搜档网
当前位置:搜档网 › 碳纤维材料的性能

碳纤维材料的性能

碳纤维材料的性能
碳纤维材料的性能

碳纤维材料的性能及应用

摘要:介绍了碳纤维及其增强复合材料,详细介绍了碳纤维复合材料的分类和特性,着重阐述了碳纤维及其复合材料在高新技术领域和能源、体育器材等民

用领域的应用,并对未来碳纤维复合材料的发展趋势进行了分析。

关键词:碳纤维性能应用

0引言

碳纤维复合材料具有轻质、高强度、高刚度、优良的减振性、耐疲劳和耐腐蚀等优异性能。以高性能碳纤维复合材料为典型代表的先进复合材料作为结构、功能或结构/功能一体化材料,不仅在国防战略武器建设中具有不可替代性,在绿色能源建设、节约能源技术发展和促进能源多样化过程中也将发挥极其重要的作用。若将先进碳纤维复合材料在国防领域的应用水平和规模视作国家安全的重要保证,则碳纤维复合材料在交通运输、风力发电、石油开采、电力输送等领域的应用将与有效减少温室气体排放、解决全球气候变暖等环境问题密切相关。随着对碳纤维复合材料认识的不断深化,以及制造技术水平的不断提升,碳纤维复合材料在相关领域的应用研究与装备不断取得进展,借鉴国际先进的碳纤维复合材料应用经验,牵引高性能碳纤维及其复合材料的国产化步伐,对于改变经济结构、节能减排具有重要的战略意义。

1碳纤维材料

1.1何为碳纤维材料

碳纤维是一种含碳量在9 2% 以上的新型高性能纤维材料, 具有重量轻、高强度、高模量、耐高温、耐磨、耐腐蚀、抗疲劳、导电、导热和远红外辐射等多种优异性能, 不仅是21 世纪新材料领域的高科技产品, 更是国家重要的战略性基础材料, 政治、经济和军事意义十分重大。碳纤维分为聚丙烯睛基、沥青基和粘胶基

3种, 其中90 % 为聚丙烯睛基碳纤维。聚丙烯睛基碳纤维的生产过程主要包括原丝生产和原丝碳化两部分。用碳纤维与树脂、金属、陶瓷、玻璃等基体制成的复合材料, 广泛应用于航空航天领域体育休闲领域以及汽车制造、新型建材、

信息产业等工业领域。

1.2碳纤维的特点

碳纤维是纤维状的碳材料, 由有机纤维原丝在1 000 以上的高温下碳化形成, 且含碳量在90%以上的高性能纤维材料。

碳纤维主要具备以下特性:

( 1) 密度小、质量轻, 碳纤维的密度为1. 5~ 2 g /cm3, 相当于钢密度的1 /4、铝合金密度1/2;

( 2)强度、弹性模量高, 其强度比钢大4~ 5倍, 弹性回复为100% ;

( 3) 热膨胀系数小, 导热率随温度升高而下降, 耐骤冷、急热, 即使从几千摄氏度的高温突然降到常温也不会炸裂

( 4) 摩擦系数小, 并具有润滑性;

( 5) 导电性好, 25 时高模量碳纤维的比电阻为775 cm, 高强度碳纤维则为1 500 cm;

( 6) 耐高温和低温性好, 在3 000 非氧化气氛下不熔化、不软化, 在液氮温度下依旧很柔软, 也不脆化;

( 7) 耐酸性好, 对酸呈惰性, 能耐浓盐酸、磷酸、硫酸等侵蚀。除此之外, 碳纤维还具有耐油、抗辐射的特性

2碳纤维增强复合材料

尽管碳纤维可单独使用发挥某些功能, 然而, 它属于脆性材料, 只有将它与基体材料牢固地结合在一起时, 才能利用其优异的力学性能, 使之更好地承载负荷。因此, 碳纤维主要还是在复合材料中作增强材料。根据使用目的不同可选用各种基体材料和复合方式来达到所要求的复合效果。碳纤维可用来增强树脂、碳、金属及各种无机陶瓷, 而目前使用得最多、最广泛的是树脂基复合材料。

2. 1碳纤维增强陶瓷基复合材料

陶瓷具有优异的耐蚀性、耐磨性、耐高温性和化学稳定性, 广泛应用于工业和民用产品。它的弱点是对裂纹、气孔和夹杂物等细微的缺陷很敏感。用碳纤维增强陶瓷可有效地改善韧性, 改变陶瓷的脆性断裂形态, 同时阻止裂纹在陶瓷基体中的迅速传播、扩展。目前国内外比较成熟的碳纤维增强陶瓷材料是碳纤维增强碳

化硅材料, 因其具有优良的高温力学性能, 在高温下服役不需要额外的隔热措施,因而在航空发动机、可重复使用航天飞行器等领域具有广泛应用。

2. 2碳/碳复合材料

碳/碳复合材料是碳纤维增强碳基复合材料的简称, 也是一种高级复合材料。它是由碳纤维或织物、编织物等增强碳基复合材料构成。碳/碳复合材料主要由各类碳组成, 即纤维碳、树脂碳和沉积碳。这种完全由人工设计、制造出来的纯碳元素构成的复合材料具有许多优异性能, 除具备高强度、高刚性、尺寸稳定、抗氧化和耐磨损等特性外, 还具有较高的断裂韧性和假塑性。特别是在高温环境中, 强度高、不熔不燃, 仅是均匀烧蚀。这是任何金属材料无法与其比拟的。因此广泛应用于导弹弹头, 固体火箭发动机喷管以及飞机刹车盘等高科技领域。

2. 3碳纤维增强金属基复合材料

碳纤维增强金属基复合材料是以碳纤维为增强纤维, 金属为基体的复合材料。碳纤维增强金属基复合材料与金属材料相比, 具有高的比强度和比模量; 与陶瓷相比, 具有高的韧性和耐冲击性能, 金属基体多采用铝、镁、镍、钛及它们的合金等, 其中, 碳纤维增强铝、镁复合材料的制备技术比较成熟。制造碳纤维增强金属基复合材料的主要技术难点是碳纤维的表面涂层, 以防止在复合过程中损伤

碳纤维,从而使复合材料的整体性能下降。目前, 在制备碳纤维增强金属基复合材料时碳纤维的表面改性主要采用气相沉积、液钠法等, 但因其过程复杂、成本高, 限制了碳纤维增强金属基复合材料的推广应用

2. 4碳纤维增强树脂复合材料

碳纤维增强树脂基复合材料( CFRP)是目前最先进的复合材料之一。它以轻质、高强、耐高温、抗腐蚀、热力学性能优良等特点广泛用作结构材料及耐高温抗烧蚀材料, 是其他纤维增强复合材料所无法比拟的。碳纤维增强树脂复合材料所用的基体树脂主要分为两大类, 一类是热固性树脂, 另一类是热塑性树脂。热固性树脂由反应性低分子量预集体或带有活性基团高分子量聚合物组成; 成型过程中, 在固化剂或热作用下进行交联、缩聚, 形成不熔不溶的交联体型结构。在复合材料中常采用的有环氧树脂、双马来酰亚胺树脂、聚酰亚胺树脂以及酚醛树脂等。热塑性树脂由线型高分子量聚合物组成, 在一定条件下溶解熔融, 只发生物理变化。常用的有聚乙烯、尼龙、聚四氟乙烯以及聚醚醚酮等。在碳纤维增强树

脂基复合材料中, 碳纤维起到增强作用, 而树脂基体则使复合材料成型为承载外力的整体, 并通过界面传递载荷于碳纤维, 因此它对碳纤维复合材料的技

术性能、成型工艺以及产品价格等都有直接的影响。碳纤维的复合方式也会对复合材料的性能产生影响。在制备复合材料时, 碳纤维大致可分为两种类型: 连续纤维和短纤维。连续纤维增强的复合材料通常具有更好的机械性能, 但由于其制造成本较高,并不适应于大规模的生产。短纤维复合材料可采用与树脂基体相同的加工工艺, 如模压成型、注射成型以及挤出成型等。当采用适合的成型工艺时, 短纤维复合材料甚至可以具备与连续纤维复合材料相媲美的机械性能并且适宜于大规模的生产, 因此短纤维复合材料近年来得到了广泛的应用。

李军《碳纤维及其复合材料的研究应用进展》辽宁化工2010年9月第39卷第9期

3碳纤维及其复合材料的应用

3.1高新技术领域

碳纤维复合材料因其独特、卓越的性能,在航空领越特别是飞机制造业中应用广泛。统计显示,目前,碳纤维复合材料在小型商务飞机和直升飞机上的使用量已占70%~80%,在军用飞机上占30%~40%,在大型客机上占15%~50%。AV—8B 改型“鹞”式飞机是美国军用飞机中使用复合材料最多的机种,其机翼、前机身都用了石墨环氧大型部件,全机所用碳纤维的重量约占飞机结构总重量的26%,使整机减重9%,有效载荷比AV—8A飞机增加了一倍。数据显示采用复合材料结构的前机身段,可比金属结构减轻质量32.24%。用军机战术技术性能的重要指标——结构重量系数来衡量,国外第四代军机的结构重量系数已达到27~28%。未来以F-22 为目标的背景机复合材料用量比例需求为35%左右,其中碳纤维复合材料将成为主体材料。在法国电信一号通信卫星本体结构中,带有4 条环形加强筋的中心承力筒是由CFRP 制成的,它通过螺接连接在由CFRP 制成的仪器平台上。卫星的蒙皮是由T300 CFRP 制成。由于CFRP 的比模量高,在日本JERS-1 地球资源卫星壳体内部的 500 mm 的推力筒、仪器支架、8 根支撑杆和分隔环都使用了M40JB CFRP,此外,卫星的外壳、一些仪器的安装板均采用了碳纤维/环氧蜂窝夹层结构。美国空军实验室1997 年在国家导弹防御系

统试验项目( BMDO CEP) 支持下,成功设计并制造了以CFRP 为加强筋的AGS 整流罩,重量仅37 kg,同类型铝合金防护罩重97 kg,运用纤维缠绕技术实现了自动化生产,工艺周期缩短88%,比同类型蜂窝夹层结构制造复合材料整流罩减重40%,成本降低20%

图3 CEP 火箭有效载荷整流罩

Fig.3 Payload fairing of CEP launch rocket

3.2民用领域

3.2.1碳纤维复合材料在体育器材上的应用

像撑竿、高尔夫球杆、网球拍、自行车、滑雪板、皮划艇等靠人力来使其运动的体育器材,人们希望其质量越轻越好; 即使是靠人力以外的其他动力来使其运动的器材,如赛车、帆船、摩托艇等,在相同的条件下也以质轻为好。碳纤维复合材料在此方面具有不可比拟的优势,其密度为1.76 ~1.80 g /cm3,所制复合材料密度为1.50 ~1.60 g /cm3,而钢材约为7.87 g /cm3、铝材2.7

g /cm3、钛材4.5 g /cm3。显然,CFRP 要比金属材料轻得多。

3.2.1碳纤维在新能源领域的应用

叶片是风力发电装备的关键部件,它的质量(W)随叶片长度(L)的三次方增加(W=A L3)。当风机叶片质量增长到一定程度时,叶片质量的增加幅度大于风机能量输出的增加,那么叶片长度的增加则存在一个极值。风力发电机叶片的长度尺寸、刚性以及质量代表着风电机组的发电水平,常规的玻璃纤维增强材料

制备叶片已难以满足叶片尺寸加大对刚性与质量的综合要。碳纤维复合材料优异的抗疲劳特性和良好的导电特性,可有效减弱恶劣环境对叶片材料的损害,避免雷击对叶片造成的损伤求,在全球风机装机容量快速增长的今天,提高碳

纤维复合材料用量的长叶片大容量风机将成为主要趋势。

3.2.3碳纤维在工业领域的应用

铁道部规划在3 ~ 5 年内,时速为160km / h 的车辆将达到50% 以上,约1 万5千辆,每辆车需刹车片32 片,共需约48 万片。车辆提速之前,铁路客车和货车的最高设计时速分别为120km / h 和80km / h。由于车辆速度每提高一倍,其制动功率将增加8 倍,因此对提速车辆用制动材料提出了相当严格的技术要求。理论研究和实车运营状况表明,现有的常规制动材料,无论是摩擦系数和列车运行平稳性,还是耐磨性、导热性、制动距离等均不能满足提速车辆的需要碳纤维复合材料刹车片是国际上仍在不断研究的新型制动材料,它具有强度高、弹性模量适中、耐热性好、重量轻、膨胀系数小、耐磨损等优点,而所有这些都是提速列车制动所必需的性能,因此开发这类新型材料已被发达国家重视德国铁路部门投巨资,由KnoorBremse公司研制了高速列车用碳纤维复合材料盘型制动器; 日本、法国开发研制的碳纤维复合材料刹车片已成功地应用于新干线和TGV 高速列车制动。面对国外碳纤维复合材料高技术的发展趋势和我国铁路对高性能制动片的迫切需求,研制开发高速列车用碳纤维复合材料刹车片不仅具有重要的现实意义,而且具有巨大的推广应用价值

4碳纤维产业的前景展望

自2004年随着碳纤维在汽车应用上的起步、飞机应用及风力发电等领域的扩大,碳纤维的需求快速增加,使全球碳纤维供应呈严重短缺现象,促使世界各国碳纤维生产厂家纷纷加大资金投入、扩大产能,碳纤维的生产进入高速发展时期。由于全球对碳纤维需求的持续增长,预计未来碳纤维还将以超过10%年增长率速度持续增长。目前世界碳纤维生产和技术主要集中在日本、美国等少数几个国家,其中日本占全球产能的50%以上,美国占全球产能的27.5%。尽管我国从20世纪60年代后期就开始PAN基碳纤维研究工作,且与国外开始的时间相差不远;但由于在原丝与碳化的关键技术及设备上一直未能取得突破,特别

是PAN原丝技术停滞不前,因此与世界上碳纤维生产先进水平的国家相比,在数量和质量上差距越拉越大。尽管我国的碳纤维生产发展缓慢,但消费量却与日俱增,市场需求旺盛。随着市场需求的增加,特别是国防、军工、航空航天、体育用品等方面需求的增长,每年从国外进口的碳纤维越来越多。这就要求我们必需加快研究、生产步伐,抓住发展机遇,尽快实现和提高我国碳纤维国产化生产水平。

碳纤维的特性及应用

碳纤维的特性及应用 碳纤维是高级复合材料的增强材料,具有轻质、高强、高模、耐化学腐蚀、热膨胀系数小等一系列优点,归纳如下: 一、轻质、高强度、高模量 碳纤维的密度是1.6-2.5g/cm3,碳纤维拉伸强度在2.2Gpa以上。因此,具有高的比强度和比模量,它比绝大多数金属的比强度高7倍以上,比模量为金属的5倍以上。由于这个优点,其复合材料可广泛应用于航空航天、汽车工业、运动器材等。 二、热膨胀系数小 绝大多数碳纤维本身的热膨胀系数,室内为负数(-0.5~-1.6)×10-6/K,在200~400℃时为零,在小于1000℃时为1.5×10-6/K。由它制成的复合材料膨胀系数自然比较稳定,可作为标准衡器具。 三、导热性好 通常无机和有机材料的导热性均较差,但碳纤维的导热性接近于钢铁。利用这一优点可作为太阳能集热器材料、传热均匀的导热壳体材料。 四、耐化学腐蚀性好 从碳纤维的成分可以看出,它几乎是纯碳,而碳又是最稳定的元素之一。它除对强氧化酸以外,对酸、碱和有机化学药品都很稳定,可以制成各种各样的化学防腐制品。我国已从事这方面的应用研究,随着今后碳纤维的价格不断降低,其应用范围会越来越广。 五、耐磨性好 碳纤维与金属对磨时,很少磨损,用碳纤维来取代石棉制成高级的摩檫材料,已作为飞机和汽车的刹车片材料。 六、耐高温性能好 碳纤维在400℃以下性能非常稳定,甚至在1000℃时仍无太大变化。复合材料耐高温性能主要取决于基体的耐热性,树脂基复合材料其长期耐热性只达300℃左右,陶瓷基、碳基和金属基的复合材料耐高温性能可与碳纤维本身匹配。因此碳纤维复合材料作为耐高温材料广泛用于航空航天工业。 七、突出的阻尼与优良的透声纳 利用这二种特点可作为潜艇的结构材料,如潜艇的声纳导流罩等。 八、高X射线透射率 发挥此特点已经在医疗器材中得到应用。 九、疲劳强度高 碳纤维的结构稳定,制成的复合材料,经应力疲劳数百万次的循环试验后,其强度保留率仍有60%,而钢材为40%,铝材为30%,而玻璃钢则只有20%-25%.因此设计制品所取的安全系数,碳纤维复合材料为最低。

碳纤维材料性能及应用

碳纤维材料的性能及应用 碳纤维是一种纤维状碳材料。它是一种强度比钢的大、密度比铝的小、比不锈钢还耐腐蚀、比耐热钢还耐高温、又能像铜那样导电,具有许多宝贵的电学、热学和力学性能的新型材料。 碳纤维的微观结构类似人造石墨,是乱层石墨结构。另外,碳纤维是指含碳量高于90%的无机高分子纤维。其中含碳量高于99%的称石墨纤维。 性能特点: 碳纤维的比重小,抗拉强度高,轴向强度和模量高,无蠕变,耐疲劳性好,比热及导电性介于非金属和金属之间,热膨胀系数小,耐腐蚀性好,纤维的密度低,X射线透过性好。但其耐冲击性较差,容易损伤,在强酸作用下发生氧化,与金属复合时会发生金属碳化、渗碳及电化学腐蚀现象。因此,碳纤维在使用前须进行表面处理。总之,碳纤维是一种力学性能优异的新材料。 应用领域: 用碳纤维与塑料制成的复合材料所做的飞机不但轻巧,而且消耗动力少,推力大,噪音小;用碳纤维制电子计算机的磁盘,能提高计算机的储存量和运算速度;用碳纤维增强塑料来制造卫星和火箭等宇宙飞行器,机械强度高,质量小,可节约大量的燃料。1999年发生在南联盟科索沃的战争中,北约使用石墨炸弹破坏了南联盟大部分电力供应,其原理就是产生了覆盖大范围地区的碳纤维云,这些导电性纤维使供电系统短路。 目前,人们还不能直接用碳或石墨来抽成碳纤维,只能采用一些含碳的有机纤维(如尼龙丝、腈纶丝、人造丝等)做原料,将有机纤维跟塑料树脂结合在一起,放在稀有气体的气氛中,在一定压强下强热炭化而成碳纤维是纤维状的碳材料,其化学组成中含碳量在90%以上。由于碳的单质在高温下不能熔化(在3800K以上升华),而在各种溶剂中都不溶解,所以迄今无法用碳的单质来制碳纤维。碳纤维可通过高分子有机纤维的固相碳化或低分子烃类的气相热解来制取。目前世界上产生的销售的碳纤维绝大部分都是用聚丙烯腈纤维的固相碳化制得的。其产生的步骤为A预氧化:在空气中加热,维持在200-300度数十至数百分钟。预氧化的目的为使聚丙烯腈的线型分子链转化为耐热的梯型结构,以使其在高温碳化时不熔不燃而保持纤维状态。B碳化:在惰性气氛中加热至1200-1600度,维持数分至数十分钟,就可生成产品碳纤维;所用的惰性气体可以是高纯的氮气、氩气或氦气,但一般多用高纯氮气。C石墨化:再在惰性气氛(一般为高纯氩气)加热至2000-3000度,维持数秒至数十秒钟;这样生成的碳纤维也称石墨纤维。碳纤维有极好的纤度(纤度的表示法之一是9000米长的纤维的克数),一般仅约为19克;拉力高达300KG/MM2;还有耐高温、耐腐蚀、导电、传热、彭胀系数小等一系列优异性能。目前几乎没有其他材料像碳纤维那样具有那么多的优异性能。目前,碳纤维主要是制成碳纤维增强塑料来应用。这种增强塑料比钢、玻璃钢更优越,用途非常广泛,如制造火箭、宇宙飞船等重要材料;制造喷气式发动机;制造耐腐蚀化工设备等。羽毛球:现在大部分羽毛球拍杆由碳纤维制成。【碳纤维】carbon fibre 含碳量高于90%的无机高分子纤维。其中含

碳纤维综述

PAN 基碳纤维 摘要: 聚丙烯晴基碳纤维是一种力学性能优异的新材料,具有高强度、高模量、低密度、耐高温、耐腐蚀、耐摩擦、导电、导热、膨胀系数小、减震等优异性能,是航空航天、国防军事工业不可缺少的工程材料,同时在体育用品、交通运输、医疗器械和土木建筑等民用领域也有着广泛应用。本文简要介绍了其结构,制备方法,性能,应用领域及其前景。 关键词:PAN 基碳纤维 碳纤维结构 PAN 基碳纤维制备 PAN 基碳纤维性能 PAN 基碳纤维应用前景 航天 军事 体育用品 1. 碳纤维结构 碳纤维属于聚合的碳,它是由有机物经固相反应转化为三维碳化合物,碳化历程不同,形成的产物结构也不同。 碳纤维和石墨纤维在强度和弹性模量上有很大差别,这主要是由于其结构不同,碳纤维是由小的乱层石墨晶体所组成的多晶体,含碳量约75%~95%;石墨纤维的结构与石墨相似,含碳量可达98%~99%,杂志少。碳纤维的含碳量与制造纤维过程中碳化和石墨化过程有关。 2. PAN 基碳纤维的制备 从原料丙烯晴到聚丙烯晴基碳纤维的制备过程中可以看出四个关键步骤:PAN 的聚合, 原丝的制备,原丝的预氧化以及预氧化丝的炭化和石墨化。 2.1 PAN 的聚合 由于PAN 分子结构的特性,纯聚体PAN 不适宜作为碳纤维前驱体。工业生产中,往往采用共聚PAN 来制备PAN 原丝。引入共聚单体可以起到如下作用:减少聚合物原液中凝胶的产生;增加聚合物的溶解性和可纺性;降低原丝环化温度及变宽放热峰。但也可能带来一些负作用:降低原丝的结构规整性和结晶度;增加大分子链结构的不均匀性;引入更多的无机和有机杂质等。 2.2 原丝的制备 PAN 在熔点(317°C )以下就开始分解,因此形成纤维主要通过湿法或干湿法进行纺丝。 干湿法纺丝由于将挤出膨化与表皮凝固进行了隔离,纤维的成形机理有所改变,因此湿法纺丝凝固过程中皮层破裂或径向大孔及表皮褶皱等现象基本消失,干湿法纺丝的原丝表面及内单体引发剂 聚合 纺丝 原丝 预氧化 预氧丝 炭化 石墨化 表面处理 上浆 碳纤维 石墨纤维

碳纤维材料的性能

碳纤维材料的性能及应用 摘要:介绍了碳纤维及其增强复合材料,详细介绍了碳纤维复合材料的分类和特性,着重阐述了碳纤维及其复合材料在高新技术领域和能源、体育器材等民 用领域的应用,并对未来碳纤维复合材料的发展趋势进行了分析。 关键词:碳纤维性能应用 0引言 碳纤维复合材料具有轻质、高强度、高刚度、优良的减振性、耐疲劳和耐腐蚀等优异性能。以高性能碳纤维复合材料为典型代表的先进复合材料作为结构、功能或结构/功能一体化材料,不仅在国防战略武器建设中具有不可替代性,在绿色能源建设、节约能源技术发展和促进能源多样化过程中也将发挥极其重要的作用。若将先进碳纤维复合材料在国防领域的应用水平和规模视作国家安全的重要保证,则碳纤维复合材料在交通运输、风力发电、石油开采、电力输送等领域的应用将与有效减少温室气体排放、解决全球气候变暖等环境问题密切相关。随着对碳纤维复合材料认识的不断深化,以及制造技术水平的不断提升,碳纤维复合材料在相关领域的应用研究与装备不断取得进展,借鉴国际先进的碳纤维复合材料应用经验,牵引高性能碳纤维及其复合材料的国产化步伐,对于改变经济结构、节能减排具有重要的战略意义。 1碳纤维材料 1.1何为碳纤维材料 碳纤维是一种含碳量在9 2% 以上的新型高性能纤维材料, 具有重量轻、高强度、高模量、耐高温、耐磨、耐腐蚀、抗疲劳、导电、导热和远红外辐射等多种优异性能, 不仅是21 世纪新材料领域的高科技产品, 更是国家重要的战略性基础材料, 政治、经济和军事意义十分重大。碳纤维分为聚丙烯睛基、沥青基和粘胶基 3种, 其中90 % 为聚丙烯睛基碳纤维。聚丙烯睛基碳纤维的生产过程主要包括原丝生产和原丝碳化两部分。用碳纤维与树脂、金属、陶瓷、玻璃等基体制成的复合材料, 广泛应用于航空航天领域体育休闲领域以及汽车制造、新型建材、

碳纤维性能的优缺点及其对策

碳纤维性能的优缺点及其对策 现面以结构加固用的碳纤维布为例说明碳纤维的性能: 碳纤维布加固技术是利用碳素纤维布和专用结构胶对建筑构件进行加固处理,该技术采用的碳素纤维布强度是普通二级钢的10倍左右。具有强度高、重量轻、耐腐蚀性和耐久性强等优点。厚度仅为2mm左右,基本上不增加构件截面,能保证碳素纤维布与原构件共同工作。 1、碳纤维介绍 碳纤维根据原料及生产方式的不同,主要分为聚丙烯腈(PAN)基碳纤维及沥青基碳纤维。碳纤维产品包括PAN基碳纤维(高强度型)及沥青基碳纤维(高弹性型)。 2、环氧树脂 不同类型的树脂还可以保证其对砼具有良好的渗透作用,例如底涂树脂;以及对碳纤维片与砼结构的粘接作用,例如环氧粘结树脂等。 (1)环氧树脂简介 仅仅依靠碳纤维片本身并不能充分发挥其强大的力学特性及优越的耐久性能,只有通过环氧树脂将碳纤维片粘附于钢筋混凝土结构表面并与之紧密地结合在一起形成整体共同工作,才能达到补强的目的。因此,环氧树脂的性能是重要的关键之一。环氧树脂因类型不同而有不同的性能,适应于各个部位的不同要求。例如底涂树脂对混凝土具有良好的渗透作用,能渗入到混凝土内一定深度;粘贴碳纤维片的环氧树脂易于"透"过碳纤维片,有很强的粘结力。依使用温度的不同,树脂还分为夏用及冬用类树脂。 2、碳纤维材料与其他加固材料对比 (1)抗拉强度:碳纤维的抗拉强度约为钢材的10倍。 (2)弹性模量:碳纤维复合材料的拉伸弹性模量高于钢材,但芳纶和玻璃纤维复合材料的拉伸弹性模量则仅为钢材的一半和四分之一。 (3)疲劳强度:碳纤维和芳纶纤维复合材料的疲劳强度高于高强纲丝。金属材料在交变应力作用下,疲劳极限仅为静荷强度的30%~40%。由于纤维与基体复合可缓和裂纹扩展,以及存在纤维内力再分配的可能性,复合材料的疲劳极限较高,约为静荷强度的70%~80%,并在破坏前有变形显著的征兆。 (4)重量:约为钢材的五分之一。 (5)与碳纤维板的比较:碳纤维片材可以粘贴在各种形状的结构表面,而板材更适用于规则构件表面。此外,由于粘贴板材时底层树脂的用量比片材多、厚度大,与混凝土界面的粘接强度不如片材。

碳纤维复合材料结构设计要点

强度与刚度 既然是结构部件,那么设计者首先要考虑的是强度和刚度。部件在外力载荷的作用下,有抵 抗变形与破坏的能力,但是这个能力又是有限度的。 如何4定部件的使用载荷,不会超出部件的能力极限,是通过材料力学计算得出。而部件的 这个能力极限,就是碳纤维复合材料结构设计者需要考虑的问题。 通过合理的搭配纤维和树脂,优化纤维排布,用最少的材料,满足设计需求,体现了复合材 料设计者精湛的技巧。不过决定复合材料强度与刚度的因素,不但与纤维和树脂的种类有关,还与碳纤维的铺层方向以及层与层之间结合搭配有关。 所以,设计者在设计碳纤维复合材料结构部件时,需要考虑三个层级结构的力学性能。 由基体和增强材料复合而成的单层材料,其力学性能决定于组分材料的力学性能、相几何(各 相材料的形状、分布、含量)和界面区的性能。 由单层材料层合而成的层合体,其力学性能决定于单层材料的力学性能和铺层几何(各单层的 厚度、铺设方向、铺层序列) 。 最顶层结构是指通常所说的工程结构或产品结构,其力学性能决定于层合体的力学性能和结 构几何。 稳定性 除了强度与刚度要求,设计者还需考虑复合材料部件的失稳,尤其是对一些细长杆结构,在 受压时,应该能够保证其原有的直线平衡状态。对于一些框架结构部件,如果铺层不均匀, 也会产生翘曲失稳,所以在制造过程中尤其注意。最好采用对称铺层,以防变形不均匀。 一般情况下,在部件没有达到极限载荷之下,不允许产生失稳现象。但是如果对于一些特殊 要求,可以产生失稳现象,那么设计过程中,要考虑失稳过程不会因此影响极限载荷。 铺层结构 铺层结构是碳纤维复合材料结构设计的关键,如何把单层结构的优异性能传递到复合材料结 构部件上,铺层结构起到承上启下的作用。关于复合材料铺层应注意以下几点: 1. 树脂是碳纤维复合材料力学性能的短板,所以尽量避免将载荷直接加到层间或者树脂之间。也就是说,0°、±45°、90°的纤维都要有,否则载荷会将部件从没有纤维排布的方向撕裂。 2. 为了防止层合板边缘开裂,尽量避免重复单一方向的铺层,设计时最多不超过5层。 3. 为了防止最外层铺层的剥离,在部件的主载荷方向,应铺放±45°纤维,而不能铺放0°和90°纤维。另外,避免最外层铺层间断或不完整。 4. 若使用非对称铺层,每层因同方向上热膨胀系数不同会出现翘曲,因此,一般要采用对称 铺层。 5. 当增加补强铺层时,每层阶梯最少要3.8- 6.4mm,附加铺层也应尽量采用对称铺层。

活性碳纤维的特性

活性碳纤维的特性 1) 吸附量大 活性碳纤维对有机气体及恶臭物质(如正丁基硫醇等)的吸附量比粒状活性炭( GAC )大几倍至十几倍。对无机气体也有较好的吸附能力。对水溶液中的无机物、染料、有机物及贵金属的吸附量比 GAC 高 5 — 6 倍。对微生物及细菌也有很好的吸附能力(如对大肠杆菌的吸附率可达 94 — 99% )。对低浓度吸附质的吸附能力特别优良。如对于吸附质的浓度在几 ppm 级时仍可保持很好的吸附量,而 GAC 等吸附材料往往在几十ppm浓度时才有良好的吸附能力。 2) 吸附速度快 对于从气相中吸附气态污染物的吸附速度非常快,对液体的吸附也可很快达到吸附平衡,其吸附速率比 GAC 高数十倍至数百倍。 3) 再生容易,脱附速度快 在多次吸附和脱附过程中,仍能保持原有的吸附性能。如用 120-150 ℃蒸汽或热空气再生处理 ACF 10-30 分钟即可达到完全脱附。 4) 耐热性好 在惰性气体中可耐高温 1000 ℃以上,在空气中的着火点高达 500 ℃以上。 5) 耐酸、耐碱,具有较好的导电性能和化学稳定性。 6) 灰份少。 7) 成型性好,易加工成毡、丝、布、纸等形态。 活性碳纤维的介绍 一般传统上所使用的活性炭可分为粉末状活性炭(AC)和颗粒状活性炭(GAC),上世纪六十年美、日、俄等国家相继研发出第三种形态的活性炭称为活性碳纤维( Activated Carbon Fibers, /ACF )。国内在七十年代末八十年初, 也研发出活性碳纤维。因为活性炭纤维其表面遍布微孔,以及可经二次加工,成为不同形态的毡及布状的材料,与传统的颗粒炭相比,具有较快的吸附、脱附的速度和更便利的操作维护等优点 活性碳纤维(以下简称ACF)的诞生在整个环保产业是一场革命。ACF是以粘胶基纤维为原料,经高温碳化、活化后制成的纤维状新型吸附材料,与社会上公认的比较好的吸附材料颗粒状活性炭相比,ACF具有以下显著的的特点:(一)、比表面积大,有效吸附量高。由于同样重量的纤维的表面积是颗粒的近

碳纤维增强复合材料概述

碳纤维增强复合材料概述 摘要:本文对碳纤维增强复合材料进行了介绍,详细介绍了其优点和应用。并对碳纤维复合材料存在的问题提出建议。 关键字:碳纤维,复合材料,应用 Abstract: In this paper, the carbon fiber reinforced composite materials are introduced, its advantages and application was introduced in detail. And puts forward Suggestions on the problems existing in the carbon fiber composite materials. Key words: carbon fiber, composite materials, applications 1.碳纤维增强复合材料介绍 复合材料是将两种或两种以上不同品质的材料通过专门的成型工艺和制造方法复合而成的一种高性能新材料,按使用要求可分为结构复合材料和功能复合材料,到目前为止,主要的发展方向是结构复合材料,但现在也正在发展集结构和功能一体化的复合材料。通常将组成复合材料的材料或原材料称之为组分材料(constituent materials),它们可以是金属陶瓷或高聚物材料。对结构复合材料而言,组分材料包括基体和增强体,基体是复合材料中的连续相,其作用是将增强体固结在一起并在增强体之间传递载荷;增强体是复合材料中承载的主体,包括纤维、颗粒、晶须或片状物等的增强体,其中纤维可分为连续纤维、长纤维和短切纤维,按纤维材料又可分为金属纤维、陶瓷纤维和聚合物纤维,而目前用得最多的和最重要的是碳纤维[1]。 碳纤维是一种直径极细的连续细丝材料,直径范围在6~8 μm 内,是近几十年发展起来的一种新型材料。目前用在复合材料中的碳纤维主要有两大类:聚丙烯腈基碳纤维和沥青基碳纤维,分别用聚丙烯腈原丝(称之为前驱体)、沥青原丝通过专门而又复杂的碳化工艺制备而得。通过碳化工艺,使纤维中的氢、

碳纤维及其复合材料的发展及应用_上官倩芡

第37卷第3期上海师范大学学报(自然科学版)Vol.37,N o.3 2008年6月J ou rnal of ShanghaiNor m alUn i versity(Natural S ci en ces)2008,J un 碳纤维及其复合材料的发展及应用 上官倩芡,蔡泖华 (上海师范大学机械与电子工程学院,上海201418) 摘要:叙述了碳纤维的结构形态、分类以及在力学、物理、化学方面的性能,介绍了碳纤维增强复合材料的特性,着重阐述了碳纤维增强树脂基复合材料中基体的分类、选择和应用,指出了碳纤维及其复合材料进一步发展的趋势. 关键词:碳纤维;复合材料 中图分类号:O636文献标识码:A文章编号:1000-5137(2008)03-0275-05 碳纤维作为一种高性能纤维,具有高比强度、高比模量、耐高温、抗化学腐蚀、耐辐射、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异性能.此外,还具有纤维的柔曲性和可编性[1~3].碳纤维既可用作结构材料承载负荷,又可作为功能材料发挥作用.因此碳纤维及其复合材料近几年发展十分迅速.本文作者就碳纤维的特性、分类及其在复合材料领域的应用等内容进行介绍. 1碳纤维特性、结构及分类 碳纤维是纤维状的碳材料,由有机纤维原丝在1000e以上的高温下碳化形成,且含碳量在90%以上的高性能纤维材料.碳纤维主要具备以下特性:1密度小、质量轻,碳纤维的密度为1.5~2g/c m3,相当于钢密度的1/4、铝合金密度的1/2;o强度、弹性模量高,其强度比钢大4~5倍,弹性回复为100%;?热膨胀系数小,导热率随温度升高而下降,耐骤冷、急热,即使从几千摄氏度的高温突然降到常温也不会炸裂;?摩擦系数小,并具有润滑性;?导电性好,25e时高模量碳纤维的比电阻为775L8/c m,高强度碳纤维则为1500L8/c m;?耐高温和低温性好,在3000e非氧化气氛下不熔化、不软化,在液氮温度下依旧很柔软,也不脆化;?耐酸性好,对酸呈惰性,能耐浓盐酸、磷酸、硫酸等侵蚀[4~7].除此之外,碳纤维还具有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性. 碳纤维的结构取决于原丝结构和碳化工艺,但无论用哪种材料,碳纤维中碳原子平面总是沿纤维轴平行取向.用X-射线、电子衍射和电子显微镜研究发现,真实的碳纤维结构并不是理想的石墨点阵结构,而是属于乱层石墨结构[8],如图1所示.构成此结构的基元是六角形碳原子的层晶格,由层晶格组成层平面.在层平面内的碳原子以强的共价键相连,其键长为0.1421n m;在层平面之间则由弱的范德华力相连,层间距在0.3360~0.3440n m之间;层与层之间碳原子没有规则的固定位置,因而层片边缘参差不齐.处于石墨层片边缘的碳原子和层面内部结构完整的基础碳原子不同.层面内部的基础碳原子所受的引力是对称的,键能高,反应活性低;处于表面边缘处的碳原子受力不对称,具有不成对电子,活性 收稿日期:2008-01-04 基金项目:上海市教委科研基金项目(06D Z034). 作者简介:上官倩芡(1974-),女,上海师范大学机械与电子工程学院副教授.

碳纤维特性

碳纤维是一种纤维状碳材料。它是一种强度比钢的大、密度比铝的小、比不锈钢还耐腐蚀、比耐热钢还耐高温、又能像铜那样导电,具有许多宝贵的电学、热学和力学性能的新型材料。 用碳纤维与塑料制成的复合材料所做的飞机不但轻巧,而且消耗动力少,推力大,噪音小;用碳纤维制电子计算机的磁盘,能提高计算机的储存量和运算速度;用碳纤维增强塑料来制造卫星和火箭等宇宙飞行器,机械强度高,质量小,可节约大量的燃料。目前,人们还不能直接用碳或石墨来抽成碳纤维,只能采用一些含碳的有机纤维(如尼龙丝、腈纶丝、人造丝等)做原料,将有机纤维跟塑料树脂结合在一起,放在稀有气体的气氛中,在一定压强下强热炭化而成碳纤维是纤维状的碳材料,其化学组成中含碳量在90%以上。由于碳的单质在高温下不能熔化(在3800K 以上升华),而在各种溶剂中都不溶解,所以迄今无法用碳的单质来制碳纤维。碳纤维可通过高分子有机纤维的固相碳化或低分子烃类的气相热解来制取。上前世界上产生的销售的碳纤维绝大部分都是用聚丙烯腈纤维的固相碳化制得的。其产生的步骤为A预氧化:在空气中加热,维持在200-300度数十至数百分钟。预氧化的目的为使聚丙烯腈的线型分子链转化为耐热的梯型结构,以使其在高温碳化时不熔不燃而保持纤维状态。B碳化:在惰性气氛中加热至1200-1600度,维持数分至数十分钟,就可生成产品碳纤维;所用的惰性气体可以是高纯的氮气、氩气或氦气,但一般多用高纯氮气。C石墨化:再在惰性气氛(一般为高纯氩气)加热至2000-3000度,维持数秒至数十秒钟;这样生成的碳纤维也称石墨纤维。碳纤维有极好的纤度(纤度的表示法之一是9000米长的纤维的克数),一般仅约为19克;拉力高达300KG/MM2;还有耐高温、耐腐蚀、导电、传热、彭胀系数小等一系列优异性能。目前几乎没有其他材料像碳纤维那样具有那么多的优异性能。目前,碳纤维主要是制成碳纤维增强塑料来应用。这种增强塑料比钢、玻璃钢更优越,用途非常广泛,如制造火箭、宇宙飞船等重要材料;制造喷气式发动机;制造耐腐

碳纤维复合材料

碳纤维复合材料 碳纤维增强复合材料(Carbon Fibre-reinforced Polymer, 简称CFRP)是以碳纤维或碳纤维织物为增强体,以树脂、陶瓷、金属、水泥、碳质或橡胶等为基体所形成的复合材料,简称碳纤维复合材料。 碳复合材料的特性主要表现在力学性能、热物理性能和热烧蚀性能三个方面。 (1)密度低(1.7g/cm3左右)在承受高温的结构中,它是最轻的材料;高温的强度好,在2200oC时可保留室温强度;有较高的断裂韧性,抗疲劳性和抗蠕变性;而且拉伸强度和弹性模量高于一般的碳素材料,纤维取向明显影响材料的强度,在受力时其应力-应变曲线呈现"假塑性效应"即在施加载荷初期呈线性关系,后来变成双线性关系,卸载后再加载,曲线仍为线性并可达到原来的载荷水平。 (2)热膨胀系数小,比热容高,能储存大量的热能,导热率低,抗热冲击和热摩擦的性能优异。 (3)耐热烧蚀的性能好,热烧蚀性能是在热流作用下,由于热化学和机械过程中引起的固体材料表面损失的现象,通过表层材料的烧蚀带走大量的热量,可阻止热流入材料内部, C-C材料是一种升华-辐射型材料。 复合原理它以碳纤维或碳纤维织物为增强体,以碳或石墨化的树脂作为基体。 复合以后的这种材料在高温下的强度好,高温形态稳定,升华温度高,烧蚀凹陷性,平行于增强方向具有高强度和高刚性,能抗裂纹传播,可减震,抗辐射。 碳纤维增强尼龙的特色 碳纤维具有质轻、拉伸强度高、耐磨损、耐腐蚀、抗蠕变、导电、传热等特色,与玻璃纤维比较,模量高3?5倍,因而是一种取得高刚性和高强度尼龙资料的优秀增强资料。碳纤维复合资料可分为长(接连)纤维增强和短纤维增强两大类。纤维长度可从300~400m 到几个毫米不等。曩昔10年中,大家在改善不一样品种的碳纤维复合资料加工办法和功能方面投入了许多的研讨。从预浸树脂到模塑法加工,从短纤维掺混塑料注射加工到层压成型,在碳纤维复合资料及制品制造方面积累了许多成功的经历。当前普遍认为,长(接连)纤维有高强、高韧方面的优越性,短切纤维有加工性好的特色。因而,长碳纤维复合资料在加工上完善成型技术、短碳纤维复合资料进一步进步力学功能是碳纤维复合资料开展的方向。 依据碳纤维长度、外表处理方式及用量的不一样,还能够制备归纳功能优秀、导电功能各异的导电资料,如抗静电资料、电磁屏蔽资料、面状发热体资料、电极资料等。碳纤维增

碳纤维发热体的特性

新宝电子 社训:博学,求精,诚实。 理念:自强不息,厚德载物。 一.碳纤维的概念:碳纤维是一种纤维状的炭,强度是普通钢的四倍而比重只约等于钢的1/4,具有轻便坚韧的物理特性。 二.碳纤维的导热原理:碳纤维发热布取暖系统是在碳纤维发热布两端加以电压,以热辐射的方式向外辐射能量。 三.碳纤维的物理特性:低比重、高强度、高弹性、耐腐蚀、耐高温,耐磨损等众多优良性能的尖端材料。 四.碳纤维加热布的特点:点不着、折不断、省电、没有燥热感、属军工产品;使用寿命长。无辐射、无粉尘、无噪音、无污染、无静电,无名火是名副其实的绿色产品。 五.制造工艺:原材料----全自动碳纤维制造流水线----纺织工序----电动覆膜----加工处理----碳纤维发热膜。 公司采用onesystem的碳纤维面上发热体生产系统,管理严谨。采用PET 对产品进行100%覆膜,保证了产品的电阻偏差率在0.3%以内,弥补了电阻偏差率在30%以上的同类产品热耗大的缺点。 公司所使用的D/C温控仪为自主研发,有效减少火灾的发生率,提高了安全性,同时节电能力达到30%以上,更加经济实惠。 六.产品特性:1、独特的绝缘材料。 2、卓越的耐久性。 3、安全、节能、环保。 4、先进的纤维制造工艺。 5、施工简便,更经济。 6、抗菌性:(碳纤维发热布能够释放出90.3%远红外线,148C 的负氧离子。达到去除95.5%的细菌以及77%异味的效果。) 七.电采暖的几大优势:1、舒适性的优越,每个房间的温控准确(每个房间 一个温控)。 2、系统的可控性满足了个性化的需求。 3、寿命长,无需维护,比水暖更安全和可靠。 4、投资与使用的费用优势。 八.产品应用范围:碳纤维加热布产品可广泛没应用于各种床垫、汽车坐垫、温热治疗仪、建筑施工的取暖材料,以及运动场、高尔夫球场的融雪设备。还可以应用于农业发热装置,炊具,汽车、军事等领域。 九.碳纤维发热布的保健功能:碳纤维所发射的远红外线与人体释放出的远红外线波长相等(5---20微米)。固产生共振线现象。可以消除疲劳恢复身体机能,提高人体免疫力,调节精神的异常兴奋。 十.产品价格:无论产品性能多么卓越如果价格下不去,产品不易被大众所接受。本公司产品使用自主研发的原材料价格实惠,与其他厂家的产品相比在价格上具有很大的优势。并且效率高可节约30%--40%的电费,更加节约环保。

聚丙烯腈碳纤维性能表征规范

聚丙烯腈碳纤维性能表征规范 聚丙烯腈碳纤维的性能主要有力学性能、热物理性能和电学性能。对于碳纤维材料来说,拉伸力学性能,包括拉伸强度、拉伸模量以及断裂伸长率是其主要力学性能指标。由于纤维材料本身的特点,很难对其压缩力学性能进行有效的表征,因此基本不考虑纤维本身的压缩性能。碳纤维的热物理性能包括热容、导热系数、线膨胀系数等,也是材料应用的重要指标。电性能主要为体积电阻率以及电磁屏蔽方面的性能。对于碳纤维的拉伸力学性能测试,各国都已经基本形成了相应的测试标准系列,这些标准系列同时包括了在力学性能测试时需要的线密度、体密度、上浆量等相关的测试。对于热物理性能,相关的测试标准较少。 5.5.1 碳纤维性能测试标准 日本从1986年开始发布了其碳纤维力学性能测试标准,有关标准见表5.30,其中JIS R7601-1986《碳纤维试验方法》涵盖了碳纤维单丝、束丝的拉伸力学性能测试方法外,还包括以及密度、上浆剂含量、线密度等测试方法及规范。JIS R7601-2006《碳纤维试验方法(修正1)》是在国际对石棉制品应用规定严格的条件下,将JIS R7601-1986中拉伸性能测试中夹持用垫片的石棉材料进行了删除。相比于JIS R7601-1986,JIS R7608-2007《碳纤维-树脂浸渍丝拉伸性能测试方法》被广泛地用于碳纤维力学性能的测试,其可操作性和规范性也更强。 表5.30 日本碳纤维测试标准 序号标准号标准名称 1 JIS R7601-1986 碳纤维试验方法 2 JIS R7602-1995 碳纤维织物试验方法 3 JIS R7603-1999 碳纤维-密度的试验方法 4 JIS R7604-1999 碳纤维-上浆剂附着率的试验方法 5 JIS R7605-1999 碳纤维-线密度的试验方法 6 JIS R7606-2000 碳纤维单纤维拉伸性能试验方法 7 JIS R7607-2000 碳纤维单纤维直径及断面面积试验方法 8 JIS R7608-2007 碳纤维-树脂浸渍丝拉伸性能测试方法 9 JIS R7609-2007 碳纤维体积电阻率测试方法 10 JIS R7601-2006 碳纤维试验方法(修正1) 日本东丽公司作为世界聚丙烯腈基碳纤维生产能力和水平最高的企业,也有自己的碳纤

碳纤维复合材料

碳纤维的研究现状与发展 摘要:碳纤维主要是由碳元素组成的一种特种纤维,分子结构界于石墨和金刚石之间,含碳体积分数随品种而异,一般在0.9以上。 关键词:碳纤维复合材料性能与应用 正文 一、碳纤维的性能 1.1分类 根据原丝类型分类可分为聚丙烯腈(PAN)基、沥青基和粘胶基3种碳纤维,将原丝纤维加热至高温后除杂获得。目前,PAN碳纤维市场用量最大;按力学性能可分为高模量、超高模量、高强度和超高强度4种碳纤维;按用途可分为宇航级小丝束碳纤维和工业级大丝束碳纤维,其中小丝束初期以1K、3K、6K(1K为1000根长丝)为主,逐渐发展为12K和24K,大丝束为48K以上,包括60K、120K、360K和480K等。 1.2性能 碳纤维的主要性能:(1)密度小、质量轻,密度为1.5~2克/立方厘米,相当于钢密度的l/4、铝合金密度的1/2;(2)强度、弹性模量高,其强度比钢大 4-5倍,弹性回复l00%;(3)具有各向异性,热膨胀系数小,导热率随温度升高而下降,耐骤冷、急热,即使从几千度的高温突然降到常温也不会炸裂;(4)导电性好,25。C时高模量纤维为775μΩ/cm,高强度纤维为1500μΩ/cm;(5)耐高温和低温性好,在3000。C非氧化气氛下不融化、不软化,在液氮温度下依旧很柔软,也不脆化;(6)耐酸性好,对酸呈惰性,能耐浓盐酸、磷酸、硫酸等侵蚀。此外,还有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性。

通常,碳纤维不单独使用,而与塑料、橡胶、金属、水泥、陶瓷等制成高性能的复合材料,该复合材料也具有轻质、高强、耐高温、耐疲劳、抗腐蚀、导热、导电等优良性质,已在现代工业领域得到了广泛应用。 1.3应用领域 由于碳纤维具有高强、高模、耐高温、耐疲劳、导电、导热等特性,因此被广泛应用于土木建筑、航空航天、汽车、体育休闲用品、能源以及医疗卫生等领域。此外,碳纤维在电子通信、石油开采、基础设施等领域也有着广泛的应用,主要用于放电屏蔽材料、防静电材料、分离铀的离心机材料、电池的电极,在生化防护、除臭氧、食品等领域种也有出色的表现。碳纤维复合材料片。碳纤维复合材料片是采用常温固化的热固性树脂(通常是环氧树脂)将定向排列的碳纤维束粘结起来制成的薄片。把这种薄片按照设计要求,贴在结构物被加固的部位,充分发挥碳纤维的高拉伸模量和高拉伸强度的作用,来修补加固钢筋混凝土结构物。日本、美国、英国将该材料用于加固震后受损的钢筋混凝土桥板,增强石油平台壁及耐冲击性能的许多工程上,获得了突破性进展。碳纤维复合材料片具有轻质(比重是铁的1/4~1/5),拉伸模量比钢高10倍以上,耐腐蚀性能优异,可以手糊,工艺性好等优点。因此,碳纤维复合材料片在修补加固已劣化的钢筋混凝土结构物(约束裂纹发展、防止混凝土削落)和提高结构物耐力以及对用旧标准设计建成的钢筋混凝土结构物的补强、加固应用将越来越多。 二、生产工艺 通常用有机物的炭化来制取碳纤维,即聚合预氧化、炭化原料单体—原丝—预氧化丝—碳纤维。碳纤维的品质取决于原丝,其生产工艺决定了碳纤维的优劣。以聚丙烯腈(PAN)纤维为原料,干喷湿纺和射频法新工艺正逐步取代传统的碳纤维制备方法。 2.1干喷湿纺法 干喷湿纺法即干湿法,是指纺丝液经喷丝孔喷出后,先经过空气层(亦叫干段),再进入凝固浴进行双扩散、相分离和形成丝条的方法。经过空气层发生的物理变化有利于形成细特化、致密化和均质化的丝条,纺出的纤维体密度较高,

碳纤维的性能、应用及相关标准

聚丙烯腈基(PAN)碳纤维的性能、应用及 相关标准 2010年6月15日10:42 中国纤检 摘要:聚丙烯腈基碳纤维就是一种力学性能优异的新材料,在航空、航天、建筑、体育、汽车、医疗等领域得到广泛的应用。本文简要介绍了国内外PAN基碳纤维的发展历程与现状,PAN基碳纤维的制备、结构及性能及碳纤维的应用领域,详细介绍了PAN基碳纤维相关标准及检测,并对未来发展进行了展望。 关键词:碳纤维;聚丙烯腈;标准 碳纤维就是一种力学性能优异的新材料,它不仅具有碳材料的固有特性,又兼备纺织纤维的柔软可加工性,就是新一代增强纤维。它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500Mpa以上,就是钢的7~9倍,抗拉弹性模量为23000Mpa~43000Mpa亦高于钢。材料的比强度愈高,则构件自重愈小,比模量愈高,则构件的刚度愈大,从这个意义上已预示了碳纤维在工程的广阔应用前景。 碳纤维就是一种以聚丙烯腈(PAN)、沥青、粘胶纤维等为原料,经预氧化、碳化、石墨化工艺而制得的含碳量大于90%的特种纤维。碳纤维具有高强度、高模量、低密度、耐高温、耐腐蚀、耐摩擦、导电、导热、膨胀系数小、减震等优异性能,就是航空航天、国防军事工业不可缺少的工程材料,同时在体育用品、交通运输、医疗器械与土木建筑等民用领域也有着广泛应用。PAN基碳纤维生产工艺简单、产品综合性能好,因而发展很快,产量占到90%以上,成为最主要的品种。 1 国内外聚丙烯腈基碳纤维的发展现状

1、1国外发展现状 1959年,媒体报道的日本的进藤昭南由聚丙烯腈长丝经预氧化、碳化而制成性能优良的碳纤维工艺专利,由于该工艺简单,产品力学性能优良,因此发展较快,开创了碳纤维的新时代。 世界上聚丙烯腈基碳纤维的生产,现在已分化为以美国为代表的大丝束碳纤维与以日本为代表的小丝束两大类。日本与美国所产的碳纤维约占全球总供应量的80%[1]。日本三家以腈纶纤维为主要产品的公司(东丽Toray、东邦Toho及三菱人造丝公司Mitsubishi)依靠其先进纺丝科学技术,形成高性能原丝生产的优势,大量生产高性能碳纤维,使日本成为碳纤维大国,无论质量还就是数量上均处于世界前三位,占据了世界78%左右的产量。日本Toray 公司就是世界上最大的PAN基碳纤维厂商,2003年生产能力为7350t/a,其中在日本国内生产能力4700t/a,在美国拥有产能1800t/a,另外在法国与Atofia合资的Soficar产能为850t/a。公司以生产小丝束PAN基碳纤维为主,在日本国内大丝束PAN基碳纤维的产能仅为300t/a。东邦人造丝就是第二大碳纤维生产商,其碳纤维的生产能力为5800t/a,全就是小丝束品种。三菱人造丝在日本国内产能为2700t/a,在海外美国Grafil的产能为700t/a,2001年三菱人造丝率先将设备投资增加27、5%,达到190亿元,将本国的产能提高500t/a,再将美国子公司Grafil的产能增加800t/a,这样两地的总产能达到4700t/a。世界主要PAN基碳纤维生产企业的产能见表1[2]。 表1 世界主要PAN基碳纤维生产企业的产能 t

活性碳纤维的特性

活性碳纤维的特性 1)吸附量大 活性碳纤维对有机气体及恶臭物质(如正丁基硫醇等)的吸附量比粒状活性炭(GAC )大几倍至十几倍。对无机气体也有较好的吸附能力。对水溶液中的无机物、染料、有机物及贵金属的吸附量比GAC 高5—6倍。对微生物及细菌也有很好的吸附能力(如对大肠杆菌的吸附率可达94—99%)。对低浓度吸附质的吸附能力特别优良。如对于吸附质的浓度在几ppm 级时仍可保持很好的吸附量,而GAC 等吸附材料往往在几十ppm浓度时才有良好的吸附能力。 2)吸附速度快 对于从气相中吸附气态污染物的吸附速度非常快,对液体的吸附也可很快达到吸附平衡,其吸附速率比GAC 高数十倍至数百倍。 3)再生容易,脱附速度快 在多次吸附和脱附过程中,仍能保持原有的吸附性能。如用120-150℃蒸汽或热空气再生处理ACF 10-30分钟即可达到完全脱附。 4)耐热性好 在惰性气体中可耐高温1000℃以上,在空气中的着火点高达500℃以上。 5)耐酸、耐碱,具有较好的导电性能和化学稳定性。 6)灰份少。 7)成型性好,易加工成毡、丝、布、纸等形态。 活性碳纤维的介绍 一般传统上所使用的活性炭可分为粉末状活性炭(AC)和颗粒状活性炭(GAC),上世纪六十年美、日、俄等国家相继研发出第三种形态的活性炭称为活性碳纤维(Activated Carbon Fibers,/ACF)。国内在七十年代末八十年初,也研发出活性碳纤维。因为活性炭纤维其表面遍布微孔,以及可经二次加工,成为不

同形态的毡及布状的材料,与传统的颗粒炭相比,具有较快的吸附、脱附的速度和更便利的操作维护等优点 活性碳纤维(以下简称ACF)的诞生在整个环保产业是一场革命。ACF是以粘胶基纤维为原料,经高温碳化、活化后制成的纤维状新型吸附材料,与社会上公认的比较好的吸附材料颗粒状活性炭相比,ACF具有以下显著的的特点: (一)、比表面积大,有效吸附量高。由于同样重量的纤维的表面积是颗粒的近百倍,所以需要填充的活性碳纤维的重量非常小,然而吸附效率却非常高,根据所处理废气的有机气体含量和其它物理特性的不同,吸附效率在85%至98%之间,多级吸附工艺可以达到99.99%,远远高于活性碳颗粒吸附法的最高吸附率88%,而且体积及总重量也都很小。 (二)、吸附﹑脱附行程短,速度快;脱附﹑再生耗能低。ACF对有机气体吸附量比颗粒状活性炭(GAC)大几倍至几十倍,对无机气体也有很好的吸附能力,并能保持较高的吸附脱附速度和较长的使用寿命。如用水蒸气加热6-10分钟,即可完全脱附,耐热性能好,在惰性气体中耐高温1000℃以上,在空气中着火点达500℃以上。 (三)、对低浓度吸附质的吸附能力特别优良,对ppm数量级吸附质仍保持很高的吸附量 (四)、形状可变,使用方便;强度好,不会造成二次污染。 活性碳纤维的应用 有机溶剂的回收 用于从气相分离回收有机溶剂,如对苯类、酮类、酯类、石油类的蒸汽均能从气相吸附回收,特别是有腐蚀性的氯化物、很容易起反映的溶剂、很容易分解的溶剂,使用ACF 做溶剂回收设备吸附脱附速度快、处理量大、回收溶剂质量高,而且回收效率可达97%以上。 空气净化

碳纤维复合材料修订稿

碳纤维复合材料 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

碳纤维复合材料 碳纤维增强复合材料(Carbon Fibre-reinforced Polymer, 简称CFRP)是以碳纤维或碳纤维织物为增强体,以树脂、陶瓷、金属、水泥、碳质或橡胶等为基体所形成的复合材料,简称碳纤维复合材料。 碳复合材料的特性主要表现在力学性能、热物理性能和热烧蚀性能三个方面。 (1)密度低cm3左右)在承受高温的结构中,它是最轻的材料;高温的强度好,在 2200oC时可保留室温强度;有较高的断裂韧性,抗疲劳性和抗蠕变性;而且拉伸强度和弹性模量高于一般的碳素材料,纤维取向明显影响材料的强度,在受力时其应力-应变曲线呈现"假塑性效应"即在施加载荷初期呈线性关系,后来变成双线性关系,卸载后再加载,曲线仍为线性并可达到原来的载荷水平。 (2)热膨胀系数小,比热容高,能储存大量的热能,导热率低,抗热冲击和热摩擦的性能优异。 (3)耐热烧蚀的性能好,热烧蚀性能是在热流作用下,由于热化学和机械过程中引起的固体材料表面损失的现象,通过表层材料的烧蚀带走大量的热量,可阻止热流入材料内部, C-C材料是一种升华-辐射型材料。 复合原理它以碳纤维或碳纤维织物为增强体,以碳或石墨化的树脂作为基体。 复合以后的这种材料在高温下的强度好,高温形态稳定,升华温度高,烧蚀凹陷性,平行于增强方向具有高强度和高刚性,能抗裂纹传播,可减震,抗辐射。 碳纤维的特色 碳纤维具有质轻、拉伸强度高、耐磨损、耐腐蚀、抗蠕变、导电、传热等特色,与玻璃纤维比较,模量高35倍,因而是一种取得高刚性和高强度尼龙资料的优秀增强资料。碳纤维复合资料可分为长(接连)纤维增强和短纤维增强两大类。纤维长度可从 300~400m 到几个毫米不等。曩昔10年中,大家在改善不一样品种的碳纤维复合资料加工办法和功能方面投入了许多的研讨。从预浸树脂到模塑法加工,从短纤维掺混塑料注射加工到层压成型,在碳纤维复合资料及制品制造方面积累了许多成功的经历。当前普遍认为,长(接连)纤维有高强、高韧方面的优越性,短切纤维有加工性好的特色。因而,长

碳纤维的特点

碳纤维在土木建筑中形成五大应用热点 碳纤维及其复合材料是伴随着军工事业的发展而成长起来的新型材料,属于高新技术产品,具有高比强度,高比模量,耐高温,耐腐蚀,耐疲劳,抗蠕变、导电、传热和热膨胀系数小等一系列优异性能,它既可作为结构材料承载负荷,又可作为功能材料发挥作用。因此其近年来发展十分迅速,在航空、航天、汽车、环境工程、化工、能源、交通、建筑、电子、运动器材等众多领域得到了广泛的应用。 在土木建材领域中,水泥的用量最大,但水泥有脆性大、抗拉强度低等缺点。为了改善这些弊端,人们利用碳纤维的力学特性,用混凝土或水泥做基体制成碳纤维增强复合材料。由于碳纤维和芳纶纤维等其有强度高、模量大、比重小、耐碱腐蚀,对人畜无害等特点,在土木建筑应用中日益受到人们的青睐。目前,形成五大应用热点。 一、碳纤维增强混凝土。碳纤维增强混凝土指的是短纤维或长纤维增强的混凝土材料。它主要用作高层建筑的外墙墙板。碳纤维增强混凝土的主要特征为;具有普通增强型混凝土所不具备的优良机械性能、防水渗透性能、耐自然温差性能,在强碱环境下具有稳定的化学性能、持久的机械强度和尺寸的稳定性。用碳纤维取代钢筋,可消除钢筋混凝土的盐水降解和劣化作用,使建筑构件重量减轻,安装施工方便,缩短建筑工期。碳纤维还具有震动阻尼特性,可吸收震动波,使防地震能力和抗弯强度提高十几倍。短切碳纤维增强水泥所用碳纤维的长度为3、6mm,细度或宽度范围在7~20m,抗拉强度范围在0.5~0.8GPa。 二、复合材料棒材。建材工业中最广泛使用的结构材料有钢材和中碳钢增强混凝土,钢材的腐蚀会导致建筑物的灾难性破坏。碳纤维树脂基复合材料棒材便成为人们开发出替代建材用钢材的新型高性能建材的重要品种。混凝土增强用碳纤维增强树脂基复合材料棒材最近在美国已经商品化。复合材料棒材不腐蚀、不导电,重量是钢材的1/4,热膨胀系数与钢材比较更接近混凝土,价格大约比环氧涂覆保护的钢材贵20%左右。使用复合材料棒材增强比使用中碳元钢增强,其弯曲强度增加%%。复合材斜棒材和水泥的粘结强度比元钢和水泥的粘结强度高约50~O%。因此它可以在海堤、造纸厂、化工厂、高速公路护栏、房屋地基和桥梁等易腐蚀场合使用。 三、纤维增强胶接层板。纤维增强胶接层板是在木板的一面或二面胶粘一层或二层纤维增强胶接层板,以承受拉伸或压缩载荷。纤维增强胶接层板制造技术的关键是纤维增强层板和木板之问的应变匹配。纤维增强胶接层板表面的纤维增强复合材料层板具有良好的阻燃性能,一般采用拉挤工艺制备。所使用的增强材料为混杂的碳纤维和其它纤维(玻璃纤维),基体为环氧树脂体系。由于使用纤维增强胶接层板比使用钢桁架的天花板系统价格低8%,比使用传统木桁架价格低25%,以及可明显减少重量和减少木材的需求,纤维增强胶接层板目前发展很快,应用日趋广泛。 四、碳纤维复合材料片。碳纤维复合材料片是采用常温固化的热固性树脂(通常是环氧树脂)将定向排列的碳纤维束粘结起来制成的薄片。把这种薄片按照设计要求,贴在结构物被加固的部位,充分发挥碳纤维的高拉伸模量和高拉伸强度的作用,来修补加固钢筋混凝土结构物。日本、美国、英国将该材料用于加固震后受损的钢筋混凝土桥板,增强石油平台壁及耐冲击性能的许多工程上,获得了突破性进展。碳纤维复合材料片具有轻质(比重是铁的1/4~1/5),拉伸模量比钢高10倍以上,耐腐蚀性能优异,可以手糊,工艺性好等优点。因此,碳纤维复合材料片在修补加固已劣化的钢筋混凝土结构物(约束裂纹发展、防止混凝土削落)和提高结构物耐力以及对用旧标准设计建成的钢筋混凝土结构物的补强、加固应用将越来越多。 五、其它应用。短碳纤维还可以以下几种形式应用于土木建筑领域:①制作帘墙板(非

相关主题