搜档网
当前位置:搜档网 › 实验五实验六指导书

实验五实验六指导书

实验五实验六指导书
实验五实验六指导书

实验五 MATLAB 实现DFT

MATLAB 为计算数据的离散快速傅时叶变换,提供了一系列丰富的数学函数,主要有fft 、ifft 、fft2、ifft2和czt 等。当所处理的数据的长度为2的幂次时,采用基-2算法进行计算,计算速度会显著增加。所以,要尽可能使所要处理的数据长度为2幂次或者用添零的方式来添补数据使之成为2的幂次。 1.fft 和ifft 函数 调用格式是: (1)()X fft Y =

如果X 是向量,则采用傅时叶变换来求解X 的离散傅里叶变换;如果X 是矩阵,则计算该矩阵每一列的离散傅里叶变换;如果X 是()D N *维数组,则是对第一个非单元素的维进行离散傅里叶变换。

(2)()N X fft Y ,=

N 是进行离散傅里叶变换的X 的数据长度,可以通过对X 进行补零或截取来实现。 (3)[]()dim ,,X fft Y =或()dim ,,N X fft Y =

在参数dim 指定的维上进行离散傅里叶变换;当X 为矩阵时,dim 用来指定变换的实施方向:dim=1,表明变换按列进行;dim=2,表明变换按行进行。

函数ifft 的参数应用与函数fft 完全相同。 2.fft2和ifft2函数

调用格式是: (1)()X fft Y 2=

如果X 是向量,则此傅里叶变换即变成一维傅里叶变换fft ;如果X 是矩阵,则是计算该矩阵的二维快速傅里叶变换;数据二维傅里叶变换fft 2(X )相当于()()''X fft fft ,即先对X 的列做一维傅里叶变换,然后再对变换结果的行做一维傅里叶变换。

(2)()N M X fft Y ,,2=

通过对X 进行补零或截断,使得X 成为()N M *的矩阵。 函数ifft2的参数应用与函数fft2完全相同

fftn 、ifftn 是对数据进行多维快速傅立变换,其应用与fft2、ifft2类似;在此,不再叙述。 3.czt 函数

调用格式是:

()A W M X czt X ,,,=

式中X 是待变换的时域信号()n x ,其长度设为N ,M 是变换的长度,W 确定变换的步

长,A 确定变换的起点。若M=N ,A=1,则CZT 变成DFT 。

4.fftsfift Y=fftshift(X)

用来重新排列X=fft(x)的输出,当X 为向量时,把X 的左右两半进行交换,从而将零频分量移至频谱的中心;如果X 为二维傅立叶变换的结果,它同时将X 的左右和上下部分进行交换。

5.fftfilt y=fftfilt(b,x)

采用重叠相加法FFT 对信号向量x 快速滤波,得到输出序列向量y ,向量b 为FIR 滤波器的单位脉冲响应,h(n)=b(n+1),n=0,1,…,length(b)-1。

y=fftfilt(b,x,N)

自动选取FFT 长度NF=2^nextpow2(N),输入数据x 分段长度M=NF-length(b)+1,其中nextpow2(N)函数求得一个整数,满足:

2^(nextpow2(N)-1)≤N ≤2^nextpow2(N)

N 缺省时,fftfilt 自动选择合适的FFT 长度NF 和对x 的分段长度M 。

一、利用MATLAB 实现的快速傅里的变换

例1 已知有限长序列()n x 的长度4=N ,且()????

??

?==-===3

3

211

20

1n n n n n x ,用FFT 求()k X ,再用IFFT 求()n x 。

解:利用快速傅里叶变换函数求解的MA TLAB 实现程序清单如下

clear xn=[1,2,-1,3]; X=fft(xn) x=ifft(X)

程序运行结果如下

X =

5.0000 2.0000 + 1.0000i -5.0000 2.0000 - 1.0000i x =

1 2 -1 3

例2 设()n x 是由两个正弦信号及白噪声的叠加,试用FFT 文件对其作频谱分析。 解:程序清单如下

% 产生两个正弦加白噪声;

N=256;

f1=.1;f2=.2;fs=1; a1=5;a2=3; w=2*pi/fs;

x=a1*sin(w*f1*(0:N-1))+a2*sin(w*f2*(0:N-1))+randn(1,N); % 应用FFT 求频谱; subplot(2,2,1); plot(x(1:N/4)); title('原始信号'); f=-0.5:1/N:0.5-1/N; X=fft(x); y=ifft(X); subplot(2,2,2);

plot(f,abs(X)); %也可求出将零频分量移至频谱的中心的频谱幅值plot(f,fftshift(abs(X))) title('频域信号'); subplot(2,2,3);

plot(real(x(1:N/4))); %y=x title('时域信号');

运行结果如图1所示,该程序同时完成了傅里叶变换与傅里叶反变换。

图1 例2运行结果

二、 MATLAB 实现序列的移位和周期延拓运算

例3:已知()()n R n x n 88.0=,利用MATLAB 生成并图示(),n x ()m n x -,()()()n R n x N 8,其中N=24,N m <<0,()()8n x 表示()n x 以8为周期的延拓。

图2 序列的移位和周期延拓

解:程序清单如下

N=24;M=8;m=3; %设移位值为3 n=0:N-1;

x1=0.8.^n;x2=[(n>=0)&(n

xn=x1.*x2; %产生x(n) xm=xn; nm=n+m %产生x(n-m)

xc=xn(mod(n,8)+1); %产生x(n)的周期延拓,求余后加1是因为MA TLAB 向量下标从开始 xcm=xn(mod(n-m,8)+1); %产生x(n)移位后的周期延拓 subplot(2,2,1);stem(n,xn,'.');axis([0,length(n),0,1]);title('x(n)')

subplot(2,2,2);stem(nm,xm,'.');axis([0,length(nm),0,1]);title('x(n-m)')

subplot(2,2,3);stem(n,xc,'.');axis([0,length(n),0,1]);title('x((n)的周期延拓') subplot(2,2,4);stem(n,xcm,'.');axis([0,length(n),0,1]);title('x(n)的循环移位')

程序运行结果如图2所示。

二、 MATLAB 验证N 点DFT 的物理意义

例4:已知()()n R n x 4=,ω

ω

ω

j j j e e n x FT e X ----==11)]([)(4,绘制相应的幅频和相频曲线,

并计算图示N=8和N=16时的DFT 。

解:程序清单如下

N1=8;N2=16; % 两种FFT 的变换长度 n=0:N1-1;k1=0:N1-1; k2=0:N2-1; w=2*pi*(0:2047)/2048;

Xw=(1-exp(-j*4*w))./( 1-exp(-j*w));

%对x(n)的频谱函数采样2048个点可以近似的看作是连续的频谱 xn=[(n>=0)&(n<4)]; %产生x(n)

X1k=fft(xn,N1); %计算N1=8点的X 1(k) X2k=fft(xn,N2); %计算N2=16点的X 2(k) subplot(3,2,1);plot(w/pi,abs(Xw));xlabel(‘w/π’)

subplot(3,2,2);plot(w/pi,angle(Xw));axis([0,2,-pi,pi]);line([0,2],[0,0]); xlabel(‘w/π’)

subplot(3,2,3);stem(k1,abs(X1k),’.’);

xlabel(‘k(ω=2πk/N1)’);ylabel(‘|X1(k)|’);hold on

plot(N1/2*w/pi,abs(Xw)) %图形上叠加连续频谱的幅度曲线 subplot(3,2,4);stem(k1,angle(X1k)); axis([0,N1,-pi,pi]);line([0,N1],[0,0]);

xlabel(‘k(ω=2πk/N1)’) ;ylabel(‘Arg[X1(k)]’);hold on

plot(N1/2*w/pi,angle(Xw)) %图形上叠加连续频谱的相位曲线 subplot(3,2,5);stem(k2,abs(X2k),’.’);

xlabel(‘k(ω=2πk/N2)’);ylabel(‘|X2(k)|’);hold on plot(N2/2*w/pi,abs(Xw))

subplot(3,2,6);stem(k2,angle(X2k),’.’); axis([0,N2,-pi,pi]);line([0,N2],[0,0]);

xlabel(‘k(ω=2πk/N2)’) ;ylabel(‘Arg[X2(k)]’);hold on plot(N2/2*w/pi,angle(Xw)) 程序运行结果如图3所示。

图3 离散傅里叶变换和傅里叶变换的采样关系

前面的理论已经知道,序列x(n)的N 点DFT 的物理意义是对)(ωj e X 在[0,2π]上进行N 点的等间隔采样。图3可以直观的看到X(k)与)(ω

j e X 之间的采样关系。

实验六:MATLAB 实现DFT 的应用 一.MATLAB 实现快速卷积

例1用快速卷积法计算下面两个序列的卷积

)()4.0sin()(15n R n n x =,)(9.0)(20n R n h n =

快速卷积计算框图如图所示

解:程序清单如下

M=15;N=20;nx=1:15;nh=1:20; xn=sin(0.4*nx);hn=0.9.^nh;

L=pow2(nextpow2(M+N-1));%L 变为2的整数次幂 Xk=fft(xn,L); Hk= fft(hn,L); Yk=Xk.*Hk;

yn=ifft(Yk,L);ny=1:L

subplot(3,1,1);stem(nx,xn,'.');title('x(n)'); subplot(3,1,2);stem(nh,hn,'.');title('h(n)');

subplot(3,1,3);stem(ny,real(yn),'.');title('y(n)');

程序运行结果如图1所示。

图1 x(n)、h(n)及其线性卷积波形

FFT 的变换长度L 必须满足L ≥N+M-1,输出y(n)才等于x(n)和h(n)的线性卷积。计算两个序列的卷积时,也可以直接调用函数conv 来计算,因为MATLAB 中的计时比较粗糙,所以只有当N 和M 较大的时候,才能比较两种方法的执行时间快慢。

二、 MATLAB 实现用DFT 对连续信号作谱分析

例.设)50cos()100sin()200cos()(t t t t x a πππ++=,用DFT 分析)(t x a 的频谱结构,选择不同的截取长度T P ,观察存在的截断效应,试用加窗的方法减少谱间干扰。 选取的参数:(1) 频率f S =400Hz,T=1/f S ;

(2) 采样信号序列()()()n w nT x n x a =,()n w 是窗函数,选取两种窗函数:矩形窗函数()()n R n w N =和Hamming 窗,后者在程序中调用函数w(n)=hamming(N)产生程度为N 的Hamming 窗函数列向量wn 。

(3) 对x(n)作2048点DFT 作为)(t x a 的近似连续频谱()jf X a 。其中N 为采样点数,N=f S T P , T P 为截取时间长度,取三种长度:0.04s 、4?0.04s 、8?0.04s

解:程序清单如下

clear;close all

fs=400;T=1/fs; %采样频率和采样间隔 Tp=0.04;N=Tp*fs; %采样点数N

N1=[N,4*N,8*N]; %设定三种截取长度 for m=1:3

n=1:N1(m);

xn=cos(200*pi*n*T)+ sin(100*pi*n*T)+ cos(50*pi*n*T); Xk=fft(xn,4096); fk=[0:4095]/4096/T;

subplot(3,2,2*m-1);plot(fk,abs(Xk)/max(abs(Xk))); if m==1 title('矩形窗截取');end end

%hamming 窗截断 for m=1:3

n=1:N1(m);

wn=hamming(N1(m));

xn=cos(200*pi*n*T)+ sin(100*pi*n*T)+ cos(50*pi*n*T).*wn'; Xk=fft(xn,4096); fk=[0:4095]/4096/T;

subplot(3,2,2*m);plot(fk,abs(Xk)/max(abs(Xk))); if m==1 title('hamming 窗截取');end end

程序运行结果如图2所示。

图2从上到下截取的长度依次分别是N 、4N 、8N,由于截断使原频谱中的单频谱线展宽(也成为“泄露”),截取的长度越长,泄露越少,频率分辨越高。当截取长度为N(T P 为0.04s)时,25Hz 和50Hz 两根谱线已经分辨不清楚了。另外,在本来应该为零的频段上出现了一些参差不齐的小谱包,成为谱间干扰,其大小取决于加窗的类型。

比较矩形窗和hamming 窗的谱分析结果可见,用矩形窗比用hamming 窗的频率分辨率高

(泄露小),但是谱间干扰大,因此hamming窗是以牺牲分辨率来换取谱间干扰的降低。更详细的分析以及各种窗函数性能可以查阅相关资料。

图2 DFT对连续信号作谱分析

机器人技术实验指导书

工业机器人实验指导书实验一、工业机器人的安装与调试 一、实验学时:2学时 二、实验目的: 1、学习并掌握六自由度工业机器人的结构特点。 2、能根据安装说明书对机器人套件进行安装调试 三、实验设备: 1、六自由度工业机器人套件 2、LOBOT机器人舵机控制板 3、计算机一台 四、实验原理: 六自由度机械手臂是一套具有6个自由度的典型串联式小型关节型机械手臂, 带有小型手抓式;主要由机械系统和控制系统两大部分组成,其机械系统的各部分采用模块化结构,每个部分分别由一个伺服电动机来带动,每个电动机在根据控制要求以及程序的要求来运动从而实现运动要求。 此六自由度机械手臂的特点:1.手部和手腕连接处可拆卸,手部和手腕连接处为机械结构。b.手部是机械手臂的末端操作器,只能抓握一种工件或几种在形状、尺寸、质量等方面相近似的工件,只能执行一种作业任务。c.手部是决定整个机械手臂作业完成好坏,作业柔性好坏的关键部件之一。此机械手臂的手爪是机械钳爪式类别中的平行连杆式钳爪。

五、实验步骤: 1.首先,先熟悉一下需要用到的螺丝及铜柱 2.取1 个圆盘和1 个金属舵盘 3.用4 个M3*6 螺丝的将金属舵盘装在圆盘上面。 4.再取出1 个圆盘和1 个多功能支架,用M4*15 螺丝和螺母,将其固定 5.取2 个圆环+大轴承+双通铜柱(长15mm)+4 个M4*80 螺丝。 6.将螺丝穿入圆环。2 个圆环中间是轴承,下面用铜柱锁紧。(越紧越好)。 7.取出方孔圆盘+1 个MG996R 舵机,用4 个M4*8 螺丝和M4 螺母将舵机固 定在圆盘上。注意方向不要搞错,舵机输出轴在圆盘中心位置。这个舵机要调到90 度(中间)的位置,即往左往右都可以控制旋转90 度。 8.取出之前装好的带有金属舵盘的圆盘。将其固定在舵机输出轴上,注意 图中的位置,将小圆盘上2 个孔之间连线和方孔大圆上2 个孔之间的连线处于平行状态。 9.将之前装好的这两个部分,连到一起 10.方孔大圆盘下面用M4 螺母锁紧。 11.将另一个小圆盘,放上去,孔位和下面对准,取出4 个M4*20螺丝及螺丝, 将上下两个圆盘锁紧,越紧越好!(上螺丝的时候,手指可以抵着M4 螺

实验指导书

Matlab实验指导书 河北大学电子信息工程学院 2004年1月

目录 MATLAB实验教学计划 (2) 实验一MATLAB基本操作 (3) 实验二MATLAB图形系统......................................................... . (5) 实验三 MATLAB程序设计 (6) 实验四 MATLAB基本应用领域 (7) 实验五设计性综合实验1---数字信道编译码 (14) 实验六设计性综合实验2---fir滤波器设计................................. . (16) 2

MATLAB实验教学计划 指导教师:郑晓昆薛文玲王竹毅学时数:12学时周4学时2次实验,共3周6次实验,第7—9教学周,每次实验2学时 所用仪器设备:MATLAB7.0实验软件系统 实验指导书:Matlab实验指导书 自编 实验参考书:, 楼顺天等编著, 西安电子科大出版社,06年5月第二版 实验项目: A, MATLAB基本操作 内容:矩阵操作,基本数学函数,逻辑函数操作等; 要求:循序渐进完成P83练习题1—10 B, MATLAB图形系统 内容:图形绘制,图形标注,对数和极坐标,坐标轴控制,颜色控制等要求:循序渐进完成P146练习题1—10 C, MATLAB程序设计 内容:脚本script和函数function认识,流程控制,参数交互输入,基本程序设计技巧练习,程序调试DEBUG等 要求:循序渐进完成P184练习题1—10 D, MATLAB基本应用领域 内容:线性代数,多项式与内插,曲线拟合,数据分析与统计,泛函基础等 要求:循序渐进完成P146练习题1—4,6—19 E, 设计性综合实验----数字信道编译码 内容:1数字通信系统信道编码AMI编译码 2数字通信系统信道编码HDB3编译码 F,设计性综合实验----fir滤波器设计 内容:设计一个有限冲击相应数字滤波器FIR是该滤波器能够滤出规定频率以上的信号,而该频率以下的信号不受影响。 3

实验指导书(六自由度)

实验一:6SPT-1六自由度液压伺服平台综合实验、实验目的: 1、掌握电液位置伺服控制系统的基本原理; 2、掌握六自由度平台的结构解算的概念及其软件实现; 3、掌握VB6.0软件与下位机PAC通过以太网通信的方法; 4、掌握6SPT-1六自由度液压伺服平台复现指令信号的实施方法。 、预备知识: 1、熟练掌握PLC的梯形图语言(LD)编程和结构化文本语言(ST)编 程; 2、熟练掌握VB6.0编程,能使用VB6.0实现以太网通信; 3、有一定的矩阵计算能力。 二、试验原理: 1、电液位置伺服控制系统的基本原理 电液位置伺服控制系统以液体作为动力传输和控制介质,利用电信号进行控制输入和反馈。只要输入某一规律的输入信号,执行元件就能启动、快速并 准确地复现输入量的变化规律。控制系统结构图如图3.1所示: 图3.1电液位置伺服控制系统结构图 2、六自由度平台逆解算法

图3.2 空间机构位置关系示意图 六自由度平台又称为Stewart平台,其结构如图3.2所示,Stewart平台由 上、下两个平台、六个驱动关节和连接球铰组成,上平台为运动平台,下平台为基座,上、下平台的六个铰点分别组成一个六边形,连接6个液压缸作为驱动关节,每个液压缸两端各连接一个球铰。六个驱动关节的伸缩运动是独立的由液压比例压力阀控制各液压缸作伸缩运动,从而改变各个驱动缸的长度,使 动平台在空间的位置和姿态发生变化。因此该平台是通过六个驱动杆的协调动 作来实现三个线性移动及三个转动共六个自由度的运动。 S tewart平台机构的空间位置关系是指运动平台的六个自由度与六个驱动杆长度的关系,是研究该并联机构最基本的任务,也是机构速度、加速度、误差分析、工作空间分析、动力分析等的基础。 对于6-SPS平台机构,其特点是动静平台铰点共面,考虑到工作空间的对称性要求,将平台的6个铰点分成3组,三组铰点沿圆周120。均布,动、静平台的相邻两边到中心的夹角分别为30。和90° o 为求解六自由度平台的空间位置关系,首先在静、动平台上分别建立静、动坐标系。如图3.3所示,静坐标系XYZ原点0位于静平台的中心,X-Y平面

erdas实验5指导书

实验5 某地区的遥感影像分类 1.实验目的和要求 a)了解非监督分类和监督分类的原理和背景知识; b)掌握非监督分类和监督分类的过程和方法; c)了解并掌握监督分类中的样本训练方法、分类决策规则和分类结果评估 方法; d)能够利用非监督分类和监督分类技术提取某一研究区土地覆盖类型(植 被、水体、建筑用地、裸地等),并计算各地类的面积、覆盖率等指标。 2.实验设备和数据 a)实验设备:高性能计算机;Erdas Imagine遥感图像处理软件 b)实验数据:Landsat TM数据 3.实验内容 a)分析、认识研究区域Landsat TM数据基本地物类型,建立分类体系; b)根据分类体系,利用非监督分类方法对研究区域Landsat TM数据进行分 类; c)根据分类体系,利用监督分类方法完成研究区域Landsat TM数据分类及 分类结果评价; d)对比非监督分类和监督分类结果的差异,并分析原因。 4.实验步骤参考 1.分类过程 在Erdas Imagine主菜单中选择Classifier,在其下拉菜单中选择Unsupervised Classification,利用其弹出对话框完成非监督分类; Signature Editor——样本编辑器 Unsupervised Classification——非监督分类

输出分类文件输出样本文件 分类数 收敛域值 注意问题:实际工作中常将分类数目取为最终分类数目的两倍;收敛域值是指两次分类结果相比保持不变的像原所占最大百分比。 2 、分类评价(Evaluate Classification ) 打开新的窗口,同时导入非监督分类后的图和原始分类影像;在视窗工具条 标,弹出Raster Attribute Editor对话框,如下图:

过程装备控制技术与应用实验指导书2 (2)

过程装备控制技术与应用实验指导书(过控装备与控制工程教研室) 南昌大学环境与化学工程学院 二0一0年五月

前言 本实验指导书系根据《过程装备控制技术与应用》课程及实验室已有设备而设置的实验内容编写的。通过实验操作,使学生增强感性认识,加深对书本理论知识的理解,提高动手能力,熟悉和掌握仪表实验工作的一般方法,为将来的实验工作和科学研究打下基础。 实验要求

在实验过程中,务必做到以下几点: 1、实验前必须预习有关实验内容; 2、进入实验室后,应首先认真听取实验介绍,以提高操作效率; 3、熟悉并检查实验装置的组成部分及连线; 4、按实验要求连接实验装置后,需经老师检查方可进行操作; 5、实验过程中,应遵守实验室的规章制度,爱护设备。在实验过程中未按操作 步骤进行而造成仪器、设备、工具等损坏以及发生事故,待查明原因后,按学校有关规定予以赔偿; 6、实验后,各小组须整理清点实验工具,并交老师核查; 7、按实验具体要求,认真完成实验报告。 在做实验报告时应注意以下几点: 1、明确实验目的; 2、了解实验内容; 3、熟悉实验装置; 4、掌握实验方法; 5、制定实验步骤; 6、处理实验数据(数据准确、表格合理、图形清晰); 7、得出实验结果; 8、提出分析建议(注意现象,分析误差等原因)。 目录 一、实验一弹簧管压力表的校验 (5) 二、实验二热电偶与动圈仪表的配套使用 (7) 三、实验三自动电子电位差计的校验 (10) 四、实验四自动电子平衡电桥的校验 (12) 五、实验五 XMZ-102数显仪表的校验 (13) 六、实验六 XMZ-101数显仪表的校验 (14) 七、实验七电容式差压变送器认识与校验 (15)

土工实验指导书及实验报告

土工实验指导书及实验报告编写毕守一 安徽水利水电职业技术学院 二OO九年五月

目录 实验一试样制备 实验二含水率试验 实验三密度试验 实验四液限和塑限试验 实验五颗粒分析试验 实验六固结试验 实验七直接剪切试验 实验八击实试验 土工试验复习题

实验一试样制备 一、概述 试样的制备是获得正确的试验成果的前提,为保证试验成果的可靠性以及试验数据的可比性,应具备一个统一的试样制备方法和程序。 试样的制备可分为原状土的试样制备和扰动土的试样制备。对于原状土的试样制备主要包括土样的开启、描述、切取等程序;而扰动土的制备程序则主要包括风干、碾散、过筛、分样和贮存等预备程序以及击实等制备程序,这些程序步骤的正确与否,都会直接影响到试验成果的可靠性,因此,试样的制备是土工试验工作的首要质量要素。 二、仪器设备 试样制备所需的主要仪器设备,包括: (1)孔径0.5mm、2mm和5mm的细筛; (2)孔径0.075mm的洗筛; (3)称量10kg、最小分度值5g的台秤; (4)称量5000g、最小分度值1g和称量200g、最小分度值0.01g的天平;

(5)不锈钢环刀(内径61.8mm、高20mm;内径79.8mm、高20mm或内径61.8mm、高40mm); (6)击样器:包括活塞、导筒和环刀; (7)其他:切土刀、钢丝锯、碎土工具、烘箱、保湿器、喷水设备、凡士林等。 三、试样制备 (一)原状土试样的制备步骤 1、将土样筒按标明的上下方向放置,剥去蜡封和胶带,开启土样筒取土样。 2、检查土样结构,若土样已扰动,则不应作为制备力学性质试验的试样。 3、根据试验要求确定环刀尺寸,并在环刀内壁涂一薄层凡士林,然后刃口向下放在土样上,将环刀垂直下压,同时用切土刀沿环刀外侧切削土样,边压边削直至土样高出环刀,制样时不得扰动土样。 4、采用钢丝锯或切土刀平整环刀两端土样,然后擦净环刀外壁,称环刀和土的总质量。 5、切削试样时,应对土样的层次、气味、颜色、夹杂物、裂缝和均匀性进行描述。 6、从切削的余土中取代表性试样,供测定含水率以及颗粒分析、界限含水率等试验之用。

树木学实验指导书(5个实验)

树木学实验指导书 树木学课程组编 2010年3月

树木学实验工作守则 一、实验室内一切仪器设备、实验桌椅及实验材料,未经许可,不得任意搬动或取走。 二、爱护和保管好实验用具、腊叶标本,按规定的操作规程进行实验。 三、保持实验室安静清洁的良好工作环境,不许大声谈笑,不可乱丢纸屑废物。 四、课前必须预习本实验指导书,实验过程中应独立思考,独立操作,按时完成作业,不得抄袭。 五、实验课须自备文具、笔记、参考书及实验报告纸。必须遵守上课时间,不得无故缺席。

实验一裸子植物常见代表科的观察 裸子植物是一类没有真正的花和果实,而以种子进行繁殖的木本维管束植物,其主要特征是形成裸露的种子,不形成果实。 一、目的: 通过松柏纲松科(Pinaceae),杉科(Taxodiaceae),柏科(Cupressacear)各科球花,球果的观察,进一步明确裸子植物的主要特征,掌握松、杉、柏各科的分类特征。 二、材料与用具 马尾松Pinus massoniana的雌雄球花和球果 杉木Cunninghamia lancata的雌雄球花和球果 柏木Cupressus funebris的雌雄球花和球果 实验用具:连续变倍体视显微镜Motic SMZ-140、刀片、解剖针、培养皿、镊子。 教师所用示范设备: 1. 数码体视显微镜Motic DM143 用于操作示范。 2. 数码显微镜Motic DMB5-223IPL 用于示范裸子植物花药切片。 三、操作与观察 球花指的是裸子植物孢子叶的集结物,亦称孢子叶球,松柏纲植物是孢子异型的,小孢子叶集结成单独的小孢子叶球即雄球花。 1、马尾松球花、球果的观察 我们将首先看到一群数目很多的小孢子叶球(雌球花)紧密地着生(旋生)在春枝(当年生枝)的基部,而带红色的大孢子叶球(雌球花)则是单独或成对或三个在一起地着生于幼枝顶端,在松树上发育的小孢子叶球要比大孢子叶球多得多,在春末4-5月,小孢子叶球执行传粉功能后,就脱落了。相反地,大孢子叶球并不脱落,而在传粉后的1-2年内继续发育,逐渐变成结有种子的球果。 取一个马尾松的小孢子叶球(雄球花)来观察它的结构:为了这一点,用镊子把一个雄球花从复孢子叶球中取出来,置于双筒体视镜下观察,可以看到,它具有一个短的梗,小孢子叶象紧密的螺旋一样着生于球花轴上,用针将一些小孢子叶从雄球花中挑出,适当加大放大倍数,可观察到,它们的形状象扁平的小叶。其宽的外缘稍微向上弯曲,称之为药鳞,在每个小孢子叶表面,可看到两个大型的凸出的囊(纵向排列着),这是小孢子囊,亦称花粉

UML实验指导书

UML 实验指导书

目录 实验一UML建模基础 (3) 实验二用例图 (4) 实验三UML类图 (9) 实验四对象图 (13) 实验五包图 (14) 实验六状态图 (17) 实验七活动图 (21) 实验八时序图与协作图 (22) 实验九组件图 (26)

实验一UML建模基础 [实验目的和要求] 1、熟悉UML建模工具Rational Rose的基本菜单及操作。 2、掌握UML的三大组成部分及各部分作用。 3、掌握UML规则和相关机制。 4、掌握UML的可见性规则和构造型的作用。 [实验内容和步骤] 1、练习使用建模工具建立各种UML图形,并对图形进行相应编辑 和修改。 2、认识各种UML关系及可见性符号,并用工具表示出来。 [分析与讨论] 1、总结UML在软件工程中的作用以及使用UML建模的必要性。

实验二用例图 [实验目的和要求] 1、掌握用例的概念。 2、掌握UML用例图的组成、作用以及使用场合。 3、掌握用例与用例之间的各种关系。 4、学习针对具体场景使用用例图进行分析说明的方法。 5、掌握用例描述的概念和基本结构,以及用例描述的作用。 [实验内容和步骤] 1、什么是用例,什么是场景?用例和场景之间的关系是怎样的? 用例是用户希望系统具备的功能,它定义了系统的行为特征。 2、用例图中有哪些组成元素?在UML中是如何表示的? 用例图的组成元素有参与者、用例、关系、系统。 3、用例与用例之间的包含关系、扩展关系和泛化关系各代表什么含义?它们之间有何区别?对以上三种关系各举一例,画出用 例图,并进行说明。 用例与用例之间的包含关系实际上就是面向对象语言中对象之间的调用关系,扩展关系实际上就是一种依赖的关系,泛化关系实际上就是面向对象中的继承关系。 4、为了满足物业中介行业的信息化要求,甲公司基于详尽的需求调研与分析,准备研发一套符合市场需要的、实用的信息管理 系统。主要将实现客户资料信息管理、客户委托(出租、出售、租赁、购买)信息管理、业务线索生成与管理、房源状态自动 更新、权限管理、到期用户管理、房源组合查询等功能。该公 司小王,通过多次的与潜在客户的交流与沟通,完成了最初的 用例模型的开发,下是一个用例模型的局部:

实验五实验六指导书

实验五 MATLAB 实现DFT MATLAB 为计算数据的离散快速傅时叶变换,提供了一系列丰富的数学函数,主要有fft 、ifft 、fft2、ifft2和czt 等。当所处理的数据的长度为2的幂次时,采用基-2算法进行计算,计算速度会显著增加。所以,要尽可能使所要处理的数据长度为2幂次或者用添零的方式来添补数据使之成为2的幂次。 1.fft 和ifft 函数 调用格式是: (1)()X fft Y = 如果X 是向量,则采用傅时叶变换来求解X 的离散傅里叶变换;如果X 是矩阵,则计算该矩阵每一列的离散傅里叶变换;如果X 是()D N *维数组,则是对第一个非单元素的维进行离散傅里叶变换。 (2)()N X fft Y ,= N 是进行离散傅里叶变换的X 的数据长度,可以通过对X 进行补零或截取来实现。 (3)[]()dim ,,X fft Y =或()dim ,,N X fft Y = 在参数dim 指定的维上进行离散傅里叶变换;当X 为矩阵时,dim 用来指定变换的实施方向:dim=1,表明变换按列进行;dim=2,表明变换按行进行。 函数ifft 的参数应用与函数fft 完全相同。 2.fft2和ifft2函数 调用格式是: (1)()X fft Y 2= 如果X 是向量,则此傅里叶变换即变成一维傅里叶变换fft ;如果X 是矩阵,则是计算该矩阵的二维快速傅里叶变换;数据二维傅里叶变换fft 2(X )相当于()()''X fft fft ,即先对X 的列做一维傅里叶变换,然后再对变换结果的行做一维傅里叶变换。 (2)()N M X fft Y ,,2= 通过对X 进行补零或截断,使得X 成为()N M *的矩阵。 函数ifft2的参数应用与函数fft2完全相同 fftn 、ifftn 是对数据进行多维快速傅立变换,其应用与fft2、ifft2类似;在此,不再叙述。 3.czt 函数 调用格式是: ()A W M X czt X ,,,= 式中X 是待变换的时域信号()n x ,其长度设为N ,M 是变换的长度,W 确定变换的步

计算机网络实验上机指导书实验五

计算机网络上机指导书昆明理工大学信自学院

实验五:静态路由实验 【实验目的】 1.了解静态路由的基本原理 2.掌握静态路由的配置流程,熟悉静态路由的配置命令 3.掌握测试静态路由连通性的方法 【实验学时】 建议3学时 【实验原理】 静态路由是指由用户或网络管理员手工配置的路由信息。当网络的拓扑结构或链路的状态发生变化时,网络管理员需要手工去修改路由表中相关的静态路由信息。静态路由信息在缺省情况下是私有的,不会传递给其他的路由器。当然,网管员也可以通过对路由器进行设置使之成为共享的。静态路由一般适用于比较简单的网络环境,在这样的环境中,网络管理员易于清楚地了解网络的拓扑结构,便于设置正确的路由信息。 静态路由的缺点在于:当网络发生故障或者拓扑发生变化后,静态路由不会自动改变,必须有管理员的介入。 配置IPv4静态路由时,需要了解以下内容: ●目的地址与掩码 在ip route-static命令中,IPv4地址为点分十进制格式,掩码可以用点分十进制表示,也可用掩码长度(即掩码中连续‘1’的位数)表示。 ●出接口和下一跳地址 在配置静态路由时,可指定出接口interface-type interface-name,也可指定下一跳地址nexthop-address,是指定出接口还是指定下一跳地址要视具体情况而定。实际上,所有的路由项都必须明确下一跳地址。在发送报文时,首先根据报文的目的地址寻找路由表中与之匹配的路由。只有指定了下一跳地址,链路层才能找到对应的链路层地址,并转发报文。 在某些情况下,如链路层被PPP封装,即使不知道对端地址,也可以在路由器配置时指定出接口。这样,即使对端地址发生了改变也无须改变该路由器的配置。 ●其它属性 对于不同的静态路由,可以为它们配置不同的优先级preference,从而更灵活地应用路由管理策略。例如:配置到达相同目的地的多条路由,如果指定相同优先级,则可实现负载分担,如果指定不同优先级,则可实现路由备份。 缺省路由是在没有找到匹配的路由表入口项时才使用的路由。在路由表中,缺省路由的目的地址和子网掩码都是0.0.0.0。在使用ip route-static配置静态路由时,如果将目的地址与掩码配置为全零(0.0.0.0

计算机网络实验指导书(6个实验)

实验一交换机的基本配置 一.实验原理 1.1以太网交换机基础 以太网的最初形态就是在一段同轴电缆上连接多台计算机,所有计算机都共享这段电缆。所以每当某台计算机占有电缆时,其他计算机都只能等待。这种传统的共享以太网极大的受到计算机数量的影响。为了解决上述问题,我们可以做到的是减少冲突域类的主机数量,这就是以太网交换机采用的有效措施。 以太网交换机在数据链路层进行数据转发时需要确认数据帧应该发送到哪一端口,而不是简单的向所有端口转发,这就是交换机MAC地址表的功能。 以太网交换机包含很多重要的硬件组成部分:业务接口、主板、CPU内存、Flash、电源系统。以太网交换机 的软件主要包括引导程序和核心操作系统两部分。 1.2以太网交换机配置方式 以太网交换机的配置方式很多,如本地Console 口配置,Telnet远程登陆配置,FTP TFTP配置和哑终端方式 配置。其中最为常用的配置方式就是Console 口配置和Telnet远程配置。 1.3以太网交换机基本配置方法 1.3.1交换机的用户界面交换机有以下几个常见命令视图: (1)用户视图:交换机开机直接进入用户视图,此时交换机在超级终端的标识符为。 (2)系统视图:在用户视图下输入实system-view命令后回车,即进入系统视图。在此视图下交换机的标识符 为:。](3)以太网端口视图:在系统视图下输入interface命令即可进入以太网端口视图。在此视图下交换 机的标识符为:。 (4)VLAN配置视图:在系统视图下输入vlan vlan —number即可进入VLAN配置视图。在此视图下交换机的标识符为:。 (5)VTY用户界面视图:在系统视图下输入user-interface vty number 即可进入VTY用户界面视图。在此视图下交 换机的标识符为:。 进行配置时,需要注意配置视图的变化,特定的命令只能在特定的配置视图下进行。 1.3.2交换机的常用帮助在使用命令进行配置的时候,可以借助交换机提供的帮助功能快速完成命令的查找和配置。 (1)完全帮助:在任何视图下,输入?”获取该视图下的所有命令及其简单描述。 (2)部分帮助:输入一命令,后接以空格分隔的?”,如果该位置为关键字,则列岀全部关键字及其描述;如果该位置为参数,则列岀有关的参数描述。 在部分帮助里面,还有其他形式的帮助,如键入一字符串其后紧接?”,交换机将列岀所有以该字符串开头的命令; 或者键入一命令后接一字符串,紧接?”,列岀命令以该字府串开头的所有关键字。 实验内容:交换机配置方法

(修改后) 系统仿真综合实验指导书(2011[1].6)

系统仿真综合实验指导书 电气与自动化工程学院 自动化系 2011年6月

前言 电气与自动化工程学院为自动化专业本科生开设了控制系统仿真课程,为了使学生深入掌握MATLAB语言基本程序设计方法,运用MATLAB语言进行控制系统仿真和综合设计,同时开设了控制系统仿真综合实验,30学时。为了配合实验教学,我们编写了综合实验指导书,主要参考控制系统仿真课程的教材《自动控制系统计算机仿真》、《控制系统数字仿真与CAD》、《反馈控制系统设计与分析——MATLAB语言应用》及《基于MATLAB/Simulink的系统仿真技术与应用》。

实验一MATLAB基本操作 实验目的 1.熟悉MATLAB实验环境,练习MATLAB命令、m文件、Simulink的基本操作。 2.利用MATLAB编写程序进行矩阵运算、图形绘制、数据处理等。 3.利用Simulink建立系统的数学模型并仿真求解。 实验原理 MATLAB环境是一种为数值计算、数据分析和图形显示服务的交互式的环境。MATLAB有3种窗口,即:命令窗口(The Command Window)、m-文件编辑窗口(The Edit Window)和图形窗口(The Figure Window),而Simulink另外又有Simulink模型编辑窗口。 1.命令窗口(The Command Window) 当MATLAB启动后,出现的最大的窗口就是命令窗口。用户可以在提示符“>>”后面输入交互的命令,这些命令就立即被执行。 在MATLAB中,一连串命令可以放置在一个文件中,不必把它们直接在命令窗口内输入。在命令窗口中输入该文件名,这一连串命令就被执行了。因为这样的文件都是以“.m”为后缀,所以称为m-文件。 2.m-文件编辑窗口(The Edit Window) 我们可以用m-文件编辑窗口来产生新的m-文件,或者编辑已经存在的m-文件。在MATLAB 主界面上选择菜单“File/New/M-file”就打开了一个新的m-文件编辑窗口;选择菜单“File/Open”就可以打开一个已经存在的m-文件,并且可以在这个窗口中编辑这个m-文件。 3.图形窗口(The Figure Window) 图形窗口用来显示MATLAB程序产生的图形。图形可以是2维的、3维的数据图形,也可以是照片等。 MATLAB中矩阵运算、绘图、数据处理等内容参见教材《自动控制系统计算机仿真》的相关章节。 Simulink是MATLAB的一个部件,它为MATLAB用户提供了一种有效的对反馈控制系统进行建模、仿真和分析的方式。 有两种方式启动Simulink:

指导书_实验5

实验5 类与对象的应用2 实验目的: 1掌握类和对象的概念、定义和使用方法。 2掌握静态数据成员和const修饰的成员函数的用法。 3掌握c++程序的一般结构。 实验内容: 在实验4 个人的活期储蓄账户类SavingsAccount上修改完成以下内容: (1)在类SavingsAccount中增加一个静态数据成员total,用来记录各个账户的总金额,并为其增加相应的静态成员函数getTotal用来对其进行访问。 (2)将类SavingsAccount中不需要改变对象状态的成员函数声明为常成员函数,比如accumulate,getBalance等。 (3)增加日期类Date class Date { int year, month, day; int totalDays; //该日期是从公元元年1月1日开始的第几天 public: Date(int year, int month, int day); int getYear() const { return year; } int getMonth() const { return month; } int getDay() const { return day; } void show() const; //输出当前日期

bool isLeapYear() const; //判断当年是否为闰年 int distance(const Date& date) const;//计算当前日期与指定日期之间相差天数 }; (4)类SavingsAccount中的int date都要改成Date类的对象。 ()将整个程序分为5个文件:date.h account.h是类定义头文件,date.cpp account.cpp 是类实现文件,5.cpp是主函数文件。 提示: (1)利息的计算方式:一年中每天的余额累积起来再除以一年的总天数,得到一个日均余额,再乘以年利率。 (2)两个日期相差天数的计算方式:选取一个基准日期(如公元元年1月1日),在计算两个日期相差天数时,先分别将两个日期与基准日期的相对天数计算出来,再将两个相对天数相减即可。 (3)与基准日期(如公元元年1月1日)相对天数的计算方式:(1)计算公元元年到公元y-1年的总天数。平均每年有365天,闰年多一天,即365*(y-1)加上公元元年到y-1年之间的闰年数。(2)加上当年当月1日到当年1月1日之间相差的天数。(3)加上当年当月当日到当年当月1日之间相差的天数。 (4)可以把每月1日到1月1日天数放在一个数组中,该数组元素值分别是:0,31,59,90,120,151,181,212,243,73,304,334,365 (5)两个头文件里先写:

云南大学实验六运算器实验指导书剖析

EL-JY-II计算机组成原理实验系统简介 一、系统组成: EL-JY-II系统由两大部分组成: 1、基板: 本部分是8位机和16位机的公共部分,包括以下几个部分: 1)数据输入和输出电路 2)显示及监控电路 3)脉冲源及时序电路 4)数据和地址总线 5)8255扩展实验电路 6)单片机控制电路和键盘操作部分 7)与PC机通讯的接口电路 8)主存储器电路 9)微代码输入及显示电路 9)电源电路 10)CPLD实验板(选件) 11)自由实验区(面包板) 2.CPU板: 本板分为8位机和16位机两种,除数据总线和地址总线分别为8位和16位以外,都包括以下几个部分: 1)微程序控制器 2)运算器 3)寄存器堆 4)程序计数器 5)指令寄存器 6)指令译码电路 7)地址寄存器 8)数据和控制总线 二、系统布局:

系统布局分别见图1和图2。

三、使用说明及要求 1.本系统分为三种实验操作方式:

方式一:开关控制操作方式; 方式二:键盘控制操作方式; 方式三:PC机联机操作方式。 2.本系统采用正逻辑,即“1”代表高电平,“0”代表低电平; 3.指示灯亮表示相应信号为高电平,熄灭表示相应信号为低电平; 4.实验连线时应按如下方法:对于横排座,应使排线插头上的箭头面向自己插在横排座上;对于竖排座,应使排线插头上的箭头面向左边插在竖排座上; 5.为保证实验的成功,每次实验之前均应认真阅读实验指导书,接线要按要求,确保正确无误且接触良好; 6.应严格按照实验指导书的实验步骤和先后顺序进行实验,否则有可能造成实验不成功甚至损坏芯片。 方式一:开关控制操作方式: 1.在各种控制信号中,有的是低电平有效,有的是高电平有效,请注意区别,具体可参见各个实验指导。 2.总线是计算机信息传输的公共通路。为保证总线信息的正确无误,总线上每次只能有一个控制信号有效,如果同时有两个或两个以上同时有效,会产生总线竞争而造成错误甚至损坏芯片。故每次开始实验操作时均要先使置所有控制开关电路的控制信号为“1”,高电平,对应的指示灯亮。 方式二:键盘控制操作方式: 系统通电,K4开关拨到OFF,监控指示灯(数码管,以下数码管均指监控指示灯)上滚动显示【CLASS SELECt】,在该状态下,整个键盘可用键分别为: 系统检测键:按下该键,数码管显示【CHESYS】,(即CHECK SYSTEM的缩写),进入系统自检程序,具体说明见后述说明。 实验选择键:按下该键,数码管显示【ES--__】,进入实验课题选择,具体说明见后述说明。 联机键:按下该键,系统进入与上位机通讯状态,当与计算机联机成功,数码管显示【Pc-Con】,最后显示【8】,表示联机通讯成功。 除了上述三个键有效外,其余按键系统均不响应。 1. 系统检测键具体操作说明: 1). 当在监控指示灯显示【CLASS SELECt】时按下该键,显示变为【CHESYS】 (CHECK SYSTEM),进入系统自检,此时,只要按下键盘上任意一键,数码管 后两位就显示该键所对应的键盘编码,前四位显示对应电路的名称——8255。比

Matlab实验指导书(实验六)

MATLAB实验指导书 编著:李新平 二零零八年三月十四日

实验六、数据插值和数据拟合 6.1 实验目的 1)掌握用 MA TLAB 计算拉格朗日、分段线性、三次样条三种插值的方法,改变节点 的数目,对三种插值结果进行初步分析。 2)掌握用 MA TLAB 进行多项式最小二乘拟合,会选择合适的函数及转化为线性函数。 3)通过实例学习用数据插值和数据拟合解决实际问题。 6.2 分段线性插值 设给定一元未知函数 ) (x f y = 的 1 + n 个结点的数据 b x x a n = < < = L 0 对应的函数 值 n y y , , 0 L ,根据这些结点数据求其余 ) ( i j x j 1 点的函数值 j y ,可将相邻两个节点之间用 直线连接起来,如此形成的一条折线(见右图)构成的分段线性函数 ) (x I n 来近似表示未知函 数 ) (x f ,从而解决该插值问题的方法就称为分段线性插值。可用如下公式表示: ) ( ) ( ) ( 0 x f x l y x I n j j j n ? = ? = 其余 , 0 , , ) ( 1 1 1 1 1 1 + + + - - - £ £ - - £ £ - - ? ? ? ? ? í ì = j j j j j j j j j j j x x x x x x x x x x x x x x x l 可用 MA TLAB 命令 y=interp1(x0,y0,x)来实现, 其中参数 x0 为给定结点数据的横坐标向 量,参数 y0 为 x0 对应的函数值,参数 x 为要未知结点的横坐标向量,函数返回值 y 为参数 x 根据分段线性插值得到的函数值。 【例】插值求在[0,15]区间内步长为 0.1 的机床加工数据: >>x0=[0 3 5 7 9 11 12 13 14 15]? y0=[0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6]? >>x=0:0.1:15? % 插值点 >>y=inpert1(x0, y0, x) % 插值求得函数值 6.3 拉格朗日插值 设未知函数 ) (x g y = 是n 次多项式,给定该n 次多项式 1 + n 个结点的数据 ), , {( i i y x , } , , 0 n i L = 根据这些结点数据求其余 ) ( i j x j 1 点的函数值 j y ,可考虑如下构造:

实验5 齿厚测量实验指导书

实验5 齿轮齿厚偏差测量 一、实验目的 1.熟悉齿厚游标卡尺的结构和使用方法。 2.掌握齿轮分度圆弦齿高和弦齿厚公称值的计算方法。 3.加深对齿厚偏差定义的理解,熟悉齿厚测量方法。 二、量具简介 齿厚偏差可以用齿厚游标卡尺(图5-11)或光学测齿卡尺测出。本实验用齿厚游标卡尺测量齿厚实际值。齿厚游标卡尺由互相垂直的两个游标尺组成,测量时以齿轮顶圆作为测量基准。垂直游标尺用于按分度圆弦齿高公称值h确定被测部位,水平游标尺则用于测量 分度圆弦齿厚实际值。齿厚游标卡尺的读数方法与一般游标卡尺相同。 三、测量原理 齿厚偏差是指被测齿轮分度圆柱面上的齿厚实际值与公称值之差。对于标准直 齿圆柱齿轮,其模数为m,齿数为z,则分度圆弦齿高公称值和弦齿厚公称值按下式计算 为了使用方便,按上式计算出模数为1mm的各种不同齿数的齿轮分度圆弦齿高和弦齿厚的公称值,列于下表。 对于变位直齿圆柱齿轮,其模数为m,齿数为z,基本齿廓角为a,变位系数为x,则 分度圆弦齿高公称值和弦齿厚公称值按下式计算 四、实验步骤 (1)计算齿轮顶圆公称直径da和分度圆弦齿高公称值和弦齿厚公称值;(或从下表中查取)。 (2)首先测量出齿轮顶圆实际直径d a实际。按的数值调整齿厚卡尺的垂直游标尺,然后将其游标加以固定。 (3)将齿厚游标卡尺置于被测齿轮上,使垂直游标尺的高度板与齿顶可靠地接触,然后移动水平游标尺的量爪,使之与齿面接触,从水平游标尺上读出弦齿厚实际值。

这样依次对圆周上均布的几个齿进行测量。测得的齿厚实际值与齿厚公称值之差即为齿厚偏差。 (4)合格性条件为 五、思考题 1.测量齿轮齿厚是为了保证齿轮传动的哪项使用要求? 2.齿轮齿厚偏差可以用什么评定指标代替?

小学六年级科学实验指导书要点

教材分析 本册共分四个单元,共32课。 第一单元工具和机械本单元介绍了常用工具杠杆、轮轴、滑轮、斜面的原理及在日常生活中的应用。尤其是结合常用工具和实验器材设置了许多和日常生活密切相关的探究活动,在探究活动中让学生掌握各类机械和工具的特点和作用。 第二单元形状和结构本单元介绍了各种建筑物中使用的形状和结构及其特点,从实验材料的选取到各种不同的设计都能切实培养学生的创新意识和创新实践能力。 第三单元能量本单元介绍了电能、水的三态变化、太阳能以及他们之间的联系,学生掌握自然界中的物质可以相互转化,能量可以相互转化的自然规律,使学生养成爱护大自然,保护环境的意识。 第四单元生物的多样性知道生物的种类多种多样。知道同种生物不同的个体各不相同。初步理解生物体不同的形态结构是与它们的生活环境相适应的。知道生物的多样性是人类生存的重要资源。能自己确定标准对生物进行分类,知道分类是研究生物的基本方法。会用制作生物分布图的方法描述某一区域的生物种类。

(一)研究杠杆的秘密 【实验目的】 用杠杆尺做实验、收集并整理数据,分析认识杠杆省力、费力、不省力也不费力的规律。 【实验材料】 杠杆尺25个、钩码25盒。 【实验方法】 在杠杆尺的左边挂上钩码当作被撬动的重物,右边挂上钩码当作撬动时我们用的力。 1.小组任意在杠杆尺两端挂钩码,记录下挂钩码的位置和数量,并记录下此时杠杆尺的状态。 2.重复几次实验,收集几组不同的数据。 3.将2-3个小组的实验数据进行整合,汇集成一个更大的数据库。 4.对这个数据库进行分析,将能省力的情况、费力的情况、不省力也不费力的情况进行统计,分析出杠杆在什么条件下省力?在什么条件下费力?在什么条件下不省力也不 费力? 【注意事项】 1. 在一大堆杂乱无章的数据中,寻找有用的数据来说明问题也是进行科学探究的一种方法。 2. 数据越多越能说明问题,所以在实验中要收集尽可能多的数据。 3.杠杆尺左右只选一个位置挂钩码。 (二)滑轮和滑轮组

CASS实验指导书(实验五)

实验五 CASS8.0在工程中的应用 本章主要讲述CASS8.0在工程中的应用,其中包括基本几何要素的查询、土方量的计算、断面图的绘制、公路曲线设计、面积应用以及如何进行图数转换。 5.1 基本几何要素的查询 本节主要介绍如何查询指定点坐标,查询两点距离及方位,查询线长,查询实体面积。首先打开任一已有.dwg图像,如STUDY.DWG。 5.1.1查询指定点坐标 用鼠标点取“工程应用”菜单中的“查询指定点坐标”。用鼠标点取所要查询的点即可。也可以先进入点号定位方式,再输入要查询的点号 说明:系统左下角状态栏显示的坐标是迪卡尔坐标系中的坐标,与测量坐标系的X和Y的顺序相反。用此功能查询时,系统在命令行给出的X、Y是测量坐标系的值。 5.1.2查询两点距离及方位 用鼠标点取“工程应用”菜单下的“查询两点距离及方位”。用鼠标分别点取所要查询的两点即可。也可以先进入点号定位方式,再输入两点的点号。 说明:CASS8.0所显示的坐标为实地坐标,所以所显示的两点间的距离为实地距离。 5.1.3查询线长 用鼠标点取“工程应用”菜单下的“查询线长”。用鼠标点取图上曲线即可。 5.1.4查询实体面积 选择“工程应用”菜单下的“查询实体面积”,用鼠标点取待查询的实体的边界线或内部点即可,要注意实体应该是闭合的,如房子、菜地等。

5.2土方量的计算 5.2.1 DTM法土方计算 由DTM模型来计算土方量是根据实地测定的地面点坐标(X,Y,Z)和设计高程,通过生成三角网来计算每一个三棱锥的填挖方量,最后累计得到指定范围内填方和挖方的土方量,并绘出填挖方分界线。 DTM法土方计算共有两种方法,一种是进行完全计算,一种是依照图上的三角网进行计算。完全计算法包含重新建立三角网的过程,又分为“根据坐标计算”和“根据图上高程点计算”两种方法;依照图上三角网法直接采用图上已有的三角形,不再重建三角网。下面分述三种方法的操作过程: 1. 根据坐标计算 ●用复合线/多段线(命令:PL)画出所要计算土方的区域,一定要闭 合,但是尽量不要拟合。因为拟合过的曲线在进行土方计算时会用折 线迭代,影响计算结果的精度。 ●用鼠标点取“工程应用”菜单下的“DTM法土方计算”子菜单中的“根 据坐标文件”。 ●提示:选择边界线用鼠标点取所画的闭合复合线。出现“输入高程 点数据文件名”,选中study.dwg文件,出现“DTM土方计算参数设 置”对话框,其中: 区域面积:该值为复合线围成的多边形的水平投影面积。 平场标高:指设计要达到的目标高程。(本实验为了方便观看效果,可 选择497) 边界采样间距:边界插值间隔的设定,默认值为20米。: 边坡设置:选中处理边坡复选框后,则坡度设置功能变为可选,选中 放坡的方式(向上或向下:指平场高程相对于实际地面高程的高低, 平场高程高于地面高程则设置为向下。)然后输入坡度值。 ● 设置好计算参数后点击“确定”,屏幕上显示填挖方的提示框,如图 5-1所示,包括挖方量和填方量。命令行也会显示: 挖方量= XXXX立方米,填方量=XXXX立方米 同时图上绘出所分析的三角网、填挖方的分界线(白色线条)。 回车后屏幕上显示填挖方的提示框,命令行显示: 挖方量= XXXX立方米,填方量=XXXX立方米 同时图上绘出所分析的三角网、填挖方的分界线(白色线条)。 ●关闭对话框后系统提示:

实验指导书实验六SolidWorks运动仿真

实验指导书实验六S o l i d W o r k s运动仿真 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

实验一 SolidWorks运动仿真 一、实验目的 1.掌握SolidWorks图形装配方法 2.掌握SolidWorks装配图的motion分析操作方法 二、实验内容 完成下列3个模型的装配及运动仿真 三、实验步骤 压榨机机构的装配与仿真

3.1 压榨机机构的装配 3.1.1 选择【文件】/【新建】/【装配体】命令,建立一个新装配体文件。依次将机架和压榨杆添加进来,添加机架与压榨杆的同轴心配合。如图4。再将滑块添加进来,添加滑块与压榨杆的重合配合,如图5。 3.1.2 添加滑块端面与机架端面的重合配合,以及滑块前视基准面与机架前视基准面的重合配合(点击图形区域左边的装配体下的机架前的“+”号即可找到前视基准面)最后将滑块拖动到中间位置。

3.2 压榨机机构的运动仿真 3.2.1 仿真前先将“solidworks motion”插件载入,单击工具栏中按钮“”的下三角形,选择其中的“插件”,在弹出的“插件”设置框中,选中“solidworks motion”的前后框,如下图8所示。在装配体界面,单击左下角的【运动算例】,再在【算例类型】下拉列表中选择【motion 分析】如下图9所示。

3.2.2 添加实体接触:单击工具栏上的“接触按钮” ,在弹出的属性管理器中【接触 类型】栏内选择“实体接触”,在【选择】栏内,点击视图区中压榨杆和滑块,“材料”栏内都选择“steel (dry)”, 单击“确定”按钮“ ”,如下图10所示。同理再为滑 块与机架添加实体接触,参数设置与压榨杆与滑块之间的一样。

相关主题