搜档网
当前位置:搜档网 › Neutrino scattering in strong magnetic fields

Neutrino scattering in strong magnetic fields

Neutrino scattering in strong magnetic fields
Neutrino scattering in strong magnetic fields

1995年诺贝尔物理学奖——中微子和重轻子的发现

1995年诺贝尔物理学奖——中微子和重轻子的发现 1995年诺贝尔物理学奖的一半授予美国加州斯坦福大学的佩尔(Martin L.Perl,1927—),奖励他发现了τ轻子①,另一半授予美国加利福尼亚州欧文(Lrvine)加州大学的莱因斯(Frederick Reines,1918—),奖励他检测到了中微子。 佩尔和莱因斯是对轻子物理学作出重大贡献的两位美国物理学家。这是继鲍威尔(1950年发现π介子),张伯伦与西格雷(1959年发现反质子),丁肇中与里克特(1976年发现J/ψ粒子),鲁比亚和范德米尔(1984年发现W±、z0粒子),莱德曼、施瓦茨和斯坦博格(1988年发现中微子有不同属性),夏帕克(1992年发明多丝正比室)等人之后,国际科学界又一次将诺贝尔物理学奖这一殊荣授予实验高能粒子物理学领域的科学家,人数占本世纪后半叶的总领奖人数的12%。 从这一统计数字可以看出,50年代以来,实验高能粒子物理学的成就非常突出,是物理学界引以为豪的领域之一。 提到中微子的发现,应该先讲讲几件先驱的贡献。中微子的概念是1930年泡利首先提出的。当时摆在物理学家面前的疑难问题中有一个涉及β衰变。β衰变和α衰变及γ衰变不一样,放射性元素发出的β电子能量是连续分布的,不像α和γ射线具有明确的分立谱。而原子核的能态差是确定的,显然β衰变的连续谱是一种反常现象,不符合能量守恒定律的要求。是某种未知的过程在起作用,把能量带走了,还是能量守恒定律不适用于β衰变?在这个疑难问题面前,玻尔甚至都准备放弃能量守恒定律的普适性,他提出也许能量守恒定律只适用于统计性的过程。泡利是一位思想极为活跃的理论家,他在一封给同行的公开信中提出:“原子核中可能存在一种自旋为1/2,服从不相容原理的电中性粒子”。β衰变中失踪的能量也许就是这一察觉不到的中性粒子——中微子带走的。 费米支持泡利的设想,他在1934年正式提出β衰变理论,很好地解释了β能谱的连续性问题,不久这一理论得到了正电子衰变实验的肯定。然而,由于这种微小的中性粒子既不荷电,又不参与强相互作用,质量微不足道,它的存在一直未能得到实验验证。人们只能从能量和角动量的分析,论证这一幽灵式的基本粒子的存在和所起的作用。 在众多的探讨中微子的实验方案中,中国物理学家王淦昌提出的方案格外引人注意。他在40年代初从中国的抗战大后方向美国《物理评论》杂志提交了一篇简短的论文,建议把普通β衰变末态的三体,变为K俘获的二体,就有可能间接观测到中微子的存在。他还特别指出,可取Be→Li作为实验对象。这一建议立即受到实验物理学家的重视。1952年美国的戴维斯果然用这一方法取得了与理论预期值相符的实验结果,初步肯定了中微子的客观存在。 就在这个时候,直接捕捉中微子的工作也开始了。1953年美国洛斯阿拉莫斯(Los Alamos)科学实验室的莱因斯和考恩(ClydeL.Cowan,Jr)领导的实验小组按下列方案探测到反中微子:

中微子的发现

中微子的发现 背景 从运动学理论可以知道,当一个粒子衰变为两个粒子时,动量和动能守恒,末态粒子的能量应为确定值。而1914年,查德威克在实验中发现β衰变中放出的电子的能谱为连续谱,这意味着电子有各种不同的能量。这是什么原因呢? 对查德威克发现的现象,梅特纳认为:原子发射的电子能量都具有观察到的最大值,最终观察到的是电子经过别的过程损失一定能量后的次级电子。艾利斯(C.D.Ellis)和伍斯特(W.A.Wooster)设计了一个实验,运用一个量能器把所有产生的粒子收集起来,即使初级电子的能量被次级过程重新分配,也能从收集到的总能量算出每次β衰变放出的平均能量,它应当等于观察到的电子能谱极大值。可是,1927年他们的实验结果表明,量能器得到的只是最后射出的电子能量,其平均值与连续谱相符,而看不到次级发射的其它能量。由此可见并没有什么次级过程起作用的迹象。 面对这种困惑形势,玻尔对能量守恒理论提出了质疑。玻尔的主张遭到激烈的反对,狄拉克表示:“我宁可不惜任何代价来保持能量的严格守恒。”泡利也不同意玻尔的观点,1930年,他提出:β衰变中,可能存在一种电中性的粒子带走了电子一部分能量。他把这一电中性的粒子称为中微子。泡利的这一建议是很大胆的,因为这样的粒子是很难直接探测出来的,但这一假设可以使人们摆脱有关核结构理论及β衰变所遇到的困境。 1933年10月的索尔维会议对中微子概念的发展具有重大意义。泡利在会上再次介绍了他对这个新粒子的看法。尽管海森伯还持有怀疑态度,费米却对它做了肯定,并且已经认识到它与中子的区别。那届索尔维会议后仅两个月,费米即在核的质子-中子模型的基础上,发表了有关β衰变的理论。他用相对论量子力学描述费米子,又利用狄拉克辐射理论的产生与湮灭算符及遵从二次量子化的方法导出了寿命公式和β衰变的连续能谱公式,成功的完成了他的β衰变理论。费米的β衰变理论,不仅圆满地解释了整个β衰变过程,澄清了有关β衰变的疑难,同时也确立了有关核结构的理论。按照费米的理论,在β衰变里,中微

石墨烯介绍

1石墨烯概述-结构及性质 1.1 石墨烯的结构 石墨烯是一种由碳原子以sp2杂化连接形成的单原子层二维晶体,碳原子规整的排列于蜂窝状点阵结构单元之中,如图1所示。每个碳原子除了以σ键与其他三个碳原子相连之外,剩余的π电子与其他碳原子的π电子形成离域大π键,电子可在此区域内自由移动,从而使石墨烯具有优异的导电性能。同时,这种紧密堆积的蜂窝状结构也是构造其他碳材料的基本单元,如图2所示,单原子层的石墨烯可以包裹形成零维的富勒烯,单层或者多层的石墨烯可以卷曲形成单壁或者多壁的碳纳米管。 图1 石墨烯的结构示意图 图2石墨烯:其他石墨结构碳材料的基本构造单元,可包裹形成零维富勒烯,卷曲形成一维 碳纳米管,也可堆叠形成三维的石墨 1.2石墨烯的性质 石墨烯独特的单原子层结构,决定了其拥有许多优异的物理性质。如前所述,石墨烯中的每个碳原子都有一个未成键的π 电子,这些电子可形成与平面垂直的π轨道,π 电子可在这种长程π 轨道中自由移动,从而赋予了石墨烯出色的导电性能。研究表明室温下载流子在石墨烯中的迁移率可达到15000cm2/(V·s),相当于光速的1/300,在特定条件,如液氦的温度下,更是可达到250000cm2/(V·s),远远超过其他半导体材料,如锑化铟、砷化镓、硅半

导体等。这使得石墨烯中的电子的性质和相对论性的中微子非常相似。并且电子在晶格中的移动是无障碍的,不会发生散射,使其具有优良的电子传输性质。同时,石墨烯独特的电子结构还使其表现出许多奇特的电学性质,比如室温量子霍尔效应等。由于石墨烯中的每个碳原子均与相邻的三个碳原子结合成很强的σ 键,因此石墨烯同样表现出优异的力学性能。最近,哥伦比亚大学科学家利用原子力显微镜直接测试了单层石墨烯的力学性能,发现石墨烯的杨氏模量约为1100GPa,断裂强度更是达到了130GPa,比最好的钢铁还要高100 倍。石墨烯同样是一种优良的热导体。因为在未掺杂石墨中载流子密度较低,因此石墨烯的传热主要是靠声子的传递,而电子运动对石墨烯的导热可以忽略不计。其导热系数高达5000W/(m·K), 优于碳纳米管,更是比一些常见金属,如金、银、铜等高10 倍以上。除了优异的传导性能及力学性能之外,石墨烯还具有一些其他新奇的性质。由于石墨烯边缘及缺陷处有孤对电子,使石墨烯具有铁磁性等磁性能。由于石墨烯单原子层的特殊结构,使石墨烯的理论比表面积高达2630m2/g。石墨烯也具备独特的光学性能,单层石墨烯在可见光区的透过率达97%以上。这些特性使石墨烯在纳米器件、传感器、储氢材料、复合材料、场发射材料等重要领域有着广泛的应用前景。 图3石墨烯的应用 2石墨烯聚酯复合材料的制备方法 由于石墨烯优异的性质以及低的成本,石墨烯作为聚合物纳米填料被广泛报道。为了获得优异性能的聚合物/石墨烯复合材料,首先要保证石墨烯在聚合物基体中均匀分散。石墨烯的分散与制备方法、石墨烯表面化学、橡胶种类以及石墨烯-橡胶界面有着密切关系。聚合物/石墨烯复合材料的制备方法主要有溶液共混、熔体加工、原位聚合和乳液共混四种方法。 2.1 溶液共混法 溶液共混法主要是采用聚合物本身聚合体系的有机溶剂,充分分散石墨烯于体系中,随着体系聚合反应进行,最后石墨烯均匀分散并充分结合于聚合物基体中,得到石墨烯/聚合物复合材料的一种方法。通常先制备氧化石墨烯作为前驱体,对其进行功能化改性使之能在聚合体系溶剂中分散,还原后与聚合物进行溶液共混,从而制备石墨烯/聚合物复合材料。通过溶液共混制备复合材料的关键是将石墨烯及其衍生物均匀分散在能溶解聚合物的溶剂中。

分别对待暗能量、分别对待暗物质的报告之三

分别对待暗能量、分别对待暗物质的报告之三:介绍刘辰楼“荦谧加速能”科学的重大五规律,与爱因斯坦们“恶煞暗能量”推想的严重五错误。 【一】爱因斯坦们“恶煞暗能量”推想的严重五错误之一:将有条件的场客加速远离,当成了无条件的场客加速 远离。换言之,将有条件的场客加速远离,当成了所 谓“宇宙速胀”。 【二】刘辰楼“荦谧加速能”科学的重大五规律之一:爱因斯坦们所谓“宇宙速胀”,是没有的事;而“有条件 的场客加速远离”,是确有的事。

【三】爱因斯坦们“恶煞暗能量”推想的严重五错误之二:试图自所谓“爱因斯坦方程”,求解“暗能量”。【四】事实上,所谓“爱因斯坦方程”,原本不能成立。【五】“爱因斯坦方程”不能成立的原因,是;等号前方的微分张量,不能等于等号后方的非张量。 【六】刘辰楼“荦谧加速能”科学的重大五规律之二:克服了爱因斯坦们“恶煞暗能量”推想的严重五错误之二, 才能解出“荦谧加速能”(荦能额与谧能额)。【七】刘辰楼“荦谧加速能”科学的重大五规律之三:无客速的场客,不会加速远离;客速不够大的场客,也不 会加速远离。 【八】爱因斯坦们“恶煞暗能量”推想的严重五错误之三:不问场客“加速远离所需的初速值”。 【九】场客盘速{(Rcosθ)φ速}为零、场客局纬速(Rθ速)也为零时,刘辰楼的场客局速算式,表明:R加速度 〒-(荦能额对R的偏导数)c平方exp(4荦能额+2 谧能额)+(3荦能额对R的偏导数+谧能额对R的偏 导数)R速平方。 【十】加速远离,就是:R加速度>0。 【十一】所以,“加速远离所需的初速值”,其平方,R 速平方>{(荦能额对R的偏导数)/(3荦能额对R 的偏导数+谧能额对R的偏导数)} c平方exp(4荦

说明文阅读专项训练110:《中微子,关乎宇宙起源之谜》

中微子,关乎宇宙起源之谜 ①日本“顶级神冈”中微子探测器项目已正式启动,计划于2027年开始收集数据。该项目由日本主导、英国和加拿大等国参与,目的是阐明物质的起源及基本粒子的“大统一理论”,揭开宇宙起源之谜。 ②中微子是宇宙中数量最多的基本粒子之一。基本粒子是已知的最小粒子,它们不能像原子那样被分成更小的粒子,是构造宇宙中一切的基本元素。而中微子又是最轻的物质粒子,迄今还未能测出它的确切质量,但至少比电子还要轻100万倍。它们无处不在,如太阳发光、核反应堆发电、岩石的天然放射性衰变等核物理过程中都会产生,就连我们每个人也会因体内的钾-40衰变而每天发射约4亿个中微子。 ③中微子的最大特点就是几乎不与任何物质反应。不管是人体还是地球,在它看来,都是极为空旷、可以自由穿梭的空间。我们感觉不到它的存在,科学上探测也极为困难。因此,中微子的发现和研究过程,饱含着几代科研人员的心血。 ④1930年,奥地利科学家泡利为了解释原子核衰变中能量似乎不守恒的现象,预言了中微子的存在,认为就是这种“永远找不到的粒子”偷偷带走了能量。经过20多年的寻找,美国科学家科万和莱因斯终于在核反应堆旁探测到中微子,证明了它的存在。莱因斯因此获得了1995年诺贝尔物理学奖。 ⑤1968年,美国科学家戴维斯在地下1500米深的废弃金矿中进行实验,首次探测到了来自太阳的中微子,证实太阳无穷无尽的能量来自氢核聚变。1987年,日本科学家小柴昌俊在第一代神冈实验中,探测到了来自超新星的中微子。他们二人因此都获得了2002年诺贝尔物理学奖。此后,戴维斯进一步提高测量精度,却发现太阳中微子的数量比理论预言的要少得多,被称为“太阳中微子失踪之谜”。此后,小柴昌俊的学生梶田隆章发现,宇宙射线在大气层中产生的中微子也比预期少,称为“大气中微子丢失之谜”。 ⑥中微子为什么比预计的少?1998年,梶田隆章在升级后的第二代神冈实验中发现,大气中微子比预期少,是因为在飞行过程中自发变成了其他种类的中微子,这一现象就是中微子振荡。他也因此获得了2015年诺贝尔物理学奖。 ⑦中微子振荡现象证明了中微子有质量,尽管质量极其小,但会影响宇宙的起源和演化。根据已知的物理规律,在宇宙早期,正反物质应该成对产生,数量是一样的。但在现在的宇宙中,并没有发现大量反物质存在的迹象。为什么宇宙只由正物质构成?反物质到哪里去了?这是宇宙起源必须回答的关键问题。中微子振荡会带来一个意外的结果,即正反粒子的行为可以不一样,很有可能造成反物质消失。因此,全面了解中微子振荡,是破解“反物质消失之谜”的重要一环。 ⑧由于中微子难以探测,解决这些谜团需要巨大的探测器,获取更精确的数据。日本前两代神冈实验坚持自己的优势方向,掌握核心技术,持之以恒地探索,取得了巨大突破。此次启动的第三代实验“顶级神冈”将建造一个26万吨的水探测器,造价约8亿美元。此前,中国的江门中微子实验和美国的深层地下中微子实验也已开始建设。三个实验间既竞争又互补,联合分析能显著提高发现能力。新一代的中微子实验,也许有一天可以揭开宇宙起源的谜题。 11.(3分)①-③段,概括中微子的三个特点。 12.(3分)判断下列句子使用的说明方法,每空只填一项。 (1)但至少比电子还要轻100万倍。()()(2)它们无处不在,如太阳发光、核反应堆发电、岩石的天然放射性衰变等。() 13.(3分)莱因斯、戴维斯和小柴昌俊获得诺贝尔物理学奖的原因分别是什么? 14.(2分)中微子和揭开宇宙起源谜题有何关系?根据文章内容概括提炼。

第六章 地球的演化与形成(习题)

第六章地球的演化与形成 一填空题 1. 节肢动物的三叶虫在(寒武)纪和(奥陶)纪繁盛,到(二叠)纪末期全部绝灭。 2. 早古生代是海生(无脊椎)动物和低等(植物)繁盛的时代。 3. 早古生代是海生无脊椎动物大发展的时期,其中主要类别包括(三叶虫)、(头足类)、(笔石)及(腕足类)。 4. 新生代因(哺乳)动物繁盛而被称为(哺乳)动物的时代 5. 劳亚大陆和冈瓦纳之间的古大洋为(古特提斯)洋。 6. 陆生脊椎动物最早出现在(泥盆)纪 7. 爬行动物最早出现在(石炭)纪 8. 晚古生代海生无脊椎动物以(腕足)类、(珊瑚)类、(有孔虫)和(菊石)最为繁盛。 9. 志留纪的标准化石有(笔石)、(珊瑚)和(腕足)类。 10. 地史上第一次形成广泛陆相沉积的时代是(志留)纪 11. 加里东运动发生在(志留)纪 12. 因(泥盆)纪裸蕨植物特别繁盛而被称为裸蕨植物的时代 13. 三叠纪初期,全球只有一个大陆,称为(联合大陆) 14. 地球上发现的最古老的岩石年龄为( 4200 )Ma 15. 早寒武世形成的地层称为(下)寒武(统)或早寒武世地层 16. 地质年代单位与年代地层单位的对应关系:宙(宇);代(界);纪(系);世(统) 二选择题 1. 裸子植物在()时代最为繁盛 泥盆纪 第四纪 中生代 寒武纪 2. 被子植物在()时代最为繁盛 早古生代 新生代

晚古生代 3. 地球上最原始的生命出现在() 1600Ma 3200Ma 2300Ma 1900Ma 4. 裸蕨植物的特点是() 无根茎叶的分化 根茎叶已完全分化 已有明显的根部,但茎叶尚未分化 只有根和茎,没有真正的叶部 5. 地球上首次出现大规模出现森林的时代为() 白垩纪 石炭纪 新第三纪 泥盆纪 6. 世界最早的成煤期为() 侏罗纪 石炭纪 寒武纪

暗物质与暗能量的统一性研究

暗物质与暗能量的统一性研究 发表时间:2019-06-10T14:58:52.437Z 来源:《知识-力量》2019年8月27期作者:张天成[导读] 随着世界的不断发展,暗物质和暗能量在粒子物理和宇宙学研究中越来越引起了大家的关注和重视。这是在21世纪中两个重大的科学问题。本文首先简单介绍了暗物质的基本定义和特点,暗能量的基本定义与特点,阐述了暗物质与暗能量统一的理论模型,最后利用该理论完善了宇宙大爆炸模型。 (马来亚大学) 摘要:随着世界的不断发展,暗物质和暗能量在粒子物理和宇宙学研究中越来越引起了大家的关注和重视。这是在21世纪中两个重大的科学问题。本文首先简单介绍了暗物质的基本定义和特点,暗能量的基本定义与特点,阐述了暗物质与暗能量统一的理论模型,最后利用该理论完善了宇宙大爆炸模型。 关键词:暗物质;暗能量;统一性;研究 一、暗物质的基本定义与特点 暗物质(Dark matter)是理论上提出的可能存在于宇宙中的一种不可见的物质,它可能是宇宙物质的主要组成部分,但又不属于构成可见天体的任何一种目前已知的物质。大量天文学观测中发现的疑似违反可以在假设暗物质存在的前提下得到很好的解释。现代天文学通过天体的运牛顿万有引力的现象动、引力透镜效应、宇宙的大尺度结构的形成、微波背景辐射等观测结果表明暗物质可能大量存在于星系、星团及宇宙中,其质量远大于宇宙中全部可见天体的质量总和。结合宇宙中微波背景辐射各向异性观测和标准宇宙学模型(ΛCDM模型)可确定宇宙中暗物质占全部物质总质量的85%。由于暗物质的神秘,现在世界上产生了不同的物理理论说法。一种是说暗物质就是一种具有质量的可以相互作用但是作用力非常微弱的粒子。这种说法目前被物理学家们广泛的接受和认可。其质量与相互作用强度在电弱标度附近,在宇宙膨胀过程中通过热退耦合过程获得目前观测到的剩余丰度。但是也有另一种说法,是说暗物质是由轴子,惰性中微子等这些类型的粒子组成。 暗物质的存在已经得到了广泛的认同,然而目前对暗物质属性了解很少。目前已知的暗物质属性仅仅包括有限的几个方面:目前大部分物理学家对暗物质的存在都有一定的认同,但是暗物质的特点都有哪些,这些物理学家知道的还不太多。目前所了解的暗物质的特点主要表现在以下几个方面:第一,暗物质是一种有质量的粒子,暗物质之间可以相互产生引力,但是暗物质的质量大学目前还是个未知数。第二,暗物质具有很强的稳定性。因为通过研究发现,暗物质几乎存在于宇宙形成各个阶段,在宇宙结构形成的各个过程都有暗物质的存在,所以暗物质应该是在能宇宙上稳定的存在的。第三,暗物质之间的产生的相互作用力非常弱。暗物质和光,电等之间产生的作用特别小,几乎看不出。我们从原初核合成可以看出。如果相互作用力大的话,这个过程就会受到刺激和扰动。将导致暗物质的元素产生一系列的变化,会使得观测结果不一致。第四,我们通过电脑模拟宇宙大尺度结构的形成过程中发现,暗物质的运动速度远远低于光速,即“冷暗物质”,不然我们的宇宙无法在引力作用下形成目前观测到的大尺度结构。因此,目前我们所知道的暗物质粒子还不一定是准确的,也是不属于我们已知的任何一种基本粒子。这对当前极为成功的粒子物理标准模型构成挑战。 二、暗能量的基本定义与特点 暗能量存在于宇宙运动中,它通过自身的引力作用推动宇宙运动,由于暗能量目前还不能吸收光,也不可以反射或者说辐射光,因此,截止到目前,人们还不能利用现在的技术对暗能量进行监测。但是暗能量可以与光产生一种中和作用,这种作用可以影响到同级暗能量的分布范围。当暗能量与光反应时,会对作用域的时间产生影响,绝对速度v0>c,此时作用域的能量E产生跃迁,根据E=mc2,作用域内的物质质量会有减少。由于宇宙空间不断发生的中和反应,作用域内的物质质量不断减小致使物质的引力减小,出现宇宙膨胀。随着宇宙膨胀可以伴着时间的变化而变化,那么宇宙膨胀的高精度测量对我们来研究宇宙增加了很大的困难,在广义相对论中,我们发现,宇宙的膨胀速度主要由宇宙状态的方程式决定,如何确定暗物质和暗能量的状态方程式是宇宙学比较关注的问题。 三、暗物质与暗能量统一之宇宙大爆炸 “大爆炸宇宙论”(The Big Bang Theory)是现代宇宙学中最有影响的一种学说。它的主要观点是认为宇宙曾有一段从热到冷的演化史。在这个时期里,宇宙体系在不断地膨胀,使物质密度从密到稀地演化,如同一次规模巨大的爆炸。通过暗物质和暗能量的基本定义和特点阐述来看,我们发现暗能量的产生与暗物质不可分割。暗物质与暗能量的统一可以从宇宙大爆炸模型来说。最初的宇宙起源于密度特别大的奇点,这个奇点会在某个时刻存在不平衡的状态,这时候就产生了第一次大爆炸。但是这次大爆炸一直都没有被发现,因为没有任何明显的现状,奇点并没有破碎,但是奇点在力的粒子和周伪散落,慢慢地奇点失去合力产生了第二次大爆炸,这次的爆炸导致整个奇点破碎了,暗物质与重子物质也随之散开,冷却后形成了现在的宇宙。这就是著名的宇宙大爆炸。这时候宇宙中的各种天体在暗物质的引力下迅速膨胀,宇宙中的重子物质和暗物质圈几乎重叠在一起,宇宙就开始不断收缩,最后塌陷到奇点,时间再次回到原点。 结论 “宇宙并非永恒存在,而是从虚无创生”的思想在西方文化中可以说是根深蒂固。虽然希腊哲学家曾经考虑过永恒宇宙的可能性,但是,所有西方主要的宗教一直坚持认为宇宙是上帝在过去某个特定时刻创造的。虽然我们看到暗物质的作用力方向和暗能量的方向完全相反,但是这种现象有很大可能是由同一种物质导致的,很大可能就是本文所讲述的暗物质。这种物质在内部主要呈现出引力的作用,在外部主要呈现出反引力。通过研究暗物质与暗能量的统一性分析,也发现这个理论对宇宙大爆炸现象有很强的说服力。参考文献 [1]周烨.浅谈暗物质与暗能量要求及新技术的应用[J].山东工业技术,2019(06). [2]孙彩虹.暗物质与暗能量在物理系统中的应用解析[J].通信电源技术,2018,35(10). [3]张晓丽.暗物质与暗能量在物理系统中的运用分析[J].科学技术创新,2018(28). [4]刘振宗,陈智远.暗物质与暗能量统一性研究分析[J].技术与市场,2018,25(12). [5]李思明,王宇翔.暗物质与暗能量研究[J].科技风,2018(31). [6]李苏.试论暗物质与暗能量统一性模型研究[J].科技与创新,2018(18).

中微子的振荡实验和理论

中微子的振荡实验和理论 华南师范大学物理与电信工程学院物理学勷勤创新班 作者:黄慧敏蔡莹邱小欢麦展风 摘要:,本文主要通过对中微子振荡实验及其理论的阐述,加深对中微子以及中微子振荡的认识,以及阐述对中微子振动实验发展的展望 关键词:中微子振荡 MSN效应质量差 Abstract:This article states the theory and the experiment of neutrino oscillation for illustrating the current situation and expectation of development of the nertrino oscillation’s experiment . Key word:neutrino oscillation .MSN reaction.mess diffirence. 1、引言 大亚湾中微子实验宣布发现了一种新的中微子振荡,并测量到其振荡几率,这一实验结果不仅使我们更深入了解了中微子的基本特性,更为未来进行中微子实验破解“反物质消失之谜”奠定科学基础。 1998年在日本Takayama召开的的世界中微子大会上,日本物理学家宣布他们的超神冈国际合作组发现了大气中微子震荡,成为了物理学界的头号新闻。 粒子物理学经典模型认为,中微子的质量为零,在相互作用中轻子数守恒,中微子不会从一种类型转变成另外一种类型。现在超神冈实验组发现了中微子振荡,这表明了中微子具有质量,中微子可以从μ中微子转变成其他类型的中微子,轻子数也随之不守恒,这推动了物理学的进一步发展。 1930年,为了解释核的β衰变中电子的能力是一个连续谱,泡利引入了中微子这种新型粒子,但人们一直没能从实验中验证中微子的存在。1941年,我国著名物理学家王淦昌先生建议利用原子核的K电子俘获测原子核的反冲能量来证明中微子的存在。历经10年,于1952年此实验获得成功,证明了中微子是一个客观存在的粒子。 中微子,顾名思义,是固有质量极其微小的中性粒子。由于难以探测,我们对中微子的了解非常有限,至今还存在大量未解之谜。中微子有3种类型:电子中微子、μ子中微子、τ子中微子,这三种中微子两两之间转换,可以有三种振荡模式。其中太阳中微子振荡称之为theta12振荡,大气中微子为theta23振荡。

石墨烯介绍

获奖者2010年10月5日,2010年诺贝尔物理学奖被授予英国曼彻斯特大学的安德烈·海姆和康斯坦丁·诺沃肖洛夫,以表彰他们在石墨烯材料方面的研究。 PPT1安德烈·海姆,1958年10月出生于俄罗斯,拥有荷兰国籍,父母为德国人。1987 年在俄罗斯科学院固体物理学研究院获得博士学位。他于2001年加入曼彻斯特大学,现任物理学 教授和纳米科技中心主任。之前拥有此荣誉头衔的人包括卢瑟福爵士,卢瑟福于1907-1919年在曼 彻斯特大学工作。 他至今发表了超过150篇的文章,其中有发表在自然和科学杂志上的。他获得的奖项包括2007 年的Mott Prize和2008年的Europhysics Prize。2010年成为皇家学会350周年纪念荣誉研究教授。 在2000年他还获得“搞笑诺贝尔奖”——通过磁性克服重力,让一只青蛙悬浮在半空中。10年 后的2010年他获得诺贝尔物理学奖。 2010年医学奖:荷兰的两位科学家发现哮喘症可用过山车治疗。 和平奖:英国研究人员证实诅咒可以减轻疼痛。 PPT2康斯坦丁·诺沃肖洛夫,1974年出生于俄罗斯,具有英国和俄罗斯双重国籍。2004年在荷兰奈梅亨大学获得博士学位。是安德烈·海姆的博士生。 曼彻斯特大学目前任教的诺贝尔奖得主人数增加到4名,获得诺贝尔奖的历史总人数为25位。发现 石墨属于混晶,为片层结构,层内由共价键相连,层间由分子间作用力相连。共价键是比较牢固的,但分子间作用力(范德华力)小得多。因此,石墨的单层是牢固的,而层间作用力很小,极易脱落。 2004年,他们发现了一种简单易行的新途径。他们强行将石墨分离成较小的碎片,从碎片中剥离出较薄的石墨薄片,然后用一种特殊的塑料胶带粘住薄片的两侧,撕开胶带,薄片也随之一分为二。不断重复这一过程,就可以得到越来越薄的石墨薄片,而其中部分样品仅由一层碳原子构成——他们制得了石墨烯。 结构

暗物质和暗能量是如何形成的解读

暗物质和暗能量揭秘开始想写这篇文章,源于多年对宇宙物理学的浓厚兴趣。对于宇宙如何诞生,演化也有一些自己的观点。特编写出来和广大宇宙物理爱好者共研。由于本人水平有限,不妥之处请朋友谅解,不胜感激。 1.宇宙的本质是什么?宇宙万物及我们人类存在于广阔无艮的宇宙之中,我们大多数人也许不会去思考的一些问题—宇宙为什么能存在?为什么会有宇宙?其实中外古今有许多人是对这个问题进行过探讨,如我国的盘古开天辟地,轻清上浮为天,重浊下沉为地,天地间隔随时间不断加大,女娲抟土而造人的理论。西方的上帝创造宇宙,再创造了一个男人亚当,用亚当一根肋骨创造出第一个女人夏娃的理论。当然还有其他创世神创世等各种学说。这些学说我们先不要妄言其一定是谬的,可是都有一个共同的不解之处,那就是创世神是存在于哪里,创世神所在那个世界又是怎么来的?如果不能解释这个问题,那这些理论就不是成熟的理论了。现在有一个理论认为宇宙是起源于一次大爆炸,宇宙是从一个几乎无限小的奇点大爆炸而产生的,这就是著名的宇宙大爆炸起源理论。1929年,美国天文学家哈勃通过观测遥远星系的红移提出星系的红移量和星系的距离成正比的哈勃定理,并推导出星系都在远离的宇宙膨胀学说。大爆炸宇宙论是一种观测证据最多,最获公认的现代宇宙理论。大爆炸宇宙论很好地解释了为什么会有宇宙,但还有一个问题不能解释,那就是宇宙为什么能存在?宇宙万物得以存在如果没有任何依据,难道不是一件不可思议的事情吗?因此我认为一定会存在一种与构成宇宙的要素属性相反,能相互抵销的要素。我们把构成宇宙一切物质和能量的要素称为原力,把我们所在的宇宙定义为正宇宙,那么与原力相反属性的反原力构成的宇宙就是反宇宙。原力是构成物质和能量的最基本单位,所以不管物质粒子结构多么复杂,原力却是最简单、最单纯的,它没有内部结构,因为如果有内部结构就不能算是基本单位了。因此既使最多量的原力都能集合于无限小的空间之内,是构成宇宙一切的唯一素材。值得一提的是,原力不是力,但宇宙一切运动因它而起,故称之原力。因此,我认为宇宙的本质是虚无的,可以用0=(+X+(-X表示,+X表示宇宙正原力总量,-X表示反宇宙反原力总量。正反原力在理论上可以抵销湮灭,正原力和反原力绝对一样多。其实古人们对于宇宙虚无本质早有论述,周易中说:“无极生太极,太极生两仪”,就是说虚无诞生无限多,无限多有

暗物质暗能量的理论研究和实验预研

项目名称:暗物质暗能量的理论研究和实验预研首席科学家:吴岳良中国科学院理论物理研究所起止年限:2010年1月-2014年8月 依托部门:中国科学院

一、研究内容 拟解决的关键科学问题和主要研究内容包括: 本项目围绕暗物质和暗能量本质开展理论研究和实验探测的可行性分析, 充分利用已有的研究基础,从以下五个方面开展深入系统的研究: 1、暗物质的理论研究及相关新物理唯象 研究各种新物理模型,包括最小超对称模型及其变种和推广模型,额外维度模型,Little Higgs模型,各种类型的Hidden Sector模型,标准模型的最小推广(多个Higgs模型)中WIMP暗物质的湮灭及衰变过程的性质。在满足暗物质剩余丰度的条件下研究其湮灭或衰变产物,如正电子,反质子,高能中微子,光子的信号特点,为空间间接探测实验提供理论依据。同时重点关注未来实验可能观测到的高能中微子及光子信号。在对现有实验结果的研究中,由于PAMELA 没有观测到反质子的超出,这表明暗物质的主要湮灭道为带电轻子而非规范粒子或夸克,这就给一些暗物质模型如最小超对称模型带来了一定的困难。对此,需要对模型的参数空间进行更详细的研究。同时,也需进一步研究构造以轻子为主要湮灭道的理论模型。另一方面,为了解释PAMELA和ATIC上观测到的正负电子超出,暗物质在地球附近的密度分布要比通常由热力学残余丰度给出的大出2-3个数量级。如何构造模型能同时满足这两方面的要求是研究的重点之一,将首先研究已知的可能解释实验现象的一些机制,如量子索末菲效应和共振态增强效应等。 寻找和发展更有效探测暗物质的方法。通过对自旋相关与自旋无关的散射截面确定暗物质的基本属性。研究DAMA实验的正结果和其它实验如CDMS和Xenon 给出的零结果是否一致及其它们的物理原因。鉴于DAMA的实验结果,探寻可能存在的统一解释目前所有直接探测实验结果的暗物质-核子相互作用机制。研究非弹性散射和测量仪器靶物质的相关性等。 综合正负电子对撞机LEP上的Z产生和衰变,希格斯粒子质量限制,额外规范粒子的研究,及低能实验如μ子反常磁矩,b→sγ,B →μ+μ-和味道改变中 s

中微子的发现的过程及其在现代物理学中的意义

中微子的发现的过程及其在现代物理学中的意义 (1)中微子的提出 要追溯中微子发现的经过,还要从19世纪末20世纪初对放射性的研究谈起.当时科学家们发现,在量子世界中能量的吸收和发射是不连续的.不仅原子的光谱是不连续的,而且原子核中放出的阿尔法射线和伽马射线也是不连续的.这是由于原子核在不同能级间跃迁时释放的,是符合量子世界的规律的.奇怪的是,物质在β衰变过程中释放出的由电子组成的β射线的能谱却是连续的,而且电子只带走了它应该带走的能量的一部分,还有一部分能量失踪了. 瑞士物理学家泡利在1931年最先假设有种新粒子“窃走了”能量.在1931年,泡利在美国物理学会的一场讨论会中提出,这种粒子不是原来就存在于原子核中,而是衰变产生的.1932年真正的中子被发现后,意大利物理学家费米将泡利的“中子”正名为“中微子”. 1933年意大利物理学家费米提出了β衰变的定量理论,指出自然界中除了已知的引力和电磁力以外,还有第三种相互作用——弱相互作用.β衰变就是核内一个中子通过弱相互作用衰变成一个电子、一个质子和一个中微子.他的理论定量地描述了β射线能谱连续和β衰变半衰期的规律,β能谱连续之谜终于解开了.如果中微子有引力质量,那么根据Einstein 的质能方程,必须把能量E*的一部分用来产生中微子,这样留给电子的能量就比E*小.泡利推算出中微子是没有质量的观点是错误的,由于中微子的引力质量非常小,因此在埃利斯的实验中发现电子也偶尔确实会有能量为E*的情况.泡利的中微子假说和费米的β衰变理论虽然逐渐被人们接受,但终究还蒙上了一层迷雾:谁也没有见到中微子.就连泡利本人也曾说过,中微子是永远测不到的. (2)中微子的发现 在泡利提出中微子假说的时候,我国物理学家王淦昌正在德国柏林大学读研究生,直到回国,他还一直关心着β衰变和检验中微子的实验.1941年王淦昌写了一篇题为《关于探测中微子的一个建议》的文章,发表在次年美国的《物理评论》杂志上.1942年6月,该刊发表了美国物理学家艾伦根据王淦昌方案作的实验结果,证实了中微子的存在,这是当年世界物理学界的一件大事.但当时的实验不是非常成功,直到1952年艾伦与罗德巴克合作,才

中微子通信技术及应用

题目:核地球物理新技术之中微子通信技术与应用展望

引言 (4) 第一章中微子的发现及特点 (5) 1.1 中微子的发现 (5) 1.2 宇宙的信使 (7) 1.3 中微子种类 (10) 第二章中微子通信的理论基础 (11) 2.1 现行光通信的局限性 (11) 2.1.1 光纤通信的局限性 (11) 2.1.2 无线光通信的局限性 (11) 2.2 中微子通信技术概况 (12) 2.2.1 中微子通信简介 (12) 2.2.2 中微子通信工作原理 (14) 2.2.3 中微子通信分类 (15) 2.3 中微子通信的发展简史 (17) 第三章中微子通信的系统组成及主要性能 (19) 3.2 中微子通信系统的组成与原理框图 (19) 3.3 中微子通信系统的实际实现实例 (20) 第四章中微子通信系统采用的关键技术 (22) 4.1 中微子通信系统采用的中微子波束的产生方法与设施 (22) 4.1.1 中微子通信系统采用的中微子波束的调制/解调技术23 4.1.2 中微子通信系统采用的中微子波束接收 (24) 第五章中微子通信系统的优越性 (24)

5.1 频带宽,容量大可以高速率工作 (25) 5.2 有足够强的穿透能力 (26) 5.3 抗干扰性强,不受无线电频段电磁波等的干扰 (26) 5.4 安全可靠,有良好的传输保密性能 (27) 5.5 有极高的有效性,可全天候工作 (28) 5.6 特别适于宇宙空间的通信 (28) 第六章中微子通信技术在地球范围内外的应用 (29) 6.1 中微子通信技术在地球范围之外的应用 (29) 6.2 中微子通信技术在地球范围内的应用 (31) 6.2.1 各类陆地中微子通信网络 (31) 6.2.2 在上空、水下和地下岩层中间的中微子通信网络 .. 31 参考文献 (32)

中微子的质量问题

中微子的质量问题《自然杂志》19卷4期的‘探索物理学难题的科学意义'的97个悬而未决的难题:65.中微子有无静止质量?66.有无中微子振荡? 在微观世界中,中微子一直是一个无所不在、而又不可捉摸的过客.中微子产生的途径很多, 如恒星内部的核反应,超新星的爆发,宇宙射线与地球大气层的撞击,以至于地球上岩石等各种物质的衰变等.尽管大多数科学家承认它可能是构成我们所在宇宙中最常见的粒子之一,但由于它穿透力极强,而且几乎不与其它物质发生相互作用,因此它是基本粒子中人类所知最少的一种.被誉为中微子之父的泡利与费密曾假设它没有静止质量.根据物理学的传统理论,稳定、不带电的基本粒子中微子的静止质量应为零,然而美国科学家的研究从另一个角度有可能推翻这一结论. 据俄《知识就是力量》月刊报道,美国斯坦福大学的科研人员对最近24年来人类探测中微子所获数据进行分析后发现,从太阳飞向地球的中微子流运动具有某种周期性,每28天为一个循环,这几乎与太阳绕自己的轴心自转的周期相重合.美国科学家认为,这种周期性是由于太阳不均等的磁场作用造成的.磁场强度的变化,使部分中微子流严重偏移,致使探测器难以捕捉到.对此似可得出结论:中微子流有着自己的磁矩,既然有磁矩,就应有静止质量.在上世纪90年代以前,国际主流科学家们也认为中微子是没有质量的,因为这是标准模型的需要.然而近年包括我国在内的世界上的中微子振荡实验、观察,都探知到中微子有质量.令人惊讶的是,1938年意大利理论物理学家埃托雷·马约拉纳(Ettore Majorana)早就认为微中子有质量,并提出马约拉纳方程式. 1998年6月12日,东京大学的一个国际研究小组在美国《科学》杂志上发表报告说,他们利用一个巨大的地下水槽,证实了中微子有静止质量.这一论断在世界科学界引起广泛关注.由日、美、韩三国科学家组成的科研小组日前在此间宣布,他们在实验中观测到了250公里远处的质子加速器发出的中微子.这是人类首次在如此远的距离内观测到人造粒子. 日本文部省的高能加速器机构位于筑波科学城,东京大学宇宙射线研究所设在岐阜县的神冈,两地相距250公里.6月19日下午,科学家在高能加速器研究机构使用质子加速器向宇宙射线研究所的神冈地下检测槽发射中微子,并通过检测槽检测到了中微子.由于这批中微子来自筑波科学城方向,并且是在发射之后大约0.00083秒时检测到的,科学家因而断定,它们就是质子加速器发出的那批中微子. 这项实验是为了证实中微子有静止质量而设计的.1998年6月,日、美两国科学家宣布探测到中微子有静止质量.如果这一点被证实,现有的理论物理体系将受到巨大冲击.为了验

南极发现极高能中微子动能相当于一枚秒速一米的樱花瓣

南极发现极高能中微子,动能相当于一枚秒速一米的樱花瓣 如何解读NSF 公布IceCube 中微子观测站首次定位 宇宙中的高能中微子源?有何重大意义?刘博洋,天体物理学博士生 先上结论 去年8 月,双中子星并合的时候,我们说人类全面进入了多信使天文学时代。 而本次IceCube 和其他望远镜联手发现一颗极高能中微子 的来源,则标志了多信使天文学时代中又一个重要的里程碑。 发生了什么? 简单版本: 2017 年9 月22 日,建设在南极冰层里的中微子探测器“冰立方”(IceCube)探测到了一次比较罕见的极高能中微子事件:这是一个能量为~290 TeV 的中微子,相当于具有一枚秒速一米的樱花瓣的动能。巧合的是,这颗中微子的来源方向上,在几十亿光年开外,刚好有一个已知的特殊天体。而且,在此事件前后约两周事件内,用于监测高能光子的费米卫星发现,这个天体发出的高能光子的亮度比平时强了 6

倍——所以说,它很可能就是这颗高能中微子的源头。 高能中微子的形成和高能质子具有密切的联系,而高能质子是所谓“宇宙线”(宇宙来的射线,Cosmic Ray)的主要成分,所以本次发现同时首次确认了宇宙中高能中微子和高能宇 宙线的(一种)来源。 正如2017 年8 月,美国激光干涉引力波天文台(LIGO)和费米卫星先后探测到双中子星并合事件发出的引力波和 高能光子,随后全球各个波段的望远镜对事件源天体展开了一大波观测,本次冰立方和费米卫星联手确认这颗高能中微子源的来源之后,也引起了一大波各种波段望远镜对该事件源天体的追捧。这两次全球天文学家的联手狂欢,前后相隔仅仅一个月的时间,可以说代表了当代观测天文学一种“新常态”的到来。 到底发生了什么? 有点复杂,一样一样说,慢慢看。 0、用一句话说说中微子是啥? 1、以前真的从来没有定位过中微子源吗? 2、极高能中微子从哪来的? 3、为什么要跑南极探测中微子? 开始咯~ 0、用一句话说说中微子是啥? 一种质量非常小的基本粒子,比电子还要轻大约两百万倍。

天文学中的暗物质和暗能量问题之由来和困惑_图文(精)

天文学中的暗物质和暗能量问题之由来和困惑武向平? (中国科学院国家天文台 北京 100012 2015-05-19收到 ?email :wxp@https://www.sodocs.net/doc/292953840.html, DOI :10.7693/wl20150610 1宇宙起源

今天的宇宙学研究早已经冲破了“九重天” 的空间尺度和“七天创世纪”的宗教信仰,21世纪的宇宙学已经是最精密的自然科学之一。 为现代宇宙学研究带来革命性进展的天文学家无疑是哈勃,他在1929年发现了银河系周围星系的退行速度与其相距银河系之距离成正比。此观测事实给了后来的物理学家伽莫夫以启示:既然所有的星系都彼此相互远离,那么若沿着时间的长河逆向追溯,它们就必将在有限的时间里汇聚在一起;反之,若沿着时间发展的箭头,宇宙则就像发生过一次爆炸一样,从致密高温的状态膨胀散开。1948年,伽莫夫成功地预言了宇宙大爆炸的“火球”膨胀至今遗留下的温度应为50K (1956年修正为6K,并锁定在微波波段。而在1965年,两位Bell 实验室的工程师Penzias 和 Wilson 无意间得到了震惊世界的发现,尽管他们当时并未意识到所获得的与方向无关的天空噪声就是宇宙大爆炸的遗迹。虽然星系的退行和大爆炸火球的发现及其高度的各向同性,的确给宇宙大爆炸学说奠定了最坚实的观测基础,但人们很快就意识到,一个高度各向同性的大爆炸火球并不是人们所期望的。今天,浩瀚的宇宙中充满了以星系为基本单元的成员,它们并非均匀地分布于宇宙空间中,而是形成了有规则的结构:既有成千上万星系组成的“长城”,也有空空如也的“空洞”。一个过于均匀的大爆炸火球作为“种子”是无法形成我们今天所看到的有结构之宇宙。所以,大爆炸的遗迹(今天称之为宇宙微波背景辐射被发现后,人们就一直致力于寻找它上面是否存在不均匀的成分。终于,1992年由George Smoot 领导的一个小组借助于COBE 卫星发现了大爆炸火球上的十万分之一的温度起伏,且这些起伏正是人们期望看到的造就今天宇宙万物的“种子”!随后,诸多宇宙微波背景辐射探测卫星如WMAP 和PLANCK 以及南极的大量天文 实 科学家沙龙

宇宙中的暗物质和暗能量

课程论文 (科研训练、毕业设计) 题目:宇宙中的暗物质和暗能量 姓名:xxxxxxx 学院:化学化工学院 系:化学 专业:化学 年级:大一 学号:xxxxxxxxxxxxx xxxxxxxxxxxxxx

宇宙中的暗物质和暗能量 摘要文章对暗物质粒子的候选者和宇宙中暗能量的研究现状作一简单介绍. 关键词暗物质,暗能量,粒子宇宙学 正文2003 年,W ilkinson 微波背景各向异性探测器(WMAP) 、Sloan数字巡天( SDSS)和最近的超新星( SN)等天文观测以其对宇宙学参数的精确测量,进一步强有力地支持了大爆炸宇宙学模型. 这在人类探索宇宙奥秘和物质基本结构的道路上无疑是一个光辉的成就. WMAP的结果告诉我们,宇宙中普通物质只占4% , 23%的物质为非重子暗物质, 73%是暗能量, SDSS也给出类似的结果. 从物质基本结构的观点出发,普通的物质,如树木、桌子以及我们人类本身,是由分子、原子构成. 然而分子、原子不是最基本的,目前已知的基本粒子是由粒子物理标准模型所描述的夸克和轻子以及传递相互作用的规范玻色子. 什么是暗物质呢? 暗物质是不发光的,但是它有显著的引力效应. 比如,对于一个星系考虑距其中心远处的旋转速度,如果物质存在的区域和光存在的区域是一样的话,由牛顿引力定律可知,距离中心越远,速度应该越小. 可是天文观测事实不是这样的,这就说明当中有看不见的暗物质. 目前各种天文观测和结构形成理论强有力地表明宇宙中有大约三分之一是暗物质. 中微子是一种暗物质粒子, 但WMAP和SDSS的结果说明,它的质量应当非常小,在暗物质中只能占微小的比例,绝大部分应是所谓的冷暗物质. 它们究竟是什么目前还不清楚. 理论物理学家猜测,至少有两个可能性,一个是轴子( ax2ion) ,另一个是中性伴随子( neutralino). 另外还有额外维空间理论中最轻的KK ( Kaluza - Klein)粒子.近年来,为了解决冷暗物质在小尺度上可能的疑难而提出了相互作用暗物质[ 1 ] 、温暗物质等. 轴子是由罗伯特·派切(Roberto Peccei) 和海伦·奎因(Helen Quinn)为解决强相互作用中的电荷共轭-宇称(CP)破坏问题而引进的. 中性伴随子是超对称理论中的最轻的超对称伴随子,它是稳定的,在宇宙演化过程中像微波背景光子一样被遗留下来. 另外,这种暗物质粒子也可由一些超重粒子或宇宙相变过程产生的一些拓扑缺陷(如宇宙弦)衰变而产生[ 2 ] .目前世界各国科学家,例如中国和意大利科学

相关主题