搜档网
当前位置:搜档网 › Iron K-alpha Emission from X-ray Reflection Predictions for Gamma-Ray Burst Models

Iron K-alpha Emission from X-ray Reflection Predictions for Gamma-Ray Burst Models

Iron K-alpha Emission from X-ray Reflection Predictions for Gamma-Ray Burst Models
Iron K-alpha Emission from X-ray Reflection Predictions for Gamma-Ray Burst Models

a r X i v :a s t r o -p h /0108324v 1 20 A u g 2001Iron K αEmission from X-ray Re?ection:Predictions for Gamma-Ray Burst

Models

David R.Ballantyne and Enrico Ramirez-Ruiz

Institute of Astronomy,University of Cambridge,Madingley Road,Cambridge CB30HA,England ABSTRACT Recent observations of several γ-ray burst (GRB)afterglows have shown evidence for a large amount of X-ray line emitting material,possibly arising from ionized iron.A signi?cant detection of an X-ray spectral feature,such as that found in the Chan-dra observation of GRB 991216,may provide important constraints on the immediate environment of the burst and hence on progenitor models.The large Fe K αequiv-alent widths inferred from the X-ray observations favor models in which the line is produced when the primary X-ray emission from the source strikes Thomson-thick material and Compton scatters into our line of sight.We present such re?ection spec-tra here,computed in a fully self-consistent manner,and discuss the range of ionization parameters that may be relevant to different models of GRBs.We argue that the pres-ence of a strong hydrogen-like K αline is unlikely,because Fe XXVI photons would be trapped resonantly and removed from the line core by Compton scattering.In contrast,a strong narrow emission line from He-like Fe XXV is prominent in the model spectra.We brie?y discuss how these constraints may affect the line energy determination in GRB 991216.Subject headings:gamma rays:bursts —radiation mechanisms:non-thermal —line:

formation

1.Introduction

The detection of spectral signatures associated with the environment of a γ-ray burst (GRB)would provide important clues about the triggering mechanism and the progenitor (Mészáros &Rees 1998;Lazzati,Campana &Ghisellini 1999;B?ttcher 2000).Observations with Chandra ,ASCA and Beppo SAX have provided tentative evidence for Fe K αline and edge features in at least ?ve bursts;GRB 970508(Piro et al.1999),GRB 970828(Yoshida et al.1999),GRB 991216(Piro et al.2000)and GRB 000214(Antonelli et al.2000)all show an emission feature during the X-ray afterglow a few hours to a day after the burst event;while GRB 990705(Amati et al.

2000)displays a prominent X-ray absorption feature during the burst itself.Although most of the line detections are only marginally signi?cant and fail to distinguish between the various line excitation mechanisms1,GRB991216shows a3.49±0.06keV line at a moderate con?dence level (~4σ).This is consistent with emission from H-like Fe(Fe XXVI)at the redshift of the most distant absorption system along the line of sight at z=1.02(Vreeswijk et al.2000).A similar observation,but with higher signal-to-noise,may be able to distinguish between the various line emission mechanisms and lead to the correct determination of the line energy.

The large equivalent widths(~a few keV)inferred from the X-ray features favor models in which the line is produced by re?ection(Vietri et al.2000;Rees&Mészáros2000),rather than transmission.Any detection of emission features in the afterglow spectra some hours after the burst (such as in GRB991216)therefore imposes strong constraints on the location and geometry of the optically thick re?ecting material.Observing an X-ray line at a time t obs after the burst implies that the emitting material must be located within a distance~ct obs/(1+z)from the explosion site,thus strongly limiting the size of the remnant.However,this gas cannot be optically thick along the line of sight because this would smear out the short-time variability of the burst radiation.These conditions point towards a strongly anisotropic environment from which a GRB is seen only if we happen to observe the system through a line of sight with low optical depth(B?ttcher2000;Vietri et al.2000;Lazzati et al.2001).

Two types of re?ection models have been developed to explain the origin of the X-ray emis-sion features.The?rst invokes the interaction of the primary X-ray emission from the afterglow with an Fe-enriched,Thomson-thick,asymmetric remnant,which Compton scatters X-rays into our line of sight(Vietri et al.2000;B?ttcher&Fryer2000).This scenario requires a mass 0.06M⊙of Fe at a distance about1.5light days,possibly due to a remnant of an explosive event or a supernova that occurred days or weeks prior to the GRB(see Vietri&Stella1998; in contrast with MacFadyen&Woosley1999which favors a simultaneous supernova explosion). The other type of model involves a long-lived( 1day)magnetar or accreting black hole with a continuing but decaying out?ow that interacts with the stellar envelope at distances less than a light-hour(Rees&Mészáros2000;Mészáros&Rees2001).In this case only a small mass of Fe is required,and can be readily produced by the star itself.

Under both interpretations,it is likely that re?ection takes place in highly ionized surfaces. This can lead to strong Comptonization of the emergent Fe line,and other absorption and emis-sion features.In this paper,we present and discuss detailed,self-consistent computations of the temperature and ionization structure of a uniform slab of gas ionized by the incident radiation of

a GRB and of the resulting re?ection spectra.Our analysis applies to an optically thick,homoge-neous medium,signi?cantly extending previous analysis in the optically thin regime(e.g.Weth et al.2000;B?ttcher2000),which is hard-pressed to explain the observed Fe-line feature in GRB 991216(Vietri et al.2000).We estimate the strength of the Fe Kαline that each model produces. Finally,we discuss the implications of these results for current and future X-ray observations.

2.X-ray illuminated slabs

We employ the re?ection code developed by Ross,Weaver&McCray(1978)and updated by Ross&Fabian(1993).We consider the illumination of the?rst12Thomson depths of a in?nite, uniform slab of gas by radiation with a power-law spectrum of photon indexΓincident at an angle?to the normal(Ross,Fabian&Young1999).The incident radiation is treated analytically in a‘one-stream’approximation,while the diffuse radiation that results from both the Compton scattering of the incident radiation and emission from the gas itself,is treated using the Fokker–Planck/diffusion method of Ross et al.(1978).Once thermal and ionization equilibrium in the slab is found,the re?ection spectrum is computed.We assume that hydrogen and helium are completely ionized,but include the partially ionized species C V–VII,O V–IX,Mg IX–XIII,Si XI–XV,and Fe XVI–XXVII.

For a givenΓ,the temperature and ionization state of the surface of the slab is expected to depend mainly on the value of the ionization parameter,

4πF

ξ=

Alternatively,line emission can be produced when a post-burst out?ow,possibly magnetically dominated,impacts on the walls of a funnel excavated in the stellar envelope(SE)at distances less than a light-hour(Rees&Mészáros2000).Luminosities as high as L~1047erg s?1are expected 1day after the burst,if they are due either to the spinning down millisecond pulsar or to a highly magnetized torus around a black-hole(Rees&Mészáros2000).The ionization parameter in the stellar envelope case is

ξSE≈β104L47d?213n?1H,17,(3) whereβ<1is the ratio of ionizing to MHD luminosity(Rees&Mészáros2000).The incident ?ux would be de?ected along the funnel walls with different incident angles before escaping the funnel:for simplicity we assume?~45?.

For these uniform-density slabs we varyξby changing the total illuminating?ux while keep-ing the hydrogen number density n H,the distance from the burst d and the incident angle??xed. Fig.1shows the results for illumination by aΓ=2spectrum for both of the scenarios described above.The illuminating and re?ected spectra are displayed as EF E,where F E is the spectral energy ?ux and E is the photon energy.The models with the highest ionization parameter(ξ>104.5)are excellent re?ectors,and show almost no Fe spectral features.This is because the surface layer is almost fully ionized,and Fe XXVI does not become dominant untilτT>8.The temperature at the surface of the slab is~1.9×107K,the Compton temperature for the incident spectrum.The spectrum drops at~50keV because we included a sharp energy cut-off in the incident spectrum at https://www.sodocs.net/doc/294388351.html,pton re?ection produces a slight steeping in the re?ected spectrum,which mimics a power law withΓ>2in the3-30keV band.For example,we?ndΓ=2.3in the L48SN case and Γ=2.14in the L48SE case.

When the illuminating?ux is reduced so that103.5<ξ<104,Fe Kαemission and Fe K-shell absorption features begin to appear.Most of the Kαphotons originate atτT?1and emerge as broad Comptonized lines with weak cores.The H-like Kαphotons at6.97keV are generated close to the surface,but are resonantly trapped and removed from the narrow line core by Compton scattering.The He-like inter-combination line at6.7keV is not subject to resonant trapping,but is generated at such highτT(see panel(b)in Fig.2)that it is multiply Compton scattered on leaving the slab.The broad Comptonized emission features blended into the Compton smeared K-shell absorption edge,are an important signature of ionized re?ection.The effect of increasing the iron abundance at a?xed ionization parameter is illustrated by the dotted line in Fig.1.The Comptonized line and the absorption feature are increasingly signi?cant for an Fe-rich medium.

Withξ~103,Fe XXV becomes dominant atτT≈1(see panel(a)in Fig.2).Narrow emission

line resulting from Fe XXV can now be seen superimposed on the Compton-broadened emission bump.The tiny emission feature just above8.8keV results from radiative recombination directly to the ground level of Fe XXV(see the L46SE case in Fig2).In the model withξSE=102the Fe emission is suppressed because Fe XVII-XXII dominates close to the surface,but their Kαphotons are destroyed by the Auger effect during resonance trapping(Ross,Fabian&Brandt 1996).Finally,forξSE=10the re?ection spectrum is similar to that of a cold,neutral slab,and so the narrow emission line at6.4keV is dominant.

The effect of increasing the incident angle?,which is a key ingredient in the pre-ejection models because it is responsible for the observed time-delay,is also illustrated in Fig.1by the dot-dashed line.Radiation that illuminates the atmosphere more directly ionizes more deeply into the slab than radiation at grazing incidence.At high?ux levels the emergent line features are little changed,however,the K-shell absorption features become more prominent for radiation that impacts closer to the normal of the slab.

The ionization structure in the outer layers of the illuminated slab also depends on the incident radiation spectrum.Fig.3shows the Fe Kαequivalent width(EW)as a function of incident luminosity for a series of re?ection spectra withΓ=1.6,2.0&2.4,assuming?=45?.The EWs were calculated with respect to the re?ection spectrum,and the integration was carried out between 5.7and7.1keV.As seen in Fig.1,the EW of the Fe Kαline decreases with L in both GRB scenarios.This behavior continues until L is suf?ciently low for the narrow Fe Kαemission line to be suppressed by the Auger effect.The EWs are generally larger when the illuminating spectrum is steeper(i.e.,Γis greater).The weaker ionizing power of steep spectra allow line emission to persist at the highest luminosities,although the EWs still end up quite low when L=L48.In a GRB, softer spectra may be important if both the line emission arises from the impact of the continuous energy output with the compact remnant and much of the observed continuum emission(with a ?atterΓ)comes from the afterglow emission directly.

4.Discussion

The emission feature observed~1.5days after the GRB991216burst(Piro et al.2000) had a line luminosity of L line=4×1044erg s?1and an equivalent width(EW)of~0.5keV.The continuum?ux from GRB991216,measured to haveΓ=2.2±0.2,in the1–10keV band was 50–100times stronger than the?ux in the line.As is clear from the above discussion,the emission feature can be explained by re?ection if identi?ed with the recombination Kαline from He-like iron at6.7keV.

TakingΓ≈2in the SE scenario,a continuous ionizing luminosity of~1045?1046erg s?1(or a

continuous wind luminosity of1047erg s?1withβ~0.01?0.1;see Rees&Mészáros2000)would be suf?cient to produce the observed line3.However,it is possible that the re?ected and incident spectra are observed together.With the above parameters,the line luminosity and EW calculated for the total spectrum(re?ected+incident)are L line~2×1044erg s?1and EW~0.25–0.7keV.If the illuminating spectrum is a steeper power-law(Γ>2),then a smaller fraction of illuminating photons lie in the9–20keV range which dominates the ionization of Fe,and thus an increase in either L,βor the Fe abundance is required in order to reproduce the same line strength(Fig.3).

Alternatively,an X-ray afterglow withΓ≈2illuminating the walls of a supernova remnant with a luminosity of~1045.5?1046would produce a line signal with L line~2×1044erg s?1and EW~0.2–0.8keV.However,an essential assumption contained in this model is that the material responsible for emission-line features is illuminated by the early afterglow radiation(or the GRB itself)with L≥L48.Such high luminosities would cause the spectral features resulting from iron to disappear or,at best,to be extremely weak(even for larger values ofΓ,see Fig.3).Moreover, this early incident radiation can be harder than aΓ~2spectrum with a signi?cant fraction of the energy above theγγ→e±formation energy threshold,and a high compactness parameter.This will cause new pairs to be formed in the originally optically thick scattering medium,an effect which ampli?es the density of scattering charges and increases the temperature of the illuminating material.When pairs are produced in suf?cient numbers,the iron Kαemission is suppressed due to the decrease in the number of recombinations.These effects will be investigated elsewhere(Laz-zati,Ramirez-Ruiz&Rees2001,in preparation).These problems may be overcome in particular source geometries for which lower luminosities and softer spectra are expected at the edges of the relativistic out?ow.

The results presented in Fig.1show that if the observed Fe Kαline from GRB991216is identi?ed solely with the H-like line at6.97keV,as suggested by Piro et al.(2000),then this is inconsistent with emission from a photoionized optically thick slab.Their detailed analysis of the Chandra ACIS-S spectrum shows marginal evidence(at the2.1σlevel)of an emission feature at 4.4±0.5keV.Identifying this feature with the Fe recombination edge with rest energy of9.28 keV gives z=1.1±0.1,consistent with the redshift of a H-like Fe Kαline.Nonetheless,it is important to emphasize that the observations presented by Piro et al.(2000)do not rule out the presence of a He-like Fe feature(or a blend between H and He-like features as shown in Fig.1). Some ambiguity also remains in the rest energy of the emission since Doppler blue-shifts of order 0.1c are expected in both re?ection scenarios(Vietri et al.2000;Rees&Mészáros200;Mészáros &Rees2001)and may confuse precise measurements of the line energy.Indeed,for an expansion velocity of0.1c,the emission feature at4.4±0.5keV could be attributed to the Fe XXV radiative

recombination emission just above8.8keV rather than to the Fe recombination edge at9.28keV.

Finally,Co produces both a He and H-like emission line:at7.242keV and just above7.526 keV,respectively.The exact strength of these features,which we do not include in our calculations, could be important in both of the scenarios discussed here and may confuse the identi?cation of low signal-to-noise spectral features.

We have presented calculations of X-ray re?ection from Thomson-thick slabs for conditions which may arise in the immediate environment of a https://www.sodocs.net/doc/294388351.html,parisons between putative Fe Kαlines detected in X-ray afterglows and those predicted by the computations will be useful in dis-tinguishing between the various line emission mechanisms.We expect that more sensitive data on X-ray afterglow spectral features will impose strong constraints on the nature of GRB progenitors and their environments.

We thank M.J.Rees,P.Mészáros,https://www.sodocs.net/doc/294388351.html,zzati,A.Blain and the referee for useful comments and suggestions.We are particularly grateful to A.C.Fabian and R.R.Ross for very helpful in-sights regarding the calculations.ERR acknowledges support from CONACYT,SEP and the ORS foundation.DRB thanks the Commonwealth Scholarship and Fellowship Plan and the Natural Sciences and Engineering Research Council of Canada for support.

REFERENCES

Amati,L.,et al.,2000,Science,290,953

Antonelli,A.,et al.,2000,ApJ,545,L39

B?ttcher,M.,2000,ApJ,539,102

B?ttcher,M.&Fryer C.L.,2001,ApJ,547,338

Lazzati,D.,Campana,S.&Ghisellini,G.,1999,MNRAS,304,L31

Lazzati,D.,Ghisellini,G.,Amati,L.,Frontera,F.,Vietri,M.&Stella,L.,2001,ApJ,556,471 MacFadyen,A.I.&Woosley,S.E.,1999,ApJ,524,262

Mészáros,P.&Rees,M.J.,1998,MNRAS,299,L10

Mészáros,P.&Rees,M.J.,2001,ApJ,556,L37

Piro,L.,et al.,1999,ApJ,514,L73

Piro,L.,et al.,2000,Science,290,955

Rees,M.J.&Meszaros,P.,2000,ApJ,545,L73

Ross,R.R.,1979,ApJ,233,334

Ross,R.R.&Weaver,R.,McCray,R.,1978,ApJ,219,292

Ross,R.R.&Fabian,A.C.,1993,MNRAS,261,74

Ross,R.R.,Fabian,A.C.&Brandt,W.N.,1996,MNRAS,278,1082

Ross,R.R.,Fabian,A.C.&Young,A.J.,1999,MNRAS,306,461

Vietri,M.,Ghisellini,G.,Lazzati,D.,Fiore,F.&Stella,L.,2000,ApJ,550,L43. Vietri,M.&Stella,L.,1998,ApJ,507,L45.

Weth,C.,Meszaros,P.,Kallman,T.&Rees,M.J.,2000,ApJ,534,581 Yoshida,A.,et al.,1999,A&AS,138,433.

Fig.1.—X-ray re?ection spectra for illumination with aΓ=2power law.In both panels the vertical lines are at(from left to right)6.4,6.7and6.97keV for the three different Fe Kαline energies,and 9.28keV which is the energy of the iron recombination edge.Left panel:illumination of a uniform supernova remnant with ten times solar Fe abundance,various values of the afterglow luminosity, and?=45?.The ionization parameter is given byξSN=106L48,assuming d16=1,n H,10=1(see Eq.

2).From top to bottom the equivalent widths and the luminosities(integrated between5.7and 7.1keV)inferred from the X-ray line features are:3eV,37eV,94eV,268eV,943eV;2.5L46, 2.7L45,9.6L44,3.6L44,1.4L44.The dot-dashed line illustrates the effect of increasing the incident angle from?=45?to?=75?at a constant luminosity.Right panel:illumination of a funnel excavated in the stellar envelope with solar Fe abundance and various values of the decaying X-ray luminosity from the GRB central engine.In this caseξSE=105L48,assuming d13=1,n H,17=1,β=1 (see Eq.3)with?=45?.From top to bottom the equivalent widths and the luminosities inferred from the X-ray line features are:3eV,62eV,1.1keV,122eV,1.6keV;2.6L46,2.7L45,2.7L44,5L42, 5.2L41.The dotted line shows the re?ected spectra for illumination with the same luminosity but into a stellar envelope that is ten times more abundant in iron.The line luminosity and equivalent width for this model are:243eV and3.7L45.

Fig. 2.—Fe ion fractions as a function of Thomson depth produced by the illumination of a uniform slab withΓ=2.The same line type denotes the same species of Fe in both plots.Panel(a): illumination of a funnel excavated in the stellar envelope with solar Fe abundance andξSE=103.

(b):illumination of a uniform supernova remnant with ten times solar Fe abundance andξSN=104.

Fig.3.—Fe Kαequivalent widths(EW)as a function of both the incident luminosity andΓfor the SE&SN scenarios.?was taken to be45?for these models.The EWs were computed from the calculated re?ection spectra(integrated between5.7and7.1keV).If one uses the total spectrum (incident+re?ected)then smaller EWs are obtained.For example,the EWs forΓ=1.6,2.0and 2.4when L=L46(in both cases)are370eV,430eV&131eV(SE)and43eV,145eV&805eV (SN).

荧光光谱分析仪工作原理

X 荧光光谱分析仪工作原理 用x 射线照射试样时,试样可以被激发出各种波长得荧光x 射线,需要把混合得x 射线 按波长(或能量)分开,分别测量不同波长(或能虽:)得X 射线得强度,以进行左性与定疑 分析,为此使用得仪器叫X 射线荧光光谱仪。由于X 光具有一泄波长,同时又有一立能量, 因此,X 射线荧光光谱仪有两种基本类型:波长色散型与能量色散型。下图就是这两类仪器 得原理图. 用X 射线照射试样时,试样可以被激发出各种波长得荧光X 射线,需要把混合得X 射 线按波长(或能疑)分开,分别测量不同波长(或能量)得X 射线得强度,以进行定性与左疑 分析,为此使用得仪器叫X 射线荧光光谱仪。由于X 光具有一左波长,同时又有一左能量, 因此,X 射线荧光光谱仪有两种基本类型:波长色散型与能量色散型。下图就是这两类仪器 得原理图。 (a )波长色散谱仪 (b )能虽色散谱仪 波长色散型和能量色散型谱仪原理图 现将两种类型X 射线光谱仪得主要部件及工作原理叙述如下: X 射线管 酥高分析器 分光晶体 计算机 再陋电源

丝电源 灯丝 电了悚 X则线 BeiV 輪窗型X射线管结构示意图 两种类型得X射线荧光光谱仪都需要用X射线管作为激发光源?上图就是X射线管得结构示意图。灯丝与靶极密封在抽成貞?空得金属罩内,灯丝与靶极之间加高压(一般为4OKV), 灯丝发射得电子经高压电场加速撞击在靶极上,产生X射线。X射线管产生得一次X射线, 作为激发X射线荧光得辐射源.只有当一次X射线得波长稍短于受激元素吸收限Imi n时,才能有效得激发出X射线荧光?笥?SPAN Ian g =EN-U S >lmin得一次X射线其能量不足以使受激元素激发。 X射线管得靶材与管工作电压决立了能有效激发受激元素得那部分一次X射线得强度。管 工作电压升高,短波长一次X射线比例增加,故产生得荧光X射线得强度也增强。但并不就是说管工作电压越髙越好,因为入射X射线得荧光激发效率与苴波长有关,越靠近被测元素吸收限波长,激发效率越髙。A X射线管产生得X射线透过彼窗入射到样品上, 激发岀样品元素得特征X射线,正常工作时,X射线管所消耗功率得0、2%左右转变为X 射线辐射,其余均变为热能使X射线管升温,因此必须不断得通冷却水冷却靶电极。 2、分光系统 第?准讥器 平面晶体反射X线示意图 分光系统得主要部件就是晶体分光器,它得作用就是通过晶体衍射现彖把不同波长得X射线分开.根据布拉格衍射左律2d S in 0 =n X ,当波长为X得X射线以0角射到晶体,如果晶面间距为d,则在出射角为0得方向,可以观测到波长为X =2dsi n 0得一级衍射及波长为X/2, X /3 ------ ―等髙级衍射。改变()角,可以观测到另外波长得X

X射线荧光光谱分析原理

一 X射线荧光光谱分析原理 利用初级X射线光子或其他微观离子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。按激发、色散和探测方法的不同,分为X射线光谱法(波长色散)和X 射线能谱法(能量色散)。 当原子受到X射线光子(原级X射线)或其他微观粒子的激发使原子内层电子电离而出现空位,原子内层电子重新配位,较外层的电子跃迁到内层电子空位,并同时放射出次级X射线光子,此即X射线荧光。较外层电子跃迁到内层电子空位所释放的能量等于两电子能级的能量差,因此,X射线荧光的波长对不同元素是特征的。 根据色散方式不同,X射线荧光分析仪相应分为X射线荧光光谱仪(波长色散)和X射线荧光能谱仪(能量色散)。 X射线荧光光谱仪主要由激发、色散、探测、记录及数据处理等单元组成。激发单元的作用是产生初级X射线。它由高压发生器和X 光管组成。后者功率较大,用水和油同时冷却。色散单元的作用是分出想要波长的X射线。它由样品室、狭缝、测角仪、分析晶体等部分组成。通过测角器以1∶2速度转动分析晶体和探测器,可在不同的布拉格角位置上测得不同波长的X射线而作元素的定性分析。探测器的作用是将X射线光子能量转化为电能,常用的有盖格计数管、正比计数管、闪烁计数管、半导体探测器等。记录单元由放大器、脉冲幅

度分析器、显示部分组成。通过定标器的脉冲分析信号可以直接输入计算机,进行联机处理而得到被测元素的含量。 X射线荧光能谱仪没有复杂的分光系统,结构简单。X射线激发源可用X射线发生器,也可用放射性同位素。能量色散用脉冲幅度分析器。探测器和记录等与X射线荧光光谱仪相同。 X射线荧光光谱仪和X射线荧光能谱仪各有优缺点。前者分辨率高,对轻、重元素测定的适应性广。对高低含量的元素测定灵敏度均能满足要求。后者的X射线探测的几何效率可提高2~3数量级,灵敏度高。可以对能量范围很宽的X射线同时进行能量分辨(定性分析)和定量测定。对于能量小于2万电子伏特左右的能谱的分辨率差。 X射线荧光分析法用于物质成分分析,检出限一般可达10-5~10-6克/克(g/g),对许多元素可测到10-7~10-9g/g,用质子激发时,检出可达10-12g/g;强度测量的再现性好;便于进行无损分析;分析速度快;应用范围广,分析范围包括原子序数Z≥3的所有元素。除用于物质成分分析外,还可用于原子的基本性质如氧化数、离子电荷、电负性和化学键等的研究。 二企业挑选X线荧光光谱仪的基本准则应该包括满足要求、优良性能和低购入成本三个方面。 1.满足使用要求是最基本要素

X射线荧光光谱仪国内厂家

X射线荧光光谱仪国内厂家 产品介绍 天瑞仪器公司是国内最大的X射线荧光光谱仪厂家,全球专业生产高性能X射线荧光光谱仪(XRF)的公司。2011年推出的高性能、台式X荧光合金分析仪EDX3600H,融汇全球领先的合金分析技术,配备合金测试效果最佳的智能真空系统,利用低能光管配合真空测试,可以有效的降低干扰,提高轻元素分辨率,大大提高合金中微量的Al、Si、P等轻元素的检测效果。 EDX3600H合金光谱仪是天瑞仪器公司为合金测试专门开发的仪器类型。 具有测试精度高、测试速度快、测试简单等特点。 同时具有合金测试、合金牌号分析、有害元素分析,土壤分析仪、贵金属分析等功能。 检测样品包括从钠至铀的所有合金、金属加工件、矿物、矿渣、岩石等,形态为固体、液体、粉末等。 性能特点 高效超薄窗X光管,指标达到国际先进水平 针对合金的测试而开发的专用配件 SDD硅漂移探测器,良好的能量线性、能量分辨率和能谱特性,较高的峰背比 天瑞仪器专利产品—信噪比增强器(SNE),提高信号处理能力25倍以上 低能X射线激发待测元素,对Pb、S等微含量元素激发效果好 智能抽真空系统,屏蔽空气的影响,大幅扩展测试的范围 自动稳谱装置保证了仪器工作的一致性; 高信噪比的电子线路单元 针对不同样品自动切换准直器和滤光片,免去手工操作带来的繁琐 多参数线性回归方法,使元素间的吸收、增强效应得到明显的抑制; 内置高清晰摄像头 液晶屏显示让仪器的重要参数(管压、管流、真空度)一目了然 标准配置 合金测试高效超薄窗X光管 超薄窗大面积的原装进口SDD探测器 信噪比增强器SNE 光路增强系统 高信噪比电子线路单元

从劳厄发现晶体X射线衍射谈

从劳厄发现晶体X射线衍射谈起 摘要:文章从劳厄发现晶体X射线衍射的前因后果谈起。劳厄的这个发现产生了两个新学科,即X射线谱学和X射线晶体学。文中还回顾了布拉格父子对这两个新学科所作的重大贡献,并阐述了X射线晶体学的深远影响。 今年是劳厄(von Lane M)发现晶体X射线衍射九秩之年。 从1895年伦琴(R0ntgen W C)发现X射线到1926年薛定愕(Schrodinger)奠定量子力学基础的30多年是现代物理学诞生和成长的重要时期。在此期间的众多重大发现中,1912年劳厄的发现发挥了极为及时而又十分深远的影响,是很值得我们通过回顾和展望来纪念它的。 我们先来了解一下劳厄发现的前因后果。1912年劳厄发现晶体X射线衍射时是在德国慕尼黑大学理论物理学教授索未菲(Sommerfeld)手下执教。除理论物理教授索未菲外,在这个大学中还有发现X射线的物理学教授伦琴和著名的晶体学家格罗特(Groth)。当时,劳厄对光的干涉作用特别感兴趣,索末菲则在考虑X射线的本质和产生的机制问题,而格罗特是晶体学权威之一,并著书Chemische KristallograPhic (化学晶体学)数卷。身在这样的学府中,劳厄当时通过耳闻目睹也就对 晶体中原子是按三维点阵排布以及X射线可能是波长很短的电磁波这样的想法不会感到陌生或难于接受了。而且看来正当而立之年的他是很想在光的干涉作用上做点文章的。真可谓机遇不负有心人了。这时,索末菲的博士生埃瓦尔德(Ewald P P)来请教劳厄,谈到他正在研究关于光波通过晶体中按三维点阵排布的原子会产生什么效应。这对劳厄有所触发并想到:如果波长短得比晶体中原子间距离更短时又当怎样?而X射线可能正是这样的射线。他意识到,说不定晶体正是能衍射X射线的三维光栅呢。现在劳厄需要考虑的大事是做实验来证实这个想法。当时索末菲正好有个助教弗里德里希(Friedrich W) ,他曾从伦琴教授那里取得博士学位。 他主动要去进行这样的实验。经过几次失败后,他终于取得了晶体的第一个衍射图「(见图1)」。晶体是五水合硫酸铜(CuSO4·5H2O)。 劳厄的发现经过进一步的工作很快取得了一箭双雕的效果:既明确了X射线的本质,测定了波长,开创了X射线谱学,又使测定晶体结构的前景在望,从而将观察晶体外形所得结论经过三维点阵理论发展到230个空间群理论的晶体学,提升为X射线晶体学。这个发现产生的两个新学科,几乎立即给出了一系列在科学中有重大影响的结果。英国的布拉格父子(Bragg W H和Bragg W L)在奠定这两个新学科的基础中起了非常卓越的作用。他们使工作的重心从德国转到英国。将三个劳厄方程(衍射条件)压缩成一个布拉格方程(定律)的小布拉格曾把重心转移的原因归之于老布拉格设计的用起来得心应手的电离分光计”。既然晶体是X射线的衍射光栅,那么,为了测定X射线的波长,光栅的间距当如何得出?1897年巴洛(Barlow W)预测过最简单的晶体结构型式,其中有氯化钠所属的型式。根据当时已知的NaCI的化学式量(58.46)和阿伏伽德罗常数(6.064×1023)以及晶体密度(2.163g/cm2),可以推算出氯化钠晶体(10)原子面的间距d=2.814×10-8cm。 布拉格父子的工作是有些分工的:老布拉格用他的电离分光计侧重搞谱学,很快发现X射线谱中含有连续谱和波长取决于对阴极材料的特征谱线。此后,测定晶体结构主要依靠特征射线。同时还观察到同一跃迁系特征射线的频率是随对阴极材料在元素周期系中的排序递增的,这种频率的排序给出了原子序数。这是对化学中总结出来的元素周期律作出的呼应。小布拉格的工作是沿着X射线晶体学的方向发展的。他一生中从氯化钠和金刚石一直测到蛋白质的晶体结构。从1913年起,他在两年中一连测定了氯化钠、金刚石、硫化锌、黄铁矿、荧石和方解石等的晶体结构。这一批最早测定的晶体结构虽然极为简单,但很有代表性,而且都足以让化学和矿物学界观感一新。同时为测定参数较多和结构比较复杂的晶体结构也进行了理论和技术方面的准备。X射线晶体学能不断采用新技术和解决周相问题的新方法,使结构测定的对象

射线数字成像专业书籍

射线数字成像专业书籍

射线数字成像专业书籍《实时射线成像检测》王建华李树轩编著 目录: 前言 第1章射线成像的物理基础 1.1物质构成 1.1.1元素 1.1.2原子 1.2同位素 1.2.1核素 1.2.2同位素 1.2.3核素分类 1.2.4原子能级 1.3原子核结构 1.3.1核力 1.3.2核稳定性 1.3.3放射性衰变

1.4射线种类和性质 1.4.1射线分类 1.4.2X射线和γ射线的性质 1.4.3X射线和γ射线的不同点 1.4.4射线胶片照相中使用的射线 1.5射线的产生 1.5.1X射线的产生 1.5.2γ射线的产生 1.5.3高能X射线 1.5.4中子射线 1.6射线与物质的相互作用 1.6.1光电效应 1.6.2康普顿效应 1.6.3电子对效应 1.6.4瑞利散射 1.6.5各种效应相互作用发生相对的几率 1.7射线的衰减规律 1.7.1吸收、散射与衰减 1.7.2射线的色和束 1.7.3单色窄束射线的衰减规律 1.7.4宽束、多色射线的衰减规律(包括连续X射线)

测试题(是非题) 第2章实时成像 2.1实时成像的基础 2.1.1简述 2.1.2实时成像的原理 2.1.3射线成像的特点 2.1.4射线成像的应用 2.1.5实时成像局限性 2.2实时成像技术 2.2.1实时成像系统 2.2.2射线成像设备 2.2.3成像系统的构成 2.2.4成像转换装置(成像器) 2.3射线辐射转换器 2.3.1X射线荧光检验屏 2.3.2X射线图像增强器 2.4射线数字化成像技术 2.4.1计算机射线照相技术 2.4.2线阵列扫描成像技术 2.4.3光纤CCD射线实时成像检测系统(简称光纤CCD系统) 2.4.4数字平板直接成像技术

X射线荧光光谱分析的基本原理解析

X射线荧光光谱分析的基本原理 当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为10-12-10-14s,然后自发地由能量高的状态跃迁到能量低的状态。这个过程称为驰豫过程。驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁。当较外层的电子跃迁到空穴时,所释放的能量随即在原子内部被吸收而逐出较外层的另一个次级光电子,此称为俄歇效应,亦称次级光电效应或无辐射效应,所逐出的次级光电子称为俄歇电子。它的能量是特征的,与入射辐射的能量无关。当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生X射线荧光,其能量等于两能级之间的能量差。因此,X射线荧光的能量或波长是特征性的,与元素有一一对应的关系。 K层电子被逐出后,其空穴可以被外层中任一电子所填充,从而可产生一系列的谱线,称为K 系谱线:由L层跃迁到K层辐射的X射线叫Kα射线,由M层跃迁到K层辐射的X射线叫Kβ射线……。同样,L层电子被逐出可以产生L系辐射。 如果入射的X射线使某元素的K层电子激发成光电子后L层电子跃迁到K层,此时就有能量ΔE 释放出来,且ΔE=EK-EL,这个能量是以X射线形式释放,产生的就是Kα射线,同样还可以产生Kβ射线,L系射线等。莫斯莱(H.G.Moseley) 发现,荧光X射线的波长λ与元素的原子序数 Z有关,其数学关系如下: λ=K(Z-s)-2 这就是莫斯莱定律,式中K和S是常数,因此,只要测出荧光X射线的波长,就可以知道元素的种类,这就是荧光X射线定性分析的基础。此外,荧光X射线的强度与相应元素的含量有一定 的关系,据此,可以进行元素定量分析。 X射线荧光光谱法有如下特点: 1,分析的元素范围广,从4Be到92U均可测定; 2,荧光X射线谱线简单,相互干扰少,样品不必分离,分析方法比较简便; 3,分析浓度范围较宽,从常量到微量都可分析。重元素的检测限可达ppm量级,轻元素稍 差; 4,分析样品不被破坏,分析快速,准确,便于自动化。 当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为(10)-12-(10)-14s,然后自发地由能量高的状态跃迁到能量低的状态。这个过程称为驰过程。驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁。当较外层的电子跃迁到空穴时,所释放的能量随即在原子

X射线荧光光谱仪介绍

X-射线荧光光谱仪(XRF) 1、仪器介绍 X-射线荧光光谱仪(XRF),现有日本Rigaku公司生产的ZSX primus波长色散型XRF一台,及配套所必须的电源设备、冷循环水设备和前处理熔样机等。X射线荧光光谱分析技术制样简单、分析快速方便、应用广泛,可用于测定包括岩石、土壤、沉积物等在内的各种地质样品的化学组成。分析元素范围从Be(4)到U(92),最常见的是用于主量元素分析,如SiO2、Al2O3、CaO、Fe2O3T、K2O、MgO、MnO、Na2O、P2O5、TiO2、LOI等元素。 2、仪器功能和技术参数: (1) 功能:定性分析、半定量分析和定量分析; (2) X射线管:4KW超薄端窗型(30μm)、铑靶X射线管; (3) 分光晶体:LiF(200)、Ge(111)、PET、RX25、LiF(220); (4) 进样器:48位自动样品交换器; (5) 测角仪:SC:5-118度(2θ);PC:13-148度(2θ); (6) 分析元素范围:Be4-U92; (7) 线性范围:10-2 - 10-6; (8) 仪器稳定度:≤0.05%; (9) 测量误差:<5%。 3、应用和优势: XRF应用广泛,可用于岩石、矿物、土壤、植物、沉积物、冶金、矿业、钢铁、化工产品等样品中常量和痕量的定量分析。具有快速方便、制样简单、无损测量、分析元素宽、灵敏度高等优点。 X-ray Fluorescence Spectrometer (XRF) 1、I nstrument Introducation: The wavelength dispersion X-ray fluorescence spectrometer (XRF) is ZSX primus, made by Rigaku, Japan, with a set of instruments of electrical power unit, cold circulating water equipment and automatic fusion machine. XRF is widely used for geological element analysis, including rocks, soils, sediments, etc, which is simplicity and convenience of operation. Its analyzable elements range is from Be (4) to U (92). XRF is most common for the analysis of major elements, such as SiO2, Al2O3, CaO, Fe2O3T, K2O, MgO, MnO, Na2O, P2O5, TiO2 and LOI. 2、Instrument Technical Parameters: (1) Fucation: qualitative analysis, semi-quantitative analysis and quantitative analysis; (2) X-ray tube: 4KW ultrathin end-window (30μm) Rh target X-ray tube;

射线数字成像技术的应用

射线数字成像技术的应用 在管道建设工程中,射线检测是确保焊接质量的主要无损检测手段,直接关系到工程建设质量、健康环境、施工效率、建设成本以及管线的安全运行。长期以来,射线检测主要采用X射线或γ射线的胶片成像技术,检测劳动强度大,工作效率较低,常常影响施工进度。 近年来随着计算机数字图像处理技术及数字平板射线探测技术的发展,X射线数字成像检测正逐渐运用于容器制造和管道建设工程中。数字图像便于储存,检索、统计快速方便,易于实现远程图像传输、专家评审,结合GPS系统可对每道焊口进行精确定位,便于工程质量监督。同时,由于没有了底片暗室处理环节,消除了化学药剂对环境以及人员健康的影响。 过大量的工程实践与应用,对管道焊缝射线数字化检测与评估系统进行了应用研究分析探索。 1 射线数字成像技术的应用背景 随着我国经济的快速发展,对能源的需求越来越大,输油输气管道建设工程也越来越多,众多的能源基础设施建设促进了金属材料焊接技术及检测技术的进步。 目前,在管道建设工程中,管道焊接基本实现了自动化和半自动化,而与之配套的射线检测主要采用胶片成像技

术,检测周期长、效率低下。“十二五”期间,将有更多的油气管道建设工程相继启动,如何将一种可靠的、快速的、“绿色”的射线数字检测技术应用于工程建设中,以替代传统射线胶片检测技术已成为目前管道焊缝射线检测领域亟需解决的问题。 2 国内外管道焊缝数字化检测的现状 2.1 几种主要的射线数字检测技术 1)CCD型射线成像(影像增强器) 2)光激励磷光体型射线成像(CR) 3)线阵探测器(LDA)成像系统 4)平板探测器(FPD)成像系统 几种技术各有特点,目前适用于管道工程检测的是CR 和FPD,但CR不能实时出具检测结果,且操作环节较繁琐、成本较高,因此平板探测器成像系统成为射线数字检测的主要发展方向。 2.2 国内研发情况 国内目前从事管道焊缝射线数字化检测系统研发的机构主要有几家射线仪器公司,但其产品主要用于钢管生产厂的螺旋焊缝检测。通过实践应用比较,研究应用电子学研究所研发的基于平板探测器的管道焊接射线数字化检测与评估系统已能够满足管道工程检测需要,并通过了科技成果鉴

X射线荧光光谱分析基本原理及仪器工作原理解析

X射线荧光光谱分析基本原理 当能量高于原子内层电子电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,然后自发地由能量高的状态跃迁到能量低的状态。当较外层的电子跃迁到空穴时,所释放的能量随即在原子内部被吸收而逐出较外层的另一个次级光电子,此称为俄歇效应,亦称次级光电效应或无辐射效应,所逐出的次级光电子成为俄歇电子.它的能量是具有独一特征的,与入射辐射的能量无关.当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生X射线荧光,其能量等于两能级之间的能量差,因此,X射线荧光的能量或波长是特征性的,与元素有一一对应的关系。如图所示: K层电子被逐出后,其空穴可以被外层中任一电子所填充,从而可产生一系列的谱线,称为K系谱线:由L层跃迁到K层辐射的X射线叫Kα射线,由M层跃迁到K层辐射的X射线叫Kβ射线……。同样,L层电子被逐出可以产生L系辐射(见图10.2)。如果入射的X射线使某元素的K层电子激发成光电子后L层电子跃迁到K层,此时就有能量ΔE释放出来,且ΔE=E K-E L,这个能量是以X射线形式释放,产生的就是Kα射线,同样还可以产生Kβ射线, L系射线等。莫斯莱(H.G.Moseley) 发现,荧光X射线的波长λ与元素的原子序数Z有关,其数学关系如下: λ=K(Z-s)-2 这就是莫斯莱定律,式中K和S是常数,因此,只要测出荧光X射线的波长,就可以知道元素的种类,这就是荧光X射线定性分析的基础。此外,荧光X射线的强度与相应元素的含量有一定的关系,据此,可以进行元素定量分析。

用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X 射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。而我们天瑞仪器公司生产的X射线荧光光谱仪就属于能量色散型的。下面是仪器的工作原理图: 能量色散型X射线荧光光谱仪工作原理 仪器工作原理 通过高压工作产生电子流打入到X光管中靶材产生初级X射线,初级X射线经过过滤和聚集射入到被测样品产生次级X射线,也就是我们通常所说的X荧光,X荧光被探测器探测到后经放大,数模转换输入到计算机,计算机计算出我们需要的结果。

X-荧光光谱仪基本理论及工作原理

自从1895年伦琴发现X-射线以来,产生的X-射线仪器多种多样。但是进入80年代,由于20世纪末,半导体材料和计算及技术的迅速发展,出现了Si(Li) 探测器技术和能量色散分析技术。最近十几年在国际上一种新的多元素分析仪器迅速发展起来。已经成为一种成熟的,应用广泛的分析仪器。他就是X-射线荧光能谱仪,全称为:能量色散X-射线荧光光谱仪。以下介绍一下这种仪器的情况: 一. X-荧光能谱技术基本理论 1.X-荧光 物质是由原子组成的,每个原子都有一个原子核,原子核周围有若干电子绕其飞行。不同元素由于原子核所含质子不同,围绕其飞行的电子层数、每层电子的数目、飞行轨道的形状、轨道半径都不一样,形成了原子核外不同的电子能级。在受到外力作用时,例如用X-光子源照射,打掉其内层轨道上飞行的电子,这时该电子腾出后所形成的空穴,由于原子核引力的作用,需要从其较外电子层上吸引一个电子来补充,这时原子处于激发态,其相邻电子层上电子补充到内层空穴后,本身产生的空穴由其外层上电子再补充,直至最外层上的电子从空间捕获一个自由电子,原子又回到稳定态(基态)。这种电子从外层向内层迁移的现象被称为电子跃迁。由于外层电子所携带的能量要高于内层电子,它在产生跃迁补充到内层空穴后,多余的能量就被释放出来,这些能量是以电磁波的形式被释放的。而这一高频电磁波的频率正好在X波段上,因此它是一种X射线,称X-荧光。因为每种元素原子的电子能级是特征的,它受到激发时产生的X-荧光也是特征的。 注意,这里的X-荧光要同宝石学中所描述的宝石样品在X射线照射下所发出可见光的荧光概念相区别。 2.X荧光的激发源 使被测物质产生特征X-射线,即X-荧光,需要用能量较高的光子源激发。光子源可以是X-射线,也可以是低能量的γ-射线,还可以是高能量的加速电子或离子。对于一般的能谱技术,为了实现激发,常采用下列方法。 a. 源激发放射性同位素物质具有连续发出低能γ-射线的能力,这种能力可以用来激发物质的X荧光。用于源激发使用的放射性同位素主要是: 55Fe(铁)、109Cd(镉)、241Am(镅)、244Cm(锔)等,不同的放射性同位素源可以提供不同特征能量的辐射。一般将很少量的放射性同位素物质固封在一个密封的铅罐中,留出几毫米或十几毫米的小孔径使射线经过准直后照射到被测物质。源激发具有单色性好,信噪比高,体积小, 重量轻的特点,可制造成便携式或简易式仪器。但是源激发功率低,荧光强度低,测量灵敏度较低。另一方面,一种放射性同位素源的能量分布较为狭窄,仅能有效分析少量元素,因此,有时将两种甚至三种不同的放射性同位素源混合使用,以分析更多的元素。 b. 管激发 管激发是指使用X-射线管做为激发源。X-射线管是使用密封金属管,通过高压使高速阴极电子束打在阳极金属材料钯上(如Mo靶、Rh靶、W靶、Cu靶等),激发出X-射线,X-射线经过(X射线)管侧窗或端窗、并经过准直后,照射被测物质激发X-荧光。 由于X-射线管发出的X-射线强度较高,因此,能够有效激发并测量被测物质中所含的痕量元素。另一方面X-射线管的高压和电流可以随意调整,能够获得不同能量分布的X-射线,结合使用滤光片技术,可以选择激发更多的元素。

X荧光光谱分析仪工作原理

X荧光光谱分析仪工作原理 用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。下图是这两类仪器的原理图。 用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。下图是这两类仪器的原理图。 现将两种类型X射线光谱仪的主要部件及工作原理叙述如下: 1.X射线管

两种类型的X射线荧光光谱仪都需要用X射线管作为激发光源。上图是X射线管的结构示意图。灯丝和靶极密封在抽成真空的金属罩内,灯丝和靶极之间加高压(一般为40KV),灯丝发射的电子经高压电场加速撞击在靶极上,产生X射线。X射线管产生的一次X射线,作为激发X射线荧光的辐射源。只有当一次X射线的波长稍短于受激元素吸收限lmin时,才能有效的激发出X射线荧光。笥?SPAN lang=EN-US>lmin的一次X射线其能量不足以使受激元素激发。 X射线管的靶材和管工作电压决定了能有效激发受激元素的那部分一次X射线的强度。管工作电压升高,短波长一次X射线比例增加,故产生的荧光X射线的强度也增强。但并不是说管工作电压越高越好,因为入射X射线的荧光激发效率与其波长有关,越靠近被测元素吸收限波长,激发效率越高。 X射线管产生的X射线透过铍窗入射到样品上,激发出样品元素的特征X射线,正常工作时,X射线管所消耗功率的0.2%左右转变为X射线辐射,其余均变为热能使X射线管升温,因此必须不断的通冷却水冷却靶电极。 2.分光系统

晶体X射线衍射实验报告全解

晶体X射线衍射实验报告全解

中南大学 X射线衍射实验报告 材料科学与工程学院材料学专业1305班班级 姓名学号0603130500 同组者无 黄继武实验日期2015 年12 月05 日指导教 师 评分分评阅人评阅日 期 一、实验目的 1)掌握X射线衍射仪的工作原理、操作方法; 2)掌握X射线衍射实验的样品制备方法; 3)学会X射线衍射实验方法、实验参数设置,独立完成一个衍射实验测试; 4)学会MDI Jade 6的基本操作方法; 5)学会物相定性分析的原理和利用Jade进行物相鉴定的方法; 6)学会物相定量分析的原理和利用Jade进行物相定量的方法。 本实验由衍射仪操作、物相定性分析、物相定量分析三个独立的实验组成,实验报告包含以上三个实验内容。 二、实验原理

1 衍射仪的工作原理 特征X射线是一种波长很短(约为20~0.06nm)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。在用电子束轰击金属“靶”产生的X射线中,包含与靶中各种元素对应的具有特定波长的X射线,称为特征(或标识)X射线。考虑到X射线的波长和晶体内部原子间的距离相近,1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X射线的空间衍射光,即当一束X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析在照相底片上得到的衍射花样,便可确定晶体结构。这一预见随即为实验所验证。1913年英国物理学家布拉格父子(W. H. Bragg, W. L Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基础的著名公式──布拉格定律: 2dsinθ=nλ 式中λ为X射线的波长,n为任何正整数。当X射线以掠角θ(入射角的余角,又称为布拉格角)入射到某一点阵晶格间距为d的晶面面上时,在符合上式的条件下,将在反射方向上得到因叠加而加强的衍射线。 2 物相定性分析原理 1) 每一物相具有其特有的特征衍射谱,没有任何两种物相的衍射谱是完全相同 的 2) 记录已知物相的衍射谱,并保存为PDF文件 3) 从PDF文件中检索出与样品衍射谱完全相同的物相 4) 多相样品的衍射谱是其中各相的衍射谱的简单叠加,互不干扰,检索程序能 从PDF文件中检索出全部物相 3 物相定量分析原理 X射线定量相分析的理论基础是物质参与衍射的体积活重量与其所产生的衍射强度成正比。 当不存在消光及微吸收时,均匀、无织构、无限厚、晶粒足够小的单相时,多晶物质所产生的均匀衍射环上单位长度的积分强度为: 式中R为衍射仪圆半径,V o为单胞体积,F为结构因子,P为多重性因子,M为温度因子,μ为线吸收系数。 三、仪器与材料 1)仪器:18KW转靶X射线衍射仪 2)数据处理软件:数据采集与处理终端与数据分析软件MDI Jade 6 3)实验材料:CaCO3+CaSO4、Fe2O3+Fe3O4

射线数字成像检测技术

射线数字成像检测技术 韩焱 (华北工学院现代元损检测技术工程中心,太原030051) 摘要:介绍多种射线数字成像(DR)系统的组成及成像机理,分析其性能指标、优缺点及应用领域。光子放大的DR系统(如图像增强器DR系统)实时性好,但适应的射线能量低,检测灵敏度相对较低;其它系统的检测灵敏度较高但成像时间较长。DR系统成像方式的主要区别在于射线探测器,除射线转换方式外,影响系统检测灵敏度的主要因素是散射噪声和量子噪声;可采用加准直器和光量子积分降噪的方法提高检测灵敏度。 关键词:射线检验;数字成像系统;综述 中图分类号:TGll5.28 文献标识码:A 文章编号:1000-6656(2003109-0468-04 DIGITAL RADIOGRAPHIC TECHNOLOGY HAN Yan (Center of Modern NDT &E, North China Institute of Technology, Taiyuan 030051, China) Abstract: The structure and imaging principle of digital radiographic (DR) systems are introduced. And thecharacteristics, performances, advantages, disadvantages and applications of the systems are analyzed. The DR sys-tern with photon amplification such as the DR system with intensifier can get real-time imaging, but it fits for lowerenergy and its inspection sensitivity is lower. The systems working with high energy can obtain higher sensitivity,while is time-eonsurning. The imaging way of a DR system depends on the detector used, and the factors influencinginspection sensitivity are the quantum noise from ray source and scatter noise besides the transform way of rays.Quantum integration noise reducer and collimator can be used to improve the inspection sensitivity of the system. Keywords:Radiography; Digital imaging system; Survey 射线检测技术作为产品质量检测的重要手段,经过百年的历史,已由简单的胶片和荧屏射线照相发展到了数字成像检测。随着信息技术、计算机技术和光电技术等的发展,射线数字成像检测技术也得到了飞速的发展,新的射线数字成像方法不断涌现,给射线探伤赋予了更广泛的内涵,同时也使利用先进网络技术进行远程评片和诊断成为可能。 目前工业中使用的射线数字成像检测技术主要包括射线数字直接成像检测技术(Digital Radio—graphy,简称DR)和射线数字重建成像检测技术,如工业CT(Industry Computed Tomography,简称ICT)。以下将在介绍DR检测系统组成的基础上,重点分析系统的成像原理、特点、特性及应用场合。 1 DR检测系统简介 DR检测系统组成见图1。按照图像的成像方式分为线扫描成像和面扫描成像;根据成像过程可分为直接和间接式DR系统。以下重点介绍直接DR系统。 图1 DR检测系统组成框图 1.1 直接式DR系统 直接DR成像系统主要分为图像增强器成像系统、平板型成像系统和线阵扫描成像系统等。 图2为图像增强器式DR系统,主要通过射线视频系统与数字图像处理系统集成实现。系统采用射线--可见光--电子--电子放大--可见光的光放大技术,是将射线光子由转换效率较高的主射线转换屏转换为可见光图像,可见光光子经光电转换变为电子,而后对电子进行放大,放大后的电子聚集在小屏上再次

X射线荧光光谱分析基本原理

X射线荧光光谱分析 X射线是一种电磁辐射,其波长介于紫外线和γ射线之间。它的波长没有一个严格的界限,一般来说是指波长为0.001-50nm的电磁辐射。对分析化学家来说,最感兴趣的波段是0.01-24nm,0.01nm左右是超铀元素的K系谱线,24nm则是最轻元素Li的K系谱线。1923年赫维西(Hevesy, G. Von)提出了应用X射线荧光光谱进行定量分析,但由于受到当时探测技术水平的限制,该法并未得到实际应用,直到20世纪40年代后期,随着X射线管、分光技术和半导体探测器技术的改进,X荧光分析才开始进入蓬勃发展的时期,成为一种极为重要的分析手段。 1.1 X射线荧光光谱分析的基本原理 当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为10-12-10-14s,然后自发地由能量高的状态跃迁到能量低的状态。这个过程称为驰豫过程。驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁。当较外层的电子跃迁到空穴时,所释放的能量随即在原子内部被吸收而逐出较外层的另一个次级光电子,此称为俄歇效应,亦称次级光电效应或无辐射效应,所逐出的次级光电子称为俄歇电子。它的能量是特征的,与入射辐射的能量无关。当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生X射线荧光,其能量等于两能级之间的能量差。因此,X射线荧光的能量或波长是特征性的,与元素有一一对应的关系。图1-1给出了X射线荧光和俄歇电子产生过程示意图。

K层电子被逐出后,其空穴可以被外层中任一电子所填充,从而可产生一系列的谱线,称为K系谱线:由L层跃迁到K层辐射的X射线叫Kα射线,由M层跃迁到K层辐射的X射线叫Kβ射线……。同样,L层电子被逐出可以产生L系辐射(见图1-2)。

X射线荧光光谱仪结构和原理

X射线荧光光谱仪结构和原理 第一章 X荧光光谱仪可分为同步辐射X射线荧光光谱、质子X射线荧光光谱、全反射X射线荧光光谱、波长色散X射线荧光光谱和能量色散X射线荧光光谱等。 波长色散X射线荧光光谱可分为顺序(扫描型)、多元素同时分析型(多道)谱仪和固定道与顺序型相结合的谱仪三大类。顺序型适用于科研及多用途的工作,多道谱仪则适用于相对固定组成和批量试样分析,固定道与顺序式相结合 则结合了两者的优点。 X射线荧光光谱在结构上基本由激发样品的光源、色散、探测、谱仪控制和 数据处理等几部分组成。 § 1.1激发源 激发样品的光源主要包括具有各种功率的X射线管、放射性核素源、质子 和同步辐射光源。波长色散X射线荧光光谱仪所用的激发源是不同功率的X射线管, 功率可达4~4.5kW,类型有侧窗、端窗、透射靶和复合靶。能量色散X射线荧光光谱仪用 的激发源有小功率的X射线管,功率从4~1600W,靶型有侧窗和端窗。靶材主要有Rh、Cr、W、Au、Mo、Cu、Ag等,并广泛使用二次靶。现场和便携式谱仪则主要用放射性核素源。 激发元素产生特征X射线的机理是必须使原子内层电子轨道产生电子空位。可使内层轨道电子形式空穴的激发方式主要有以下几种:带电粒子激发、电磁辐射激发、内转换现象 和核衰变等。商用的X射线荧光光谱仪中,目前最常用的激发源是电磁辐射激发。电磁辐射激发源主要用X射线管产生的原级X射线谱、诱发性核素衰变时产生的Y射线、电子俘 获和内转换所产生X射线和同步辐射光源。 § 1.1.1 X射线管 1、X射线管的基本结构 目前在波长色散谱仪中,高功率X射线管一般用端窗靶,功率3~4KW,其结构示意图 如下: X 光管本质上是一个在高电压下工作的二极管,包括一个发射电子的阴极和一个收集电子的阳极(即靶材),并

X射线数字成像检测系统郑金泉.doc

实用标准文档 X射线数字成像检测系统

目录 一、目的意义 (3) 二、系统介绍 (3) 2.1 CR 技术与 DR技术的共同点 (4) 2.2 CR 技术与 DR技术的不同点 (4) 2.3 对比分析 (5) 2.4 系统组成 (5) 2.5 X 射线数字平板探测器 (6) 2.6 X 射线源 (7) 2.7 图像处理系统 (8) 2.8 成像板扫描仪 (9) 2.9IP 成像板 (9) 三、 DR检测案例 (10) 3.1 广西 220kV 振林变 (10) 3.2 广西 220kV 水南变 (11) 3.3 温州 220kV 白沙变 (13) 3.4 广西 110kV 城东变 (15) 3.5 广西乐滩水电站 (16) 四、 CR检测案例 (18) 4.1 百色茗雅 220kV变电站 (18)

一、目的意义 气体绝缘全封闭组合电器(GIS)设备结构复杂,由断路器、隔离开关、接 地开关、互感器、避雷器、母线、连接件和出线终端等组成,内部充有SF6绝缘气体,给解体检修工作带来很大的困难,且检修工作技术含量高,耗时长,停电 所造成的损失大。通过对 GIS 设备事故的分析发现,大部分严重事故,未能通过现有的检测手段在缺陷发展初期被发现,导致击穿、烧损等严重事故的发生。 通过 GIS 设备局放监测,结合专家数据库和现场经验,可大致判断 GIS 设备局放类型,进行大致的定位,但无法明确GIS 设备内部的具体故障。结合X 射线数字成像检测系统,对 GIS 设备进行多方位透视成像,配合专用的图像处理与 判读技术,实现其内部结构的“可视化”与质量状态快速诊断,极大地提高 GIS 设备故障定位与判别的准确性,提高故障诊断效率,为整个设备的运行安全与质量监控提供一种全新的检测手段。对 GIS 设备局放可能造成的危害及其影响范围和程度,提出相应策略,采取相应的措施,对电网的安全、稳定、经济运行具有重要意义。 二、系统介绍 按照读出方式(即X 射线曝光到图像显示过程)不同,可分为: 数字射线成像( DR-Digital Radiography) 计算机射线成像( CR-Computed Radiography) 图 1-1 检测原理图

2021年X射线荧光分析的基本原理

X射线荧光分析的基本原理 欧阳光明(2021.03.07) 1. 绪论 物质是由各种元素按照不同的构成方式构成的。各种元素的原子是由原子核和一定数目的核外电子构成。不同元素的原子,原子核中质子和中子的数量不同,核外电子数也不同,具有不同的原子结构。核外电子的能量也各不相同,这些能量不同的原子按能量大小分层排列,离原子核最近的电子层称为K电子层,其外依次为L,M,N,O…层。K层上的电子能量最低,由里向外,电子的能量逐渐升高。原子在未接受足够的能量时,处于基态,即稳定状态,此时,K层最多容纳2个电子,L层最多容纳8个电子,M层最多容纳18个电子……。当使用高能射线(如X射线)照射物质时,物质中的原子的内层电子被高能射线逐出原子之外,在内层电子层上即出现一个“空穴”。具有较高能量的外层电子立即补充这一“空穴”而发生跃迁。发生跃迁的电子将多余的能量(两个电子层能量之差)释放出来。释放出来的能量以电磁波的形式向四周发射,其波长恰好在X射线的波长范围内(0.001~10nm)。为了与照射物质的X射线(初级X射线)相区别,将被照射物质发出的X射线(二次X射线)称为荧光X射线(荧光即光致发光之意)。对于K 层电子而言,L层电子向K层电子跃迁时放射出的荧光X射线称为Kα谱线,M层电子向K层电子跃迁时放射出的荧光X射线称为Kβ谱线,其他层的电子发生跃迁时的情况依此类推(如图 1.1所示)。利用被测物质发出的荧光X射线进行物质化学成分的定性分析或定量分析,称为X射线荧光光谱分析。 图1.1原子结构示意图 在形成的线系中,各谱线的相对强度是不同的,这是由于跃迁几率不同。对K层电子而言,特定元素的荧光X射线Kα>Kβ,对于同一种元素而言,强谱线只有1-2条,特征谱线比较简单,易于分析,光谱干扰小。 2. X射线与固体之间的相互作用

相关主题