搜档网
当前位置:搜档网 › xilinx和 ALTERA系列芯片

xilinx和 ALTERA系列芯片

xilinx和 ALTERA系列芯片
xilinx和 ALTERA系列芯片

芯片了解:

一、Xilinx 的主流FPGA 分为两大类,一种侧重低成本应用,容量中等,性能可以满足一般的逻辑设计要求,如Spartan 系列;还有一种侧重于高性能应用,容量大,性能能满足各类高端应用,如Virtex 系列,用户可以根据自己实际应用要求进行选择。 在性能可以满足的情况下,优先选择低成本器件。

1.spartan —3 Spartan-3系列FPGA

【15】

是为那些需要大容量、低价格电子应用的用户而设计的。该系统的8种FPGA

密度从5万到500万门。Spartan-3系列是在Spartan-IIE 成功的基础上通过增加逻辑资源、增加内部RAM

容量、增加I/O 引脚数量、增加时钟管理功能以及增加总体性能来实现的,很多增强的功能都来自于Virtex-II 技术。这些结合了先进处理技术的改进,使得Spartan-3的性价比超出以前所能达到的水平。也为可编程逻辑器件提供了新的标准。由于异常的低价,Spartan-3可广泛地应用于各种电子设计,包括军工航天、宽带接入、家庭网络、投影电视、数字电视。Spartan-3还是替代ASIC 的更佳选择。不同于通常的ASIC ,FPGA 减少了初期成本并缩短了开发周期。同时,FPGA 的可编程性也使得它能在不需要考虑硬件更改的情况下进行设计升级,这是ASIC 不能做到的。

Spartan-3系列FPGA 产品的主要技术参数指标如表2.1所示。 表2.1 Spartan-3系列FPGA 技术参数

Spartan-3系列FPGA 结构包括5个基本的可编程功能单元:(1)可配置逻辑块(CLB )。该模块包括基于RAM 的查找表(LUT)。除了作为存储器外,CLB 还能通过编程实现很多的逻辑功能。 (2)输入/输出模块(IOB )。该模块控制I/O 引脚和内部逻辑单元之间的数据流动,每一个IOB 支持双向三态的数据流动,支持23种差分信号标准(其中有6种高性能差分标准)。输入/输出模块还包括了双数据速率寄存器(Double Data-Rate,DDR ),数控电阻(Digitally controlled Impedance, DCI )提供自动的片内终端,大大简化了电路板的设计。 (3)Block RAM 模块。该模块提供了18Kbit 的双口数据存储。

(4)乘法器模块。该模块提供了18位的二进制数据乘法。 (5)数字时钟管理模块(Digital Clock Manager,DCM)。该模块提供了自校准、全数字的解决方案,可以提供分布式的、延时的、合成频率的、分频的以及移相的时钟信号。 下为Spartan-3系列结构图 。

器件名称

逻辑单元 系统门密度 CLB 阵列 CLB 总

数 最大用户I/O 最大差分I/O 分布式RAM 容量/bit BlockR AM 容

量/bit XC3S50 1728 50K 16×12 192 124 56 12K 72K XC3S200 4320 50K 24×20 480 173 76 30K 216K XC3S400 8064 50K 32×28

896

264 116 56K 288K XC3S1000 17280 1M 48×40 1920 391 175 120K 432K XC3S1500 29952 1.5M 64×52 3328 487 221 208K 567K XC3S2000 46080 2M 80×64 5120 565 270 320K 720K XC3S4000 62208 4M 96×72 6912 712 312 432K 1728K XC3S5000

74880

5M

104×80

8320

784

344

520K

1872K

这些单元的组成方式如图所示。IOB环围绕在规则的CLB阵列周围。XS3S50仅有1列RAM嵌入在CLB 阵列中。而XS3S200~XS3S2000则有2列RAM。XS3S4000和XS3S5000含有4列RAM。每一列RAM由一些18Kbit的RAM块组成,每一块带有一个专用乘法器。DCM则在每一列RAM的末端。Spartan-3系列有丰富的连线和开关网络,这些网络用来连接5个功能单元并在它们之间传输数据。每个功能单元有一个开关矩阵实现多点连接。

简评:成本低廉,总体性能指标不是很优秀,适合低成本应用场合,是Xilinx未来几年在低端FPGA 市场上的主要产品,目前市场上中低容量型号很容易购买到,大容量相对少一些。

2 .virtex-5

据基于客户设计的性能基准测试显示,与前一代Virtex-4 器件相比,Virtex-5 系列的ExpressFabric 技术平均提高30% 的性能,这大约相当于两个速度等级。Virtex-5 系列是高性能设计的选择平台;其逻辑结构和硬IP 模块可以在550 MHz 时钟速率下运行。例如,其逻辑结构中的许多功能都有能力在这一时钟速率下运行,如计数器、加法器以及LUT 结构的存储器(RAM/ROM)。硬IP 模块(存储器和DSP)也是为了在同样速度下运行而设计的。

ExpressFabric 技术:新型ExpressFabric 技术以使用对角对称互连模式的6 输入LUT 架构和布线为基础。

输入LUT 架构:查找表(LUT)、特别功能(如进位链和专用复用器)和触发器(FF) 的组合以及连接这些元件的方法决定着实现逻辑及算术功能的性能和效率。Virtex-5 系列ExpressFabric 技术是在Xilinx 多年经验的基础上演进的一步。自从二十世纪八十年代中期推出和生产第一款FPGA 以来,大多数FPGA 都是以相同的基础架构为基础,即4 输入LUT。过去,所有FPGA 的一个共同特点是,需要四个以上输入的功能必须使用若干LUT 和/ 或复用器的组合才能实现。Virtex-5 系列是第一个提供具有完全独立(非共享)输入的真正6 输入LUT 的FPGA 平台。这一点带来了一些令人瞩目的优势。为了提高逻辑结构的性能,至关重要的是要通过LUT 尽量缩短关键路径延迟。

二Altera公司2004年推出了新款Cyclone II系列FPGA器件。Cyclone II FPGA的成本比第一代Cyclone器件低30%,逻辑容量大了三倍多,可满足低成本大批量应用需求。Cyclone II器件包含了许多新的特性,如嵌入存储器、嵌入乘法器、PLL和低成本的封装,这些都为诸如视频显示、数字电视(DTV)、机顶盒(STB)、DVD播放器、DSL调制解调器、家用网关和中低端路由器等批量应用进行了优化。成本优化的架构:Cyclone II器件采用TSMC90nm低K绝缘材料工艺技术,这种技术结合Altera 低成本的设计方式,使之能够在更低的成本下制造出更大容量的器件。这种新的器件比第一代Cyclone 产品具有两倍多的I/O引脚,且对可编程逻辑,存储块和其它特性进行了最优的组合,具有许多新的增强特性。Altera为配置Cyclone II FPGA提供了低成本的串行配置器件。这些串行配置器件定价为批量应用,成本是相应Cyclone II FPGA的10%。四个串行配置器件(1Mbit,4Mbit,16Mbit和64Mbit)提供了节省空间的8脚和16脚SOIC封装。器件中任何不用于配置的存储器可用于一般存储,进一步增强其价值。

xilinx FPGA SelectIO模块资料

5.1.6 SelectIO模块 Virtex-6每个I/O片(I/O Tile)包含两个IOB、两个ILOGIC、两个OLOGIC 和两个IODELAY,如图5-24 所示。 图5-24 I/O 片结构图 本小节就以下几个方面介绍Virtex-6 的SelectIO 资源。 (1) SelectIO 的电气特性。 (2) SelectIO 的逻辑资源——ILOGIC 资源和OLOGIC 资源。 (3) SelectIO 的高级逻辑资源——ISERDES 资源、OSERDES 资源和Bitslip。 一、SelectIO IO 的电气特性 所有的Virtex-6 FPGA 有高性能的可配置SelectIO 驱动器与接收器,支持非常广泛的接口标准。强大的功能SelectIO 包括输出强度和斜率的可编程控制以及使用数控阻抗(DCI)的片上终端。

IOB 包含输入、输出和三态SelectIO 驱动器。支持单端I/O 标准(LVCMOS、 HSTL、SSTL)和差分I/O 标准(LVDS、HT、LVPECL、BLVDS、差分HSTL 和SSTL)。 注意:差分输入和VREF 相关输入由VCCAUX 供电。 IOB、引脚及内部逻辑的连接如图5-25 所示。 图5-25 IOB、引脚及内部逻辑连接图 IOB 直接连接ILOGIC/OLOGIC 对,该逻辑对包含输入和输出逻辑资源,可实现数据和三态控制。ILOGIC和OLOGIC可分别配置为ISERDES和OSERDES。Xilinx软件库提供了大量与I/O相关的原语,在例化这些原语时,可以指定I/O 标准。与单端I/O相关的原语包括IBUF(输入缓冲器)、IBUFG(时钟输入缓冲器)、OBUF(输出缓冲器)、OBUFT(三态输出缓冲器)和IOBUF(输入/输出缓冲器)。与差分I/O相关的原语包括IBUFDS(输入缓冲器)、IBUFGDS (时钟输入缓冲器)、OBUFDS(输出缓冲器)、OBUFTDS(三态输出缓冲器)、IOBUFDS(输入/输出缓冲器)、IBUFDS_DIFF_OUT(输入缓冲器)和IOBUFDS_DIFF_OUT(输入/输出缓冲器)。 二、SelectIO的逻辑资源 SelectIO的逻辑资源主要是指ILOGIC和OLOGIC资源,它们完成了FPGA引脚到内部逻辑的连接功能,包括组合输入/输出、三态输出控制、寄存器输入/输出、寄存器三态输出控制、DDR输入/输出、DDR输出三态控制、IODELAYE1高分辨率可调整延迟单元及其控制模块。 下面简要介绍ILOGIC和OLOGIC功能。

Xilinx-XADC的使用中文介绍doc资料

Zynq器件XADC的使用(原创) 1.前言 赛灵思的7系列FPGA和Zynq器件创造性地在片上集成了模数转换器和相关的片上传感器(内置温度传感器和功耗传感器),这是相比赛灵思前一代产品来新增加的特性,可在系统设计中免去外置的ADC器件,有力地提高了系统的集成度。本文就这一新模块的使用进行简单介绍,希望对大家有所帮助,当然如有不当之处还请高手指正,以免误导大家,欢迎大家补充。 2.XADC模块介绍 2.1 XADC模块概述 Zynq器件XADC模块包括2个12比特1 MIPS的模数转换器和相关的片上传感器,模数转换器能为系统应用提供通用目的的高精度的模拟接口,下图是XADC模块的框图: XADC模块支持不同的操作模式,如外步触发同步采样模式;可接受不同类型的模拟输入信号,如单端或差分信号;最多能接受17路外部的模拟输入信号。XADC模块也包括一定数量的片上传感器用来测量片上的供电电压和芯片温度,这些测量转换数据存储在一个叫状态寄存器(status registers)的专用寄存器内,可由FPGA内部叫动态配置端口(Dynamic

Reconfiguration Port (DRP))的16位的同步读写端口访问。ADC转换数据也可以由JTAG TAP访问,这种情况下并不需要去直接例化XADC模块,因为这是一个已经存在于FPGA JTAG结构的专用接口,此时因为没有在设计中直接例化XADC模块,XADC模块就工作在一种预先定义好的模式叫缺省模式,缺省模式下XADC模块专用于监视芯片上的供电电压和芯片温度。XADC模块的操作模式是由用户通过DRP或JTAG接口写控制寄存器来选择的,控制寄存器的初始值有可能在设计中例化XADC模块时的块属性(block attributes)指定。 2.2 XADC模块管脚需求 所有的XADC模块专用管脚都位于bank0, 所以都加有_0的后缀。下图表示了XADC的基本输入输出需求: 这有两种推荐配置:图中左边XADC由Vccaux(1.8V)供电,并且用一个外部的1.25V参考源。用外部参考源在精度和热飘移方面可以获得更好的性能,一个磁珠用隔离模拟地和数字地,这可避免较常用的模拟和数字电路共地而把噪声带入模拟电路的缺点;图中右边XADC是用片内的参考源,这时VREFP脚必须按图中所示连接到地。

Altera FPGA和 Xilinx-FPGA-引脚功能详解

XilinxFPGA引脚功能详细介绍 注:技术交流用,希望对大家有所帮助。 IO_LXXY_# 用户IO引脚 XX代表某个Bank内唯一的一对引脚,Y=[P|N]代表对上升沿还是下降沿敏感,#代表bank号 2.IO_LXXY_ZZZ_# 多功能引脚 ZZZ代表在用户IO的基本上添加一个或多个以下功能。 Dn:I/O(在readback期间),在selectMAP或者BPI模式下,D[15:0]配置为数据口。在从SelectMAP读反馈期间,如果RDWR_B=1,则这些引脚变成输出口。配置完成后,这些引脚又作为普通用户引脚。 D0_DIN_MISO_MISO1:I,在并口模式(SelectMAP/BPI)下,D0是数据的最低位,在Bit-serial模式下,DIN是信号数据的输入;在SPI模式下,MISO是主输入或者从输出;在SPI*2或者SPI*4模式下,MISO1是SPI总线的第二位。 D1_MISO2,D2_MISO3:I,在并口模式下,D1和D2是数据总线的低位;在SPI*4模式下,MISO2和MISO3是SPI总线的MSBs。 An:O,A[25:0]为BPI模式的地址位。配置完成后,变为用户I/O 口。 AWAKE:O,电源保存挂起模式的状态输出引脚。SUSPEND是一个专用引脚,AWAKE是一个多功能引脚。除非SUSPEND模式被使能,AWAKE 被用作用户I/O。 MOSI_CSI_B_MISO0:I/O,在SPI模式下,主输出或者从输入;在

SelectMAP模式下,CSI_B是一个低电平有效的片选信号;在SPI*2或者SPI*4的模式下,MISO0是SPI总线的第一位数据。 FCS_B:O,BPI flash 的片选信号。 FOE_B:O,BPI flash的输出使能信号 FWE_B:O,BPI flash 的写使用信号 LDC:O,BPI模式配置期间为低电平 HDC:O,BPI模式配置期间为高电平 CSO_B:O,在并口模式下,工具链片选信号。在SPI模式下,为SPI flsah片选信号。 IRDY1/2,TRDY1/2:O,在PCI设计中,以LogiCORE IP方式使用。 DOUT_BUSY:O,在SelectMAP模式下,BUSY表示设备状态;在位串口模式下,DOUT提供配置数据流。 RDWR_B_VREF:I,在SelectMAP模式下,这是一个低电平有效的写使能信号;配置完成后,如果需要,RDWR_B可以在BANK2中做为Vref。 HSWAPEN:I,在配置之后和配置过程中,低电平使用上拉。 INIT_B:双向,开漏,低电平表示配置内存已经被清理;保持低电平,配置被延迟;在配置过程中,低电平表示配置数据错误已经发生;配置完成后,可以用来指示POST_CRC状态。 SCPn:I,挂起控制引脚SCP[7:0],用于挂起多引脚唤醒特性。 CMPMOSI,CMPMISO,CMPCLK:N/A,保留。 M0,M1:I,配置模式选择。M0=并口(0)或者串口(1),M1=主

Xilinx spartan3e FPGA掉电配置及应用程序引导

Xilinx spartan3e FPGA掉电配置及应用程序引导 Xilinx公司的spartan3e开发板上面有丰富的外围器件,就存储器来说有一个16M并行flash,一个4Mbits串行flash,还又一个64M的DDR,在嵌入式开发中,一般我们可能会在FPGA中嵌入cpu软核,让C语言程序在里面运行。这就涉及到FPGA配置文件的引导,如果C语言程序太大,需要在DDR里面运行的话也涉及到应用程序的引导的问题。我刚接触到xinlinx的spartan3e开发板时,只会将FPGA配置文件(.bit)直接通过JTAG口下载到芯片里。后来编写的程序大了,如果将程序直接放到内部的RAM里面就装不下了,这时就只有将程序放到DDR里面运行,如果仅仅是调试应用程序不需要重启开发板后程序也可以运行,那么可以直接用EDK里面的XDM工具通过dow命令直接下载到DDR里面,然后就可以执行了。但是但我们的应用程序和硬件配置调试通过,达到了我们的要求以后我们就想到可不可以将让程序在板子上电时就可以自动运行呢。因为FPGA是掉电要丢失的,重新上电就必须重新配置。我们通过查找相关资料,找到了解决烧写问题的解决办法。首先是配置文件的烧写。spartan3e提供了3个掉电不丢失的外部存储器,就是上面提到的并行flash,串行flash和Flash PROM。配置文件都可以烧写到其中任何一个储存器里面。但是,在我看来,一般的配置问件都是烧写到Flash PROM里面。烧写方法有很多,可以用Xilinx公司的专门的烧写.mcs文件的工程烧写,也可以用iMPACT烧写。一般用iMPACT工具烧写,烧写过程如下: 打开iMPACT,弹出新建工程时选择Cancle,然后双击窗口左边的

第4节 Xilinx公司原语的使用方法1

第4节Xilinx公司原语的使用方法1 Xilinx 原语 3.4 Xilinx公司原语的使用方法 原语,其英文名字为Primitive,是Xilinx针对其器件特征开发的一系列常用模块的名字,用户可以将其看成Xilinx公司为用户提供的库函数,类似于C++中的“cout”等关键字,是芯片中的基本元件,代表FPGA中实际拥有的硬件逻辑单元,如LUT,D触发器,RAM 等,相当于软件中的机器语言。在实现过程中的翻译步骤时,要将所有的设计单元都转译为目标器件中的基本元件,否则就是不可实现的。原语在设计中可以直接例化使用,是最直接的代码输入方式,其和HDL语言的关系,类似于汇编语言和C语言的关系。 Xilinx公司提供的原语,涵盖了FPGA开发的常用领域,但只有相应配置的硬件才能执行相应的原语,并不是所有的原语都可以在任何一款芯片上运行。在Verilog中使用原语非常简单,将其作为模块名直接例化即可。本节以Virtex-4平台介绍各类原语,因为该系列的原语类型是最全面的。其它系列芯片原语的使用方法是类似的。 Xilinx公司的原语按照功能分为10类,包括:计算组件、I/O端口组件、寄存器和锁存器、时钟组件、处理器组件、移位寄存器、配置和检测组件、RAM/ROM组件、Slice/CLB 组件以及G比特收发器组件。下面分别对其进行详细介绍。 3.4.1 计算组件 计算组件值得就是DSP48核,也有人将其称为硬件乘法器,功能描述如表3-6所示。 表3-6 计算组件清单 DSP48 其结构为一个18*18比特的有符号乘法器,且在后面还级联了一个带有可配置流水线的3输入加法器 DSP48核由一个18比特的乘法后面级联一个48比特的加法器,乘法器和加法器的应用位宽分别可以在18、48比特内任意调整。其在乘加模块中有广泛应用,特别是各类滤波器系统中,不仅可以提高系统稳定性,还能够节省逻辑资源且工作在高速模式下。 其在Verilog中的例化模版为: module fpga_v4_dsp48( BCOUT, P, PCOUT, A, B, BCIN, C, CARRYIN,CARRYINSEL, CEA, CEB, CEC, CECARRYIN, CECINSUB, CECTRL, CEM, CEP, CLK, OPMODE, PCIN, RSTA, RSTB, RSTC, RSTCARRYIN, RSTM, RSTP, SUBTRACT); output [17:0]BCOUT; output [47:0] P, PCOUT; //

cc2590 芯片手册

FEATURES APPLICATIONS DESCRIPTION CC2590BLOCK DIAGRAM RF_P RXTX RF_N PAEN EN CC2590 https://www.sodocs.net/doc/224663833.html,........................................................................................................................................................................................SWRS080–SEPTEMBER2008 2.4-GHz RF Front End,14-dBm output power ?All2.4-GHz ISM Band Systems ?Seamless Interface to2.4-GHz Low Power RF Devices from Texas Instruments?Wireless Sensor Networks ?Wireless Industrial Systems ?Up to+14-dBm(25mW)Output Power ?IEEE802.15.4and ZigBee Systems ?6-dB Typical Improved Sensitivity on CC24xx ?Wireless Consumer Systems and CC2500,CC2510,and CC2511 ?Wireless Audio Systems ?Few External Components –Integrated Switches –Integrated Matching Network CC2590is a cost-effective and high performance RF –Integrated Balun Front End for low-power and low-voltage 2.4-GHz –Integrated Inductors wireless applications. –Integrated PA CC2590is a range extender for all existing and future –Integrated LNA 2.4-GHz low-power RF transceivers,transmitters and ?Digital Control of LNA Gain by HGM Pin System-on-Chip products from Texas Instruments.?100-nA in Power Down(EN=PAEN=0)CC2590increases the link budget by providing a power amplifier for increased output power,and an ?Low Transmit Current Consumption LNA with low noise figure for improved receiver –22-mA at3-V for+12-dBm,PAE=23% sensitivity. ?Low Receive Current Consumption CC2590provides a small size,high output power RF – 3.4-mA for High Gain Mode design with its4x4-mm QFN-16package. – 1.8-mA for Low Gain Mode CC2590contains PA,LNA,switches,RF-matching,? 4.6-dB LNA Noise Figure,including T/R Switch and balun for simple design of high performance and external antenna match wireless applications. ?RoHS Compliant4×4-mm QFN-16Package ? 2.0-V to3.6-V Operation Please be aware that an important notice concerning availability,standard warranty,and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

FPGA的基本工作原理 Xilinx和Altera对比

FPGA的基本工作原理Xilinx和Altera对比 FPGA是在PAL、GAL、EPLD、CPLD等可编程器件的基础上进一步发展的产物。它是作为ASIC领域中的一种半定制电路而出现的,即解决了定制电路的不足,又克服了原有可编程器件门电路有限的缺点。 由于FPGA需要被反复烧写,它实现组合逻辑的基本结构不可能像ASIC那样通过固定的与非门来完成,而只能采用一种易于反复配置的结构。查找表可以很好地满足这一要求,目前主流FPGA都采用了基于SRAM工艺的查找表结构,也有一些军品和宇航级FPGA 采用Flash或者熔丝与反熔丝工艺的查找表结构。通过烧写文件改变查找表内容的方法来实现对FPGA的重复配置。 根据数字电路的基本知识可以知道,对于一个n输入的逻辑运算,不管是与或非运算还是异或运算等等,最多只可能存在2n种结果。所以如果事先将相应的结果存放于一个存贮单元,就相当于实现了与非门电路的功能。FPGA的原理也是如此,它通过烧写文件去配置查找表的内容,从而在相同的电路情况下实现了不同的逻辑功能。 查找表的原理与结构查找表(Look-Up-Table)简称为LUT,LUT本质上就是一个RAM。目前FPGA中多使用4输入的LUT,所以每一个LUT可以看成一个有4位地址线的的RAM。当用户通过原理图或HDL语言描述了一个逻辑电路以后, PLD/FPGA开发软件会自动计算逻辑电路的所有可能结果,并把真值表(即结果)事先写入RAM,这样,每输入一个信号进行逻辑运算就等于输入一个地址进行查表,找出地址对应的内容,然后输出即可。 下面给出一个四输入与非门电路的例子来说明LUT实现逻辑功能的原理。 表给出一个使用LUT实现四输入与门电路的真值表。 从中可以看到,LUT具有和逻辑电路相同的功能。实际上,LUT具有更快的执行速度和更大的规模。 3.1.2查找表结构的FPGA逻辑实现原理

Xilinx_FPGA中文教程

Spartan-3E Starter Kit Board User Guide

Chapter 1: Introduction and Overview Chapter 2: Switches, Buttons, and Knob Chapter 3: Clock Sources Chapter 4: FPGA Configuration Options Chapter 5: Character LCD Screen Chapter 6: VGA Display Port Chapter 7: RS-232 Serial Ports Chapter 8: PS/2 Mouse/Keyboard Port Chapter 9: Digital to Analog Converter (DAC) Chapter 10: Analog Capture Circuit Chapter 11: Intel StrataFlash Parallel NOR Flash PROM Chapter 12: SPI Serial Flash Chapter 13: DDR SDRAM Chapter 14: 10/100 Ethernet Physical Layer Interface Chapter 15: Expansion Connectors Chapter 16: XC2C64A CoolRunner-II CPLD Chapter 17: DS2432 1-Wire SHA-1 EEPROM

Chapter 1:Introduction and Overview Spartan-3E 入门实验板使设计人员能够即时利用Spartan-3E 系列的完整平台性能。 设备支持设备支持::Spartan-3E 、CoolRunner-II 关键特性关键特性::Xilinx 器件: Spartan-3E (50万门,XC3S500E-4FG320C), CoolRunner?-II (XC2C64A-5VQ44C)与Platform Flash (XCF04S-VO20C) 时钟时钟::50 MHz 晶体时钟振荡器 存储器: 128 Mbit 并行Flash, 16 Mbit SPI Flash, 64 MByte DDR SDRAM 连接器与接口: 以太网10/100 Phy, JTAG USB 下载,两个9管脚RS-232串行端口, PS/2类型鼠标/键盘端口, 带按钮的旋转编码器, 四个滑动开关,八个单独的LED 输出, 四个瞬时接触按钮, 100管脚hirose 扩展连接端口与三个6管脚扩展连接器 显示器: VGA 显示端口,16 字符- 2 线式 LCD 电源电源::Linear Technologies 电源供电,TPS75003三路电源管理IC 市场: 消费类, 电信/数据通信, 服务器, 存储器 应用: 可支持32位的RISC 处理器,可以采用Xilinx 的MicroBlaze 以及PicoBlaze 嵌入式开发系统;支持DDR 接口的应用;支持基于Ethernet 网络的应用;支持大容量I/O 扩展的应用。 Choose the Starter Kit Board for Your Needs Spartan-3E FPGA Features and Embedded Processing Functions Spartan3-E FPGA 入门实验板具有Spartan3-E FPGA 系列突出独特的特点和为嵌入式处理发展与应用提供了很大的方便。该板的特点如下: Spartan3-E 特有的特征:并行NOR Flash 配置;通过并行NOR Flash PROM 实现FPGA 的多种配置方式 嵌入式系统:MicroBlaze? 32-bit 嵌入RISC 处理器;PicoBlaze? 8-bit 嵌入控制器;DDR 存储器接口 Learning Xilinx FPGA, CPLD, and ISE Development Software Basics Spartan3-E FPGA 入门实验板比其他的入门实验板先进、复杂。它是学习FPGA 或CPLD 设计和怎样运用ISE 软件的基础。 Advanced Spartan-3 Generation Development Boards 入门实验板示范了MicroBlaze? 32-bit 嵌入式处理器和EDK 的基本运用。其更先进的地方

芯片手册

74系列 74ls48 BCD—7段译码器-内部上拉输出驱动 1 7473 TTL 带清除负触发双J-K触发器 1 7474 TTL 带置位复位正触发双D触发器 2 7476 TTL 带预置清除双J-K触发器 2 7483 TTL 四位二进制快速进位全加器 3 7485 TTL 四位数字比较器 4 7486 TTL 2输入端四异或门 5 7490 TTL 可二-五分频十进制计数器 5 7495 TTL 四位并行输入-输出移位寄存器7 74107 TTL 带清除主从双J-K触发器8 74109 TTL 带预置清除正触发双J-K触发器8 74122 TTL 可再触发单稳态多谐振荡器9 74126 TTL 三态输出低有效四总线缓冲门9 74138 TTL 3-8线译码器-复工器10 74139 TTL 双2-4线译码器-复工器11 74150 TTL 16选1数据选择-多路开关12 74154 TTL 4线—16线译码器13 74157 TTL 同相输出四2选1数据选择器14 74160 TTL 可预置BCD异步清除计数器15 74165 TTL 八位并行入-串行输出移位寄存器16 74166 TTL 八位并入-串出移位寄存器16 74169 TTL 二进制四位加-减同步计数器17 74173 TTL 三态输出四位D型寄存器18 74174 TTL 带公共时钟和复位六D触发器18 74175 TTL 带公共时钟和复位四D触发器19 74180 TTL 9位奇数-偶数发生器-校验器20 74185 TTL 二进制—BCD代码转换器21 74192 TTL 可预置BCD双时钟可逆计数器22 74194 TTL 四位双向通用移位寄存器22 74197 TTL 二进制可预置锁存器-计数器23 74245 TTL 八同相三态总线收发器23 74247 TTL BCD—7段15V输出译码-驱动器23 74248 TTL BCD—7段译码-升压输出驱动器24 74273 TTL 带公共时钟复位八D触发器24 74299 TTL 三态输出八位通用移位寄存器25 74323 TTL 三态输出八位双向移位-存贮寄存器25 CD系列 4008 CMOS 4位二进制并行进位全加器26 4013 CMOS 带置位-复位的双D触发器28 4014 CMOS 8级同步并入串入-串出移位寄存器29

FPGA与DSP对比(精)

FPGA : 时序控制能力强。 (时序能力强,没有指令周期,速度快 控制能力较强(由于没有指令集,不如 ARM 和单片机。 数字信号处理及算法弱(这里讲的弱是指内部不集成 DSP 的前提下 DSP : 时序控制能力较弱。 (没办法。有了指令集,就有指令周期。而且受到时钟约束 控制能力较强(有指令集。但是不是专业搞控制的 数字信号处理及算法强(专业特长嘛 DSP 和 FPGA 开发的概述: DSP ,专用电路(内部结构已经固定通过对 RAM 内部的指令和数据工作(这个是CPU 和 ARM 等等的工作方式所以开发遵循嵌入式软件的设计原则。调试应更注重于算法的实现。 FPGA , ASIC 一种 , 经典 FPGA 的内部结构是寄存器 +组合逻辑(查找表。最后是按照逻辑电路进行设计。所以是属于硬件设计原则。调试除了需要关心功能以外, 还需要关心电路方面的特性。比如说延迟,整体功率等等。 开发工具: DSP 仿真器,开发板。仿真器比较多,网上查吧, DSP 仿真器,网上大堆的,嫌不够正规, TI 网站自己找教程和 datasheet 。 FPGA :开发工具比较多,他分成综合工具,仿真工具和开发板,综合工具 altera 的Quartus 和 xilinx 的 ISE 以及 synplicity 的 synplify 用的比较多。仿真么, modelsim ,时序仿真利器。也是网上去找吧。多滴很 ~~

技术支持你不用担心 ~TI和 Xilinx 和 Altera 的支持非常非常地道。就一个问题。英文要好。至少你能静下心来看。上了他们的网站。你就知道什么叫专业。fpga 还好, 因为就几家大公司才有能力出。 dsp 么,具体问题具体分析咯。 选择策略方面。这个是经验谈啊:不能绝对的说。 DSP 么,专业性比较强。而且的确能做别的 IC 做不了的事情(人家里面乘法器资源没话说稳定性和效率在数字信号处理这块基本无人能出其右 FPGA 呢相对来说可以运用的面比较广泛 (不过也是近期的事情。其实 FPGA 很早就有。只是当初设计领域都是通信方面的。现在有集成 CPU 和 DSP 以及公司提供的软核的强力支持,设计面越来越广

使用Xilinx CORE Generator

使用Xilinx CORE Generator心得 初步使用Xilinx CORE Generator: 参考书籍:《Xilinx ISE 5.x 使用详解》EDA先锋工作室 P63-P72:IP核生成工具——CORE Generator 1. 对于如何在工程中加入IP核,是很简单的,我在未看书之前,就可根据提示挑选适当的核,对核进行参数设置,将核加入工程。 2. 接下来是如何使用,在这里,由于我主要使用VHDL语言,仿真工具用ModelSim6.0,综合工具主要使用Synplify7.7,我就只说在这样的环境下如何对该IP核进行元件例化,进行项目配置,并进行仿真与综合。 2.1 元件例化 可使用ISE的Laguage Template,也就是Xilinx 6.2 ISE中工具栏右上角的小灯泡,在COREGEN目录下,你会发现,你所用到的IP核的例化语句已经出现在模板里,拷过去就可以直接用了(当然你可能也要视情况进行必要的改动)。 3. 仿真 这里,最主要的问题是库,由于使用了IP核,所以要把XilinxCroeLib加入ModelSim库中。我的经验是:先在当前工程的目录下创建一个xilinxcorelib库,然后把该库文件剪切到modelsim根目录下,最后在modelsim下,选中该库,点击右键选择Edit,将路径高到modelsim下。然后将xilinx\vhdl\src\xilinxcorelib编译到该库中。此时要注意,由于库文件的关联性,第一次不可能全部编译通过,连续三次后,大多数核就在库中,只有少数几个不能通过编译。 4. 综合 由于综合过程中,提示如下(下面是我在comp.arch.fpga上所发的问题): In my project,there's a xilinx IP core. I want to use the synplify7.7 to synthesize it, but there's a warning when synthesize . The warning is : @W: CD280 :"G:\project\itu656_dec\itu656_Decoder.vhd":29:10:29:19|Unbound component counter_11 mapped to black box @W: CD280 :"G:\project\itu656_dec\itu656_Decoder.vhd":37:10:37:18|Unbound component counter_4 mapped to black box my project nane is itu656_dec : a decoder for itu 656 video The following code has been used in my project: component counter_11 port ( Q: OUT std_logic_VECTOR(10 downto 0); CLK: IN std_logic; CE: IN std_logic; ACLR: IN std_logic); end component; component counter_4

74HC595中文芯片手册

74HC595 8位移位寄存器与输出锁存器 功能描述 这种高速移位寄存器采用先进的硅栅CMOS技术。该装置具有高的抗干扰性和标准CMOS集成电路的低功率消耗,以及用于驱动15个LS-TTL负载的能力。 此装置包含馈送一个8位D型存储寄存器的8位串行入,并行出移位寄存器。存储寄存器具有8 TRI-STATE e输出。提供了用于两个移位寄存器和存储寄存器独立的时钟。 移位寄存器有直接首要明确,串行输入和串行输出(标准)引脚级联。两个移位寄存器和存储寄存器的使用正边沿触发的时钟。如果两个时钟被连接在一起时,移位寄存器的状态 将总是提前存储寄存器的一个时钟脉冲。 该54HC/74HC逻辑系列就是速度,功能和引脚输出与标准54LS/74LS逻辑系列兼容。所有输入免受损害,由于静电放电由内部二极管钳位到VCC和地面。 产品特点 1低静态电流:80 mA最大值(74HC系列) 2低输入电流为1mA最大 38位串行输入,并行出移位寄存器以存储 4宽工作电压范围:2V ± 6V 5级联 6移位寄存器直接明确 7保证移频率:DC至30兆赫

TL/F/5342-1 Top View Order Number MM54HC5S5 or MM74HC595 DuaHn-Line Package RCK SCK SCLR G Function X X X H Q A thruQH = TRI-STATE X X L L Shift Register cleared Q H -O X T H L Shift Register clocked C)N = Qnd ,Qo = SER T X H L Con tents of Shift Register transferred to output latches Operating Conditions Supply Voltage (V QC ) -0.5 to +7.0V DC Input Voltage (V IM ) -1.5 toV C c+15V DC OutpiX Voltage (V OUT ) -0.5 toVcc+0.5V Clamp Diode Current (I IK . I(X ) ±20 mA DC Output Current, per pin (lour) ±35 mA DC Vcc or GND Current, per pin (Icc) ±70 mA Storage Temperature Range (T STG ) -65"Cto+15(rC Power Dissipation (P Q ) (Note 3) 600 mW S.O. Package only 500 mW Lead Temp. (TO (Sobering 10 seconds) 2?TC Min Max Units Supply Voltage (Vcc) 2 6 V DC Input or Outpu* Voltage 0 Vcc V (Vw. VOUT ) Operating Temp. Range (T A ) MM74HC -40 +85 ?c MM54HC -55 + 125 ?c Input Rise or Fall Times VOC-20V 1000 ns V QC -4.5V 500 ns Vcc-6.0V 400 ns Absolute Maximum Ratings (Notes 1&2) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications ?

三大FPGA芯片公司的主要产品系列和特点

Altera、Xilinx、Actel Altera作为世界老牌可编程逻辑器件的厂家,是可编程逻辑器件的发明者,开发软件 MAX+PLUSII和QuartusII。Altera 的主流FPGA分为两大类,一种侧重低成本应用,容量中等,性能可以满足一般的逻辑设计要求,如Cyclone,CycloneII;还有一种侧重于高性能应用,容量大,性能能满足各类高端应用,如Startix,StratixII等,用户可以根据自己实际应用要求进行选择。在性能可以满足的情况下,优先选择低成本器件。 * Cyclone(飓风):Altera中等规模FPGA,2003年推出,0.13um工艺,1.5v内核供电,与Stratix结构类似,是一种低成本FPGA系列,是目前主流产品,其配置芯片也改 用全新的产品。 简评:Altera最成功的器件之一,性价比不错,是一种适合中低端应用的通用FPGA,推荐使用。 * CycloneII:Cyclone的下一代产品,2005年开始推出,90nm工艺,1.2v内核供电,属于低成本FPGA,性能和Cyclone相当,提供了硬件乘法器单元 简评:刚刚推出的新一代低成本FPGA,目前市场零售还不容易买到,估计从2005年年底开始,将逐步取代Cyclone器件,成为Altera在中低FPGA市场中的主力产品。 * Stratix :altera大规模高端FPGA,2002年中期推出,0.13um工艺,1.5v内核供电。集成硬件乘加器,芯片内部结构比Altera以前的产品有很大变化。 简评:Startix芯片在2002年的推出,改变了Altera在FPGA市场上的被动局面。该 芯片适合高端应用。随着2005年新一代StratixII器件的推出,将被StratixII逐渐取代。 * StratixII: Stratix的下一代产品,2004年中期推出,90nm工艺,1.2v内核供电,大 容量高性能FPGA。 简评:性能超越Stratix,是未来几年中,Altera在高端FPGA市场中的主力产品。 *StrtratixV为altera目前的高端产品,采用28-nm工艺,提供了28G的收发器件,适合高端的FPGA产品开发 Xilinx是FPGA的发明者,拥有世界一半以上的市场,提供90%的高端65nmFPGA产品,开发软件为ISE。Xilinx的主流FPGA分为两大类,一种侧重低成本应用,容量中等,性能可以满足一般的逻辑设计要求,如Spartan系列;还有一种侧重于高性能应用,容量大,性能能满足各类高端应用,如Virtex系列,用户可以根据自己实际应用要求进行选择。在性能可以满足的情况下,优先选择低成本器件。 * Spartan-3/3L: 新一代FPGA产品,结构与VirtexII类似,全球第一款90nm工艺FPGA,1.2v内核,于2003年开始陆续推出。 简评:成本低廉,总体性能指标不是很优秀,适合低成本应用场合,是Xilinx未来几年在低端FPGA市场上的主要产品,目前市场上中低容量型号很容易购买到,大容量相对少 一些。 * Spartan-3E:基于Spartan-3/3L,对性能和成本进一步优化 * Spartan-6:xilinx最新推出的低成本FPGA

Xilinx原语的使用方法1

Xilinx原语的使用方法1 3.4 Xilinx公司原语的使用方法 原语,其英文名字为Primitive,是Xilinx针对其器件特征开发的一系列常用模块的名字,用户可以将其看成Xilinx公司为用户提供的库函数,类似于C++中的“cout”等关键字,是芯片中的基本元件,代表FPGA中实际拥有的硬件逻辑单元,如LUT,D触发器,RAM等,相当于软件中的机器语言。在实现过程中的翻译步骤时,要将所有的设计单元都转译为目标器件中的基本元件,否则就是不可实现的。原语在设计中可以直接例化使用,是最直接的代码输入方式,其和HDL语言的关系,类似于汇编语言和C语言的关系。 Xilinx公司提供的原语,涵盖了FPGA开发的常用领域,但只有相应配置的硬件才能执行相应的原语,并不是所有的原语都可以在任何一款芯片上运行。在Verilog中使用原语非常简单,将其作为模块名直接例化即可。本节以Virtex-4平台介绍各类原语,因为该系列的原语类型是最全面的。其它系列芯片原语的使用方法是类似的。 Xilinx公司的原语按照功能分为10类,包括:计算组件、I/O端口组件、寄存器和锁存器、时钟组件、处理器组件、移位寄存器、配置和检测组件、RAM/ROM 组件、Slice/CLB组件以及G比特收发器组件。下面分别对其进行详细介绍。 3.4.1 计算组件 计算组件指的就是DSP48核,也有人将其称为硬件乘法器,功能描述如表3-6所示。 表3-6 计算组件清单 DSP48 其结构为一个18*18比特的有符号乘法器,且在后面还级联了一个带有可配置流水线的3输入加法器 DSP48核由一个18比特的乘法后面级联一个48比特的加法器,乘法器和加法器的应用位宽分别可以在18、48比特内任意调整。其在乘加模块中有广泛应用,特别是各类滤波器系统中,不仅可以提高系统稳定性,还能够节省逻辑资源且工作在高速模式下。其在Verilog中的例化模版为: module fpga_v4_dsp48( BCOUT, P, PCOUT, A, B, BCIN, C, CARRYIN,CARRYINSEL, CEA, CEB, CEC, CECARRYIN, CECINSUB, CECTRL, CEM, CEP, CLK, OPMODE, PCIN, RSTA, RSTB, RSTC, RSTCARRYIN, RSTM, RSTP,

S3C2416芯片手册-中文不完整版

微软中国[键入公司地址] [键入电话号码] [键入传真号码] [选取日期]微软中国 [在此处键入文档摘要。摘要通常为文档内容的简短概括。在此处键入文档摘要。摘要通常为文档内容的简短概括。]

目录 1、产品概述 (3) 1、引言 (3) 2、特点 (3) 3、框图 (3) 4、引脚分配 (1) 4.1信号说明 (13) 2系统控制器 (35) 1概述 (35) 2、特点 (35) 3、框图 (36) 4、功能说明 (36) 4.1复位管理及类型 (36) 4.2硬件复位 (37) 4.3看门狗复位 (38) 4.4软件复位 (38) 4.5唤醒复位 (38) 5时钟管理 (39) 5.1时钟发生器概述 (39) 5.2时钟源选择 (39) 5.3PLL(锁相回路) (40) 5.4在正常操作下,改变PLL设置 (41) 5.5系统时钟控制 (41) 5.6ARM和总线时钟分频比 (42) 5.7配置时钟寄存器以产生AMBA时钟特定的频率 (42) 5.8ESYSCLK控制 (43) 6、电源管理 (43) 6.1功率模式状态图 (43) 6.2节能模式 (44) 6.3唤醒事件 (47) 6.4输出端口状态,以及停止和睡眠模式 (47) 6.5省电模式进入/退出条件 (48) 7寄存器说明 (48) 7.1地址映射 (48) 8独立的寄存器说明 (49) 8.1时钟源控制寄存器(LOCKCON0,LOCKCON1,OSCSET,MPLLCON,与 EPLLCON) (49) 8.2时钟控制寄存器(CLKSRC,CLKDIV,HCLKCON,PCLKCON,与SCLKCON) (51) 8.3电源管理寄存器(PWRMODE与PWRCFG) (54) 8.4复位控制寄存器(SWRST和RSTCON) (56) 8.5在普通模式和从休眠模式唤醒下,(I/O)保持位控制。 (56) 8.6系统控制器状态寄存器(WKUPSTAT与RSTSTAT) (57)

相关主题