) g-管材修正系数(查表3-3) h-环境修正系数(查表3-4) 例1、某厂有一碳钢管线,管径为1",保温材料为硅酸钙,厚度是20mm,管道中介质的维持温度35℃,冬季最低平均气温是-25℃,室外冬季平均风速10m/s,求管道每米热损失。 △T=TW-TH=35℃-(-25℃)=60℃

查表3-1 d=1 s=20mm △T=60℃时 得到:q=19.6w/m 查表3-2,保温层采用硅酸钙修正参数为f=1.50 查表3-3,管材修正系数为:g=1 查表3-4,环境修正系数为:采用插入法计算得h=1.1 则所须伴热量Q=19.6×1.5×1×1.1=32.34w/m 表3-1 管道散热量q(w/m2) 散热量q,以瓦特/米(w/m)单位表示 表3-1中的散热量计算基于几个基本系数 保温材料:玻璃纤维 管道材料:金属 管道位置:室外,风速8.9米/秒,室内=室外×0.9

电伴热保温技术方案

电伴热保温技术方案 一、设计条件的基本概况 1大连地理概况 大连地区是暖温带半湿润的季风气候兼有海洋性的气候特点。本区处于北半球中纬度地带~所受太阳辐射一年四季比较大~大气环流以西风带和副热带系统为主~再加上一面依山、三面靠海的地理环境影响~所以本区的气候特点是:四季分明、气候温和、空气湿润、降水集中、季风明显、风力较大。年平均气温为8~11?~自南向北降低~是我国东北地区最温暖的地区。8月最热~1月最冷。年降水量为550~1000毫米~自西南向东北递增。本区处于东亚季风范围~夏半年盛行偏南风~冬半年盛行偏北风~年平均风速3~6米/秒~是我国东北地区风速较大的地区之一。 2 设备位臵 给水消防管道系统位于地下楼层~无危险区,施工车库门口20m-30m半径内。 3 设计参数 1.应用环境:给水消防管道~最低环境温度为-20摄氏度 2.被伴热设备情况:消防、给水管道~维持温度:5摄氏度 4设计要求 1.电气参数设定:管道的伴热电量统一取15W/m 2.敷设时需要将10%的膨胀量均布在管路上~以免通断过程中崩 断发热元件造成断路 3.根据管道网络分布设臵配电系统~整个工程分成数个配电系统。每个系统安装一个温度控制箱~箱内有一套环境温控器~当环境温度低于5摄氏度时自动接通电源~高于15摄氏度时自动关闭系统电源~详见附图。

二、技术方案 自调控电伴热系统采用并联线路设计~长度可以根据需要裁剪~发热元件为特殊的导电塑料~功率可随管道温度的变化而变化~从而很好地满足管线的防冻和保温要求。 1 基本技术参数 管内介质: 水 维持温度: 5,10? 最低环境温度: -20? 最高环境温度: 35? 保温材料: 橡塑 保温层厚度: 20mm 设计风速: 10m/s 管道有无蒸汽吹扫: 无 使用环境有无腐蚀: 无 2 热损计算及伴热线选型 2.1 根据各系统中各管路参数进行计算~计算不同管径的散热量,见表一,。 2.2.根据具体管线散热量选用功率为15W/m的电伴热带~且保证选择的电伴热线完全满足保温要求。综合以上的因素应选用DKT-P/Jz-15-220的电伴热带。 DKT-P/Jz-15-220 (消防专用低温阻燃加强型自调控电伴热线)的 基本参数: 最高自限温度 65? 最高曝露温度 105? 额定电压: 220V 标称功率: 15W/m

电伴热安装与操作

电伴热安装与操作 安装的准备: 1)所有伴热电缆均须进行电路连续性和绝缘性能的测试,不符合规定的不能使用。 2)电气设备和控制设备均须进行外观检查,有变形、有裂纹,器件不全又无法修复的,不能使用。 3)安装前,应先按照电件热系统图,逐一核对管道编号,确认无误后,才能进行安装。 4)没有产品标记,或标记模糊不清,无法辨认的产品,不能安装。 5)电伴热系统安装前,被伴热管道必须全部施工完毕,并经水压试验(或气密试验)检查合格。 第一章:温控伴热电缆的安装与测试 (一)设计图 施工前应有一份完整的设计图,图中应包括以下各项资料: 1、线路编号,供电点用长方格表示。 2、线路所需电热带型号及长度。(单位:米) 3、每米管道长度所需电热带长度(单位:米)即缠绕系数。 4、每个阀门所需用电热带长度。(单位:米) 5、伴热系统配套材料附件清单。 6、温控系统配件清单。

7、施工时所需材料清单。 8、设计考虑参数和所采用保温材料规格。 (二)施工前准备工作 (A)管道系统 1、管道系统与配备都已施工完毕。 2、防锈防腐涂层已干透。 3、管道系统施工规范与设计图中所示一致。 4、锉去所有毛刺和利角。 (B)电热带和配件 1、电热带表面有否损破。 2、电热带的绝缘性能良好(要求用摇表在1000VDC测试时绝缘电阻为≥20MΩ)。 3、电热带与所有配件的型号与设计要求一致。 (C)现场准备 1、将一卷电热带与卷筒放置于一支架上,并放置在线路其中一端附近。 2、沿管道布电热带,并避免: *将电热带放置于毛刺和利角上。 *用力拉扯电热带。 *脚踏或重物放置电热带上。 (三)单根电热带施工法 1、玻璃纤维压敏胶带或铝胶带每隔约50Cm处将电热带固定于管道上。 2、平敷时尽可能将电热带附在管道的下45度侧方。

电伴热保温详细知识

电伴热保温详细知识 2013-1-22 14:57:01 1 北方地区冬季如何给管道电伴热保温一直是困扰土建施工技术人员的一大难题,消防管道电伴热保温工程采用的电伴热系统较好地解决了这个问题,为此类问题的彻底解决尝 试性地开创了一条新的途径。管道电伴热保温工程,即发热电缆低温伴热系统,是用电能直接转化为热能的新型供暖系统。本工程着重研究和解决了管道防冻系统电加热技术的 设计、发热电缆和与之配套元器件在施工安装中存在的一些技术性问题,使保温防冻系统自动控制其温度保持在允许的范围内,实现了对管道的主动性保温防冻。 2 电伴热系统工作原理管道保温防冻的目的就是补充由于管道外壳内外温差引起的热散失。要达到管道防冻保温的目的,只需要提供给管路损失的热量,保持管道内流体的热量 平衡,就可维持其温度基本不变。发热电缆管道保温防冻系统就是提供给管路损失的热量,维持其温度基本不变。管道电伴热系统由发热电缆供电电源系统、管道防冰冻电缆加 热系统和管道电伴热智能控制报警系统三部分组成。每根伴热电缆单元包括温控器、温度传感器、空气开关、交流越限报警隔离变速器、伴热电缆断路监测器、工作状态显示器 、故障蜂鸣报警器及变压器等电路,以便观察、控制与调节电伴热工作情况。工作状况下,温度传感器安置在被加热的管道上,可随时测量出其温度。温控器根据事先设定好的 温度,与温度传感器测出的温度比较,通过伴热电缆控制箱内的空气开关与交流电流越限报警隔离变速器,及时切断与接通电源,以达到加热防冻目的。 3 产品选型 3.1 电缆选择根据管路系统的工程实际情况和经济性进行综合考虑,为便于安装使用,本工程选用挪威耐克森 TXIP 型双导线发热电缆组件。它具有发热材料寿命长、金属屏蔽 护套可消除磁场、对人体无害、金属防水护套、1O0﹪防止水的渗漏等特点,并有金属加强护套,抗拉、抗压强度高。耐克森发热电缆外套的最大连续工作温度为6O℃,线性负

电伴热带工作原理及特点

电伴热带工作原理及特点 管道保温电伴热系统适用于多种工业应用和不同环境的防冻系统可在多个应用领域中有效地防止水或其它液体发生冻结。如在建筑领域上未采暖的部分保温防冻(地下室、车库,室外消防管道,给排水道,水箱,罐体),以防止管道结冰、冻裂,保证管道内的液体运行畅通,实现整个管道系统安全运行,是一种简便易行经济环保的电伴热保温防冻系统。 管道保温电伴热系统由合适的电伴热带与相关电源接线盒,三通接线盒及终端接线盒;耐热压敏固定胶带;温度控制器和电气控制等构成。 工作原理: 管道保温电伴热系统由自控温电伴热带以各种方式缠绕或平铺于管道或罐体外部,外铺设保温材料,自控温电伴热带一端与温控器相连以准确控制自控温电伴热带的防冻运行,当温度传感器探测到管道温度低于所设定的温度时,温控器即接通电源,自控温电伴热带开始运行,当温度传感器探测到管道温度高于所设定的温度时,温控器即断开电源,使自控温电伴热带在最经济合理的状态下运行并满足介质防冻防堵。 结构特点: 伴热电缆由导电塑料和两根平行母线外加绝缘层构成,由于这种平行结构所有伴热电缆均可以在现场随意剪切,采用二通或三通连接。 发热原理: 在每根伴热电缆内,母线之间的发热高分子材料的电路导通数量随问题的影响而变化,当伴热线周围的温度变冷时,导电塑料产生微分子的收缩而使碳粒连接形成电路,电流流经这些电路,使伴热线发热。 有自调控温度特性: 当温度升高时,导电塑料产生分子的膨胀,碳粒渐渐分开,引起电路中断,电阻上升,伴热电缆自动减少功率输出。当周围温度变冷时,导电塑料又回复到微分子收缩状态,碳粒相应连接起来形成电路,伴热电缆发热功率又自动上升。 电热线具有其他伴热线所没有的好处,它控制的温度不会过高亦不会过低。因为温度是自动调节的。 管道保温电伴热系统从节能安全性两方面设计考虑,其双层阻燃型电伴热带达到了国内先进水平。其电热元件PTC和外层材料跟国外材料同等并具有优越的性价比。广泛应用工业、建筑管线如:上下水管、排水管、喷淋管、消火栓管以及污水管线的防冻保温,最高维持温度为65℃。最高表面温度为85℃(伴热线适用于普通区,危险区或腐蚀区)。其最高维持温度发出的热量足以满足水系统不冻并保持5℃所需要的能耗。 电伴热系统特点: 电热带自动限温、内置温度传感器自动调温;伴热管线温度均匀,不会过热,安全可靠。安全运行、免维护、安装简单;适合复杂管线伴热,节约电能。 无环境污染、节约电能、防水防腐蚀,适用于远离装置的管线伴热。

相关主题