搜档网
当前位置:搜档网 › 大学物理2习题11

大学物理2习题11

大学物理2习题11
大学物理2习题11

习题11

11-1.直角三角形ABC的A点上,有电荷C

10

8.19

1

-

?

=

q,B点上有电荷

C

10

8.49

2

-

?

-

=

q,试求C点的电场强度(设0.04m

BC=,0.03m

AC=)。

解:1q在C点产生的场强:

1

12

4

AC

q

E i

r

πε

=

2

q在C点产生的场强:

2

22

4

BC

q

E j

r

=

∴C点的电场强度:44

12

2.710 1.810

E E E i j

=+=?+?

C

点的合场强:

4

3.2410V

E m

=?

方向如图:

1.8

arctan33.73342'

2.7

α===

11-2.用细的塑料棒弯成半径为cm

50的圆环,两端间空隙为cm

2,电量为C

10

12

.39-

?的

正电荷均匀分布在棒上,求圆心处电场强度的大小和方向。

解:∵棒长为2 3.12

l r d m

π

=-=,

∴电荷线密度:

91

1.010

q C m

l

λ--

==??

心处场强等于闭合线圈产生电场再减去m

d02

.0

=长的带电棒在该点产生的场强,即所求

问题转化为求缺口处带负电荷的塑料棒在O点产生的场强。

解法1:利用微元积分:

2

1

cos

4

O x

Rd

dE

R

λθ

θ

πε

=?

2

000

cos2sin2

444

O

d

E d

R R R

α

α

λλλ

θθαα

πεπεπε

-

==?≈?=

?1

0.72V m-

=?;

解法2:直接利用点电荷场强公式:

由于d r

<<,该小段可看成点电荷:11

2.010

q d C

λ-

'==?,

则圆心处场强:

11

91

22

2.010

9.0100.72

4(0.5)

O

q

E V m

R

πε

-

-

'?

==??=?

方向由圆心指向缝隙处。

11-3.将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之

一圆弧AB的半径为R,试求圆心O点的场强。

解:以O为坐标原点建立xOy坐标,如图所示。

①对于半无限长导线A∞在O点的场强:

x

有:00(cos cos )42(sin sin )42Ax A y E R E R λπππελπππε=-=-?

???

??? ②对于半无限长导线B ∞在O 点的场强: 有:00(sin sin )42(cos cos )42B x B y E R E R λπππελπππε=-=-?

???

??? ③对于AB 圆弧在O 点的场强:有:

20

002000cos (sin sin )442sin (cos cos )442AB x AB y E d R R E d R R π

π

λλπθθππεπελλπθθππεπε==-=???

???=--???

∴总场强:04O x E R λπε=,04O y E R λπε=,得:0()

4O E i j R λ

πε=+ 。

或写成场强:

04E R πε==

,方向45 。

11-4.一个半径为R 的均匀带电半圆形环,均匀地带有电荷,电荷的线密度为λ,求环心处

O 点的场强E 。

解:电荷元dq 产生的场为:

204d q

d E R πε=

; 根据对称性有:

y

d E

=?,则:

20

0sin sin 4x R d E dE d E R πλθθθπε===???

02R λ

πε=

方向沿x 轴正向。即:

02E i R λπε=

11-5.带电细线弯成半径为R 的半圆形,电荷线密度 为0sin λλ?=,式中0λ为一常数,?为半径R 与x 轴 所成的夹角,如图所示.试求环心O 处的电场强度。

解:如图,

0200sin 44d dl dE R R λ??λπεπε=

=

cos sin x y dE dE dE dE ?

?==?????考虑到对称性,有:0=x E ;

2

00000000sin (1cos 2)sin 4428y d d E dE dE R R R ππλ??λ

??πεπεε-=====

????, λ

x

y

E

方向沿y 轴负向。

11-6.一半径为R 的半球面,均匀地带有电荷,电荷面密度为σ,求球心O 处的电场强度。 解:如图,把球面分割成许多球面环带,环带宽为d l Rd θ=,所带电荷:2dq r d l πσ=。

利用例11-3结论,有:

3

32

22

22

0024()

4(x dq r xdl

d E x r x r σππεπε?=

=

++

322202cos sin 4[(sin )

(cos )]R R Rd dE R R σπθθθ

πεθθ???=

+,

化简计算得:

2

01sin 2224E d πσσθθεε=

=

?

,∴

04E i σε= 。

11-7.图示一厚度为d 的“无限大”均匀带电平板,电荷体密度为ρ。求板内、外的场强分布,并画出场强随坐标x 变化的图线,即x E -图线(设原点在带电平板的中央平面上,Ox 轴垂直于平板)。

解:在平板内作一个被平板的中间面垂直平分的闭合圆柱面1S 为高斯面,

当2d x ≤时,由1

2S E dS E S ?=??? 和2q x S ρ=?∑,

有:

0x

E ρε=

d

x >时,由22S E dS E S ?=??? 和2q d S ρ=?∑, 有:

02d E ρε=

。图像见右。 11-8.在点电荷q 的电场中,取一半径为R 的圆形平面(如图所示),

平面到q 的距离为d ,试计算通过该平面的E 的通量.

解:通过圆平面的电通量与通过与A 为圆心、AB 为半径、圆的平面

为周界的球冠面的电通量相同。

【先推导球冠的面积:如图,令球面的半径为r ,有22R d r +=,球冠面一条微元同心圆带面积为:2sin dS r rd πθθ=?

∴球冠面的面积:

200

cos 2sin 2cos d r

S r rd r θ

θπθθπθ

=

=?=?

22(1)

d

r r π=-】

∵球面面积为:

2

4S r π=球面,通过闭合球面的电通量为:0q

εΦ=

闭合球面, 由:S S Φ=Φ球冠

球面球面球冠,∴001(1)(122d q q r εεΦ=-?=球冠。

11-9.在半径为R 的“无限长”直圆柱体内均匀带电,电荷体密度为ρ,求圆柱体内、外的场强分布,并作E ~r 关系曲线。

x

O

θ

解:由高斯定律

1

i

S

S E dS q ε?=∑??

,考虑以圆柱体轴为中轴,半径为r ,长为l 的高斯面。

(1)当r R <时,

202r l r l E ρππε?=,有02E r

ρε=

; (2)当r R >时,

202R l r l E ρππε?=,则:2

02R r E ρε=

; 即:0

2

0()2()2r

r R E R r R r ρερε???;

图见右。

11-10.半径为1R 和2R (21R R <)的两无限长同轴圆柱面,单位长度分别带有电量λ和λ-,试求:(1)1R r <;(2)21R r R <<;(3)2R r >处各点的场强。 解:利用高斯定律:

1

i

S

S E dS q ε?=∑??

(1)1r R <时,高斯面内不包括电荷,所以:10E =; (2)12R r R <<时,利用高斯定律及对称性,有:

202l r l E λπε=

,则:202E r λ

πε=

(3)2r R >时,利用高斯定律及对称性,有:320rlE π=,则:30E =;

即:

11202

0?20E r R E r

R r R r E r R E λπε?=

?=<?

11-11.一球体内均匀分布着电荷体密度为ρ的正电荷,若保持电荷分布不变,在该球体中挖去半径为r 的一个小球体,球心为O ',两球心间距离d O O =',如图所示。求:

(1)在球形空腔内,球心O '处的电场强度0E ;

(2)在球体内P 点处的电场强度E ,设O '、O 、P 三点在同一直径上,且d OP =。

解:利用补偿法,可将其看成是带有电荷体密度为ρ的大球和带有电荷体密度为ρ-的小球的合成。

(1)以O 为圆心,过O '点作一个半径为d 的高斯面,根据高斯定理有:

1

3043S E d S d ρπε?=?? ?

003d E ρε=,方向从O 指向O '; (2)过P 点以O 为圆心,作一个半径为d 的高斯面。根据高斯定理有:

r

1

3043S E d S d ρπε?=?? ?

103P d E ρε=,方向从O 指向P , 过P 点以O '为圆心,作一个半径为d 2的高斯面。根据高斯定理有: 23043S E d S r ρπε?=-?? ?322

03P r E d ρε=-,

1

2

3

20()

34P P r E E E d d ρε=+=-,方向从O 指向P 。

11-12.设真空中静电场E

的分布为E cxi = ,式中c 为常量,求空间电荷的分布。

解:如图,考虑空间一封闭矩形外表面为高斯面, 有:

0S

E d S cx S

?=????

由高斯定理:

1

S

S E d S q

ε?=

∑??

设空间电荷的密度为()x ρ,有:0

()x x Sd x cx S ρε???=

?

∴0

00

()x x x d x cd x

ρε=?

?,可见()x ρ为常数?

0c ρε=。

11-13.如图所示,一锥顶角为θ的圆台,上下底面半径分别为1R 和2R ,在它的侧面上均匀带电,电荷面密度为σ,求顶点O 的电势.(以无穷远处为电势零点)

解:以顶点为原点,沿轴线方向竖直向下为x 轴,在侧面上取环面元,

如图示,易知,环面圆半径为:

tan

2r x θ

=,环面圆宽:

cos

2d x d l θ

=

22tan 2cos 2d x

dS r d l x θππθ

=?=??

利用带电量为q 的圆环在垂直环轴线上0x 处电势的表达式:

14U πε=

环,

有:002tan 2cos 1tan 422d x

x dU d x θσπθ

σθπεε??

==?,

考虑到圆台上底的坐标为:

11cot 2x R θ=,22cot

2x R θ

=, ∴U =

2

1

0tan 22x x d x σθε??

21cot 2cot 02tan 22R R d x θθσθε=

??210

()2R R σε-=。

x

cos

2

dx θ

11-14.电荷量Q 均匀分布在半径为R 的球体内,试求:离球心r 处(r R <)P 点的电势。

解:利用高斯定律:

01

S

S E dS q

ε?=∑??

内可求电场的分布。

(1)r R <时,

32

3

04Q r r E R πε=?内;有:304Q r E R πε=内; (2)r R >时,

2

04Q

r E πε=

外;有:

204Q E r πε=

外;

离球心r 处(r R <)的电势:

R

r r

R

U E dr E dr

∞=?+???外内,即:

320044R

r r

R Q r Q

U dr dr R r πεπε∞=?+??

?230

0388Q Q r R R πεπε=

-。

11-15.图示为一个均匀带电的球壳,其电荷体密度为ρ,球壳内表面半径为1R ,外表面半

径为2R .设无穷远处为电势零点,求空腔内任一点的电势。 解:当1r R <时,因高斯面内不包围电荷,有:10E =,

当12R r R <<时,有:

203132

031323)(4)

(3

4

r R r r R r E ερπεπρ-=

-=

当2r R >时,有:

2

031322

0313

233)(4)

(3

4r R R r R R E ερπεπρ-=

-=

以无穷远处为电势零点,有:

2

12

23R R R U E d r E d r ∞=?+??? ??∞-+-=2R dr r R R dr r R r R R 203

132203133)(3)(21ερερ)(221220R R -=ερ。

11-16.电荷以相同的面密度σ 分布在半径为110r cm =和220r cm =的两个同心球面上,设无限远处电势为零,球心处的电势为V 3000=U 。 (1)求电荷面密度σ;

(2)若要使球心处的电势也为零,外球面上电荷面密度σ'为多少?

(2

12120m N C 1085.8---??=ε)

解:(1)当1r r <时,因高斯面内不包围电荷,有:10E =,

当12r r r <<时,利用高斯定理可求得:2

122

0r E r σε=,

当2r r >时,可求得:221232

0()r r E r σε+=,

21

2

023r r r U E d r E d r ∞=?+??

?

2

1

2

222

1122200()

r r r r r r d r d r r r σσεε∞+=+??)(210

r r +=εσ

那么:2

93

12210

01085.810303001085.8m

C r r U ---?=???=+=εσ (2)设外球面上放电后电荷密度'σ,则有:

0120'(')/0U r r σσε=+=,∴

1

2

'2r r σσ

σ=-

=-

则应放掉电荷为:

2'2

22

34()42

q r r πσσσπ?=-=?124 3.148.85103000.2-=?????96.6710C -=?。

11-17.如图所示,半径为R 的均匀带电球面,带有电荷q ,沿某一半径方向上有一均匀带电细线,电荷线密度为λ,长度为l ,细线左端离球心距离为0r 。设球和线上的电荷分布不受相互作用影响,试求细线所受球面电荷的电场力和细线在该电场中的电势能(设无穷远处

的电势为零)。

解:(1)以O 点为坐标原点,有一均匀带电细线的方向为x 轴,

均匀带电球面在球面外的场强分布为:2

04q

E r πε=

(r R >)。 取细线上的微元:dq dl dr λλ==,有:d F E dq =

∴00

20000?44()r l r q ql r F dr x r r l λλπεπε+==+?

(?r 为r 方向上的单位矢量)

(2)∵均匀带电球面在球面外的电势分布为:04q

U r πε=

(r R >,∞为电势零点)。

对细线上的微元dq dr λ=,所具有的电势能为:

04q dW d r

r

λπε=

?,

00

00

0ln

44r l

r r l q dr

q W r

r λλπεπε++=

=

?

11-18. 一电偶极子的电矩为p ,放在场强为E 的匀强电场中,p 与E 之间夹角为θ,如图

所示.若将此偶极子绕通过其中心且垂直于p 、E 平面的轴转

180,外力需作功多少?

解:由功的表示式:d A Md θ=

考虑到:M p E =? ,有:sin 2cos A pE d pE πθ

θθθθ

+==?。

11-19.如图所示,一个半径为R 的均匀带电圆板,其电荷面密度为σ(>0)今有一质量为m ,电荷为q -的粒子(q >0)沿圆板轴线(x 轴)方向向圆板运动,已知在距圆心O (也是x 轴原点)为b 的位置上时,粒子的速度为0v ,求粒子击中圆板时的速度(设圆板带电的均匀性

始终不变)。

解:均匀带电圆板在其垂直于面的轴线上0x 处产生的电势为:

00

)2U x σε=

,那么,

(

2

Ob O b

U U U R b

σ

ε

=-=+

由能量守恒定律,

222

00

111

()(

2222

Ob

q

m v mv qU mv R b

σ

ε

=--=++

有:

)

(2

2

2

b

R

b

R

m

q

v

v+

-

+

+

=

ε

σ

思考题11

11-1.两个点电荷分别带电q和q2,相距l,试问将第三个点电荷放在何处它所受合力为零? 答:由

22

00

2

44()

qQ qQ

x l x

πεπε

=

-

,解得:1)

x l=,即离点电荷q

的距离为1)

l。

11-2.下列几个说法中哪一个是正确的?

(A)电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向;

(B)在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同;

(C)场强方向可由q/

F

E=定出,其中q为试验电荷的电量,q可正、可负,F为试验电荷所受的电场力;

(D)以上说法都不正确。

答:(C)

11-3.真空中一半径为R的的均匀带电球面,总电量为q(q<0),今在球

面面上挖去非常小的一块面积S

?(连同电荷),且假设不影响原来的电荷分布,则挖去S

?后球心处的电场强度大小和方向.

答:题意可知:

2

4

q

R

σ

πε

=

,利用补偿法,将挖去部分看成点电荷,有:

2

4

S

E

R

σ

πε

?

=

,方向指向小面积元。

11-4.三个点电荷1q、2q和3q

-在一直线上,相距均为R

2,以1q与2q的中心O作一半径为R

2的球面,A为球面与直线的一个交点,如图。求:

(1)通过该球面的电通量

???S

E d

(2)A点的场强A

E。

解:(1)

12

S

q q

E dS

ε

+

?=

??

(2)

2

3

2

2

2

1

4

4

)

3(

4R

πε

q

R

πε

q

R

πε

q

E

A

-

+

=

11-5.有一边长为a的正方形平面,在其中垂线上距中心O点2/a处,

有一电荷为q的正点电荷,如图所示,则通过该平面的电场强度通量

为多少?

解:设想一下再加5个相同的正方形平面将q 围在正方体的中心, 通过此正方体闭合外表面的通量为:0/q εΦ=闭合,那么,

通过该平面的电场强度通量为:

06q εΦ=

11-6.对静电场高斯定理的理解,下列四种说法中哪一个是正确的?

(A )如果通过高斯面的电通量不为零,则高斯面内必有净电荷; (B )如果通过高斯面的电通量为零,则高斯面内必无电荷; (C )如果高斯面内无电荷,则高斯面上电场强度必处处为零; (D )如果高斯面上电场强度处处不为零,则高斯面内必有电荷。 答:(A )

11-7.由真空中静电场的高斯定理

1S

E d S q

ε?=

∑?

可知

(A )闭合面内的电荷代数和为零时,闭合面上各点场强一定为零; (B )闭合面内的电荷代数和不为零时,闭合面上各点场强一定都不为零; (C )闭合面内的电荷代数和为零时,闭合面上各点场强不一定都为零; (D )闭合面内无电荷时,闭合面上各点场强一定为零。 答:(C )

11-8.图示为一具有球对称性分布的静电场的r E ~关系曲线.请指出该静电场是由下列哪种带电体产生的。

(A )半径为R 的均匀带电球面; (B )半径为R 的均匀带电球体;

(C )半径为R 、电荷体密度Ar =ρ(A 为常数)的非均匀带电球体;

(D )半径为R 、电荷体密度r A /=ρ(A 为常数)的非均匀带电球体。

答:(D )

11-9.如图,在点电荷q 的电场中,选取以q 为中心、R 为半径的球面上一点P 处作电势零点,则与点电荷q 距离为r 的P'点的电势为

(A )r q

04επ (B )??? ??-πR r q 1140

ε (C )()R r q

-π04ε (D )??? ??-πr R q 1140

ε

答:(B )

11-10.密立根油滴实验,是利用作用在油滴上的电场力和重力平衡而测量电荷的,其电场由两块带电平行板产生.实验中,半径为r 、带有两个电子电荷的油滴保持静止时,其所在电场的两块极板的电势差为12U .当电势差增加到412U 时,半径为2r 的油滴保持静止,则该油滴所带的电荷为多少?

解:g r πρq d U 31234?=┄①,g

r πρq d U 312)2(34

4?='┄②

∴①②联立有:e q q 42=='。

11-11.设无穷远处电势为零,则半径为R 的均匀带电球体产生的电场的电势分布规律为(图中的0U 和b 皆为常量):

答:(C )

11-12.无限长均匀带电直线的电势零点能取在无穷远吗? 答:不能。见书中例11-12。

大学物理竞赛指导-经典力学例题-物理中心

大学物理竞赛指导-经典力学选例 一.质点运动学 基本内容:位置,速度,加速度,他们的微积分关系,自然坐标下切、法向加速度,*极坐标下径向速度,横向速度,直线运动,抛物运动,圆周运动,角量描述,相对运动 1.运动学中的两类问题 (1)已知运动方程求质点的速度、加速度。这类问题主要是利用求导数的方法。 例1 一艘船以速率u驶向码头P ,另一艘船以速率v 自码头离去,试证当两船的距离最短时,两船与码头的距离之比为: ()()ααcos :cos v v ++u u 设航路均为直线,α为两直线的夹角。 证:设任一时刻船与码头的距离为x 、y ,两船的距离为l ,则有 α c o s 2222xy y x l -+= 对t求导,得 ()()t x y t y x t y y t x x t l l d d c o s 2d d c o s 2d d 2d d 2d d 2αα--+= 将v , =-=t y u t x d d d d 代入上式,并应用0d d =t l 作为求极值的条件,则得 ααcos cos 0yu x y ux +-+-=v v ()()αα c o s c o s u y u x +++-=v v 由此可求得 ααc o s c o s v v ++=u u y x 即当两船的距离最短时,两船与码头的距离之比为 ()()αα c o s c o s v : v ++u u (2)已知质点加速度函数a =a (x ,v ,t )以及初始条件,建立质点的运动方程。这类问题主要用积分方法。 例2 一质点从静止开始作直线运动,开始时加速度为a 0,此后加速度随时间均匀增加,经过时间τ后,加速度为2a 0,经过时间2τ后,加速度为3 a 0 ,…求经过时间n τ后,该质点的速度和走过的距离。 解:设质点的加速度为 a = a 0+α t ∵ t = τ 时, a =2 a 0 ∴ α = a 0 /τ 即 a = a 0+ a 0 t /τ , 由 a = d v /d t , 得 d v = a d t t t a a t d )/(d 0 000τ??+=v v ∴ 2002t a t a τ +=v

大学物理练习题

一、选择题 1. 半径为R 的均匀带电球面,若其电荷面密度为σ,取无穷远处为零电势点,则在距离球面r (R r <) 处的电势为( ) A 、0 B 、R 0 εσ C 、r R 02 εσ D 、r R 024εσ 2. 下列说法正确的是:( ) A. 电场场强为零的点,电势也一定为零 B. 电场场强不为零的点,电势也一定不为零 C. 电势为零的点,电场强度也一定为零 D. 电势在某一区域内为常量,则电场强度在该区域内必定为零 3. 如图示,边长是a 的正方形平面的中垂线上,距中心O 点 处, 有一电量为q 的正点电荷,则 通过该平面的电通量是( )。 A. B. C. D. 4. 两根长度相同的细导线分别密绕在半径为R 和r 的两个直圆筒上形成两个螺线管,两个螺线管的长 度相同,R=2r ,螺线管通过的电流相同为I ,螺线管中的磁感应强度大小为B R ,B r ,则应该满足:( ) A. B R =2B r B. B R =B r C. 2B R =B r D. B R =4B r 5. 两个同心均匀带电球面,半径分别为a R 和b R (b a R R <), 所带电荷分别为a q 和b q .设某点与球 心相距r ,当b a R r R <<时,取无限远处为零电势,该点的电势为( ) A 、 r q q b a +?π041ε B 、 r q q b a -?π041ε

C 、???? ? ?+?b b a R q r q 0 41επ D 、 ???? ??+?b b a a R q R q 0 41 επ 6. 面积为S 和S 2的两圆线圈1、2如图放置,通有相同的电流I .线圈1的电流所产生的通过线圈2的磁通用21Φ表示,线圈2的电流所产生的通过线圈1的磁通用12Φ表示,则21Φ和12Φ的大小关系为( ) 1 2 S 2 S I I A 、12212ΦΦ= B 、1221ΦΦ> C 、1221ΦΦ= D 、12212 1 ΦΦ= 7. 如图所示,两个“无限长”的、半径分别为1R 和2R 的共轴圆柱面均匀带电,沿轴线方向单位长度上所带电荷分别为1λ和2λ,则在两圆柱面之间、距离轴线为r 处的P 点的电场强度大小E 为( ) A 、 r 02 12ελλπ+ B 、 2 02 10122R R ελελπ+ π C 、 r 01 2ελπ D 、0 8. 如图,长度为l 的直导线ab 在均匀磁场B ? 中以速度v ? 移动,直导线ab 中的电动势为( )

大学物理试题库及答案详解【考试必备】

第一章 质点运动学 1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v . (1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr (B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( ) (A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v 分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B). (2) 由于|Δr |≠Δs ,故t s t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故t s t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)t d d r ; (3)t s d d ; (4)2 2d d d d ?? ? ??+??? ??t y t x . 下述判断正确的是( ) (A) 只有(1)(2)正确 (B) 只有(2)正确

大学物理第11章习题答案(供参考)

第11章 电磁感应 11.1 基本要求 1理解电动势的概念。 2掌握法拉第电磁感应定律和楞次定律,能熟练地应用它们来计算感应电动势的大小,判别感应电动势的方向。 3理解动生电动势的概念及规律,会计算一些简单问题中的动生电动势。 4理解感生电场、感生电动势的概念及规律,会计算一些简单问题中的感生电动势。 5理解自感现象和自感系数的定义及物理意义,会计算简单回路中的自感系数。 6理解互感现象和互感系数的定义及物理意义,能计算简单导体回路间的互感系数。 7理解磁能(磁场能量)和磁能密度的概念,能计算一些简单情况下的磁场能量。 8了解位移电流的概念以及麦克斯韦方程组(积分形式)的物理意义。 11.2 基本概念 1电动势ε:把单位正电荷从负极通过电源内部移到正极时,非静电力所作的功,即 W q ε= 2动生电动势:仅由导体或导体回路在磁场中的运动而产生的感应电动势。 3感生电场k E :变化的磁场在其周围所激发的电场。与静电场不同,感生电场的电 场线是闭合的,所以感生电场也称有旋电场。 4感生电动势:仅由磁场变化而产生的感应电动势。 5自感:有使回路保持原有电流不变的性质,是回路本身的“电磁惯性”的量度。 自感系数L ://m L I N I =ψ=Φ 6自感电动势L ε:当通过回路的电流发生变化时,在自身回路中所产生的感应电动势。

7互感系数M :2112 12 M I I ψψ= = 8互感电动势12ε:当线圈2的电流2I 发生变化时,在线圈1中所产生的感应电动势。 9磁场能量m W :贮存在磁场中的能量。 自感贮存磁能:212 m W LI = 磁能密度m w :单位体积中贮存的磁场能量22111 222 m B w μH HB μ=== 10位移电流:D d d I dt Φ= s d t ?=??D S ,位移电流并不表示有真实的电荷在空 间移动。但是,位移电流的量纲和在激发磁场方面的作用与传导电流是一致的。 11位移电流密度:d t ?=?D j 11.3 基本规律 1电磁感应的基本定律:描述电磁感应现象的基本规律有两条。 (1)楞次定律:感生电流的磁场所产生的磁通量总是反抗回路中原磁通量的改变。楞 次定律是判断感应电流方向的普适定则。 (2)法拉第电磁感应定律:不论什么原因使通过回路的磁通量(或磁链)发生变化,回路 中均有感应电动势产生,其大小与通过该回路的磁通量(或磁链)随时间的变化成正比,即 m i d dt εΦ=- 2动生电动势:()B B K A A i εd d ==???E l v B l ,若0i ε>,则表示电动势方向由A B →;若 0i ε<,则表示电动势方向B A → 3感生电动势:m K l s i d Φd εd d dt dt = ?=- =-? ?B E l S (对于导体回路) B K A i εd =?E l (对于一段导体) 4自感电动势:L dI εL dt =- 5互感电动势:12212d ΨdI εM dt dt =-=- 6麦克斯韦方程组

大学物理期末考试题库

1某质点的运动学方程x=6+3t-5t 3,则该质点作 ( D ) (A )匀加速直线运动,加速度为正值 (B )匀加速直线运动,加速度为负值 (C )变加速直线运动,加速度为正值 (D )变加速直线运动,加速度为负值 2一作直线运动的物体,其速度x v 与时间t 的关系曲线如图示。设21t t →时间内合力作功 为A 1,32t t →时间内合力作功为A 2,43t t → (C ) (A )01?A ,02?A ,03?A (B )01?A ,02?A , 03?A (C )01=A ,02?A ,03?A (D )01=A ,02?A ,03?A 3 关于静摩擦力作功,指出下述正确者( C ) (A )物体相互作用时,在任何情况下,每个静摩擦力都不作功。 (B )受静摩擦力作用的物体必定静止。 (C )彼此以静摩擦力作用的两个物体处于相对静止状态,所以两个静摩擦力作功之和等于 零。 4 质点沿半径为R 的圆周作匀速率运动,经过时间T 转动一圈,那么在2T 的时间内,其平 均速度的大小和平均速率分别为(B ) (A ) , (B ) 0, (C )0, 0 (D )T R π2, 0 5、质点在恒力F ρ作用下由静止开始作直线运动。已知在时间1t ?内,速率由0增加到υ; 在2t ?内,由υ增加到υ2。设该力在1t ?内,冲量大小为1I ,所作的功为1A ;在2t ?内, 冲量大小为2I ,所作的功为2A ,则( D ) A .2121;I I A A <= B. 2121;I I A A >= C. 2121;I I A A => D. 2121;I I A A =< 6如图示两个质量分别为B A m m 和的物体A 和B 一起在水平面上沿x 轴正向作匀减速直 线运动,加速度大小为a ,A 与B 间的最大静摩擦系数为μ,则A 作用于B 的静摩擦力 F 的大小和方向分别为(D ) 轴正向相反与、轴正向相同 与、轴正向相同 与、轴正向相反 与、x a m D x a m x g m x g m B B B B ,,C ,B ,A μμT R π2T R π2T R π2t

浙江省大学物理试题库204-热力学第一定律、典型的热力学过程

浙江工业大学学校 204 条目的4类题型式样及交稿式样 热力学第一定律、典型的热力学过程 一. 选择题 题号:20412001 分值:3分 难度系数等级:2 1 如图所示,一定量理想气体从体积V1,膨胀到体积V2分别经历的过程是:A→B等压过程,A→C等温过程;A→D绝热过程,其中吸热量最多的过程 (A) 是A→B. (B) 是A→ C. (C) 是A→D. (D) 既是A→B也是A→C, 两过程吸热一样多。 [ ] 答案:A 题号:20412002 分值:3分 难度系数等级:2 2 质量一定的理想气体,从相同状态出发,分别经历等温过程、等压过程和绝热过程,使其体积增加一倍.那么气体温度的改变(绝对值)在 (A) 绝热过程中最大,等压过程中最小. (B) 绝热过程中最大,等温过程中最小. (C) 等压过程中最大,绝热过程中最小. (D) 等压过程中最大,等温过程中最小.[] 答案:D 题号:20412003 分值:3分 难度系数等级:2 V

3 一定量的理想气体,从a 态出发经过①或②过程到达b 态,acb 为等温线(如图),则①、②两过程中外界对系统传递的热量Q 1、Q 2是 (A) Q 1>0,Q 2>0. (B) Q 1<0,Q 2<0. (C) Q 1>0,Q 2<0. (D) Q 1<0,Q 2>0. [ ] 答案:A 题号:20413004 分值:3分 难度系数等级:3 4 一定量的理想气体分别由初态a 经①过程ab 和由初态a ′经 ②过程a ′cb 到达相同的终态b ,如p -T 图所示,则两个过程中 气体从外界吸收的热量 Q 1,Q 2的关系为: (A) Q 1<0,Q 1> Q 2. (B) Q 1>0,Q 1> Q 2. (C) Q 1<0,Q 1< Q 2. (D) Q 1>0,Q 1< Q 2. [ ] 答案:B 题号:20412005 分值:3分 难度系数等级:2 5. 理想气体向真空作绝热膨胀. (A) 膨胀后,温度不变,压强减小. (B) 膨胀后,温度降低,压强减小. (C) 膨胀后,温度升高,压强减小. (D) 膨胀后,温度不变,压强不变. [ ] 答案:A 题号:20412006 分值:3分 难度系数等级:2 6. 一定量的理想气体,从p -V 图上初态a 经历(1)或(2)过程到达末态b ,已知a 、b 两 态处于同一条绝热线上(图中虚线是绝热线),则气体在 (A) (1)过程中吸热,(2) 过程中放热. (B) (1)过程中放热,(2) 过程中吸热. (C) 两种过程中都吸热. (D) 两种过程中都放热. [ ] 答案:B 题号:20412007 分值:3分 p p p V

大学物理课后答案第十一章

第十一章 机械振动 一、基本要求 1.掌握简谐振动的基本特征,学会由牛顿定律建立一维简谐振动的微分方程,并判断其是否谐振动。 2. 掌握描述简谐运动的运动方程)cos( 0?ω+=t A x ,理解振动位移,振幅,初位相,位相,圆频率,频率,周期的物理意义。能根据给出的初始条件求振幅和初位相。 3. 掌握旋转矢量法。 4. 理解同方向、同频率两个简谐振动的合成规律,以及合振动振幅极大和极小的条件。 二、基本内容 1. 振动 物体在某一平衡位置附近的往复运动叫做机械振动。如果物体振动的位置满足)()(T t x t x +=,则该物体的运动称为周期性运动。否则称为非周期运动。但是一切复杂的非周期性的运动,都可以分解成许多不同频率的简谐振动(周期性运动)的叠加。振动不仅限于机械运动中的振动过程,分子热运动,电磁运动,晶体中原子的运动等虽属不同运动形式,各自遵循不同的运动规律,但是就其中的振动过程讲,都具有共同的物理特征。 一个物理量,例如电量、电流、电压等围绕平衡值随时间作周期性(或准周期性)的变化,也是一种振动。 2. 简谐振动 简谐振动是一种周期性的振动过程。它可以是机械振动中的位移、速度、加速度,也可以是电流、电量、电压等其它物理量。简谐振动是最简单,最基本的周期性运动,它是组成复杂运动的基本要素,所以简谐运动的研究是本章一个重点。 (1)简谐振动表达式)cos(0?ω+=t A x 反映了作简谐振动的物体位移随时间的变化遵循余弦规律,这也是简谐振动的定义,即判断一个物体是否作简谐振动的运动学根据。但是简谐振动表达式更多地用来揭示描述一个简谐运动必须

涉及到的物理量A 、ω、0?(或称描述简谐运动的三个参量),显然三个参量确定后,任一时刻作简谐振动的物体的位移、速度、加速度都可以由t 对应地得到。 )2 cos()sin(00π ?ωω?ωω+ +=+-=t A t A v )c o s ()c o s (0202π?ωω?ωω±+=+-=t A t A a (2)简谐运动的动力学特征为:物体受到的力的大小总是与物体对其平衡位置的位移成正比、而方向相反,即kx F -=,它是判定一个系统的运动过程是否作简谐运动的动力学根据,只要受力分析满足动力学特征的,毫无疑问地系统的运动是简谐运动。这里应该注意,F 系指合力,它可以是弹性力或准弹性力。 (3)和简谐运动的动力学特征相一致的是简谐运动的运动学特征:作简谐 运动物体的加速度大小总是与其位移大小成正比、而方向相反,即x dt x d 222ω-=, 它也是物体是否作简谐运动的判据之一。只要加速度与位移大小成正比、而方向恒相反,则该物理量的变化过程就是一个简谐运动的过程。在非力学量,例如电量、电流和电压等电学量,就不易用简谐振动的动力学特征去判定,而LC 电路中的电量q 就满足q LC dt q d 1 22-=,故电量q 的变化过程就是一个简谐振荡的过程,显然用运动学的特征来判定简谐运动更具有广泛的意义。 3. 简谐振动的振幅、周期、频率和相位 (1)振幅A 是指最大位移的绝对值。A 是由初始条件来决定的,即 2 20 2 ω v + = x A 。 (2)周期T 是指完成一次完整的振动所用时间。ω π 2=T ,式中ω是简谐振 动的圆频率,它是由谐振动系统的构造来决定的,即m k =ω,ω也称为固有圆频率。对应的T 称为固有周期。v T 1 = ,式中v 称为频率(即固有频率),它与圆频率的关系2v ωπ=,是由系统本身决定的。

大学物理考试题库-大学物理考试题

马文蔚( 112 学时) 1-9 章自测题 第 1 部分:选择题 习题 1 1-1 质点作曲线运动,在时刻t质点的位矢为r ,速度为 v ,t 至 t t 时间内的位移为r ,路程为s,位矢大小的变化量为r (或称r ),平均速度为v ,平均速率为v 。 (1)根据上述情况,则必有() (A )r s r (B )(C)(D )r s r ,当t0 时有 dr ds dr r r s ,当t0 时有 dr dr ds r s r ,当t0 时有 dr dr ds (2)根据上述情况,则必有() (A )(C)v v, v v( B)v v, v v v v, v v(D )v v, v v 1-2 一运动质点在某瞬间位于位矢r ( x, y) 的端点处,对其速度的大小有四种意见,即 (1)dr ;( 2) dr ;(3) ds ;(4)( dx )2( dy )2 dt dt dt dt dt 下列判断正确的是: (A )只有( 1)(2)正确(B )只有( 2)正确 (C)只有( 2)(3)正确(D )只有( 3)( 4)正确 1-3 质点作曲线运动,r 表示位置矢量,v 表示速度, a 表示加速度,s表示路程,a t表示切向加速度。对下列表达式,即 (1)dv dt a ;(2) dr dt v ;(3) ds dt v ;(4)dv dt a t。 下述判断正确的是() (A )只有( 1)、( 4)是对的(B )只有( 2)、(4)是对的 (C)只有( 2)是对的( D)只有( 3)是对的 1-4 一个质点在做圆周运动时,则有() (A )切向加速度一定改变,法向加速度也改变 (B )切向加速度可能不变,法向加速度一定改变 (C)切向加速度可能不变,法向加速度不变 (D )切向加速度一定改变,法向加速度不变 1-5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边

大学物理答案第11章

第十一章恒定磁场 11-1两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小r R B B 、满足( ) (A )r R B B 2=(B )r R B B = (C )r R B B =2(D )r R B B 4= 分析与解在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比 2 1==R r n n r R 因而正确答案为(C ). 11-2一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( ) (A )B r 2π2 (B )B r 2 π (C )αB r cos π22(D )αB r cos π2 题 11-2 图 分析与解作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;S B ?=m Φ.因而正确答案为(D ). 11-3下列说法正确的是( ) (A )闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B )闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C )磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零

(D )磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零 分析与解由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零.因而正确答案为(B ). 11-4在图(a)和(b)中各有一半径相同的圆形回路L1、L2,圆周内有电流I1、I2,其分布相同,且均在真空中,但在(b)图中L2回路外有电流I3,P 1、P 2为两圆形回路上的对应点,则( ) (A )? ??=?21L L d d l B l B ,21P P B B = (B )?? ?≠?21L L d d l B l B ,21P P B B = (C )? ??=?21L L d d l B l B ,21P P B B ≠ (D )? ??≠?21L L d d l B l B ,21P P B B ≠ 题 11-4 图 分析与解由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ). 11-5半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr(μr<1),则磁介质内的磁化强度为( ) (A )()r I μr π2/1--(B )()r I μr π2/1- (C )r I μr π2/-(D )r μI r π2/ 分析与解利用安培环路定理可先求出磁介质中的磁场强度,再由M =(μr-1)H 求得磁介质内的磁化强度,因而正确答案为(B ). 11-6北京正负电子对撞机的储存环是周长为240m 的近似圆形轨道,当环中电子流强度为8mA 时,在整个环中有多少电子在运行?已知电子的速率接近光速.

大学物理例题

例1 路灯离地面高度为H,一个身高为h 的人,在灯下水平路面上以匀速度步行。如图3-4所示。求当人与灯的水平距离为时,他的头顶在地面上的影子移动的速度的大小。 解:建立如右下图所示的坐标,时刻头顶影子的坐标为 ,设头顶影子的坐标为,则 由图中看出有 则有 所以有 ; 例2如右图所示,跨过滑轮C的绳子,一端挂有重物B,另一端A 被人拉着沿水平方向匀速运动,其速率。A离地高度保 持为h,h =1.5m。运动开始时,重物放在地面B0处,此时绳C在铅 直位置绷紧,滑轮离地高度H = 10m,滑轮半径忽略不计,求: (1) 重物B上升的运动方程;

(2) 重物B在时刻的速率和加速度; (3) 重物B到达C处所需的时间。 解:(1)物体在B0处时,滑轮左边绳长为l0 = H-h,当重物的位移为y时,右边绳长为 因绳长为 由上式可得重物的运动方程为 (SI) (2)重物B的速度和加速度为 (3)由知 当时,。

此题解题思路是先求运动方程,即位移与时间的函数关系,再通过微分求质点运动的速度和加速度。 例3一质点在xy平面上运动,运动函数为x = 2t, y = 4t2-8(SI)。 (1) 求质点运动的轨道方程并画出轨道曲线; (2) 求t1=1s和t2=2s时,质点的位置、速度和加速度。 解:(1) 在运动方程中消去t,可得轨道方程为 , 轨道曲线为一抛物线如右图所示。 (2) 由 可得: 在t1=1s 时, 在t2=2s 时, 例4质点由静止开始作直线运动,初始加速度为a0,以后加速度均匀增加,每经过τ秒增加a0,求经过t秒后质点的速度和位移。 解:本题可以通过积分法由质点运动加速度和初始条件,求解质点的速度和位移。

大学物理期末考试题库

1某质点的运动学方程x=6+3t-5t 3 ,则该质点作 ( D ) (A )匀加速直线运动,加速度为正值 (B )匀加速直线运动,加速度为负值 (C )变加速直线运动,加速度为正值 (D )变加速直线运动,加速度为负值 2一作直线运动的物体,其速度x v 与时间t 的关系曲线如图示。设21t t →时间合力作功为 A 1,32t t →时间合力作功为A 2,43t t → 3 C ) (A )01?A ,02?A ,03?A (B )01?A ,02?A , 03?A (C )01=A ,02?A ,03?A (D )01=A ,02?A ,03?A 3 关于静摩擦力作功,指出下述正确者( C ) (A )物体相互作用时,在任何情况下,每个静摩擦力都不作功。 (B )受静摩擦力作用的物体必定静止。 (C )彼此以静摩擦力作用的两个物体处于相对静止状态,所以两个静摩擦力作功之和等于 零。 4 质点沿半径为R 的圆周作匀速率运动,经过时间T 转动一圈,那么在2T 的时间,其平均 速度的大小和平均速率分别为(B ) (A ) , (B ) 0, (C )0, 0 (D ) T R π2, 0 5、质点在恒力F 作用下由静止开始作直线运动。已知在时间1t ?,速率由0增加到υ;在2t ?, 由υ增加到υ2。设该力在1t ?,冲量大小为1I ,所作的功为1A ;在2t ?,冲量大小为2I , 所作的功为2A ,则( D ) A .2121;I I A A <= B. 2121;I I A A >= C. 2121;I I A A => D. 2121;I I A A =< 6如图示两个质量分别为B A m m 和的物体A 和B 一起在水平面上沿x 轴正向作匀减速直线 运动,加速度大小为a ,A 与B 间的最大静摩擦系数为μ,则A 作用于B 的静摩擦力F 的 大小和方向分别为(D ) 轴正向相反与、轴正向相同 与、轴正向相同 与、轴正向相反 与、x a m D x a m x g m x g m B B B B ,,C ,B ,A μμT R π2T R π2T R π2t

大学物理例题

1。质点的运动方程为 求: (1)质点的轨迹方程; (2)质点在第1s和第2秒的运动速度; (3)质点在第1s和第2秒的加速度。 2.在离水面高为h 的岸边,有人用绳子拉小船靠岸,人以不变的速率u收绳。求:当船在离岸距离为x时的速度和加速度。 例3:一质点作直线运动,已知其加速度a= 2- 2t (SI),初始条件为x0=0,v0=0,求 (1)质点在第1s末的速度; (2)质点的运动方程; (3)质点在前3s内经历的路程。

4。 5。

6。已知l 长的绳端拴一质量m 的小球(另 一端固定在o 点),自水平位置由静止释 放。求球摆至任一位置时,球的速度及绳 中的张力。 7. 一个滑轮系统,如图,A 滑轮的加速度为a ,两边分别悬挂质量为m 1和m 2的两个物体, 求两个物体的加速度。 7。一个以加速度大小a=1/3g 上升的升降机里,有一装置如图所示,物体A 、B 的质量相同,均为m ,A 与桌面之间的摩擦忽略不计,滑轮的重量忽略不计。从地面看,B 做自由落体运动。试求,若从升降机上看,B 的加速度大小是多少?

8. 9.重量为P 的摆锤系于绳的下端,绳长为l ,上端固定,如图所示,一水平变力大小为F 从零逐渐增大,缓慢地作用在摆锤上,使摆锤虽然移动,但在所有时间内均无限接近力平衡,一直到绳子与竖直线成 Θ0 角的位置,试计算此变力所做的功. P F

10.一束子弹射入木块,并在木块中走了S ',然后停止;而子弹和木块整个系统水平向右走了S ,求子弹和木块所受的一对摩擦力f s 和f s '所做的净功。 11. 如图所示,倔强系数为k 的弹簧悬挂着质量为m 1,m 2两个物体,开始时处于静止,突然把两物体间的连线剪断,求m 1的最大速度为多少? 12. 墙壁上固定一水平放置的轻弹簧,弹簧的另一端连一质量为m 的物体,弹簧的弹性系数为k ,物体m 与水平面间的摩擦系数为μ,开始时,弹簧没有伸长,现以恒力F 将物体自平衡位置开始向右拉动,试求此系统所具有的最大势能。 k 1m 2 m

大学物理考试试题

一、选择题 (每小题2分,共20分) 1. 关于瞬时速率的表达式,正确的是 ( B ) (A) dt dr =υ; (B) dt r d = υ; (C) r d =υ; (D) dr dt υ= r 2. 在一孤立系统内,若系统经过一不可逆过程,其熵变为S ?,则下列正确的是 ( A ) (A) 0S ?>; (B) 0S ?< ; (C) 0S ?= ; (D) 0S ?≥ 3. 均匀磁场的磁感应强度B 垂直于半径为r 的圆面,今以该圆面为边界,作以半球面S ,则通过S 面的磁通量的大小为 ( B ) (A )2πr 2B; (B) πr 2B; (C )0; (D )无法确定 4. 关于位移电流,有下面四种说法,正确的是 ( A ) (A )位移电流是由变化的电场产生的; (B )位移电流是由变化的磁场产生的; (C )位移电流的热效应服从焦耳—楞次定律; (D )位移电流的磁效应不服从安培环路定律。 5. 当光从折射率为1n 的介质入射到折射率为2n 的介质时,对应的布儒斯特角b i 为 ( A ) 2 1 1 2 (A)( );(B)( );(C) ;(D)02 n n arctg arctg n n π 6. 关于电容器的电容,下列说法正确..的是 ( C ) (A) 电容器的电容与板上所带电量成正比 ; (B) 电容器的电容与板间电压成反比; (C)平行板电容器的电容与两板正对面积成正比 ;(D) 平行板电容器的电容与两板间距离成正比 7. 一个人站在有光滑转轴的转动平台上,双臂水平地举二哑铃。在该人把二哑铃水平收缩到胸前的过程中,人、哑铃与转动平台组成的系统 ( C ) (A )机械能守恒,角动量不守恒; (B )机械能守恒,角动量守恒; (C )机械能不守恒,角动量守恒; (D )机械能不守恒,角动量也不守恒; 8. 某气体的速率分布曲线如图所示,则气体分子的最可几速率v p 为 ( A ) (A) 1000 m ·s -1 ; (B )1225 m ·s -1 ; (C) 1130 m ·s -1 ; (D) 1730 m ·s -1 得分

大学物理试题1.1

1.选择题 1.在升降机天花板上拴有轻绳,其下端系一重物,当升降机以加速度a 1上升时,绳中的张 力正好等于绳子所能承受的最大张力的一半,问升降机以多大加速度上 升时,绳子刚好被拉断? ( ) (A) 2a 1. (B) 2(a 1+g ). (C) 2a 1+g . (D) a 1+g . 2.如图所示,质量为m 的物体用细绳水平拉住,静止在倾角为θ的固定的光滑斜面上,则斜面给物体的支持力为 ( ) (A) θcos mg . (B) θsin mg . (C) θcos mg . (D) θsin mg . 3.竖立的圆筒形转笼,半径为R ,绕中心轴OO '转动,物块A 紧靠在圆筒 的内壁上,物块与圆筒间的摩擦系数为μ,要使物块A 不下落,圆筒转动的 角速度ω至少应为 ( ) (A) R g μ (B)g μ (C) R g μ (D)R g 4.已知水星的半径是地球半径的 0.4倍,质量为地球的0.04倍.设在地球 上的重力加速度为g ,则水星表面上的重力加速度为: ( ) (A) 0.1 g (B) 0.25 g (C) 2.5 g (D) 4 g 5.一个圆锥摆的摆线长为l ,摆线与竖直方向的夹角恒为θ,如图所示.则 摆锤转动的周期为 ( ) (A)g l . (B)g l θcos . (C)g l π 2. (D)g l θπcos 2 . 6.在作匀速转动的水平转台上,与转轴相距R 处有一体积很小的工件A ,如图所示.设工件与转台间静摩擦系数为μs ,若使工件在转台上无滑动, 则转台的角速度ω应满足 ( ) (A)R g s μω≤. (B)R g s 23μω≤. (C)R g s μω3≤. (D)R g s μω2≤. 7.用水平压力F 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F 逐渐增大时,物体所受的静摩擦力f ( ) (A) 恒为零. (B) 不为零,但保持不变. (C) 随F 成正比地增大. (D) 开始随F 增大,达到某一最大值后,就保持不变 a 1 m θ θ l ωO R A A O O ′ ω

大学物理考试题库完整

普通物理Ⅲ 试卷( A 卷) 一、单项选择题 1、运动质点在某瞬时位于位矢r 的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)dt r d ; (3)t s d d ; (4)22d d d d ?? ? ??+??? ??t y t x . 下述判断正确的是( ) (A) 只有(1)(2)正确 (B) 只有(2)正确 (C) 只有(2)(3)正确 (D) 只有(3)(4)正确 2、一个质点在做圆周运动时,则有( ) (A) 切向加速度一定改变,法向加速度也改变 (B) 切向加速度可能不变,法向加速度一定改变 (C) 切向加速度可能不变,法向加速度不变 (D) 切向加速度一定改变,法向加速度不变 3、如图所示,质量为m 的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为( ) (A) g sin θ (B) g cos θ (C) g tan θ (D) g cot θ 4、对质点组有以下几种说法: (1) 质点组总动量的改变与内力无关; (2) 质点组总动能的改变与内力无关; (3) 质点组机械能的改变与保守内力无关. 下列对上述说法判断正确的是( ) (A) 只有(1)是正确的 (B) (1) (2)是正确的 (C) (1) (3)是正确的 (D) (2) (3)是正确的 5、静电场中高斯面上各点的电场强度是由:( ) (A) 高斯面内的电荷决定的 (B) 高斯面外的电荷决定的 (C) 空间所有电荷决定的 (D) 高斯面内的电荷的代数和决定的 6、一带电粒子垂直射入均匀磁场中,如果粒子的质量增加为原来的2倍,入射速度也增加为原来的2倍,而磁场的磁感应强度增大为原来的4倍,则通过粒子运动轨道所围面积的磁通量增大为原来的:( ) (A) 2倍 (B) 4倍 (C) 0.5倍 (D) 1倍 7、一个电流元Idl 位于直角坐标系原点 ,电流沿z 轴方向,点P (x ,y ,z )的磁感强度沿 x 轴的分量 是: ( )

大学物理课后答案11章

习题11 11-1.测量星体表面温度的方法之一是将其看作黑体,测量它的峰值波长m λ,利用维恩定律便可求出T 。已知太阳、北极星和天狼星的m λ分别为60.5010m -?,60.4310m -?和 60.2910m -?,试计算它们的表面温度。 解:由维恩定律:m T b λ=,其中:3 10898.2-?=b ,那么: 太阳:3 6 2.8981057960.510 m b T K λ--?===?; 北极星:3 6 2.8981067400.4310m b T K λ--?===?; 天狼星:3 6 2.8981099930.2910 m b T K λ--?===?。 11-2.宇宙大爆炸遗留在宇宙空间的均匀背景辐射相当于温度为K 3的黑体辐射,试计算: (1)此辐射的单色辐出度的峰值波长; (2)地球表面接收到此辐射的功率。 解:(1)由m T b λ=,有3 42.898109.66103 m b m T λ--?== =?; (2)由4M T σ=,有:424P T R σπ=?地 ,那么: 328494(637010) 5.67103 2.3410P W π-=?????=?。 11-3.在加热黑体过程中,其单色辐出度对应的峰值波长由0.69μm 变化到0.50μm ,求总辐出度改变为原来的多少倍? 解:由 b T m =λ 和 4T M σ=可得, 63.3)5 .069.0()()(4 40400====m m T T M M λλ 11-4.已知000K 2时钨的辐出度与黑体的辐出度之比为259.0。设灯泡的钨丝面积为 2cm 10,其他能量损失不计,求维持灯丝温度所消耗的电功率。 解:∵4P T S σ=?黑体,消耗的功率等于钨丝的幅出度,所以, 44840.2591010 5.67102000235P S T W ησ--==?????=。 11-5.天文学中常用热辐射定律估算恒星的半径。现观测到某恒星热辐射的峰值波长为m λ;辐射到地面上单位面积的功率为W 。已测得该恒星与地球间的距离为l ,若将恒星看作黑体,试求该恒星的半径。(维恩常量b 和斯特藩常量σ均为己知) 解:由m T b λ=恒星,4 M T σ=, 考虑到恒星辐射到地面上单位面积的功率?大球面=恒星表面辐出的功率, 有:224 44W l R T ππσ?=?恒星恒星 ,

大学物理静电场经典习题详解.doc

题7.1:1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 3 2的上夸克和两个带e 3 1 -下夸克构成,若将夸克作为经典粒子处理(夸克线度约为10-20 m ),中子内的两个下夸克之间相距2.60?10-15 m 。求它们之间的斥力。 题7.1解:由于夸克可视为经典点电荷,由库仑定律 r r 2 2 0r 2210N 78.394141 e e e F ===r e r q q πεπε F 与r e 方向相同表明它们之间为斥力。 题7.2:质量为m ,电荷为-e 的电子以圆轨道绕氢核旋转,其动能为E k 。证明电子的旋转频率满足 4 2k 202 32me E εν= 其中是0ε真空电容率,电子的运动可视为遵守经典力学规律。 题7.2分析:根据题意将电子作为经典粒子处理。电子、氢核的大小约为10-15 m ,轨道半径约为10-10 m ,故电子、氢核都可视作点电荷。点电荷间的库仑引力是维持电子沿圆轨道运动的向心力,故有 2 2 0241r e r v m πε= 由此出发命题可证。 证:由上述分析可得电子的动能为 r e mv E 2 02k 8121πε= = 电子旋转角速度为 3 02 2 4mr e πεω= 由上述两式消去r ,得 4 3k 20 222 324me E επων= = 题7.3:在氯化铯晶体中,一价氯离于Cl -与其最邻近的八个一价格离子Cs +构成如图所示的立方晶格结构。(1)求氯离子所受的库仑力;(2)假设图中箭头所指处缺少一个铯离子(称作品格缺陷),求此时氯离子所受的库仑力。 题7.3分析:铯离子和氯离子均可视作点电荷,可直接将晶格顶角铯离子与氯离子之间的库仑力进行矢量叠加。为方便计算可以利用晶格的对称性求氯离子所受的合力。 解:(l )由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故 01=F (2)除了有缺陷的那条对角线外,其它铯离 子与氯离子的作用合力为零,所以氯离子所受的合力2F 的值为 N 1092.13492 022 0212-?== = a e r q q F πεπε 2F 方向如图所示。

大学物理试题库及答案详解【考试必备】

第一章 质点运动学 1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v . (1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr (B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( ) (A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v 分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B). (2) 由于|Δr |≠Δs ,故t s t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故t s t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)t d d r ; (3)t s d d ; (4)2 2d d d d ?? ? ??+??? ??t y t x . 下述判断正确的是( ) (A) 只有(1)(2)正确 (B) 只有(2)正确

大学物理学下册答案第11章-大学物理11章答案

第11 章稳恒磁场 一选择题 11-1 边长为l的正方形线圈,分别用图11-1 中所示的两种方式通以电流(I 其中ab、cd与正方形共面),在这两种情况下,线圈在其中心产生的磁感应强度的 大小分别为:[ ] (A)B = 0,B = 0 (B)B =0,B = 220I 1 2l (C)B = 220I,B =0 1l2 (D)B =22 0I,B = 22 0I 1l2l 答案:C 解析:有限长直导线在空间激发的磁感应强度大小为B = 0I(cos1- cos2), 并4d12 结合右手螺旋定则判断磁感应强度方向,按照磁场的叠加原理,可计算 B1 = 22l0I,B2 =0。故正确答案为(C)。 11-2 两个载有相等电流I的半径为R的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,如图11-2 所示,则在圆心O处的磁感应强度大小为多少? [ ] (A)0 (B )I /2R (C)2I /2R(D )I /R 答案:C 解析:圆线圈在圆心处的磁感应强度大小为B1 =B2 = 0I /2R ,按照右手螺旋定 习题11-1 图

则判断知B v 1和B v 2 的方向相互垂直,依照磁场的矢量叠加原理,计算可得圆心 O 处的磁感应强度大小为B = 20I /2R 。 11-3 如图11-3所示,在均匀磁场B 中,有一个半径为R 的半球面 S ,S 边线 所在平面的单位法线矢量n 与磁感应强度B 的夹角为,则通过该半球面的磁通 量的大小为[ ] (A )R 2B (B ) 2R 2 B (C ) R 2 B cos (D ) R 2 B sin 答案:C 解析:通过半球面的磁感应线线必通过底面, 确答案为(C )。 11-4 如图 11-4 所示,在无限长载流直导线附近作一球形闭合曲面 S ,当曲面 S 向长直导线靠近时,穿过曲面 S 的磁通量和面上各点的磁感应强度B 将如 何 变化?[ ] (A )增大,B 也增大 (C ) 增大,B 不变 答案:D 解析:根据磁场的高斯定理 = ? B v dS v = 0 ,通过闭合曲面 S 的磁感应强度始终 为 0,保持不变。无限长载 流直导线在空间中激发的磁感应强度大小为B = 0I , 2 d 曲面 S 靠近长直导线 时,距离 d 减小,从而 B 增大。故正确答案为(D )。 11-5 下列说法正确的是[ ] (A ) 闭合回路上各点磁感应强度都为零时,回路内一定没有电流穿过 (B ) 闭合回路上各点磁感应强度都为零时,回路内穿过电流的代数和必定为 零 (C ) 磁感应强度沿闭合回路的积分为零时,回路上各点的磁感应强度必定为 零 (D ) 磁感应强度沿闭合回路的积分不为零时,回路上任意一点的磁感应强度 习题 11n -3 图 B 因此 = B v S v =R 2B cos 。故 正 B ) 不变,B 也不变 D ) 不变,B 增大

相关主题