搜档网
当前位置:搜档网 › 专题动量守恒定律

专题动量守恒定律

专题动量守恒定律
专题动量守恒定律

专题动量守恒定律

一、单项选择题

1关于系统内的一对作用力与反作用力,下列说法正确的是( D )

A.它们做功一正一负,代数和必为零

B.它们做功一正一负,代数和必为负

C.它们做功不会改变系统的总动能

D.它们的冲量等大反向,不会改变系统的总动量

2.质量M=100 kg的小船静止在水面上,船首站着质量m甲=40 kg的游泳者甲,船尾站着质量m乙=60 kg的游泳者乙,船首指向左方,若甲、乙两游泳者同时在同一水平线上甲朝左、乙朝右以3 m/s的速率跃入水中,则(B )

A.小船向左运动,速率为1 m/s B.小船向左运动,速率为0.6 m/s C.小船向右运动,速率大于1 m/s D.小船仍静止

3.甲、乙两物体在光滑水平面上沿同一直线相向运动,甲、乙物体的速度大小分别为3m/s 和1 m/s;碰撞后甲、乙两物体都反向运动,速度大小均为2m/s。则甲、乙两物体质量之比为( C )

A.2∶3 B.2∶5 C.3∶5 D.5∶3

4.带电粒子(不计重力),以速度v射入某一空间,下列说法正确的是( C )

A.如果空间只存在匀强电场,则带电粒子穿过该空间时,动能、动量一定发生变化B.如果空间只存在匀强磁场,则带电粒子穿过该空间时,动能、动量一定发生变化C.如果空间只存在匀强电场,则带电粒子穿过该空间时,动能可能不变、动量一定发生变化

D.如果空间同时存在匀强电场和匀强磁场,则带电粒子穿过该空间时,动能和动量一定发生变化

5.物体在恒定的合力作用下做直线运动,在时间t1内动能由零增大到E1,在时间t2内动能由E1增加到2 E1,设合力在时间t1内做的功为W1,冲量为I1,在时间t2内做的功是W2,冲量为I2,则(B )

A.I1< I2,W1=W2B.I1>I2,W1=W2 C.I1> I2,W1

6.如图所示,质量M =20 kg 的空箱子,放在光滑水平面上,箱子中有一个质量m =30 kg 的铁块,铁块与箱子的左端ab 壁相距s =1m ,它一旦与ab 壁接触后就不会分开,铁块与箱底间的摩擦可以忽略不计.用水平向右的恒力F =10 N 作用于箱子,2 s 末立即撤去作用力,最后箱子与铁块的共同速度大小是( A )

A.52m/s

B. 41m/s

C. 3

2m/s D. 32

5m/s 7.一粒钢珠从静止状态开始自由落体,然后陷入泥潭中。若把它在空中自由落体的过程称为Ⅰ,进入泥潭直到停止的过程称为Ⅱ,则( C )

A .过程Ⅰ中钢珠动量的改变量小于重力的冲量

B .过程Ⅱ中钢珠所受阻力的冲量大小等于过程Ⅰ中重力冲量的大小

C .过程Ⅱ中阻力的冲量大小等于过程Ⅰ与过程Ⅱ重力冲量的大小

D .过程Ⅱ中钢珠的动量改变量等于阻力的冲量

8.如图所示,水平光滑地面上停放着一辆质量为M 的小车,小车左端靠在竖直墙壁上,其左侧半径为R 的四分之一圆弧轨道AB 是光滑的,轨道最低点B 与水平轨道BC 相切,整个轨道处于同一竖直平面内.将质量为m 的物块(可视为质点)从A 点无初速度释放,物块沿轨道滑行至轨道末端C 处恰好没有滑出.重力加速度为g ,空气阻力可忽略不计.关于物块从A 位置运动至C 位置的过程,下列说法中正确的是( D )

A .在这个过程中,小车和物块构成的系统水平方向动量守恒

B .在这个过程中,物块克服摩擦力所做的功为mgR

C .在这个过程中,摩擦力对小车所做的功为mgR

D .在这个过程中,由于摩擦生成的热量为mMgR/(m+M )

9.质量为m 的均匀木块静止在光滑水平面上,木块左右两侧各有一位拿着完全相同步枪和子弹的射击手。左侧射手首先开枪,子弹相对木块静止时水平射入木块的最大深度为d 1,然后右侧射手开枪,子弹相对木块静止时水平射入木块的最大深度为d 2,如图所示。设

子弹均未射穿木块,且两颗子弹与木块之间的作用力大小均相等,当两颗子弹均相对于木块静止时,下列判断正确的是( C )

A.木块静止,d l=d2 B.木块向右运动,d1

10.如图所示,两物体A、B用轻质弹簧相连,静止在光滑水平面上,现同时对A、B两物体施加等大反向的水平恒力F1、F2使A、B同时由静止开始运动,在弹簧由原长伸到最长的过程中,对A、B两物体及弹簧组成的系统,正确的说法是(ABD )

A.A、B先做变加速运动,当F1、F2和弹力相等时,A、B的速度最大;之后,A、B 做变减速运动,直至速度减到零

B.A、B做变减速运动速度减为零时,弹簧伸长最长,系统的机械能最大

C.A、B、弹簧组成的系统机械能在这一过程中是先增大后减小

D.因F1、F2等值反向,故A、B、弹簧组成的系统的动量守恒

11.两位同学穿旱冰鞋,面对面站立不动,互推后向相反的方向运动,不计摩擦阻力,下列判断正确的是(BC )

A.互推后两同学总动量增加B.互推后两同学动量大小相等,方向相反

C.分离时质量大的同学的速度小一些D.互推过程中机械能守恒

12.如下四个图描述的是竖直上抛物体的动量增量随时间变化的曲线和动量变化率随时间变化的曲线,若不计空气阻力,取竖直向上为正方向,那么正确的是( CD )

13.三个质量分别为m1、m2、m3的小球,半径相同,并排悬挂在长度相同的三根竖直绳上,彼此恰好相互接触。现把质量为m1的小球拉开一些,如图中虚线所示,然后释放,经球1与球2、球2与球3相碰之后,三个球的动量相等。若各球间碰撞时均为弹性碰撞,且碰撞时间极短,不计空气阻力,则m l∶m2 ∶m3为(A )

A.6∶3∶1

B.2∶3∶1

C.2∶1∶1

D.3∶2∶1

三、非选择题

14.如图所示,甲车质量为2kg,静止在光滑水平面上,其顶部上表面光滑,右端放一个质量为1kg的小物体,乙车质量为4kg,以5m/s的速度向左运动,与甲车碰撞后甲车获得6m/s的速度,物体滑到乙车上,若乙车足够长,其顶部上表面与物体的动摩擦因数为0.2,(g取10m/s2)则

(1)物体在乙车上表面滑行多长时间相对乙车静止;

(2)物块最终距离乙车左端多大距离。

15.光滑水平面上静置两个小木块1和2,其质量分别为m1=1.0kg、m2=4.0kg,它们中间用一

根轻质弹簧相连。一颗水平飞行的子弹质量为m =50.0g ,以v 0=500m /s 的速度在极短时间内射穿两木块,已知射穿木块1后子弹的速度变为原来的3/5,且子弹损失的动能为射穿木块2损失动能的2倍。求系统运动过程中弹簧的最大弹性势能。

16.如图所示,小车质量为M =2.0kg ,带有光滑的圆弧轨道AB 和粗糙的水平轨道BC ,一小物块(可视为质点)质量为m =0.5kg ,与轨道BC 的动摩擦因数为μ=0.10,BC 部分总长度为L =0.80m ,重力加速度g 取10m/s 2。

(1)若小车固定在水平面上,将小物块从AB 轨道的D 点静止释放,小物块恰好可运动到C 点.试求D 点与BC 轨道的高度差;

(2)若将小车置于光滑水平面上,小物块仍从AB 轨道的D 点静止释放,试求小物块滑到BC 中点时的速度大小。

21.解析:(1)设D 点与BC 轨道的高度差为h ,根据动能定理有mgh=μmgL ,解得:h =8.0×10-2m 。

(2)设小物块滑到BC 中点时小物块的速度为v 1,小车速度为v 2,对系统,根据水平方向动量守恒有: mv 1- Mv 2=0;根据功能关系有:μmgL /2=mgh-(21mv 12+2

1Mv 22);由以上各式,解得:v 1=0.80m/s 。

17.如图所示,一辆质量M =3kg 的小车A 静止在光滑的水平面上,小车上有一质量m =1kg 的光滑小球B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E P =6J ,小球与小车右壁距离为L ,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:

(1)小球脱离弹簧时小球和小车各自的速度大小;

(2)在整个过程中,小车移动的距离。

18.如图所示,光滑水平面上有一小车B,右端固定一砂箱,砂箱左侧连接一水平轻弹簧,小车和砂箱的总质量为M,车上放一小物体A,质量也是M,小物体A随小车以速度v0向右匀速运动,此时弹簧处于自由长度状态(小物体A与弹簧没有连接).小物体A与左侧车面间有摩擦,动摩擦因数为μ,与其它车面间无摩擦,在匀速运动时,距砂面H高处有一质量为m的泥球自由下落,恰好落在砂箱中。求:

(1)小车在前进中,弹簧弹性势能的最大值?

(2)为使小物体A不从车上滑下,车面粗糙部分至少应为多长?

19.如图所示,两块长度均为d=0.2m的木块A、B,紧靠着放在光滑水平面上,其质量均为M=0.9kg。一颗质量为m=0.02kg的子弹(可视为质点且不计重力)以速度υo=500m/s水平向右射入木块A,当子弹恰水平穿出A时,测得木块的速度为υ=2m/s,子弹最终停留在木块B 中。求:

(1)子弹离开木块A时的速度大小及子弹在木块A中所受的阻力大小;

(2)子弹和木块B的最终速度大小。

20.动量分别为5kg?m/s和6kg?m/s的小球A、B沿光滑平面上的同一条直线同向运动,A追上B并发生碰撞后。若已知碰撞后A的动量减小了2kg?m/s,而方向不变,那么A、B质量之比的可能范围是什么?

21.如图所示,A、B两球质量均为m,之间有压缩的轻短弹簧处于锁定状态。弹簧的长度、两球的大小均忽略,整体视为质点,该装置从半径为R的竖直光滑圆轨道左侧与圆心等高处由静止下滑,滑至最低点时,解除对弹簧的锁定状态之后,B球恰好能到达轨道最高点。

(1)求弹簧处于锁定状态时的弹性势能。

(2)求A上升的最大高度。(答案可以保留根号)

22.如下图左图图所示,有两块大小不同的圆形薄板(厚度不计),质量分别为M和m,半径分别为R和r,两板之间用一根长为0.4m不可伸长的轻绳连结.开始时,两板水平放置并叠合在一起,静止于高度为0.2m处.两板释放后自由下落到一固定支架C上,支架上有一半径为R′(r

(1)若M=m,则v值为多大?

(2)若M/m=k,试讨论v的方向与k值间的关系.

23.如图所示,在离地面H=5.45m的O处用长L=0.45m的不可伸长的细线挂一质量为90g 的爆竹(火药质量忽略不计),把爆竹拉起至D点使细线水平伸直,点燃导火线后将爆竹无初速度释放,爆竹刚好到达最低点B时炸成质量相等的两块,一块朝相反方向水平抛出,落到地面上的A处,抛出的水平距离s=5m。另一块仍系在细线上继续做圆周运动通过最高点C。假设火药爆炸释放的能量全部转化为爆竹碎片的动能,空气阻力忽略不计,取

g=10m/s2,求:

(1)爆炸瞬间反向抛出的那一块的水平速度v1的大小;

(2)继续做圆周运动的那一块通过最高点时的细线的拉力T的大小。

(3)火药爆炸释放的能量E。

专题 波粒二象性、原子结构和原子核

一、单项选择题

1.下列说法正确的是( C )

A .1927年,英美两国物理学家使电子束通过铝箔,得到了电子束的衍射图样,此实验说明微观粒子也具有波、粒二象性

B .光的波动性是由于光子之间的相互作用引起的

C .激光雷达能根据多普勒效应测出目标的运动速度,从而对目标进行跟踪

D .根据麦克斯韦电磁理论可知变化的电场周围存在变化的磁场

2.下列说法正确的是( D )

A.太阳辐射的能量主要来自太阳内部的核裂变反应

B.汤姆生发现电子,表明原子具有核式结构

C.一束光照射到某金属上不能发生光电效应,是因为该束光的波长太短

D.按照玻尔理论,氢原子核外电子从半径较小的轨道跃迁到半径较大的轨道时,电子的动能减小,原子总能量增大

3. 2011年是卢瑟福创立原子的核式结构模型l00周年,下列关于原子核的说法正确的是( A )

A .原子核的能量与原子的能量相似,也是不连续变化的,是量子化的

B .原子核的半衰期与原子核所处的环境有关

C .贝克勒尔发现了原子核的放射性现象,并提出了“放射性”这个词用来描述这一现象

D .原子核的结合能越大,原子核越稳定

4.太阳内部持续不断地发生着热核反应,质量减少。核反应方程是2X He H 44

211+→,这个核反应释放出大量核能。已知质子、氦核、X 的质量分别为m 1、m 2、m 3,真空中的光速为c 。下列说法中正确的是( D )

A .方程中的X 表示中子(n 10)

B .方程中的X 表示电子(e 01-)

C .这个核反应中质量亏损Δm=4m 1-m 2

D .这个核反应中释放的核能Δ

E =(4m 1-m 2-2m 3)c 2

5. 2008年北京奥运会场馆周围80%~90%的路灯将利用太阳能发电技术,奥运会90%的洗浴热水将采用全玻真空太阳能集热技术。太阳能的产生是由于太阳内部所发生的一系列核反应形成的,其主要的核反应过程可表示为( D )

A .H O He N 1117

84214

7+→+ B .He Th U 42234

90238

92+→

C .n Sr Xe n U 109038136

5410235

9210++→+ D .e

He H 01421124+→ 6.如图所示两电子a 和b 都绕着某原子核D 做圆周运动。a 的轨道半径大于b 的轨道半径.不计a 、b 间的相互作用,关于两电子描述正确的是( C )

A .电子a 的动能大于电子b 的动能

B .电子a 的运动周期小于b 的周期

C .电子a 的动能与电势能之和大于电子b 的动能与电势能之和

D .电子a 若由某原因变轨至b 的轨道上,电子a 电势能将增加

7.用光照射某种金属,有光电子从金属表面逸出,如果光的频率不变,而减弱光的强度,则( A )

A .逸出的光电子数减少,光电子的最大初动能不变

B .逸出的光电子数减少,光电子的最大初动能减小

C .逸出的光电子数不变,光电子的最大初动能减小

D .光的强度减弱到某一数值,就没有光电子选出了

8.氢原子的能级是氢原子处于各个定态时的能量值,它包括氢原子系统的电势能和电子在轨道上运动的动能,氢原子的电子由外层轨道跃迁到内层轨道时( A )

A .氢原子的能量减小,电子的动能增加

B .氢原子的能量增加,电子的动能增加

C .氢原子的能量减小,电子的动能减小

D .氢原子的能量增加,电子的动能减小

9.氢原子能级的示意图如图所示,大量氢原子从n =4的能级向n =2的能级跃迁时辐射出可见光a ,从n =3的能级向n=2的能级跃迁时辐射出可见光b ,则( C )

A .b 光的光子能量大于a 光的光子能量

B .氢原子从n =4的能级向n =3的能级跃迁时会辐射出紫外线

C .在水中传播时,a 光较b 光的速度小

D .用同一装置进行双缝干涉实验,a 光的相邻条纹间距较大

10.下列说法正确的是( C )

A .中子和质子结合成氘核时吸收能量

B .放射性物质的温度升高,其半衰期减小

C .某原子核经过一次α衰变和两次β衰变后,核内中子数减少4个

D .γ射线的电离作用很强,可用来消除有害静电

11.在匀强磁场里有一个原来静止的放射性碳14,它所放射的粒子与反冲核的径迹是两个相切的圆。圆的直径比为7∶1,碳14的衰变方程是(C )

A. 146C→ 42He+104Be

B. 146C →01-e+145B

C. 146C → 01-e+147N

D. 14

6C →

21H+12

5B

12.某原子核X A Z 吸收一个中子后,

放出一个电子,分裂为两个α粒子。由此可知( A ) A .A=7,Z =3 B .A=7,Z =4 C .A=8,Z =3 D .A=8,Z =4

13.下列四个方程中,表示人工核转变的是( C ) A.

B. C. D. 14.已知一个氢原子的质量为1.6736×10-27kg ,一个锂原子的质量为11.6505×10-27kg ,一个氦原子的质量为6.6467×10-27kg 。一个锂核受到一个质子轰击变为2个α粒子,核反应方程为11H+7

3Li →24

2He 。根据以上信息,以下判断正确的是( C )

A .题中所给的核反应属于α衰变

B .题中所给的核反应属于轻核聚变

C .根据题中信息,可以计算核反应释放的核能

D .因为题中给出的是三种原子的质量,没有给出核的质量,故无法计算核反应释放的核能

15. “轨道电子俘获”是放射性同位素衰变的一种形式,它是指原子核(称为母核)俘获一个核外电子,使其内部的一个质子变为中子,并放出一个中微子,从而变成一个新核(称为子核)的过程。中微子的质量远小于质子的质量,且不带电,很难被探测到,人们最早就

是通过核的反冲而间接证明中微子的存在的。一个静止的原子核发生“轨道电子俘获”,衰变为子核并放出中微子,下面说法正确的是( B )

A .母核的质量数小于子核的质量数

B .母核的电荷数大于子核的电荷数

C .子核的动量与中微子的动量相同

D .子核的动能大于中微子的动能

16.下列说法中,正确的是( D )

A .光照越强,光电子的初动能就越大

B .光子不仅有能量,还有动量,其动量为p =h λ

C .汤姆孙发现电子后提出了原子的核式结构模型

D .放射性元素衰变的快慢跟原子所处的化学状态和外部条件无关

17.下列说法中错误的是( B )

A .卢瑟福通过实验发现了质子的核反应方程为4

2He +147N→178O +11H

B .铀核裂变的核反应是:235

92U→14156Ba +9236Kr +210n

C .质子、中子、α粒子的质量分别为m 1、m 2、m 3,质子和中子结合成一个α粒子,释放的能量是(2m 1+2m 2-m 3)c 2

D .原子从a 能级状态跃迁到b 能级状态时发射波长为λ1的光子;原子从b 能级状态跃迁到c 能级状态时吸收波长为λ2的光子,已知λ1>λ2,那么原子从a 能级状态跃迁到c 能级状态时将要吸收波长为2

121λλλλ-的光子 18.下列四个方程中,表示α衰变的是( A )

A .

+→Th U 2349023892He 42 B .e Ng Na 0124122411-+→ C .

31415692361023592++→+Ba Kr n U n 10

D .n He H H 10423121+→+

19.有关下列说法中正确的是( C )

A .在光电效应现象中,入射光的强度越大,光电子的最大初动能越大

B .汤姆生通过α粒子散射实验提出了原子核式结构模型

C .23892U 衰变为22286Rn 要经过4次α衰变和2次β衰变

D .玻尔原子理论不仅能解释氢原子光谱,而且也能解释其它原子光谱

20.下列说法正确的是 ( C )

A.若使放射性物质的温度升高,其半衰期将减小

B.发生 衰变时,生成核与原来的原子核相比,中子数减少了4

C.太阳辐射的能量主要来自太阳内部的热核反应

D.按照玻尔理论,氢原子核外电子从半径较小的轨道跃迁到半径较大的轨道时,电子的动能减小,电势能增大,原子的总能量不变

21.中微子失踪之谜是一直困扰着科学家的问题。原来中微子在离开太阳向地球运动的过程中,发生“中微子振荡”,转化为一个μ子和一个τ子,科学家通过对中微子观察和理论分析,终于弄清了中微子失踪之谜,成为“2001年世界十大科技突破”之一。若中微子在运动中只转化为一个μ子和一个τ子,并已知μ子的运动方向与中微子原来的方向一致,则τ子的运动方向( D )

A.一定与中微子方向一致

B.一定与中微子方向相反

C.可能与中微子方向不在同一直线上

D.只能与中微子方向在同一直线上

22.如图是α、β、γ三种射线穿透能力的示意图,图(b)是工业上利用射线的穿透性来检查金属内部的伤痕的示意图,请问图(b)中的检查是利用了哪种射线(C )

A. α射线B.β射线C.γ射线D.三种射线都可以

二、多项选择题

23.下列说法中正确的是(AC )

A.玻尔认为,氢原子的能级是量子化的

B.一个动量为p的电子对应的物质波波长为hp(h为普朗克常量)

C.天然放射现象的发现揭示了原子核具有复杂的结构

D.随着温度的升高,黑体辐射强度的极大值向波长较长方向移动

24.在物理学发展史上,有一些定律或规律的发现,首先是通过推理论证建立理论,然后再由实验加以验证。下列叙述内容符合上述情况的是(AC )

A.牛顿发现了万有引力,经过一段时间后卡文迪许用实验方法测出引力常量的数值,从而验证了万有引力定律

B.爱因斯坦提出了量子理论,后来普朗克用光电效应实验提出了光子说

C.麦克斯韦提出电磁场理论并预言电磁波的存在,后来由赫兹用实验证实了电磁波的存在D.汤姆生提出原子的核式结构学说,后来由卢瑟福用α粒子散射实验给予了验证

25.原子核X发生 衰变后变成Y核,Y核吸收一个中子后生成Z核并放出一个α粒子,则下面说法正确的是(BC )

A.X核比Z核多一个中子B.X核比Z核多一个质子

C.X核的质量数比Z核质量数大3 D.X核的电荷数比Z核电荷数多2

26.下列说法中正确的是(BDE )

A.光电效应是原子核吸收光子向外释放电子的现象

B.卢瑟福通过对α粒子散射实验的研究,揭示了原子的核式结构

C.235U的半衰期约为7亿年,随地球环境的变化,半衰期可能变短

D.根据波尔理论可知,氢原子辐射出一个光子后,氢原子的电势能减小,核外电子的运动速度增大

E.碘131能自发地进行β衰变,衰变后生成的新物质原子核比碘131原子核多一个质子而少一个中子

27.下列说法中正确的是(BDE )

A.光电效应是原子核吸收光子向外释放电子的现象

B.卢瑟福通过对α粒子散射实验的研究,揭示了原子的核式结构

C.235U的半衰期约为7亿年,随地球环境的变化,半衰期可能变短

D.根据波尔理论可知,氢原子辐射出一个光子后,氢原子的电势能减小,核外电子的运动速度增大

E.碘131能自发地进行β衰变,衰变后生成的新物质原子核比碘131原子核多一个质子而少一个中子

28.关于近代物理初步的相关知识,下列说法中正确的是(BCD )

A.α粒子散射实验揭示了原子核有复杂结构

B.光电效应和康普顿效应均揭示了光具有粒子性

C.重核的裂变会发生质量亏损,但质量数仍守恒

D.氢原子相邻低能级间的跃迁比相邻高能级间跃迁所辐射的光子波长短

E.升高或者降低放射性物质的温度均可改变其半衰期

29.在下列4个核反应方程中,x 表示α粒子的是( BD )

A .30301514P Si x →+

B .2382349290U Th x →+

C .2727113121Al x Mg H +→+

D .27301

13150Al x P n +→+

30.下列说法正确的是(ABD )

A .经过6次α衰变和4次β衰变后成为稳定的原子核

B .发现中子的核反应方程是

C .20个

的原子核经过两个半衰期后剩下5个 D .在中子轰击下生成和的过程中,原子核中的平均核子质量变小 E .原子从一种定态跃迁到另一种定态时,一定要辐射出一定频率的光子

31.下列说法正确的是( AD )

A .

经过一系列的α衰变和β衰变,变成,该铅核比钍核少16个中子

B .氢原子从能量较高的激发态跃迁到能量较低的激发态时,原子的能量增加

C .放射性元素的半衰期跟原子所处的化学状态和外部条件有关

D .核反应方程

中X 是中子 32.下列说法正确的是(BDE )

A .卢瑟福的α粒子散射实验揭示了原子核有复杂的结构

B .Th 232

90衰变成Pb 208

82要经过6次α衰变和4次β衰变

C .β衰变中产生的β射线实际上是原子的核外电子挣脱原子核的束缚而形成的

D .升髙放射性物质的温度,不可缩短其半衰期

E .光电效应的实验结论是:对于某种金属,超过极限频率的入射光频率越高,所产生的光电子的最大初动能就越大

33.某原子的能级如图所示,现让光子能量为8.8 eV 的一束光照射到大量处于基态(量子数n =1)的这种原子上,这种原子能发出6种不同频率(波长)的光。关于这种原子发出的光,下列说法中正确的是( AD )

A.波长最长的光的光子能量为1.2 eV B.波长最长的光的光子能量为2.8 eV

C.频率最高的光的光子能量为4.8 eV D.频率最高的光的光子能量为8.8 eV

34.如图所示为氢原子的能级示意图。现用能量介于10eV-12.9eV范围内的光子去照射一群处于基态的氢原子,则下列说法正确的是(BD )

A.照射光中只有一种频率的光子被吸收B.照射光中有三种频率的光子被吸收

C.氢原子发射出三种不同波长的光D.氢原子发射出六种不同波长的光

35.氢原子的能级图如图所示,处于n=3激发态的大量氢原子向基态跃迁时所放出的光子中,只有一种光子不能使某金属A产生光电效应,则下列说法正确的是(BCD )

A.不能使金属A产生光电效应的光子一定是从n=3激发态直接跃迁到基态时放出的

B.不能使金属A产生光电效应的光子一定是从n=3激发态直接跃迁到n=2激发态时放出的C.若从n=4激发态跃迁到n=3激发态,所放出的光子一定不能使金属A产生光电效应D.金属A逸出功一定大于1.89eV

36.已知金属钙的逸出功为2.7eV,氢原子的部分能级如图所示,一群氢原子处于量子数n=4能级状态,则(AC )

A.氢原子可能辐射6种频率的光子B.氢原子可能辐射5种频率的光子C.有3种频率的辐射光子能使钙发生光电效应D.有4种频率的辐射光子能使钙发生光电效应

37.光电效应实验中,下列表述正确的是(CD )

A.光照时间越长光电流越大

B.入射光足够强就可以有光电流

C.遏止电压与入射光的频率有关

D.入射光频率大于极限频率才能产生光电子

38.如图所示是某金属在光的照射下产生的光电子的最大初动能E k与入射光频率ν的关系图象.由图象可知(BC )

39.用a、b两种不同频率的光分别照射同一金属板,发现当a光照射时验电器的指针偏转,b光照射时指针未偏转,以下说法正确的是(CD )

A.增大a光的强度,验电器的指针偏角一定减小

B.a光照射金属板时验电器的金属小球带负电

C.a光在真空中的波长小于b光在真空中的波长

D.若a光是氢原子从n=4的能级向n=1的能级跃迁时产生的,则b光可能是氢原子从n=5的能级向n=2的能级跃迁时产生的

40.如图所示,一细束平行光经玻璃三棱镜折射后分解为互相分离的a、b、c三束单色光。比较a、b、c三束光,可知(BD )

2动量守恒定律的应用-四种模型

例2.如图所示,一根质量不计、长为1m,能承受最大拉力为14N的绳子,一端固定在天花板上,另一端系一质量为1kg的小球,整个装置处于静止状态,一颗质量为10g、水平速度为500m/s的子弹水平击穿小球后刚好将将绳子拉断,求子弹此时的速度为多少(g取10m/s2) 练2、一颗质量为m,速度为v0的子弹竖直向上射穿质量为M的木块后继续上升,子弹从射穿木块到再回到原木块处所经过的时间为T,那么当子弹射出木块后,木块上升的最大高度为多少 例3.如图所示,光滑水平轨道上放置长板A(上表面粗糙)和滑块C,滑块B置于A的左端,三者质量分别为m A=2 kg、m B=1 kg、m C=2 kg.开始时C静止,A、B一起以v0=5 m/s的速度匀速向右运动,A与C发生碰撞(时间极短)后C向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C发生碰撞.求A与C碰撞后瞬间A的速度大小. 练3.质量为M的滑块静止在光滑的水平面上,滑块的光滑弧面底部与水平面相切,一个质量为m的小球以速度v0向滑块冲来,设小球不能越过滑块,求:小球到达最高点时的速度和小球达到的最大高度。 例4.如图,光滑水平直轨道上有三个质量均为m的物块A、B、的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C碰撞过程时间极短,求从A开始压缩弹簧直至与弹黄分离的过程中, (1)整个系统损失的机械能; (2)弹簧被压缩到最短时的弹性势能.

练4.如图所示,光滑水平面上有A 、B 、C 三个物块,其质量分别为m A =2.0 kg ,m B =m C =1.0 kg ,现用一轻弹簧将A 、B 两物块连接,并用力缓慢压缩弹簧使A 、B 两物块靠近,此过程外力做功108 J(弹簧仍处于弹性限度范围内),然后同时释放,弹簧开始逐渐变长,当弹簧刚好恢复原长时,C 恰好以4 m/s 的速度迎面与B 发生碰撞并瞬时粘连.求: (1)弹簧刚好恢复原长时(B 与C 碰撞前),A 和B 物块速度的大小; (2)当弹簧第二次被压缩时,弹簧具有的最大弹性势能. 1.静止在光滑水平地面上的平板小车C ,质量为m C =3kg ,物体A 、B 的质量为m A =m B =1kg ,分别以v A =4m/s 和v B =2m/s 的速度大小,从小车的两端相向地滑到车上.若它们在车上滑动时始终没有相碰,A 、B 两物体与车的动摩擦因数均为μ=.求: (1)小车的最终的速度; (2)小车至少多长(物体A 、B 的大小可以忽略). 2.如图,水平轨道AB 与半径为R=1.0 m 的竖直半圆形光滑轨道BC 相切于B 点.可视为质点的a 、b 两个小滑块质量m a =2m b =2 kg ,原来静止于水平轨道A 处,AB 长为L=3.2m ,两滑块在足够大的内力作用下突然分开,已知a 、b 两滑块分别沿AB 轨道向左右运动,v a = 4.5m/s ,b 滑块与水平面间动摩擦因数5.0=μ,g 取10m/s 2.则 (1)小滑块b 经过圆形轨道的B 点时对轨道的压力. (2)通过计算说明小滑块b 能否到达圆形轨道的最高点C . 附加题:如图,两块相同平板P 1、P 2置于光滑水平面上,质量均为 的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L .物体P 置 于P 1的最右端,质量为2m 且可看作质点.P 1与P 以共同速度v 0向 右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起.P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内).P 与P 2之间的动摩擦因数为μ.求: (1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2; (2)此过程中弹簧的最大压缩量x 和相应的弹性势能E p . O C B a b A B v A v B C

最新物理动量守恒定律练习题20篇

最新物理动量守恒定律练习题20篇 一、高考物理精讲专题动量守恒定律 1.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求: (1)A球与B球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中B球的最小速度. 【答案】(1);(2);(3)零. 【解析】 试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有: 碰后A、B的共同速度 损失的机械能 (2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大 根据动量守恒定律有: 三者共同速度 最大弹性势能 (3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速. 弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有: 根据机械能守恒定律: 此时A、B的速度,C的速度

可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的 ,故B 的最小速度为零 . 考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞. 【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答 2.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求: (1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ; (2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1; (3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值. 【答案】(1)2 4.610N F N -=? (2)1 1.25B T = (3)127s 360 t π = ,001290143ββ==和 【解析】 【详解】 解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v

高考物理练习题库28(动量守恒定律的应用)

高考物理练习题库28(动量守恒定律的应用) 1.相向运动的A 、B 两辆小车相撞后,一同沿A 原来的方向前进,这是由于( ).【0.5】 (A)A 车的质量一定大于B 车的质量 (B)A 车的速度一定大于B 车的速度 (C)A 车的动量一定大于B 车的动量 (D)A 车的动能一定大于B 车的动能量 答案:C 2.一个静止的质量为m 的不稳定原子核,当它完成一次α衰变.以速度v 发射出一个质量为m α的α粒子后,其剩余部分的速度等于( ).【0.5】 (A)v m m α- (B)-v (C)v m -m m αα (D)v m -m m α α- 答案:D 3.在两个物体碰撞前后,下列说法中可以成立的是( ).【1】 (A)作用后的总机械能比作用前小,但总动量守恒 (B)作用前后总动量均为零,但总动能守恒 (C)作用前后总动能为零,而总动量不为零 (D)作用前后总动景守恒,而系统内各物体的动量增量的总和不为零 答案:AB 4.在光滑的水平面上有两个质量均为m 的小球A 和B,B 球静止,A 球以速度v 和B 球发生碰撞,碰后两球交换速度.则A 、B 球动量的改变量Δp A 、Δp B 和A 、B 系统的总动量的改变Δp 为( ).【1】 (A)△p A =mv,△p B =-mv,△p=2mv (B)△p A ,△p B =-mv,Δp=0 (C)Δp A =0,Δp B =mv,Δp=mv (D)△p A =-mv,Δp B =mv,Δp=0 答案:D 5.向空中发射一物体,不计空气阻力,当此物体的速度恰好沿水平方向时,物体炸裂成a 、b 两块,若质量较大的a 块的速度方向仍沿原来的方向,则( ).【1】 (A)b 的速度方向一定与原来速度方向相同 (B)在炸裂过程中,a 、b 受到的爆炸力的冲量一定相同 (C)从炸裂到落地这段时间里,a 飞行的水平距离一定比b 的大 (D)a 、b 一定同时到达水平地面 答案:D 6.大小相同质量不等的A 、B 两球,在光滑水平面上作直线运动,发生正碰撞后分开.已知碰撞前A 的动量p A =20㎏·m/s,B 的动量p B =-30㎏·m/s,碰撞后A 的动量p A =-4㎏·m/s,则:【2】 (1)碰撞后B 的动量p B =_____㎏·m/s. (2)碰撞过程中A 受到的冲量=______N·s. (3)若碰撞时间为0.01s,则B 受到的平均冲力大小为_____N. 答案:(1)-6(2)-24(3)2400 7在光滑的水平面上有A 、B 两个小球向右沿同一直线运动,取向右为正方向,两球的动量分别为p A =5㎏·m/s,p B =7㎏·m/s,如图所示.若两球发生正碰,则碰后两球的动量增量Δp A 、Δp B 可能是( ).【2】 (A)Δp A =3㎏·m/s,Δp B =3㎏·m/s (B)Δp A =-3㎏·m/s,Δp B =3㎏·m/s

高中物理动量守恒定律解题技巧及练习题

高中物理动量守恒定律解题技巧及练习题 一、高考物理精讲专题动量守恒定律 1.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。已知磁场的磁感应强度B=0.5T ,导轨的间距与导体棒的长度均为L=0.5m ,导轨的半径r=0.5m ,导体棒的电阻R=1Ω,其余电阻均不计,重力加速度g=10m/s 2,不计空气阻力。 (1)求导体棒刚进入凹槽时的速度大小; (2)求导体棒从开始下落到最终静止的过程中系统产生的热量; (3)若导体棒从开始下落到第一次通过导轨最低点的过程中产生的热量为16J ,求导体棒第一次通过最低点时回路中的电功率。 【答案】(1) 210/v m s = (2)25J (3)9W 4 P = 【解析】 【详解】 解:(1)根据机械能守恒定律,可得:212 mgh mv = 解得导体棒刚进入凹槽时的速度大小:210/v m s = (2)导体棒早凹槽导轨上运动过程中发生电磁感应现象,产生感应电流,最终整个系统处于静止,圆柱体停在凹槽最低点 根据能力守恒可知,整个过程中系统产生的热量:()25Q mg h r J =+= (3)设导体棒第一次通过最低点时速度大小为1v ,凹槽速度大小为2v ,导体棒在凹槽内运动时系统在水平方向动量守恒,故有:12mv Mv = 由能量守恒可得: 22 12111()22 mv mv mg h r Q +=+- 导体棒第一次通过最低点时感应电动势:12E BLv BLv =+ 回路电功率:2 E P R =

动量动量定理动量守恒定律专题

动量定理和动量守恒定律的应用 1. A、B、C三个质量相等的小球以相同的初速度v0分别竖直上抛、竖直下抛、水平抛出.若空气阻力不计,设落地时A、B、C三球的速度分别为v1、v2、v3,则 [ ] A、经过时间t后,若小球均未落地,则三小球动量变化大小相等,方向相同 B、A球从抛出到落地过程中动量变化的大小为mv1-mv0,方向竖直向下 C、三个小球运动过程的动量变化率大小相等,方向相同 D、三个小球从抛出到落地过程中A球所受的冲量最大 2. 某消防队员从一平台上跳下,下落2m后双脚触地,接着他用双腿弯屈的方法缓冲,使自身重心又下降了.在着地过程中地面对他双脚的平均作用力估计为[ ] A、自身所受重力的2倍 B、自身所受重力的5倍 C、自身所受重力的8倍 D、自身所受重力的10倍 3. 一个质点受到合外力F作用,若作用前后的动量分别为p和p’,动量的变化为△p,速度的变化为△v,则 A、p=-p’是不可能的 B、△p垂直于p是可能的 C、△P垂直于△v是可能的 D、△P=O是不可能的。 4. 一粒钢珠从静止状态开始自由下落,然后陷人泥潭中。若把在空中下落的过程称为过程Ⅰ,进人泥潭直到停止的过程称为过程Ⅱ, 则( ) A、过程I中钢珠的动量的改变量等于重力的冲量 B、过程Ⅱ中阻力的冲量的大小等于过程I中重力的冲量的大小 C、I、Ⅱ两个过程中合外力的总冲量等于零 D、过程Ⅱ中钢珠的动量的改变量等于零 5. 质量为m的木块下面用细线系一质量为M的铁块,一起浸没在 水中从静止开始以加速度a匀加速下沉(如图),经时间t1s后细

v 1 线断裂,又经t2s 后,木块停止下沉.试求铁块在木块停上下沉瞬间的速度. 6、 质量为M 的楔形物块上有圆弧轨道,静止在水平面上。质量为m 的小球以速度v1向物块运动。不计一切摩擦,圆弧小于90°且足够长。求小球能上升到的最大高度H 和物块的最终速度v 。 7、设质量为m 的子弹以初速度v0射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,子弹钻入木块深度为d 。求木块对子弹的平均阻力的大小和该过程中木块前进的距离。 8、质量为m 的人站在质量为M ,长为L 的静止小船的右端,小船的左端靠在岸边。当他向左走到船的左端时,船左端离岸多远 9、如图所示,一质量为M 的平板车B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,A 、B 间动摩擦因数为μ,现给A 和B 以大小相等、方向相反的初速度v0,使A 开始向左运动,B 开始向右运动,最后A 不会滑离B ,求: (1)A 、B 最后的速度大小和方向; (2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小。 s 2 d s 1 v 0 v

高中物理动量守恒定律练习题

一、系统、内力和外力┄┄┄┄┄┄┄┄① 1.系统:相互作用的两个(或多个)物体组成的一个整体。 2.内力:系统内部物体间的相互作用力。 3.外力:系统以外的物体对系统内部的物体的作用力。 [说明] 1.系统是由相互作用、相互关联的多个物体组成的整体。 2.组成系统的各物体之间的力是内力,将系统看作一个整体,系统之外的物体对这个整体的作用力是外力。 ①[填一填]如图,公路上有三辆车发生了追尾事故,如果把前面两辆车看作一个系统,则前面两辆车之间的撞击力是________,最后一辆车对前面两辆车的撞击力是________(均填“内力”或“外力”)。 答案:内力外力 二、动量守恒定律┄┄┄┄┄┄┄┄② 1.内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。 2.表达式:对两个物体组成的系统,常写成: p1+p2=或m1v1+m2v2=。 3.适用条件:系统不受外力或者所受外力的矢量和为0。 4.动量守恒定律的普适性 动量守恒定律是一个独立的实验规律,它适用于目前为止物理学研究的一切领域。 [注意] 1.系统动量是否守恒要看研究的系统是否受外力的作用。

2.动量守恒是系统内各物体动量的矢量和保持不变,而不是系统内各物体的动量不变。 ②[判一判] 1.一个系统初、末状态动量大小相等,即动量守恒(×) 2.两个做匀速直线运动的物体发生碰撞,两个物体组成的系统动量守恒(√) 3.系统动量守恒也就是系统的动量变化量为零(√) 1.对动量守恒定律条件的理解 (1)系统不受外力作用,这是一种理想化的情形,如宇宙中两星球的碰撞,微观粒子间的碰撞都可视为这种情形。 (2)系统受外力作用,但所受合外力为零。像光滑水平面上两物体的碰撞就是这种情形。 (3)系统受外力作用,但当系统所受的外力远远小于系统内各物体间的内力时,系统的总动量近似守恒。例如,抛出去的手榴弹在空中爆炸的瞬间,弹片所受火药爆炸时的内力远大于其重力,重力可以忽略不计,系统的动量近似守恒。 (4)系统受外力作用,所受的合外力不为零,但在某一方向上合外力为零,则系统在该方向上动量守恒。 2.关于内力和外力的两点提醒 (1)系统内物体间的相互作用力称为内力,内力会改变系统内单个物体的动量,但不会改变系统的总动量。 (2)系统的动量是否守恒,与系统的选取有关。分析问题时,要注意分清研究的系统,系统的内力和外力,这是正确判断系统动量是否守恒的关键。 [典型例题] 例 1.[多选]如图所示,光滑水平面上两小车中间夹一压缩了的轻弹簧,两手分别按住小车,使它们静止,对两车及弹簧组成的系统,下列说法中正确的是() A.两手同时放开后,系统总动量始终为零

高中物理动量守恒定律解题技巧讲解及练习题(含答案)

高中物理动量守恒定律解题技巧讲解及练习题(含答案) 一、高考物理精讲专题动量守恒定律 1.在图所示足够长的光滑水平面上,用质量分别为3kg和1kg的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s,此时乙尚未与P相撞. ①求弹簧恢复原长时乙的速度大小; ②若乙与挡板P碰撞反弹后,不能再与弹簧发生碰撞.求挡板P对乙的冲量的最大值.【答案】v乙=6m/s. I=8N 【解析】 【详解】 (1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得: 又知 联立以上方程可得,方向向右。 (2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为 由动量定理可得,挡板对乙滑块冲量的最大值为: 2.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙相接触.另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,物块C的v-t图象如图乙所示.求: ①物块C的质量? ②B离开墙后的运动过程中弹簧具有的最大弹性势能E P? 【答案】(1)2kg(2)9J 【解析】 试题分析:①由图知,C与A碰前速度为v1=9 m/s,碰后速度为v2=3 m/s,C与A碰撞过程动量守恒.m c v1=(m A+m C)v2 即m c=2 kg ②12 s时B离开墙壁,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大

高考物理专题汇编物理动量守恒定律(一)

高考物理专题汇编物理动量守恒定律(一) 一、高考物理精讲专题动量守恒定律 1.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。某兴趣小组制作了两种火箭模型来探究多级结构的优越性,模型甲内部装有△m=100 g 的压缩气体,总质量为M=l kg ,点火后全部压缩气体以v o =570 m/s 的速度从底部喷口在极短的时间内竖直向下喷出;模型乙分为两级,每级内部各装有2 m ? 的压缩气体,每级总质量均为 2 M ,点火后模型后部第一级内的全部压缩气体以速度v o 从底部喷口在极短时间内竖直向下喷出,喷出后经过2s 时第一级脱离,同时第二级内全部压缩气体仍以速度v o 从第二级底部在极短时间内竖直向下喷出。喷气过程中的重力和整个过程中的空气阻力忽略不计,g 取10 m /s 2,求两种模型上升的最大高度之差。 【答案】116.54m 【解析】对模型甲: ()00M m v mv =-?-?甲 21085=200.5629 v h m m g =≈甲甲 对模型乙第一级喷气: 10022 m m M v v ??? ?=-- ???乙 解得: 130m v s =乙 2s 末: ‘ 11=10m v v gt s -=乙乙 22 11 1'=402v v h m g -=乙乙乙 对模型乙第一级喷气: ‘120=)2222 M M m m v v v ??--乙乙( 解得: 2670= 9 m v s 乙 2 2222445=277.10281 v h m m g =≈乙乙 可得: 129440 += 116.5481 h h h h m m ?=-≈乙乙甲。 2.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。已知磁场的磁感应强度

动量与动量守恒定律练习题(含参考答案)

高二物理3-5:动量与动量守恒定律 1.如图所示,跳水运动员从某一峭壁上水平跳出,跳入湖水中,已知 运动员的质量m =70kg ,初速度v 0=5m/s 。若经过1s 时,速度为v = 5m/s ,则在此过程中,运动员动量的变化量为(g =10m/s 2 ,不计空气阻力): ( ) A. 700 kg·m/s B. 350 kg·m/s B. C. 350(-1) kg·m/s D. 350(+1) kg·m/s 2.质量相等的A 、B 两球在光滑水平面上,沿同一直线,同一方向运动,A 球的动量p A =9kg?m/s ,B 球的动量p B =3kg?m/s .当A 追上B 时发生碰撞,则碰后A 、B 两球的动量可能值是( ) A .p A ′=6 kg?m/s ,p B ′=6 kg?m/s B .p A ′=8 kg?m/s ,p B ′=4 kg?m/s C .p A ′=﹣2 kg?m/s ,p B ′=14 kg?m/s D .p A ′=﹣4 kg?m/s ,p B ′=17 kg?m/s 3.A 、B 两物体发生正碰,碰撞前后物体A 、B 都在同一直线上运动,其位移—时间图象如图所示。由图可知,物体A 、B 的质量之比为: ( ) A. 1∶1 B. 1∶2 C. 1∶3 D. 3∶1 4.在光滑水平地面上匀速运动的装有砂子的小车,小车和砂子总质量为M ,速度为v 0,在行驶途中有质量为m 的砂子从车上漏掉,砂子漏掉后小车的速度应为: ( ) A. v 0 B. 0Mv M m - C. 0mv M m - D. ()0M m v M - 5.在光滑水平面上,质量为m 的小球A 正以速度v 0匀速运动.某时刻小球A 与质量为3m 的静止 小球B 发生正碰,两球相碰后,A 球的动能恰好变为原来的14.则碰后B 球的速度大小是( ) A.v 02 B.v 06 C.v 02或v 06 D .无法确定

高考物理动量守恒定律的应用技巧(很有用)及练习题

高考物理动量守恒定律的应用技巧(很有用)及练习题 一、高考物理精讲专题动量守恒定律的应用 1.足够长的水平传送带右侧有一段与传送带上表面相切的 1 4 光滑圆弧轨道,质量为M =2kg 的小木盒从离圆弧底端h =0.8m 处由静止释放,滑上传送带后作减速运动,1s 后恰好与传送带保持共速。传送带始终以速度大小v 逆时针运行,木盒与传送带之间的动摩擦因数为μ=0.2,木盒与传送带保持相对静止后,先后相隔T =5s ,以v 0=10m/s 的速度在传送带左端向右推出两个完全相同的光滑小球,小球的质量m =1kg .第1个球与木盒相遇后,球立即进入盒中并与盒保持相对静止,第2个球出发后历时△t =0.5s 与木盒相遇。取g =10m/s 2,求: (1)传送带运动的速度大小v ,以及木盒与第一个小球相碰后瞬间两者共同运动速度大小v 1; (2)第1个球出发后经过多长时间与木盒相遇; (3)从木盒与第1个球相遇至与第2个球相遇的过程中,由于木盒与传送带间的摩擦而产生的热量。 【答案】(1)v =2m/s ;v 1=2m/s (2)t 0=1s (3)24J Q = 【解析】 【详解】 (1)设木盒下滑到弧面底端速度为v ',对木盒从弧面下滑的过程由动能定理得 21 2 Mgh Mv = ' 依题意,木箱滑上传送带后做减速运动,由运动学公式有:v v at ='-' 对箱在带上由牛顿第二定律有:Mg Ma μ= 代入数据联立解得传送带的速度v =2m/s 设第1个球与木盒相遇,根据动量守恒定律得 ()01mv Mv m M v -=+ 代入数据,解得v 1=2m/s (2)设第1个球与木盒的相遇点离传送带左端的距离为s ,第1个球经过t 0与木盒相遇,则00 s t v = 设第1个球进入木盒后两者共同运动的加速度为a ,根据牛顿第二定律有 ()()m M g m M a μ+=+ 得:2 2m/s a g μ==

高中物理动量守恒定律基础练习题及解析

高中物理动量守恒定律基础练习题及解析 一、高考物理精讲专题动量守恒定律 1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求: (1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v ;②23 v 【解析】 试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v = ②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223 v v = 考点:动量守恒定律 2.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m 的光滑 1 4 圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。一可看做质点的小物块从A 点由静止释放,滑到C 点刚好相对小车停止。已知小物块质量m =1kg ,取g =10m/s 2。求: (1)小物块与小车BC 部分间的动摩擦因数; (2)小物块从A 滑到C 的过程中,小车获得的最大速度。 【答案】(1)0.5(2)1m/s 【解析】 【详解】 解:(1) 小物块滑到C 点的过程中,系统水平方向动量守恒则有:()0M m v += 所以滑到C 点时小物块与小车速度都为0 由能量守恒得: mgR mgL μ= 解得:0.5R L μ= =

(2)小物块滑到B 位置时速度最大,设为1v ,此时小车获得的速度也最大,设为2v 由动量守恒得 :12mv Mv = 由能量守恒得 :221211 22 mgR mv Mv =+ 联立解得: 21/ v m s = 3.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角 o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=) (1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能. 【答案】(1)6/B v m s = (2)0.6P E J = 【解析】 试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2 cos 1sin 2 B B B B m gh m gh m v θμθ+?= ① (3分) 代入已知数据解得:6/B v m s = ② (2分) (2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得: 222 0111()222 A B P A A B B m m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分) 考点:本题考查了动能定理、动量守恒定律、能量守恒定律. 4.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M 1=1 kg ,车上另有一个质量为m =0.2 kg 的小球,甲车静止在水平面上,乙车以v 0=8 m/s

【物理】 物理动量守恒定律专题练习(及答案)

【物理】 物理动量守恒定律专题练习(及答案) 一、高考物理精讲专题动量守恒定律 1.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。某兴趣小组制作了两种火箭模型来探究多级结构的优越性,模型甲内部装有△m=100 g 的压缩气体,总质量为M=l kg ,点火后全部压缩气体以v o =570 m/s 的速度从底部喷口在极短的时间内竖直向下喷出;模型乙分为两级,每级内部各装有2 m ? 的压缩气体,每级总质量均为 2 M ,点火后模型后部第一级内的全部压缩气体以速度v o 从底部喷口在极短时间内竖直向下喷出,喷出后经过2s 时第一级脱离,同时第二级内全部压缩气体仍以速度v o 从第二级底部在极短时间内竖直向下喷出。喷气过程中的重力和整个过程中的空气阻力忽略不计,g 取10 m /s 2,求两种模型上升的最大高度之差。 【答案】116.54m 【解析】对模型甲: ()00M m v mv =-?-?甲 21085=200.5629 v h m m g =≈甲甲 对模型乙第一级喷气: 10022 m m M v v ??? ?=-- ???乙 解得: 130m v s =乙 2s 末: ‘ 11=10m v v gt s -=乙乙 22 11 1'=402v v h m g -=乙乙乙 对模型乙第一级喷气: ‘120=)2222 M M m m v v v ??--乙乙( 解得: 2670= 9 m v s 乙 2 2222445=277.10281 v h m m g =≈乙乙 可得: 129440 += 116.5481 h h h h m m ?=-≈乙乙甲。 2.一质量为的子弹以某一初速度水平射入置于光滑水平面上的木块 并留在其中, 与木块 用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧 被压缩瞬间 的速度 ,木块 、 的质量均为 .求:

动量守恒定律及应用练习题

动量守恒定律习题课 教学目标:掌握应用动量守恒定律解题的方法和步骤 能综合运用动量定理和动量守恒定律求解有关问题教学重点:熟练掌握应用动量守恒定律解决有关力学问题的正确步骤教学难点:守恒条件的判断,系统和过程的选择,力和运动的分析教学方法:讨论,总结;讲练结合 【讲授新课】 1、“合二为一”问题:两个速度不同的物体,经过相互作 用,最后达到共同速度。 例1、甲、乙两小孩各乘一辆小车在光滑水平面上匀速相向行驶,速度均为6m/s.甲车上有质量为m=1kg的小球若干个,甲和他的车及所带小球的总质量为M1=50kg,乙和他的车总质量为M2=30kg。现为避免相撞,甲不断地将小球以相对地面16.5m/s的水平速度抛向乙,且被乙接住。假设某一次甲将小球抛出且被乙接住后刚好可保证两车不致相撞,试求此时: (1)两车的速度各为多少?(2)甲总共抛出了多少个小球? 分析与解:甲、乙两小孩依在抛球的时候是“一分为二”的过程,接球的过程是“合二为一”的过程。 (1)甲、乙两小孩及两车组成的系统总动量沿甲车的运动方向,甲不断抛球、乙接球后,当甲和小车与乙和小车具有共同速度时,可保证刚好不撞。设共同速度为V,则: M1V1-M2V1=(M1+M2)V (2)这一过程中乙小孩及时的动量变化为:△P=30×6-30×(- 1.5)=225(kg·m/s) 每一个小球被乙接收后,到最终的动量弯化为△P1=16.5×1- 1.5×1=15(kg·m/s) 故小球个数为 2、“一分为二”问题:两个物体以共同的初速度运动,由于 相互作用而分开后以不同的速度运动。 例2、人和冰车的总质量为M,另有一个质量为m的坚固木箱,开始时人坐在冰车上静止在光滑水平冰面上,某一时刻人将原来静止在冰面上的木箱以速度V推向前方弹性挡板,木箱与档板碰撞后又反向弹 回,设木箱与挡板碰撞过程中没有机械能的损失,人接到木箱后又以速度V推向挡板,如此反复多次,试求人推多少次木箱后将不可能再

最新物理动量守恒定律练习

最新物理动量守恒定律练习 一、高考物理精讲专题动量守恒定律 1.如图所示,质量为M=1kg 上表面为一段圆弧的大滑块放在水平面上,圆弧面的最底端刚好与水平面相切于水平面上的B 点,B 点左侧水平面粗糙、右侧水平面光滑,质量为m=0.5kg 的小物块放在水平而上的A 点,现给小物块一个向右的水平初速度v 0=4m/s ,小物块刚好能滑到圆弧面上最高点C 点,已知圆弧所对的圆心角为53°,A 、B 两点间的距离为L=1m ,小物块与水平面间的动摩擦因数为μ=0.2,重力加速度为g=10m/s 2.求: (1)圆弧所对圆的半径R ; (2)若AB 间水平面光滑,将大滑块固定,小物块仍以v 0=4m/s 的初速度向右运动,则小物块从C 点抛出后,经多长时间落地? 【答案】(1)1m (2)4282 25 t s = 【解析】 【分析】 根据动能定理得小物块在B 点时的速度大小;物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒和系统机械能守恒求出圆弧所对圆的半径;,根据机械能守恒求出物块冲上圆弧面的速度,物块从C 抛出后,根据运动的合成与分解求落地时间; 【详解】 解:(1)设小物块在B 点时的速度大小为1v ,根据动能定理得:22011122 mgL mv mv μ= - 设小物块在B 点时的速度大小为2v ,物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒则有:12()mv m M v =+ 根据系统机械能守恒有:22 01211()(cos53)22 mv m M v mg R R =++- 联立解得:1R m = (2)若整个水平面光滑,物块以0v 的速度冲上圆弧面,根据机械能守恒有: 22 00311(cos53)22 mv mv mg R R =+- 解得:322/v m s = 物块从C 抛出后,在竖直方向的分速度为:38 sin 532/5 y v v m s =?= 这时离体面的高度为:cos530.4h R R m =-?=

动量守恒定律的综合应用练习及答案

1.如图所示,以质量m=1kg的小物块(可视为质点),放置在质量为M=4kg的长木板,左侧长木板放置在光滑的水平地面上,初始时长木板与木块一起,以水平速度v?=2m/s向左匀速运动。在长木板的左侧上方固定着一个障碍物A,当物块运动到障碍物A处时与A发生弹性碰撞(碰撞时间极短,无机械能损失),而长木板可继续向左运动,重力加速度g=10m/s2。 (1)设长木板足够长,求物块与障碍物第1次碰撞后,物块与长木板速度相同时的共同速率 1.2m/s (2)设长木板足够长,物块与障碍物发生第1次碰撞后,物块儿向右运动能到达的最大距离,s=0.4m,求物块与长木板间的动摩擦因数以及此过程中长木板运动的加速度的大小.1.25m/s2 (3)要使物块不会从长木板上滑落,长木板至少为多长?2m 2.如图所示为一根直杆弯曲成斜面和平面连接在一起的轨道,转折点为C,斜面部分倾角为30度,平面部分足够长,滑块A,B放在斜面上,开始时A,B之间的距离为1米,B与C的距离为0.6米,现将A B同时由静止释放.已知A 、B与轨道的动摩擦因数分别为√3/5和√3/2 ,A、B质量均为m,g取10m/s2,设最大静摩擦力等于滑动摩擦力,A、B发生碰撞时为弹性碰撞。物体A,B可以看作是质点,不计在斜面与平面转弯处的机械能损失,则 (1)经过多长时间滑块A,B第1次发生碰撞. 1s (2)滑块B停在水平轨道上的位置与C点儿的距离是多少?m 10 3 3.如图所示,光滑的轨道固定在竖直平面内,其O点左边为水平轨道,O点右边的曲面轨道高度h等于0.45米,左右两段轨道在O点平滑连接.质量m=0.10kg的小滑块a由静止开始从曲面轨道的顶端沿轨道下滑,到达水平段后与处于静止状态的质量M=0.30kg的小滑块b发生碰撞,碰撞后现小滑块a恰好停止运动,取重力加速度g=10m/s2,求 (1)小滑块a通过O点时的速度大小3m/s (2)碰撞后小滑块b的速度大小1m/s (3)碰撞后碰撞过程中小滑块a、b组成的系统损失的机械能。0.3J A B C b c h o

动量守恒定律 练习题及答案

动量守恒定律 一、单选题(每题3分,共36分) 1.下列关于物体的动量和动能的说法,正确的是 ( ) A .物体的动量发生变化,其动能一定发生变化 B .物体的动能发生变化,其动量一定发生变化 C .若两个物体的动量相同,它们的动能也一定相同 D .两物体中动能大的物体,其动量也一定大 2.为了模拟宇宙大爆炸初期的情境,科学家们使用两个带正电的重离子被加速后,沿同一条直线相向运动而发生猛烈碰撞.若要使碰撞前重离子的动能经碰撞后尽可能多地转化为其他形式的能,应该设法使这两个重离子在碰撞前的瞬间具有 ( ) A .相同的速度 B .相同大小的动量 C .相同的动能 D .相同的质量 3.质量为M 的小车在光滑水平面上以速度v 向东行驶,一个质量为m 的小球从距地面H 高处自由落下,正好落入车中,此后小车的速度将 ( ) A .增大 B .减小 C .不变 D .先减小后增大 4.甲、乙两物体质量相同,以相同的初速度在粗糙的水平面上滑行,甲物体比乙物体先停下来,下面说法正确的是 ( ) A .滑行过程中,甲物体所受冲量大 B .滑行过程中,乙物体所受冲量大 C .滑行过程中,甲、乙两物体所受的冲量相同 D .无法比较 5.A 、B 两刚性球在光滑水平面上沿同一直线、同一方向运动,A 球的动量是5kg·m /s ,B 球的动量是7kg·m /s ,当A 球追上B 球时发生碰撞,则碰撞后A 、B 两球的动量的可能值是 ( ) A .-4kg·m/s 、14kg·m/s B .3kg·m/s 、9kg·m/s C .-5kg·m/s 、17kg·m/s D .6kg·m /s 、6kg·m/s 6.质量为m 的钢球自高处落下,以速率1v 碰地,竖直向上弹回,碰撞时间极短,离地的速率为2v .在碰撞过程中, 地面对钢球冲量的方向和大小为 ( ) A .向下,12()m v v - B .向下,12()m v v + C .向上,12()m v v - D .向上,12()m v v + 7.质量为m 的α粒子,其速度为0v ,与质量为3m 的静止碳核碰撞后沿着原来的路径被弹回,其速度为0/2v ,而碳 核获得的速度为 ( ) A .06v B .20v C .02v D .03 v 8.在光滑水平面上,动能为0E ,动量大小为0P 的小钢球1与静止的小钢球2发生碰撞,碰撞前后球1的运动方向 相反,将碰撞后球1的动能和动量的大小分别记作1E 、1P ,球2的动能和动量的大小分别记为2E 、2P ,则必有 ( ) ①1E <0E ②1P <0P ③2E >0E ④2P >0P A .①② B.①③④ C.①②④ D.②③ 9.质量为1.0kg 的小球从高20 m 处自由下落到软垫上,反弹后上升的最大高度为5.O m .小球与软垫接触的时间是1.0s ,在接触的时间内小球受到的合力的冲量大小为(空气阻力不计,g 取10m/s 2) ( ) A .10N·s B .20N·s C .30N·s D .40N·s 10.质量为2kg 的物体,速度由4m /s 变成 -6m/s ,则在此过程中,它所受到的合外力冲量是 ( ) A .-20N·s B.20N·s C .-4N·s D .-12N·s 11.竖直向上抛出一个物体.若不计阻力,取竖直向上为正,则该物体动量随时间变化的图线是 ( ) 12.一颗水平飞行的子弹射入一个原来悬挂在天花板下静止的沙袋并留在其中和沙袋一起上摆.关于子弹和沙袋组成的系统,下列说法中正确的是 ( ) A .子弹射入沙袋过程中系统动量和机械能都守恒 B .子弹射入沙袋过程中系统动量和机械能都不守恒 C .共同上摆阶段系统动量守恒,机械能不守恒 D .共同上摆阶段系统动量不守恒,机械能守恒 二、多选题(每题4分,共16分) 13.下列情况下系统动量守恒的是 ( )A .两球在光滑的水平面上相互碰撞 B .飞行的手榴弹在空中爆炸 C .大炮发射炮弹时,炮身和炮弹组成的系统 D .用肩部紧紧抵住步枪枪托射击,枪身和子弹组成的系统 14.两物体相互作用前后的总动量不变,则两物体组成的系统一定 ( ) A .不受外力作用 B .不受外力或所受合外力为零 C .每个物体动量改变量的值相同 D .每个物体动量改变量的值不同

高考物理动量守恒定律的应用解题技巧及练习题

高考物理动量守恒定律的应用解题技巧及练习题 一、高考物理精讲专题动量守恒定律的应用 1.如图所示,质量为M 的木块A 静置于水平面上,距A 右侧d 处有固定挡板B,一质量为m 的小物体C,以水平速度v 0与A 相碰,碰后C 、A 粘连在一起运动,CA 整体与B 碰撞没有能量损失,且恰好能回到C 、A 碰撞时的位置所有碰撞时间均不计,重力加速度为g 。求: (1)C 与A 碰撞前后,C 损失的机械能; (2)木块A 与水平面间动摩擦因数μ。 【答案】(1)202(2)2()k M m Mmv E M m +?=+ (2)22 2 4()m v gd M m μ=+ 【解析】 【详解】 解:(1)设C 、A 碰后瞬时速度大小为v ,根据动量守恒则有:0()mv m M v =+ 由于C 与A 碰撞,C 损失的机械能:22011 22 E mv mv ?= - 解得:2 2 (2)2() M m Mmv E M m +?=+ (2)由动能定理得:21 ()20()2 M m g d M m v μ-+?=- + 解得:22 4() m v gd M m μ=+ 2.如图所示,质量为M=2kg 的木板A 静止在光滑水平面上,其左端与固定台阶相距x ,右端与一固定在地面上的半径R=0.4m 的光滑四分之一圆弧紧靠在一起,圆弧的底端与木板上表面水平相切。质量为m=1kg 的滑块B(可视为质点)以初速度08/v m s =从圆弧的顶端沿圆弧下滑,B 从A 右端的上表面水平滑入时撤走圆弧。A 与台阶碰撞无机械能损失,不计空气阻力,A 、B 之间动摩擦因数0.1μ=,A 足够长,B 不会从A 表面滑出,取g=10m/s 2。 (1)求滑块B 到圆弧底端时的速度大小v 1; (2)若A 与台阶碰前,已和B 达到共速,求A 向左运动的过程中与B 摩擦产生的热量Q(结

相关主题