搜档网
当前位置:搜档网 › 内核编译Openwrt制作ipk动态更新文件

内核编译Openwrt制作ipk动态更新文件

内核编译Openwrt制作ipk动态更新文件
内核编译Openwrt制作ipk动态更新文件

1、搭建开发环境

首先,我们需要一个为路由器定制的开发环境,具体可以参考我的另一篇日志:《搭建自己的OpenWrt

开发环境》。这里只做一个简单的补充,在执行make menuconfig后,会出现下图:

其中,图中红框部分是我定制路由器的系统版本,大家可以根据不同的路由器进行不同的选择;绿框部分表示我们需要编译一个SDK开发环境(默认情况下,此项未勾选)。

编译过程中需要通过官网下载很多相关的软件包,所以必须保证能够顺利连上外网。由于下载速度的限制,编译过程大概需要数小时。编译结束后,所有的产品都会放在编译根目录下的bin/yourtarget/. 例如:我所编译的产物都放在./bin/brcm47xx/下,其中文件主要有几类:

(1).bin/.trx 文件: 这些都是在我们所选的target-system的类别之下,针对不同路由器型号、版本编译的路由器固件。这些不同路由器的型号和版本是openwrt预先设置好的,我们不需要更改。至于.bin和.trx 的区别,一种说法是,第一次刷路由器的时候,需要用.bin文件,如果需要再升级,则不能再使用.bin文件,而需要用.trx文件。原因是,.bin是将路由器的相关配置信息和.trx封装在一起而生成的封包,也就是说是包含路由器版本信息的.trx。在第一次刷固件的时候,我们需要提供这样的信息,而在后续升级时,则不再需要,用.trx文件即可。

(2)packages文件夹: 里面包含了我们在配置文件里设定的所有编译好的软件包。默认情况下,会有默认选择的软件包。

(3)OpenWrt-SDK.**.tar.bz2: 这个也就是我们定制编译好的OpenWRT SDK环境。我们将用这个来进行OpenWrt软件包的开发。例如,我所编译好的SDK环境包为:

/bin/brcm47xx/OpenWrt-SDK-brcm47xx-for-Linux-x86_64-gcc-4.3.3+cs_uClibc-0.9.30.1.tar.bz2

可以从名称上看出,target system是brcm47xx,host system是Linux-x86_64,使用的编译工具以及库是4.3.3+cs_uClibc-0.9.30.1。

(4)md5sums 文件: 这个文件记录了所有我们编译好的文件的MD5值,来保证文件的完整性。因为文件的不完整,很容易将路由器变成“砖头”。

需要主要的是,编译完成后,一定要将编译好的bin目录进行备份(如果里面东西对你很重要的话),因为在下次编译之前,执行make clean 会将bin目录下的所有文件给清除掉!!

2、更改原有packages

在编译根目录下会有一个dl的目录,这个目录其实是“download”的简写,在编译前期,需要从网络下载的数据包都会放在这个目录下,这些软件包的一个特点就是,会自动安装在所编译的固件中,也就是我们make menuconfig的时候,为固件配置的一些软件包。如果我们需要更改这些源码包,只需要将更改好的源码包打包成相同的名字放在这个目录下,然后开始编译即可。编译时,会将软件包解压到build_dir目录下。

当然,你也可以自己在dl里面创建自己的软件包,然后更改相关的配置文件,让openwrt可以识别这个文件包。

由于我的项目更改的内容是底层的,需要跟固件一起安装。所以,我使用的方法就是直接更改dl目录下软件包,然后重新进行固件编译。感觉类似于Linux的内核编译。反复编过十多次,没有任何问题。

3、新建自己的packages

对于自己新建的package,而这个package又不需要随固件一起安装,换句话说,就是可以当做一个可选软件包的话。我们可以利用我们的SDK环境来单独编译,编译后会生成一个ipk的文件包。然后利用opkg install xxx.ipk 来安装这个软件。

下面具体说下,如何编译一个helloword的软件包。

(1)首先,编写helloworld程序

编写helloworld.c

#include

#include

int main(void)

{

printf("Hell! O' world, why won't my code compile?\n\n");

return 0;

}

编写Makefile文件

# build helloworld executable when user executes "make"

helloworld: helloworld.o

$(CC) $(LDFLAGS) helloworld.o -o helloworld

helloworld.o: helloworld.c

$(CC) $(CFLAGS) -c helloworld.c

# remove object files and executable when user executes "make clean"

clean:

rm *.o helloworld

在这两个文件的目录下,执行make 应该可以生成helloworld的可执行文件。执行helloworld后,能够打印出“Hell! O' world, why won't my code compile?”。这一步,主要保证我们的源程序是可以正常编译的。下面我们将其移植到OpenWRT上。

(2)将OpenWrt-SDK-brcm47xx-for-Linux-x86_64-gcc-4.3.3+cs_uClibc-0.9.30.1.tar.bz2解压

tar –xvf OpenWrt-SDK-brcm47xx-for-Linux-x86_64-gcc-4.3.3+cs_uClibc-0.9.30.1.tar.bz2

(3)进入SDK

cd OpenWrt-SDK-brcm47xx-for-Linux-x86_64-gcc-4.3.3+cs_uClibc-0.9.30.1

可以看到里面的目录结构跟我们之前source的目录结构基本相同,所需要编译的软件包,需要放置在package目录下

(4)在package目录下创建helloworld目录

cd package

mkdir helloworld

cd helloworld

(5)创建src目录,拷贝helloworld文件

mkdir src

cp /home/wrt/test/helloworld.c src

cp /home/wrt/test/Makefile src

(6)在helloworld目录下创建Makefile文件

这个Makefile文件是给OpenWRT读的,而之前写的那个Makefile文件是针对helloworld给编译其读的。两个Makefile不在同一层目录下。

touch Makefile

vim Makefile

Makefile文件模板内容如下:

##############################################

# OpenWrt Makefile for helloworld program

#

#

# Most of the variables used here are defined in

# the include directives below. We just need to

# specify a basic description of the package,

# where to build our program, where to find

# the source files, and where to install the

# compiled program on the router.

#

# Be very careful of spacing in this file.

# Indents should be tabs, not spaces, and

# there should be no trailing whitespace in

# lines that are not commented.

#

##############################################

include $(TOPDIR)/rules.mk

# Name and release number of this package

PKG_NAME:=helloworld

PKG_RELEASE:=1

# This specifies the directory where we're going to build the program.

# The root build directory, $(BUILD_DIR), is by default the build_mipsel

# directory in your OpenWrt SDK directory

PKG_BUILD_DIR := $(BUILD_DIR)/$(PKG_NAME)

include $(INCLUDE_DIR)/package.mk

# Specify package information for this program.

# The variables defined here should be self explanatory.

# If you are running Kamikaze, delete the DESCRIPTION

# variable below and uncomment the Kamikaze define

# directive for the description below

define Package/helloworld

SECTION:=utils

CATEGORY:=Utilities

TITLE:=Helloworld -- prints a snarky message

endef

# Uncomment portion below for Kamikaze and delete DESCRIPTION variable above define Package/helloworld/description

If you can't figure out what this program does, you're probably

brain-dead and need immediate medical attention.

endef

# Specify what needs to be done to prepare for building the package.

# In our case, we need to copy the source files to the build directory.

# This is NOT the default. The default uses the PKG_SOURCE_URL and the

# PKG_SOURCE which is not defined here to download the source from the web.

# In order to just build a simple program that we have just written, it is

# much easier to do it this way.

define Build/Prepare

mkdir -p $(PKG_BUILD_DIR)

$(CP) ./src/* $(PKG_BUILD_DIR)/

endef

# We do not need to define Build/Configure or Build/Compile directives

# The defaults are appropriate for compiling a simple program such as this one

# Specify where and how to install the program. Since we only have one file,

# the helloworld executable, install it by copying it to the /bin directory on

# the router. The $(1) variable represents the root directory on the router running

# OpenWrt. The $(INSTALL_DIR) variable contains a command to prepare the install # directory if it does not already exist. Likewise $(INSTALL_BIN) contains the

# command to copy the binary file from its current location (in our case the build

# directory) to the install directory.

define Package/helloworld/install

$(INSTALL_DIR) $(1)/bin

$(INSTALL_BIN) $(PKG_BUILD_DIR)/helloworld $(1)/bin/

endef

# This line executes the necessary commands to compile our program.

# The above define directives specify all the information needed, but this

# line calls BuildPackage which in turn actually uses this information to

# build a package.

$(eval $(call BuildPackage,helloworld))

(7)返回到SDK的根目录

执行make进行编译

编译过程会在build_dir目录下完成

编译结果会放在bin/[yourtarget]/package目录下helloworld_1_bcm47xx.ipk

(8)上传helloworld_1_bcm47xx.ipk

使用sftp软件上传helloworld_1_bcm47xx.ipk至路由器

执行opkg install helloworld_1_bcm47xx.ipk

输入hello然后按Tab键,发现openwrt中已经有helloworld可执行命令。执行helloworld 查看程序的效果。

Hell! O' world, why won't my code compile?

编译在arm板上运行的内核模块

编译在arm板上运行的内核模块 前两天被这个事情搞晕了,看视频的时候感觉编译一个内核模块很简单的, 就是修改makefile 的两个地方,但是自己一做就出现问题了,因为我是自己自 学的,身边没有可以指导的人,所以很多都要靠自己摸索了,我自己编译的时 候出现很多警告信息和错误,提示找不到头文件,还有一些看不懂的信息,到 处找资料,但是都没有说清楚,看了很久也没看出什么对自己有用的东西,看 的头晕,准备放弃了,今天在学习的时候又去看结果看到一篇博文,才焕然大 悟,makefile 里面要改的源代码路径是移植到arm 板上的linux 源代码,才突然 想起来,我自己改错了,就是要把路径指上你开发板上运行的linux 内核源代 码的顶层路径,我是用的通过nfs 启动系统的,是按照国嵌的视频一步步做的, 所以我的路径在我的nfs 所在的路径。这些问题对于一些学了很久的人来说可 能很低级,但是对于初学者来说可能碰到后半天搞不好,所以写下来供参考。 。。下面是我自己找的一个小实验: #include #include MODULE_LICENSE(“GPL”);MODULE_AUTHOR(“David Xie”);MODULE_DESCRIPTION(“Hello World Module”);MODULE_ALIAS(“a simplest module”);static int __init hello_init(){ printk(KERN_EMERG”Hello World!\n”);return 0;}static void __exit hello_exit(){ printk(KERN_EMERG “Goodbye Cruel World!\n”);}module_init(hello_init);module_exit(hello_exit);第一步是编译,首先要做的是设置交叉编译器,修改makefile,打开makefile 文件, 如下:ifneq ($(KERNELRELEASE),)obj-m := hello.oelseKDIR := /forlinux/kernel/linux-2.6.28all:make -C $(KDIR) M=$(PWD) modules ARCH=arm CROSS_COMPILE=arm-linux-clean:rm -f *.ko *.o *.mod.o *.mod.c *.symversendif 首先需要指定kernel 的源代码路径:我的是KDIR

Linux 2.6.19.x内核编译配置选项简介(2)

Linux 2.6.19.x内核编译配置选项简介(2) Security Marking 对网络包进行安全标记,类似于nfmark,但主要是为安全目的而设计,如果你不明白的话就别选 Network packet filtering (replaces ipchains) Netfilter可以对数据包进行过滤和修改,可以作为防火墙("packet filter"或"proxy-based")或网关(NAT)或代理(proxy)或网桥使用.选中此选项后必须将"Fast switching"关闭,否则将前功尽弃 Network packet filtering debugging 仅供开发者调试Netfilter使用 Bridged IP/ARP packets filtering 如果你希望使用一个针对桥接的防火墙就打开它 Core Netfilter Configuration 核心Netfilter配置(当包流过Chain时如果match某个规则那么将由该规则的target来处理,否则将由同一个Chain中的下一个规则进行匹配,若不match所有规则那么最终将由该Chain的policy进行处理) Netfilter netlink interface 允许Netfilter在与用户空间通信时使用新的netlink接口.netlink Socket是Linux用户态与内核态交流的主要方法之一,且越来越被重视 Netfilter NFQUEUE over NFNETLINK interface 通过NFNETLINK接口对包进行排队 Netfilter LOG over NFNETLINK interface 通过NFNETLINK接口对包记录.该选项废弃了ipt_ULOG和ebg_ulog机制,并打算在将来废弃基于syslog 的ipt_LOG和ip6t_LOG模块 Layer 3 Independent Connection tracking 独立于第三层的链接跟踪,通过广义化的ip_conntrack支持其它非IP协议的第三层协议 Netfilter Xtables support 如果你打算使用ip_tables,ip6_tables,arp_tables之一就必须选上 "CLASSIFY" target support 允许为包设置优先级,一些排队规则(atm,cbq,dsmark,pfifo_fast,htb,prio)需要使用它 "CONNMARK" target support 类似于"MARK",但影响的是连接标记的值 "DSCP" target support 允许对ip包头部的DSCP(Differentiated Services Codepoint)字段进行修改,该字段常用于Qos "MARK" target support 允许对包进行标记(通常配合ip命令使用),这样就可以改变路由策略或者被其它子系统用来改变其行为"NFQUEUE" target Support 用于替代老旧的QUEUE(iptables内建的target之一),因为NFQUEUE能支持最多65535个队列,而QUEUE 只能支持一个 "NOTRACK" target support 允许规则指定哪些包不进入链接跟踪/NA T子系统 "SECMARK" target support

linux内核编译和生成makefile文件实验报告

操作系统实验报告 姓名:学号: 一、实验题目 1.编译linux内核 2.使用autoconf和automake工具为project工程自动生成Makefile,并测试 3.在内核中添加一个模块 二、实验目的 1.了解一些命令提示符,也里了解一些linux系统的操作。 2.练习使用autoconf和automake工具自动生成Makefile,使同学们了解Makefile的生成原理,熟悉linux编程开发环境 三、实验要求 1使用静态库编译链接swap.c,同时使用动态库编译链接myadd.c。可运行程序生成在src/main目录下。 2要求独立完成,按时提交 四、设计思路和流程图(如:包括主要数据结构及其说明、测试数据的设计及测试结果分析) 1.Makefile的流程图: 2.内核的编译基本操作 1.在ubuntu环境下获取内核源码 2.解压内核源码用命令符:tar xvf linux- 3.18.12.tar.xz 3.配置内核特性:make allnoconfig 4.编译内核:make 5.安装内核:make install

6.测试:cat/boot/grub/grub.conf 7.重启系统:sudo reboot,看是否成功的安装上了内核 8.详情及结构见附录 3.生成makefile文件: 1.用老师给的projec里的main.c函数。 2.需要使用automake和autoconf两个工具,所以用命令符:sudo apt-get install autoconf 进行安装。 3.进入主函数所在目录执行命令:autoscan,这时会在目录下生成两个文件 autoscan.log和configure.scan,将configure.Scan改名为configure.ac,同时用gedit打开,打开后文件修改后的如下: # -*- Autoconf -*- # Process this file with autoconf to produce a configure script. AC_PREREQ([2.69]) AC_INIT([FULL-PACKAGE-NAME], [VERSION], [BUG-REPORT-ADDRESS]) AC_CONFIG_SRCDIR([main.c]) AC_CONFIG_HEADERS([config.h]) AM_INIT_AUTOMAKE(main,1.0) # Checks for programs. AC_PROG_CC # Checks for libraries. # Checks for header files. # Checks for typedefs, structures, and compiler characteristics. # Checks for library functions. AC_OUTPUT(Makefile) 4.新建Makefile文件,如下: AUTOMAKE_OPTIONS=foreign bin_PROGRAMS=main first_SOURCES=main.c 5.运行命令aclocal 命令成功之后,在目录下会产生aclocal.m4和autom4te.cache两个文件。 6.运行命令autoheader 命令成功之后,会在目录下产生config.h.in这个新文件。 7.运行命令autoconf 命令成功之后,会在目录下产生configure这个新文件。 8.运行命令automake --add-missing输出结果为: Configure.ac:11:installing./compile’ Configure.ac:8:installing ‘.install-sh’ Configure.ac:8:installing ‘./missing’ Makefile.am:installing ‘./decomp’ 9. 命令成功之后,会在目录下产生depcomp,install-sh和missing这三个新文件和执行下一步的Makefile.in文件。 10.运行命令./configure就可以自动生成Makefile。 4.添加内核模块

Linux 内核编译配置选项简介

General setup常规设置 Local versio n - append to kernel release 在内核版本后面加上自定义的版本字符串(小于64字符),可以用"uname -a"命 令看到 Automatically append version information to the versio n string 自动在版本字符串后面添加版本信息,编译时需要有perl以及git仓库支持 Support for paging of anonymous memory (swap) 使用交换分区或者交换文件来做为虚拟内存 System V IPC System V进程间通信(IPC)支持,许多程序需要这个功能.必选,除非你知道自己 在做什么 POSIX Message Queues POSIX消息队列,这是POSIX IPC中的一部分 BSD Process Accounting 将进程的统计信息写入文件的用户级系统调用,主要包括进程的创建时间/创建者/ 内存占用等信息 Export task/process statistics through netlink 通过netlink接口向用户空间导出任务/进程的统计信息,与BSD Process Accounting的不同之处在于这些统计信息在整个任务/进程生存期都是可用的 UTS Namespaces UTS名字空间支持,不确定可以不选 Auditing support 审计支持,某些内核模块(例如SELinux)需要它,只有同时选择其子项才能对系统 调用进行审计 Kernel .config support 把内核的配置信息编译进内核中,以后可以通过scripts/extract-ikconfig脚本来 提取这些信息 Cpuset support 只有含有大量CPU(大于16个)的SMP系统或NUMA(非一致内存访问)系统才需 要它 Kernel->user space relay support (formerly relayfs) 在某些文件系统上(比如debugfs)提供从内核空间向用户空间传递大量数据的接 口

linux内核配置模块编译安装

Linux内核配置编译和加载 Linux内核模块 Linux内核结构非常庞大,包含的组件也非常多,想要把我们需要的部分添加到内核中,有两个方法:直接编译进内核和模块机制 由于直接编译进内核有两个缺点,一是生成的内核过大,二是每次修改内核中功能,就必须重新编译内核,浪费时间。因此我们一般采用模块机制,模块本身不被编译进内核映像,只有在加载之后才会成为内核的一部分,方便了修改调试,节省了编译时间。 配置内核 (1)在drivers目录下创建hello目录存放hello.c源文件 (2)在hello目录下新建Makefile文件和Kconfig文件 Makefile文件内容: obj-y += hello.o //要将hello.c编译得到的hello.o连接进内核 Kconfig文件内容: 允许编译成模块,因此使用了tristate (3)在hello目录的上级目录的Kconfig文件中增加关于新源代码对应项目的编译配置选项 修改即driver目录下的Kconfig文件,添加

source "drivers/hello/Kconfig" //使hello目录下的Kconfig起作用 (4)在hello目录的上级目录的Makefile文件中增加对新源代码的编译条目 修改driver目录下的Makefile文件,添加 obj-$(CONFIG_HELLO_FOR_TEST) += hello/ //使能够被编译命令作用到 (5)命令行输入“make menuconfig”,找到driver device,选择select,发现test menu 已经在配置菜单界面显示出来 (6)选择test menu进入具体的配置,可以选择Y/N/M,这里我选择编译为M,即模块化 (7)保存退出后出现 (8)进入kernels目录中使用“ls -a”查看隐藏文件,发现多出.config隐藏文件,查看.config 文件

史上最全linux内核配置详解

对于每一个配置选项,用户可以回答"y"、"m"或"n"。其中"y"表示将相应特性的支持或设备驱动程序编译进内核;"m"表示将相应特性的支持或设备驱动程序编译成可加载模块,在需要时,可由系统或用户自行加入到内核中去;"n"表示内核不提供相应特性或驱动程序的支持。只有<>才能选择M 1. General setup(通用选项) [*]Prompt for development and/or incomplete code/drivers,设置界面中显示还在开发或者还没有完成的代码与驱动,最好选上,许多设备都需要它才能配置。 [ ]Cross-compiler tool prefix,交叉编译工具前缀,如果你要使用交叉编译工具的话输入相关前缀。默认不使用。嵌入式linux更不需要。 [ ]Local version - append to kernel release,自定义版本,也就是uname -r可以看到的版本,可以自行修改,没多大意义。 [ ]Automatically append version information to the version string,自动生成版本信息。这个选项会自动探测你的内核并且生成相应的版本,使之不会和原先的重复。这需要Perl的支持。由于在编译的命令make-kpkg 中我们会加入- –append-to-version 选项来生成自定义版本,所以这里选N。 Kernel compression mode (LZMA),选择压缩方式。 [ ]Support for paging of anonymous memory (swap),交换分区支持,也就是虚拟内存支持,嵌入式不需要。 [*]System V IPC,为进程提供通信机制,这将使系统中各进程间有交换信息与保持同步的能力。有些程序只有在选Y的情况下才能运行,所以不用考虑,这里一定要选。 [*]POSIX Message Queues,这是POSIX的消息队列,它同样是一种IPC(进程间通讯)。建议你最好将它选上。 [*]BSD Process Accounting,允许进程访问内核,将账户信息写入文件中,主要包括进程的创建时间/创建者/内存占用等信息。可以选上,无所谓。 [*]BSD Process Accounting version 3 file format,选用的话统计信息将会以新的格式(V3)写入,注意这个格式和以前的v0/v1/v2 格式不兼容,选不选无所谓。 [ ]Export task/process statistics through netlink (EXPERIMENTAL),通过通用的网络输出工作/进程的相应数据,和BSD不同的是,这些数据在进程运行的时候就可以通过相关命令访问。和BSD类似,数据将在进程结束时送入用户空间。如果不清楚,选N(实验阶段功能,下同)。 [ ]Auditing support,审计功能,某些内核模块需要它(SELINUX),如果不知道,不用选。 [ ]RCU Subsystem,一个高性能的锁机制RCU 子系统,不懂不了解,按默认就行。 [ ]Kernel .config support,将.config配置信息保存在内核中,选上它及它的子项使得其它用户能从/proc/ config.gz中得到内核的配置,选上,重新配置内核时可以利用已有配置Enable access to .config through /proc/config.gz,上一项的子项,可以通过/proc/ config.gz访问.config配置,上一个选的话,建议选上。 (16)Kernel log buffer size (16 => 64KB, 17 => 128KB) ,内核日志缓存的大小,使用默认值即可。12 => 4 KB,13 => 8 KB,14 => 16 KB单处理器,15 => 32 KB多处理器,16 => 64 KB,17 => 128 KB。 [ ]Control Group support(有子项),使用默认即可,不清楚可以不选。 Example debug cgroup subsystem,cgroup子系统调试例子 Namespace cgroup subsystem,cgroup子系统命名空间 Device controller for cgroups,cgroups设备控制器

实验2.3_内核模块_实验报告

<内核模块>实验报告 题目: 内核模块实验 1、实验目的 模块是Linux系统的一种特有机制,可用以动态扩展操作系统内核功能。编写实现某些特定功能的模块,将其作为内核的一部分在管态下运行。本实验通过内核模块编程在/porc文件系统中实现系统时钟的读操作接口。 2、实验内容 设计并构建一个在/proc文件系统中的内核模块clock,支持read()操作,read()返回值为一字符串,其中包块一个空格分开的两个子串,分别代表https://www.sodocs.net/doc/222873497.html,_sec和https://www.sodocs.net/doc/222873497.html,_usec。 3、实验原理 Linux模块是一些可以作为独立程序来编译的函数和数据类型的集合。在装载这些模块时,将它的代码链接到内核中。Linux模块可以在内核启动时装载,也可以在内核运行的过程中装载。如果在模块装载之前就调用了动态模块的一个函数,那么这次调用将会失败。如果这个模块已被加载,那么内核就可以使用系统调用,并将其传递到模块中的相应函数。 4、实验步骤 编写内核模块 文件中主要包含init_module(),cleanup_module(),proc_read_clock()三个函数。其中init_module(),cleanup_module()负责将模块从系统中加载或卸载,以及增加或删除模块在/proc中的入口。read_func()负责产生/proc/clock被读时的动作。 内核编译部分过程:

过程持续较长时间. ●编译内核模块Makefile文件 Makefile CC=gcc MODCFLAGS := -Wall -D__KERNEL__ -DMODULE –DLINUX clock.o :clock.c /usr/include/linux//version.h $(CC) $(MODCFLAGS) –c clock.c echo insmod clock.o to turn it on echo rmmod clock to turn ig off echo 编译完成之后生成clock.o模块文件。 注:此参考makefile文件包含错误, 于是从网上寻找相关教程自行修改得到合适的Makefile文件 ●内核模块源代码clock.c #define MODULE #define MODULE_VERSION “1.0” #define MODULE_NAME “clock” #include #include #include int proc_read_clock(char* page, char** start, off_t off,int count,int* eof,void* data) { int len; struct timeval xtime;

linux 内核编译编译选项

1.Code maturity level options 代码成熟等级。此处只有一项:prompt for development and/or incomplete code/drivers,如果你要试验现在仍处于实验阶段的功能,就必须把该项选择为Y了;否则可以把它选择为N。 2. Loadable module support 对模块的支持。这里面有三项: Enable loadable module support:除非你准备把所有需要的内容都编译到内核里面,否则该项应该是必选的。 Set version inFORMation on all module symbols:可以不选它。 Kernel module loader:让内核在启动时有自己装入必需模块的能力,建议选上。 3. Processor type and features CPU类型。有关的几个如下: Processor family:根据你自己的情况选择CPU类型。 High Memory Support:大容量内存的支持。可以支持到4G、64G,一般可以不选。 Math emulation:协处理器仿真。协处理器是在386时代的宠儿,现在早已不用了。 MTTR support:MTTR支持。可不选。 Symmetric multi-processing support:对称多处理支持。除非你富到有多个CPU,否则就不用选了。 4. General setup 这里是对最普通的一些属性进行设置。这部分内容非常多,一般使用缺省设置就可以了。下面介绍一下经常使用的一些选项: Networking support:网络支持。必须,没有网卡也建议你选上。 PCI support:PCI支持。如果使用了PCI的卡,当然必选。 PCI access mode:PCI存取模式。可供选择的有BIOS、Direct和Any,选Any 吧。 Support for hot-pluggabel devices:热插拔设备支持。支持的不是太好,可不选。 PCMCIA/CardBus support:PCMCIA/CardBus支持。有PCMCIA就必选了。System V IPC BSD Process Accounting Sysctl support:以上三项是有关进程处理/IPC调用的,主要就是System V 和BSD两种风格。如果你不是使用BSD,就按照缺省吧。 Power Management support:电源管理支持。 Advanced Power Management BIOS support:高级电源管理BIOS支持。

linux2.6内核的编译步骤及模块的动态加载-内核源码学习-linux论坛

[原创]linux2.6内核的编译步骤及模块的动态加载-内核源码 学习-linux论坛 05年本科毕业设计做的是Linux下驱动的剖析,当时就买了一本《Linux设备驱动程序(第二版)》,但是没有实现将最简单的helloworld程 序编译成模块,加载到kernel里。不过,现在自己确实打算做一款芯片的Linux的驱动,因此,又开始看了《Linux设备驱动程序》这本书,不过已 经是第三版了。第二版讲的是2.4的内核,第三版讲的是2.6的内核。两个内核版本之间关于编译内核以及加载模块的方法都有所变化。本文是基于2.6的内核,也建议各位可以先看一下《Linux内核设计与实现(第二版)》作为一个基础知识的铺垫。当然,从实践角度来看,只要按着以下的步骤去做也应该可以实现成功编译内核及加载模块。个人用的Linux版本为:Debian GNU/Linux,内核版本为:2.6.20-1-686.第一步,下载Linux内核的源代码,即构建LDD3(Linux Device Drivers 3rd)上面所说的内核树。 如过安装的Linux系统中已经自带了源代码的话,应该在/usr/src目录下。如果该目录为空的话,则需要自己手动下载源代码。下载代码的方法和链接很多,也可以在CU上通过

https://www.sodocs.net/doc/222873497.html,/search/?key=&;q=kernel&a mp;frmid=53去下载。不过,下载的内核版本最好和所运行的Linux系统的内核版本一致。当然,也可以比Linux系统内核的版本低,但高的话应该不行(个人尚未实践)。 Debian下可以很方便的通过Debian源下载: 首先查找一下可下载的内核源代码: # apt-cache search linux-source 其中显示的有:linux-source-2.6.20,没有和我的内核版本完全匹配,不过也没关系,直接下载就可以了: # apt-get install linux-source-2.6.20 下载完成后,安装在/usr/src下,文件名为: linux-source-2.6.20.tar.bz2,是一个压缩包,解压缩既可以得到整个内核的源代码: # tar jxvf linux-source-2.6.20.tar.bz2

Linux内核配置编译与文件系统构建要点

Linux内核配置编译与文件系统构建 南京大学 黄开成101180046 2012.11.11 一:实验目的 1.了解嵌入式系统的开发环境,内核与文件系统的下载和启动; 2.了解Linux内核源代码的目录结构及各自目录的相关内容,了解Linux内核各配置选项内容和作用,掌握Linux内核的编译过程; 3.了解嵌入式操作系统中文件系统的类型和应用、了解JFFS2文件系统的优点及其在嵌入式系统中的作用、掌握利用Busybox软件制作嵌入式文件系统的方法,并且掌握嵌入式Linux文件系统的挂载过程。二:实验环境说明 1.PC机使用openSUSE 14 Enterprise 系统。 2.开发板使用深圳市武耀博德信息技术有限公司生产的基于Inter 的PXA270处理器的多功能嵌入式开发平台EELIOD。 3.PC机通过RS-232串口与开发板相连,在PC机终端上运行minicom 程序构造一个开发板上的终端,用于对开发板的控制。 4.PC机与开发板通过ethernet网络相连接,并可在开发板上通过加载网络文件系统(NFS)与PC机通信。 5.Bootloader可以通过tftp协议从PC机上下载内核镜像和根文件系统镜像。下载目录为/tftpboot 。 6.用于开发板的Linux内核源码为linux-2.4.21-51Board_EDR,

busybox版本为busybox-1.00-pre5。 7.交叉编译器的路径为/usr/local/arm-linux/bin/arm-linux。 三:实验操作过程和分析记录 1.嵌入式系统的开发环境和开发流程: 1.1启动minicom和开发板 在PC机上打开一个终端,输入: >minicom 按Ctrl+A-o进入minicom的configuration界面。对串行通信接口进行配置,串口设置为:/dev/ttyS0(串口线接在PC机的串口1上)、bps=115200、8位数据、无校验、无流控制。 然后打开开发板电源,看到屏幕有反应之后,按任意键进入配置界面,如果长时间没有按下任何键,bootloader将会自动从flash中读取内核和根文件系统并启动开发板上的Linux系统。 分析:嵌入式系统中,通常并没有像PC机中BIOS 那样的固件程序,因此整个系统的加载启动任务完全由bootloader来完成。bootloader的主要作用是:初始化硬件设备;建立内存空间的映射图;完成内核的加载,为内核设置启动参数。 按0进入命令行模式,出现51board>,可以设置开发板和PC机的IP 地址: 51board> set myipaddr 192.168.208.133(设置开发板的IP地址) 51board> set destipaddr 192.168.208.33(设置PC机的IP地址)注意IP地址的设置:使其处于同一网段,并且避免和其他系统的

linux实验报告(编译内核)

湖北大学 学生实验报告 实验课程网络实用技术 开课学院计算机与信息工程学院 任课教师徐婕 学生姓名骆婧 学生学号20112211042100 70 专业班级计科一班 学生年级2011级 2013-2014 学年第二学期

一.实验目的 通过实验,熟悉Linux操作系统的使用,掌握构建与启动Linux内核的方法;掌握用户程序如何利用系统调用与操作系统内核实现通信的方法,加深对系统调用机制的理解;进一步掌握如何向操作系统内核增加新的系统调用的方法,以扩展操作系统的功能。 二.实验内容 1.Linux环境下的C或者C++编译和调试工具的使用 2.向Linux内核增加新的系统调用,系统调用的功能为打印出自己的学号和 姓名信息。 3.Linux新内核的编译、安装和配置。 4.编写应用程序以测试新的系统调用并输出测试结果。 三、实验步骤 第一步:解压文件 1.下载linux-3.13.3.tar.xz压缩包。 2.在Ubantu系统下,解压该文件,解压之后得到linux- 3.13.3文件包 # tar –xf linux-3.13.3.tar.xz 3.将解压后的文件包复制到/usr/src # cp linux3.13.3 /usr/src 第二步:修改源程序,增加系统调用 1.gedit /usr/src/linux-3-13.3/kernel/sys.c (增加系统调用,使用面向内核的 打印函数printk打印姓名学号) 使用gedit命令,可以直接在文档编辑器中直接修改。修改好后按保存关闭文档编辑器。 在开头加入头文件: #include 在末尾加入函数 asmlinkage int sys_mycall(void) { printk(KERN_ALERT "My name is XXXX!My studentid is XXXXXXX\n"); return 1; } 2.gedit /usr/src/linux-3-1 3.3/arch/x86/include/asm/syscalls.h 在倒数第二行后插入 asmlinkage int sys_mycall(void);

Linux编译选项详解

linux内核编译选项详解(一):General setup 空间中有一些有关编译出错的信息 [*]Prompt for development and/or incomplete code/drivers 显示尚在开发中或尚未完成的代码与驱动.你应该选择它,因为有许多设备可能必需选择这个选项才能进行配置,实际上它是安全的。这个选项同样会让一些老的驱动的可用。如果你选了Y,你将会得到更多的阿尔法版本的驱动和代码的配置菜单。 ()Local version – append to kernel release 在内核版本后面加上自定义的版本字符串(小于64字符),可以用‖uname -a‖命令看到 [ ]Automatically append version information to the version string 自动生成版本信息。这个选项会自动探测你的内核并且生成相应的版本,使之不会和原先的重复。这需要Perl的支持。由于在编译的命令make-kpkg 中我们会加入- – append-to-version 选项来生成自定义版本,所以这里选N。 Kernel compression mode (Gzip) 内核压缩模式选baip2 ?gzip用于UNIX系统的文件压缩。后缀为.gz的文件。现今已经成为Internet 上使用非常普遍的一种数据压缩格式,或者说一种文件格式。HTTP协议上的GZIP 编码是一种用来改进WEB应用程序性能的技术。大流量的WEB站点常常使用 GZIP压缩技术来让用户感受更快的速度。 ?bzip2是一个基于Burrows- Wheeler 变换的无损压缩软件,压缩效果比传统的LZ77/LZ78压缩算法来得好。它是一款免费软件。bzip2能够进行高质量的数据 压缩。它利用先进的压缩技术,能够把普通的数据文件压缩10%至15%,压缩 的速度和解压的效率都非常高!支持现在大多数压缩格式,包括tar、gzip 等等。 ?lzma是一个Deflate和LZ77算法改良和优化后的压缩算法,开发者是Igor Pavlov,2001年被首次应用于7-Zip压缩工具中,是2001年以来得到发展的 一个数据压缩算法。它使用类似于LZ77 的字典编码机制,在一般的情况 [*] Support for paging of anonymous memory (swap) 将使你的内核支持虚拟内存。这个虚拟内存在LINUX中就是SWAP分区。除非你不想要SWAP分区,否则这里必选Y。

linux 模块编译步骤(详解)

MODULE_LICENSE("Dual BSD/GPL"); static int hello_init(void) { printk(KERN_ALERT "hello,I am edsionte/n"); return 0; } static void hello_exit(void) { printk(KERN_ALERT "goodbye,kernel/n"); } module_init(hello_init); module_exit(hello_exit); // 可选 MODULE_AUTHOR("Tiger-John"); MODULE_DESCRIPTION("This is a simple example!/n"); MODULE_ALIAS("A simplest example"); Tiger-John说明: 1.> 相信只要是学过 C 语言的同学对第一个程序都是没有问题的。但是也许大家看了第二个程序就有些不明白了。 可能有人会说: Tiger 哥你没疯吧,怎么会把 printf() 这么简单的函数错写成了 printk() 呢。 也有的人突然想起当年在大学学 C 编程时,老师告诉我们“一个 C 程序必须要有 main() 函数,并且系统会首先进入 main() 函数执行 " ,那么你的程序怎么没有 main() 函数呢?没有 main() 函数程序是怎么执行的呢?

可能也会有更仔细的人会发现:怎么两个程序头文件不一样呢?不是要用到输入和输出函数时,一定要用到 这个头文件,你怎么没有呢? -------------------------------------------------------------------------------------------- Tiger 哥很淡定的告诉大家其实第二个程序是正确的,现在我们就来看看到底如何来编写一个内核模块程序。 2. 内核模块编程的具体实现 第一步:首先我们来看一下程序的头文件 #include #include #include 这三个头文件是编写内核模块程序所必须的 3 个头文件。 Tiger-John 说明: 1> 由于内核编程和用户层编程所用的库函数不一样,所以它的头文件也和我们在用户层编写程序时所用的头文件也不一样。 2> 我们在来看看在 L inux 中又是在那块存放它们的头文件 a. 内核头文件的位置: /usr/src/linux-2.6.x/include/ b. 用户层头文件的位置 : /usr/include/ 现在我们就明白了。其实我们在编写内核模块程序时所用的头文件和系统函数都和用层编程时所用的头文件和系统函数是不同的。 第二步:编写内核模块时必须要有的两个函数 : 1> 加载函数: static int init_fun(void)

内核编译选项详解

首先对内核进行菜单配置, 代码: CODE: cd /usr/src/linux make menuconfig 代码成熟度选项, 代码: CODE: Code maturity level options ---> [*] Prompt for development and/or incomplete code/drivers [*] Select only drivers expected to compile cleanly 打开使用开发中、不完全的代码/驱动会让内核配置多出很多选项,由于我们需要使用一些正在开发中的功能,因此必需打开这一选项。 通用设置选项 代码: CODE: General setup ---> () Local version - append to kernel release [*] Support for paging of anonymous memory (swap) [*] System V IPC [*] POSIX Message Queues [*] BSD Process Accounting [*] BSD Process Accounting version 3 file format [*] Sysctl support [] Auditing support (15) Kernel log buffer size (16 => 64KB, 17 => 128KB) [*] Support for hot-pluggable devices [*] Kernel Userspace Events [*] Kernel .config support [*] Enable access to .config through /proc/config.gz [*] Configure standard kernel features (for small systems) ---> --- Configure standard kernel features (for small systems) [] Load all symbols for debugging/kksymoops [*] Enable futex support [*] Enable eventpoll support [*] Optimize for size [*] Use full shmem filesystem (0) Function alignment (0) Label alignment (0) Loop alignment (0) Jump alignment Local version - append to kernel release:这里填入的是64字符以内的字符串,你在这里填上的字符口串可以用uname -a命令看到。 Support for paging of anonymous memory (swap):这是使用交换分区或者交换文件来做为虚拟内存的,

编译选项翻译

Linux 2.6.19.x 内核编译配置选项简介 作者:金步国 版权声明 本文作者是一位自由软件爱好者,所以本文虽然不是软件,但是本着GPL 的精神发布。任何人都可以自由使用、转载、复制和再分发,但必须保留作者署名,亦不得对声明中的任何条款作任何形式的修改,也不得附加任何其它条件。您可以自由链接、下载、传播此文档,但前提是必须保证全文完整转载,包括完整的版权信息和作译者声明。 其他作品 本文作者十分愿意与他人共享劳动成果,如果你对我的其他翻译作品或者技术文章有兴趣,可以在如下位置查看现有作品的列表: 金步国作品列表 BUG报告,切磋与探讨 由于作者水平有限,因此不能保证作品内容准确无误,请在阅读中自行鉴别。如果你发现了作品中的错误,请您来信指出,哪怕是错别字也好,任何提高作品质量的建议我都将虚心接纳。如果你愿意就作品中的相关内容与我进行进一步切磋与探讨,也欢迎你与我联系。联系方式:MSN: csfrank122@https://www.sodocs.net/doc/222873497.html, Code maturity level options 代码成熟度选项 Prompt for development and/or incomplete code/drivers 显示尚在开发中或尚未完成的代码与驱动.除非你是测试人员或者开发者,否则请勿选择 General setup 常规设置 Local version - append to kernel release 在内核版本后面加上自定义的版本字符串(小于64字符),可以用"uname -a"命令看到 Automatically append version information to the version string 自动在版本字符串后面添加版本信息,编译时需要有perl以及git仓库支持 Support for paging of anonymous memory (swap) 使用交换分区或者交换文件来做为虚拟内存

Linux 2.6内核 模块编译 Makefile

编译模块的make file 必须是Makefile,不能是makefile. //why? ifneq ($(KERNELRELEASE),) obj-m := mytest.o mytest-objs := file1.o file2.o file3.o else KDIR := /lib/modules/$(shell uname -r)/build PWD := $(shell pwd) default: $(MAKE) -C $(KDIR) M=$(PWD) modules endif 解释为: KERNELRELEASE 是在内核源码的顶层Makefile中定义的一个变量,在第一次读取执行此Makefile时,KERNELRELEASE没有被定义, 所以make将读取执行else之后的内容。如果make的目标是clean,直接执行clean操作,然后结束。当make的目标为all时,-C $(KDIR) 指明跳转到内核源码目录下读取那里的Makefile;M=$(PWD) 表明然后返回到当前目录继续读入、执行当前的Makefile。当从内核源码目录返回时,KERNELRELEASE已被被定义,kbuild也被启动去 解析kbuild语法的语句,make将继续读取else之前的内容。else之前的内容为kbuild语法的语句, 指明模块源码中各文件的依赖关系,以及要生成的目标模块名。mytest-objs := file1.o file2.o file3.o表示mytest.o 由file1.o,file2.o与file3.o 连接生成。obj-m := mytest.o表示编译连接后将生成mytest.o模块。 ---------------------------------------------------------------------- 另外转载:

相关主题