搜档网
当前位置:搜档网 › 【创新设计】2015-2016学年高中数学 2.4.1平面向量数量积的物理背景及其含义课时作业 新人教A版必修4

【创新设计】2015-2016学年高中数学 2.4.1平面向量数量积的物理背景及其含义课时作业 新人教A版必修4

【创新设计】2015-2016学年高中数学 2.4.1平面向量数量积的物理背景及其含义课时作业 新人教A版必修4
【创新设计】2015-2016学年高中数学 2.4.1平面向量数量积的物理背景及其含义课时作业 新人教A版必修4

§2.4 平面向量的数量积

2.4.1 平面向量数量积的物理背景及其含义 课时目标 1.通过物理中“功”等实例,理解平面向量数量积的含义及其物理意义.2.体会平面向量的数量积与向量投影的关系.3.掌握向量数量积的运算律.

1.平面向量数量积

(1)定义:已知两个非零向量a 与b ,我们把数量______________叫做a 与b 的数量积(或内积),记作a 2b ,即a 2b =|a ||b |cos θ,其中θ是a 与b 的夹角.

(2)规定:零向量与任一向量的数量积为____.

(3)投影:设两个非零向量a 、b 的夹角为θ,则向量a 在b 方向的投影是____________,向量b 在a 方向上的投影是______________.

2.数量积的几何意义

a 2

b 的几何意义是数量积a 2b 等于a 的长度|a |与b 在a 的方向上的投影________________的乘积.

3.向量数量积的运算律

(1)a2b =________(交换律);

(2)(λa )2b =________=________(结合律);

(3)(a +b )2c =______________________(分配律).

一、选择题

1.|a |=2,|b |=4,向量a 与向量b 的夹角为120°,则向量a 在向量b 方向上的投影等于( )

A .-3

B .-2

C .2

D .-1

2.已知a⊥b ,|a |=2,|b |=3,且3a +2b 与λa -b 垂直,则λ等于( ) A.32 B .-32 C .±32

D .1 3.已知向量a ,b 满足a 2b =0,|a |=1,|b |=2,则|2a -b |等于( )

A .0

B .2 2

C .4

D .8

4.在边长为1的等边△ABC 中,设BC →=a ,CA →=b ,AB →=c ,则a 2b +b2c +c2a 等于( )

A .-32

B .0 C.32

D .3 5.若非零向量a ,b 满足|a |=|b |,(2a +b )2b =0,则a 与b 的夹角为( )

A .30° B.60° C.120° D.150°

6.若向量a 与b 的夹角为60°,|b |=4,(a +2b )2(a -3b )=-72,则向量a 的模为( )

7.已知向量a 与b 的夹角为120°,且|a |=|b |=4,那么b 2(2a +b )的值为________.

8.给出下列结论:

①若a ≠0,a2b =0,则b =0;②若a2b =b2c ,则a =c ;③(a2b )c =a (b2c );④a2[b (a 2c )-c (a2b )]=0.

其中正确结论的序号是________.

9.设非零向量a 、b 、c 满足|a |=|b |=|c |,a +b =c ,则〈a ,b 〉=________.

10.已知a 是平面内的单位向量,若向量b 满足b2(a -b )=0,则|b |的取值范围是________.

三、解答题

11.已知|a |=4,|b |=3,当(1)a∥b ;(2)a⊥b ;

(3)a 与b 的夹角为60°时,分别求a 与b 的数量积.

12.已知|a |=|b |=5,向量a 与b 的夹角为π3

,求|a +b |,|a -b |. 能力提升

13.已知|a |=1,|b |=1,a ,b 的夹角为120°,计算向量2a -b 在向量a +b 方向上的投影.

14.设n 和m 是两个单位向量,其夹角是60°,求向量a =2m +n 与b =2n -3m 的夹角.

1.两向量a 与b 的数量积是一个实数,不是一个向量,其值可以为正(当a ≠0,b ≠0,0°≤θ<90°时),也可以为负(当a ≠0,b ≠0,90°<θ≤180°时),还可以为0(当a =0或b =0或θ=90°时).

2.数量积对结合律一般不成立,因为(a 2b )2c =|a ||b |2cos〈a ,b 〉2c 是一个与c 共线的向量,而(a 2c )2b =|a |2|c |cos 〈a ,c 〉2b 是一个与b 共线的向量,两者一般不同.

3.向量b 在a 上的射影不是向量而是数量,它的符号取决于θ角,注意a 在b 方向上的射影与b 在a 方向上的射影是不同的,应结合图形加以区分.

§2.4 平面向量的数量积

2.4.1 平面向量数量积的物理背景及其含义

答案

知识梳理

1.(1)|a ||b |cos θ (2)0 (3)|a |cos θ |b |cos θ

2.|b |cos θ 3.(1)b2a (2)λ(a2b ) a 2(λb ) (3)a2c +b2c

作业设计

1.D [a 在b 方向上的投影是

|a |cos θ=23cos 120°=-1.]

2.A [∵(3a +2b )2(λa -b )=3λa 2+(2λ-3)a2b -2b 2=3λa 2-2b 2=12λ-18=0.

∴λ=32

.] 3.B [|2a -b |2=(2a -b )2=4|a |2-4a 2b +|b |2

=431-430+4=8,∴|2a -b |=2 2.]

4.A [a2b =BC →2CA →=-CB →2CA →=-|CB →||CA →|cos 60°=-12.同理b2c =-12,c2a =-12

, ∴a2b +b2c +c2a =-32

.] 5.C [由(2a +b )2b =0,得2a 2b +b 2=0,

设a 与b 的夹角为θ,

∴2|a ||b |cos θ+|b |2=0.

∴cos θ=-|b |22|a ||b |=-|b |22|b |2=-12

,∴θ=120°.] 6.C [∵a2b =|a|2|b |2cos 60°=2|a |,

∴(a +2b )2(a -3b )=|a |2-6|b |2-a2b =|a |2-2|a |-96=-72.

∴|a |=6.]

7.0

解析 b 2(2a +b )=2a2b +|b |2

=234343cos 120°+42=0.

8.④

解析 因为两个非零向量a 、b 垂直时,a2b =0,故①不正确;

当a =0,b⊥c 时,a2b =b2c =0,但不能得出a =c ,故②不正确;向量(a2b )c 与c 共线,a (b2c )与a 共线,故③不正确;

④正确,a 2[b (a2c )-c (a2b )]

=(a2b )(a2c )-(a2c )(a2b )=0.

9.120°

解析 ∵a +b =c ,∴|c |2=|a +b |2=a 2+2a 2b +b 2.

又|a |=|b |=|c |,∴2a 2b =-b 2,

即2|a ||b |cos 〈a ,b 〉=-|b |2.

∴cos 〈a ,b 〉=-12

, ∴〈a ,b 〉=120°.

10.[0,1]

解析 b2(a -b )=a2b -|b |2=|a||b |cos θ-|b |2=0,

∴|b |=|a |cos θ=cos θ (θ为a 与b 的夹角),θ∈[0,π],

∴0≤|b |≤1.

11.解 (1)当a∥b 时,若a 与b 同向,

则a 与b 的夹角θ=0°,

∴a2b =|a||b |cos θ=4333cos 0°=12.

若a 与b 反向,则a 与b 的夹角为θ=180°,

∴a2b =|a||b |cos 180°=4333(-1)=-12.

(2)当a⊥b 时,向量a 与b 的夹角为90°,

∴a2b =|a||b |cos 90°=43330=0.

(3)当a 与b 的夹角为60°时,

∴a2b =|a||b |cos 60°=433312

=6. 12.解 a2b =|a||b |cos θ=535312=252

. |a +b |= a +b 2=|a |2+2a2b +|b |2=

25+23252+25=5 3. |a -b |= a -b 2=|a |2-2a2b +|b |2=25-23252

+25=5. 13.解 (2a -b )2(a +b )=2a 2+2a 2b -a 2b -b 2=2a 2+a 2b -b 2=2312+1313cos

120°-12=12

. |a +b |= a +b 2=a 2+2a 2b +b 2=1+231313cos 120°+1=1.

∴|2a -b |cos 〈2a -b ,a +b 〉=|2a -b |2 2a -b 2 a +b |2a -b |2|a +b |= 2a -b 2 a +b |a +b |

=12

. ∴向量2a -b 在向量a +b 方向上的投影为12

. 14.解 ∵|n |=|m |=1且m 与n 夹角是60°,

∴m2n =|m||n |cos 60°=131312=12

. |a |=|2m +n |= 2m +n 2=431+1+4m2n =

431+1+4312=7, |b |=|2n -3m |= 2n -3m 2=431+931-12m2n =

431+931-12312=7, a2b =(2m +n )2(2n -3m )=m2n -6m 2+2n 2=12-631+231=-72

. 设a 与b 的夹角为θ,则cos θ=a2b |a||b |=-72737=-12. 又θ∈[0,π],∴θ=2π3,故a 与b 的夹角为2π3

.

高中数学创新课堂教学模式

高中数学创新课堂教学模式新探 教学活动是实现新课程理念的根本途径。新的数学课程教学活动具有开放性、创新性,同时也具有一定的确定性。在新形式下教师如何根据当前的教育背景,大力开发教育资源,准确预见教学活动发展方向,积极防范可能出现的干扰因素,以更好的实现课程目标,提高教学效果呢?这是一个值得各位教改一线的教师研究的问题。 传统的课堂教学是一种以教为本的教学观,教师依据教学大纲从考试要求来确定每节课的教学目标及要求,而忽视师生、生生间的交流,学生只能被动适应,使学生失去学习过程的自主性和主动性。为了完成教学目标教师一味地讲解、训练,学生听、记,缺乏独立思考,久而久之养成了学生依赖教师,形成了思维的懒惰,缺乏自主性和创造性,而在新的课程计划中要求改变学生的学习方式,倡导学生自主探究,把学习主动权交给学生。因此,教学要以教师的教为本位的教学观转向以学生学为本位的教学观,要突出认识和关注学生的主动性,有了主动性才能具有自主性,有了自主性才能形成创造性,教学的成功与否,关键是我们的教学活动是让少数人参与还是让全体学生参与,在同一层次参与还是不同层次上参与,是被动参与还是主动参与。我们的教学,必须克服教师满堂讲,学生被动听,少数学生学习,多数学生陪做的现象,引导全体学生积极主动的参与到学习的活动中去。而创新教学模式是在一定教学思想指导下所建立起来的。它是人们在长期教学实践中不断总结、改良教学而逐步形成的。它源于教学实践,又反过来指导教学实践,是影响教学的重要因素。要培养学生的创造思维,就应该有与之相适应的,能促进创思维培养的教学模式,当前数学课堂创新教学模式主要有以下几种形式。

一、探究式教学 探究式课堂教学是以探究为主的教学。具体说,它是指“教学过程中,在教师的诱导启发下,以学生独立自主学习和合作讨论为前提,以现行教材为基本探究内容,以学生周围世界和生活实际为参照对象,为学生提供充分自由表达,质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑尝试活动,将自己所学知识应用于解决实际问题的一种教学形式”。(1)探究式课堂教学特别重视开发学生的智力,发展学生的创造性思维,培养自学能力,力图通过自主探究,引导学生学会学习和掌握科学方法,为终身学习和工作奠定基础。尽管进行数学课堂教学改革有多种方法和渠道,但是以探究为主的课堂教学改革仍然是理想的选择。这是因为:⑴.数学学课堂教学选用探究式符合数学学科特点及教学改革的实际,并能满足师生双方的心理需要;⑵.数学课堂教学选用探究式能使课堂焕发出生机勃勃的活力和效力;⑶.数学课堂教学选用探究式能破除“自我中心”,促进教师在探究中“自我发展”。.例如,教学大纲对两个正数的算术平均数不小于它们的几何平均数的定理,要求“不扩展到三个正数的算术平均数不少于它们的几何平均数定理”.于是,对《几个正数的算术平均数与集合平均数》一文可指导学有余力的同学阅读,并可适当补充一些习题,使学生了解均值不等式在证明不等式及解决有关最大值、最小值的实际问题中的重要作用,这样既能满足学生对知识的渴求,也能开阔学生的思路,有助于提高学生的解题能力. 二、启发式教学 我们开展数学的“启发式教学”,就是在老师的点拨下让学生自主地去发现、去研究自己感兴趣的问题,亲身体验问题。数学中的各种各样的问题为我们研究性学习提供了许多研究的方向,数学教学中的各种问题都是渗透研究性学习

浅谈创客教育理念下构建创新高中数学教育新形态

浅谈创客教育理念下构建创新高中数学教育新形态 创客这一新兴教育理念,为教师提高高中数学教学质量和效率创造了有利条件,应当将创客理念与高中数学教育进行有效融合,能够起到很好的效果。本文对创客教育理念下构建创新高中数学教育新形势进行了研究,在简要分析创客教育理念对高中数学教育积极作用基础上,重点提出了创新策略。 标签:创客教育理念;高中数学;教育新形态;构建策略 随着我国我国教育体系的日益完善,教育改革与创新已经得到足够重视,创客教育越来越成为一种发展趋势。如何将创客教育理念与高中数学教育进行有效融合,是当前高中数学教育必须高度重视的重大问题,只有将创客教育理念融入到高中数学教育当中,才能更好的落实“立德树人”目标和“素质教育观”,进而培养高中生的数学核心素养。广大高中数学教师对此要有清醒而深刻的认识,既要深刻领会创客教育在高中数学教育中的重要价值,也要发挥自身的主观能动性,积极探索创客教育理念下构建创新高中数学教育新形势的有效策略。 一、创客教育理念对高中数学教育的积极作用 作为创客文化与教育的有机结合,创客教育本质上是一种素质教育,让学生在自由而富有乐趣的氛围中借助数学化工具,创造分享,得到锻炼,进而培养学生的核心素养。由于高中数学难度相对较大,将创客教育融入到高中数学教育当中,对于培养学生学习兴趣以及引导学生建立数学思维都具有十分重要的价值。特别是由于创客教育理念更加突出“以人为本”,能够将学生的积极性、主动性和创造性得到有效的锻炼,比如教师通过引导学生建立“数学创客空间”,可以将创客教育理念融入到小组合作学习当中,引导学生通过“头脑风暴”,解决数学难题,提升自身素质。将创客教育理念融入到高中数学教育当中,还有利于推动高中数学教育创新,最根本的就是能够发挥教师和学生“两个主体”的作用,教师主导作用、学生主体作用都能够得到有效的发挥,在这个过程中,教师需要不断改革和创新高中数学教育模式,更加重视以人为本、更加重视发挥学生主体作用、更加重视学生解题能力的培养[1]。 二、创客教育理念下构建创新高中数学教育新形态的策略 (一)注重培养学生问题意识 将创客教育理念应用于高中数学教育当中,至关重要的就是要培养学生的问题意识,使学生牢固树立“问题导向”思维,让学生深刻理解算法、定理可以解决什么问题、在这个基础上,学生可以对高中数学知识进行灵活应用,进而实现创造与创新。比如在开展高中函数教学的过程中,尽管高中生拥有一定的初中基础,但由于具有一定的差异性,因而在教学的过程中,教师首先要引導学生对初中函数知识与高中函数知识的差异性进行深入的研究和分析,找出相同点和不同点,教师要带领学生进行“启问导标--自学调控--内化反馈--自主检测--总结反思--问

向量数量积的运算律

向量数量积的运算律 新知检索 8.向量数量积满足交换律:·=__________________________. 9.向量数量积满足分配律:(+)·=______________________. 10.数乘向量的数量积,可以与任一向量交换结合,即对任意实数λ,有(?λ=_________. 学法指导 本节课的学习目标是掌握向量数量积的运算规律,并准确运用;重点是注意结合律的正确使用.学习本节课应注意的问题: 1.对于分配律,用向量数量积的几何意义给出了证明.在学习与使用时,可以类比数量乘法的交换律.但要明确它们的不同. (1)已知实数)0≠b c b a (、、,则c a bc ab =?=;但对于向量、、,该推理是不正确的,即a ·b =b ·不一定能推出a =.只有当向量a 、b 、共线且同向时,才成立,否则就不成立. 比如:|a |=3,|b |=1,|c |=3,< a ,b >=30°,=60°, 经过计算可知:·=·,但≠. (2)对于实数c b a 、、有(ab )c =a (bc ),但对于向量、、c ,(·)·c ≠·(·c ),这是因为(a ·b )·c 表示一个与c 共线的向量,而a ·(b ·c )表示一个与a 共线的向量,而c 与a 一般并不共线,所以(a ·b )·c ≠a (b ·c ) . 2.教材中的例题1是直接对数量积性质、运算律的应用.其中推得结论: (1)2(+=22||2||b b a a +?+; (2)(a +b )·(a -b )=22||||-.在以后的运算中,可以直接运用. 3.用向量知识证明几何问题.用向量解题可分为三步:

创新设计高中数学必修4课时作业【全套142页】附有详细解析

§3.2 简单的三角恒等变换 课时目标 1.了解半角公式及推导过程.2.能利用两角和与差的公式进行简单的三角恒等变换.3.了解三角变换在解数学问题时所起的作用,进一步体会三角变换的规律. 1.半角公式 (1)S α2:sin α 2=____________________; (2)C α2:cos α 2=____________________________; (3)T α2:tan α 2=______________(无理形式)=________________=______________(有理 形式). 2.辅助角公式 使a sin x +b cos x =a 2+b 2 sin(x +φ)成立时,cos φ=__________________,sin φ=______,其中φ称为辅助角,它的终边所在象限由__________决定. 一、选择题 1.已知180°<α<360°,则cos α 2的值等于( ) A .-1-cos α 2 B. 1-cos α 2 C .- 1+cos α2 D. 1+cos α 2 2.函数y =sin ? ????x +π3+sin ? ????x -π3的最大值是( ) A .2 B .1 C.1 2 D. 3 3.函数f (x )=sin x -cos x ,x ∈? ?????0,π2的最小值为( ) A .-2 B .- 3 C .- 2 D .-1 4.使函数f (x )=sin(2x +θ)+3cos(2x +θ)为奇函数的θ的一个值是( ) A.π6 B.π3 C.π2 D.2π3 5.函数f (x )=sin x -3cos x (x ∈[-π,0])的单调递增区间是( ) A.??????-π,-5π6 B.??????-5π 6 ,-π6 C.??????-π3,0 D.???? ??-π6,0 6.若cos α=-4 5,α是第三象限的角,则1+tan α21-tan α 2 等于( ) A .-12 B.1 2 C .2 D .-2

高中数学新课程创新教学设计案例角的概念的推广

31 角的概念的推广 教材分析 这节课主要是把学生学习的角从不大于周角的非负角扩充到任意角,使角有正角、负角和零角.首先通过生产、生活的实际例子阐明了推广角的必要性和实际意义,然后又以“动”的观点给出了正、负、零角的概念,最后引入了几个与之相关的概念:象限角、终边相同的角等.在这节课中,重点是理解任意角、象限角、终边相同的角等概念,难点是把终边相同的角用集合和符号语言正确地表示出来.理解任意角的概念,会在平面内建立适当的坐标系,通过数形结合来认识角的几何表示和终边相同的角的表示,是学好这节的关键. 教学目标 1. 通过实例,体会推广角的必要性和实际意义,理解正角、负角和零角的定义. 2. 理解象限角的概念、意义及表示方法,掌握终边相同的角的表示方法. 3. 通过对“由一点出发的两条射线形成的图形”到“射线绕着其端点旋转而形成角”的认识过程,使学生感受“动”与“静”的对立与统一.培养学生用运动变化的观点审视事物,用对立统一规律揭示生活中的空间形式和数量关系. 任务分析 这节课概念很多,应尽可能让学生通过生活中的例子(如钟表上指针的转动、体操运动员的转体、自行车轮子上的某点的运动等)了解引入任意角的必要性及实际意义,变抽象为具体.另外,可借助于多媒体进行动态演示,加深学生对知识的理解和掌握. 教学设计 一、问题情境 [演示] 1. 观览车的运动. 2. 体操运动员、跳台跳板运动员的前、后转体动作. 3. 钟表秒针的转动. 4. 自行车轮子的滚动. [问题] 1. 如果观览车两边各站一人,当观览车转了两周时,他们观察到的观览车上的某个座位上的游客进行了怎样的旋转,旋转了多大的角?

高中数学的案例式教学创新

高中数学的案例式教学创新 作者:李亨连 来源:《现代教育科学·中学教师》2010年第03期 案例式教学是一种新型的教学模式,近年来在高中数学教学中被广泛采用,改变了以往传统的简单的灌输式教学模式。通过教学互动激发了学生的学习热情,使学生成为教学活动的主角,培养了学生运用知识解决实际问题的能力。在新课标出台的背景下,高中数学案例教学如何能顺应时代的发展,与时俱进,不断地进行自我创新就成为一个非常现实的问题。 一、数学案例式教学的内容 近年来随着新课标的出台,新的教学理念的深入,越来越多的学校在高中数学教学中开展案例式教学,并且结合新课标的要求不断调整创新。所谓的案例式教学,简单说就是教师结合教学内容,结合教材,联系实际,选取身边的实际具体案例,向学生展示后,在教师的引导下,学生结合掌握的知识,对这一案例进行分析讨论,最后得出解决方案或新型结论,即达到教学目的,最后教师根据学生的发言进行总结。 尽量要选取身边的例子,学生比较熟悉的例子,或者听到或者看到过的活生生的例子。例如根据当前如火如荼的房地产市场,可以设立一个题目,让学生虚拟买房,根据条件,根据自己首付和贷款年限,结合利率计算每月还款的金额。这样的题目贴近生活,而且这种形式学生们会感到新颖,而且通过这种方式让学生更深刻的体会到数学在日常生活中解决实际问题的能力,了解数学的实用性。 在案例式教学中,教师从始至终都是一个组织设计者,而学生是整个教学活动的主角,整个教学活动都是围绕着学生来进行。带着问题进行学习,可以有效地激发学生的探索精神,怀疑精神,培养其独立思考的能力,这符合新课标的中心思想,对培养创新型人才具有非常重要的作用,值得在教学过程中推广。但是结合新课标,这种教学模式也需要不断地尽享创新以适应时代发展的需要。没有什么东西可以一劳永逸,只有与时俱进才能经久不衰。 二、案例式教学是一种创新型的教学模式 数学课程是一个逻辑性很强、实用性很强的学科,然而长期以来,在各个高中教学中一直存在偏科现象。很多学生根本对学习数学没有兴趣,根本学不进去,课堂教学有效性很低。新的问题的出现,必然要求有新的解决方法的诞生,一种创新型的教学模式在近年来被广泛推广,这就是案例式教学模式。 案例式教学模式,由传统教学活动的一言堂转变成互动的教学交流模式,学生的学习不再是被动的接受,而是主动的出击、主动的思考,同时锻炼了学生利用知识解决问题的能力,培养了学习独立自主的能力,为培养创新意识提供了基础。案例式教学模式改变了以往数学教学给人脱

高中数学创新教育的“三个阶段”.

高中数学创新教育的“三个阶段” 2017-08-04 高中数学创新教育的“三个阶段” 数学教育是数学活动的教育,也就是思维活动的教育。如何在高中数学教学中实施创新教育,引导学生主动地创造性地学习数学,是当前高中实施素质教育的重要课题。下面就数学教学中实施创新教育谈点看法。 一、教师备课时的创新 实施创新教育,作为教师,首先要转变观念,建立真正的创新教育的理念,所备的课要与学生心理发展特点、学生的生活实际相适应。备课时一般做到:(1)教学目的要创新。要根据教材内容但又不拘泥于教材内容制定具体的目的和要求。(2)教学过程要创新。设计时可不循旧规,对如何导入新课、如何讲授新课、主要环节如何处理进行创新设计。(3)教学方法要创新。可以采用提问法、发现法、联想法、操作法等等,方法不固定单一,思维不封闭僵死。(4)教学程序要突出创新。(5)师生合作要体现创新性。教师不再是课堂的主宰着,而是学生学习过程的引路人,引导学生自己去发现、探究知识。(6)课堂提问要有实践创新性等。例如:高中数学(人教版)第一册第三章数列第三节“等差数列前n项和”在现行高中数学教材中,无论是一期还是二期教材,在引入等差数列的前项和的这一节课中都是用了高斯计算:1+2+3+…+100作为引例。而这个引例只是说明了怎样做的问题,却没有道出为什么要这样做,没有触及到思维层面的东西,没有使学生的思维上升到理论的.层面,不能让学生的知识深度迁移能力得到发展。因此,我在上这节课时作了“补形”的设计,该方法反映了等差数列的本质,可以进一步促进学生对等差数列性质的理解,而且该推导过程体现了人类研究、解决问题的一般思路。为了突破这一难点,在教学中采用了以问题驱动的教学方法,体现了分析、解决问题的一般思路,即从特殊问题的解决中提炼方法,再试图运用这一方法解决一般问题。在教学过程中,通过教师的层层引导、学生的合作学习与自主探究,尤其是借助图形的直观性,学生“补数”的思路获得就水到渠成了。 二、课堂教学中的创新 课堂教学中实施创新教育,主要是要体现学生为主体,让学生在学习过程中主动获取知识。实践证明:学生的学习过程越开放,思维就越活跃,思维发展也就越充分。 创设创新情境,学生主动创新。现代心理学认为:人的一切行为都是由动机高中数学创新教育的“三个阶段”引起的,而人的动机欲望是在一定的情境中诱发的。培养学生的创新精神首先要为学生设置新奇、困惑、充满情趣的教学情境,从而产生创新动机,激发、强化学生的创新行为。创设教学情境有多种做

8.1.2 向量数量积的运算律

8.1.2 向量数量积的运算律 (教师独具内容) 课程标准:理解掌握数量积的性质和运算律,并能运用性质和运算律进行简单的应用. 教学重点:向量数量积的性质与运算律及其应用. 教学难点:平面向量数量积的运算律的证明. 【知识导学】 知识点 平面向量数量积的运算律 已知向量a ,b ,c 与实数λ,则 交换律 a ·b =□ 01b ·a 结合律 (λa )·b =□ 02λ(a ·b )=□03a ·(λb ) 分配律 (a +b )·c =□ 04a ·c +b ·c 【新知拓展】 对向量数量积的运算律的几点说明 (1)向量数量积不满足消去律:设a ,b ,c 均为非零向量且a ·c =b ·c ,不能得到a =b .事实上,如图所示,OA →=a ,OB →=b ,OC → =c ,AB ⊥OC 于D ,可以看出,a ,b 在向量c 上的投影分别为|a |cos ∠AOD ,|b |cos ∠BOD ,此时|b |cos ∠BOD =|a |cos ∠AOD =OD .即a ·c =b ·c .但很显然b ≠a . (2)向量的数量积不满足乘法结合律:一般地,向量的数量积(a ·b )c ≠a (b ·c ),这是由于a ·b ,b ·c 都是实数,(a ·b )c 表示与c 方向相同或相反的向量,a (b ·c )表示与a 方向相同或相反的向量,而a 与c 不一定共线. 1.判一判(正确的打“√”,错误的打“×”) (1)对于向量a ,b ,c 等式(a·b )·c =a ·(b·c )恒成立.( ) (2)若a·b =a·c ,则b =c ,其中a ≠0.( ) (3)(a +b )·(a -b )=a 2 -b 2 .( ) 答案 (1)× (2)× (3)√ 2.做一做

高中数学创新教学的探讨

高中数学创新教学的探讨 数学尽管是一门自然科学,它源于生活,但又服务于社会。高中数学创新性教学的意义在于:教学在引导学生创造性地“学”的同时,克服平常定势思维的局限,找出新的规律及方法,激发学生探讨问题,加强学生学习的灵活性,开拓性及创造性。 标签:高中数学;创新教学 建构主义认知学习理论是指导中学课堂创新教育、培养学生创新能力的理论依据。特别是建构主义的学习观。对于指导课堂教学改革,培养学生创新能力,有着十分重要的意义。学习不是让教师把知识简单的传递给学生.而是让学生自己建构的过程。学习不是被动接收信息,而是主动地提取、贮存、转换、运用的过程.这种建构是无法让他人代替的。这一现代认知学习理论是我们当前鼎力倡导的创新教育的基石。如果在课堂教学中充分体现“学生是主体,教师是主导”的教育思想。让学生亲身体验、感悟知识的产生、形成、发展、迁移的过程。以《曲线与方程》教学设计为例。依据建构主义的学习观,通过创设认识冲突、问题探究与问题讨论、概念创新、创新练习教学模式。使学生主动吸收信息,从而达到培养学生创新能力和创造性思维的目的。 一、创设知识背景,促使学生进成概念 对概念的传授,旧的教学模式是先将概念直接和盘托出,然后一次又一次练习巩固反复说明要点。这种旧的教学方法虽然也会使学生较好地掌握概念,但这是“少、慢、差、费”,后果是掩盖概念的合理性,扼杀了学生的创造思维。合理的做法应是向学生提出问题:“以上四种情形中,你认为哪一种最有研究价值?”因为有了前文所述的一系列铺垫,学生已经具备了对信息的批判能力,一致认为:(1)最具有研究价值,让学生给(2)情形的曲线与方程给出确切的定义已是水到渠成了,这样处理使学生完成了对外界信息的吸收、研究、整理、归纳、理解,即对知识的自主建构的过程。学生不仅理解了新的知识,而且对新知识进行了分析、检验和批判,其创造力又一次得到提升,也获得了一次成功的体验。 二、创设认知冲突,激发学生学习欲望 教师在教学中能恰当设置认知冲突,运用认知矛盾.就能有效地提高学生的认知水平和激发学生的学习欲望。如在《曲线与方程》这堂课的情境引入过程中先提出了一个与我们的生活密切相关问题:“地球绕太阳作周期性的运动.它的运行轨迹是什么?应如何描述这一轨迹?”悬念设置。同学们对此立即产生了浓厚的兴趣和强烈的求知欲。接着用“几何画板”演示了地球绕太阳运行的轨迹。同学们从演示中目睹了地球绕太阳运动形成的轨迹这一曲线(椭圆)。即动点按一定的规律运行就形成了曲线。产生了第一次认知冲突,感悟了知识形成的背景。接着应用多媒体的技术,提示平而上的点按一定规律运动形成曲线。点在平面上对应唯一坐标及其变化的内在本质。两坐标的约束关系即为方程。在此再次创设认

全国高中生创新知识与能力培育计划能力测试(高一数学)

全国高中生创新知识与能力培育计划能力测试 高一数学 (时间:60分钟每小题5分,共100分) 数学符号说明:R 表示实数集,Z 表示整数集,Z +表示正整数集。 1. 已知{}A =博雅,优才,{}B =清华,北大,则一一映射:f A B →的个数为(). A .1 B .2 C .3 D .4 2. 如图,圆O 的内接正六边形 ABCDEF 的边心距OM =则弧 BC 的长为(). A .3π B .23π C .π D .43 π 3. 函数()lg(91)()f x x x = +-∈的定义域中所有元素之积为(). A .0 B .1 C .2 D .6 4. 称两条相互垂直的直线为一组垂线.平面内5条直线构成n 组垂线,n 不可能为(). A .3 B .4 C .5 D .6 5. 如图所示,有两种边长为1cm 的菱形框(选项A 腰长为1cm 的等腰三角形框(选项C ,D ),上点O 1cm 2cm 、的速度,行。记爬行时间为x 秒,两只蚂蚁的距离为cm y x A . B . C . D . A

6. 函数2()(13)3x x f x -=+?是(). A .奇函数 B .偶函数 C .非奇非偶函数 D .既奇且偶函数 7. 平面直角坐标xOy 中,点集{} (,)1,1x y x y x y -+≤≤所覆盖的平面图形的面积为() . A .0.5 B .1 C .2 D .4 8. 已知2333log (2015)log log 62 y x +-=( ),x y + ∈ ,则x 的最小值的各位数字之和为() . A .2 B .4 C .6 D .8 9. 已知二次函数()y f x =过原点,且(1)()1f x f x x -=+-,则2 ()3 f 的值为(). A .1 3 B .19 C .13 - D .19- 10. 微积分思想的萌芽可以追溯到公元前200多年,古 希腊大数学家阿基米德在《抛物线求积》中研究了如下问题:如图,在平面直角坐标系xOy 中,抛物线2 y x =与直线1y =所围图形为弓形AOB 。求弓形 AOB 面积S 。 我们可以这样解决该问题:如图,设矩形ABCD 平分2n 份,过等分点作x 轴的垂线,将面积S '分割求和,则 22222222222222221012(1)112322n n S n n n n n n n n n n ???? -'??++++<

12022-向量数量积的运算律

向量数量积的运算律 制作人:张明娟 审核人:叶付国 使用时间:2012-5-8 编号:12022 学习目标: 1、 掌握平面向量数量积的运算律及其运算; 2、 通过向量数量积分配律的学习,体会类比、猜想、证明的探索性学习 方法; 3、通过解题实践,体会向量数量积的运算方法. 学习重点:向量数量积的运算律及其应用. 学习难点:向量数量积分配律的证明. 重点知识回顾: 1、两个向量的夹角的范围是: ; 2、向量在轴上的正射影 正射影的数量为 ; 3、向量的数量积(内积):a ·b = ; 4、两个向量的数量积的性质: (1)b a ⊥? ; (2)a a ?= 或a = ; (3)θcos = ; 向量数量积的运算律 平面向量数量积的常用公式 证明:(1) (2) c b c a c b a b a b a b a b a a b b a ?+?=?+?=?=?=??=?))(3(;)()())(2(; 1λλλλ)(222 2))(1(b b a a b a +?+=+2 2))()(2(b a b a b a -=-+

典例剖析: 例1、已知a =6,b =4,a 与b 的夹角为060, 求:(1)b 在a 方向上的投影; (2)a 在b 方向上的投影; (3) 例2、已知a 与b 的夹角为0120,a =2,b =3,求: ()() b a b a 32-?+) ())(;();()(b a b a b a b a 32321 22+?-- ?(-+5 4取何值,问夹角为与t t b a -==0 120,1

例 3、已知a =3,b =4,(且a 与b 不共线),当且仅当k 为何值时,向量b k a +与b k a - 互相垂直? 变式:已知a =1, b =2, a 与b a -垂直.求a 与b 的夹角. 练习题:求证菱形的对角线互相垂直. 例 4、已知a =2,b =4,0120,=b a ,求a 与b a -的夹角.

第二课时向量数量积的运算律(可编辑修改word版)

= = AC ? ?? ? 2.3.2 向量数量积的运算律 类型二、运用向量数量积的运算律求向量的模 【学习目标】: 熟练掌握平面向量数量积的运算律,并会应用。 【自主学习】: 向量数量积的运算律: (1) 交换律: 例 2、已知 a = b = 5, 向量 a 与b 的夹角为 ,求 a - b , a + b 。 3 (2) 数乘 向量的数量积 结合律: 那么分配律是否成立呢? 【合作探究】 分配律: 变式: 在三角形 ABC 中,已知 AB 3, BC 5, ∠ABC = 600 , 求 。 【课堂互动】 类型一、运用向量数量积的运算律计算例 1、求证: 类型二、运用向量数量积的运算律解决有关垂直问题例 2、求证:菱形的两条对角线互相垂直: 已知: ABCD 是菱形, AC 和 BD 是它的两条对角线。 (1) (a + b ) 2 = 2 + 2a ? b + 2 → → → → ;(2) a + b ?? a - b ? = ? ?? ? → 2 → 2 a - b ; 求证: AC ⊥ BD . 证明: → → → → 变式:已知 a = 3, b = 4, ?a , b ? = 60 , 求(a + 2b ) (a - 3b ) . 总结: a ⊥ b ? 。 a b

a b a ⊥ 变式: 已 知 a = 3, b = 4 ,且(a + kb ) ⊥ (a - kb ), 求 k 的值。 2 【合作探究】 1 、 若 a,b( b ≠ 0 ) 为 实 数 , 则 a ? b = a ? b 成 立 , 对 于 向 量 3、已知 e 1 , e 2 是夹角为 3 的两个单位向量, a = e 1 - 2e 2 , b = ke 1 + e 2 , 若 a ? b = 0 ,则 k 的值为 。 a , b , a ? b = ? 成立吗? 2、若 a,b,c( b ≠ 0 )为实数,则 ab = bc ? a = c ; 但对于向量, ab = bc ? a = c 还成立吗? 4、证明平行四边形中, AC 2 + BD 2 = 2 AB 2 + 2 AD 2. 3、 向量的数量积满足结合律吗,即(a ? b )? c = a ? (b ? c )成立吗? (a ? b ) ? c 表 示什么意义? a ? (b ? c ) 表示什么意义? 【当堂检测】 → → < >= 1200 , = = 5, (2a - b )? a = 1 、 已 知 向 量 a , b 且 a 2, b 则 (选做)5、设 a b , 且 = 2, b = 1, k,t 是两个不同时为零的实数。 。 (1) 若 x = a + (t - 3)b 与 y = -ka + tb 垂直,求 k 关于 t 的函数关系式 k=f(t); (2) 求出函数 k=f(t)的最小值。 → → → → 2 2 、 a = 6, b = 8, ?a , b ? = 120 , 求 a + b , a + b .

高中数学新课程创新教学设计案例--幂函数

13 幂函数 教材分析 幂函数是基本初等函数之一,是在学生系统学习了函数概念与函数性质之后,全面掌握有理指数幂和根式的基础上来研究的一种特殊函数,是对函数概念及性质的应用.从教材的整体安排看,学习了解幂函数是为了让学生进一步获得比较系统的函数知识和研究函数的方法,为今后学习三角函数等其他函数打下良好的基础.在初中曾经研究过y=x,y=x2,y =x-1三种幂函数,这节内容,是对初中有关内容的进一步的概括、归纳与发展,是与幂有关知识的高度升华.知识的安排环环紧扣,非常紧凑,充分体现了知识的发生、发展过程.对幂函数进行系统的理论研究,在研究过程中得出相应的结论固然重要,但更为重要的是,要让学生了解系统研究一类函数的方法.这节课要特别让学生去体会研究的方法,以便能将该方法迁移到对其他函数的研究. 教学目标 1. 通过对幂函数概念的学习以及对幂函数图像和性质的归纳与概括,让学生体验数学概念的形成过程,培养学生的抽象概括能力. 2. 使学生理解并掌握幂函数的图像与性质,并能初步运用所学知识解决有关问题,培养学生的灵活思维能力. 任务分析 学生对抽象的幂函数及其图像缺乏感性认识,不能够在理解的基础上来运用幂函数的性质.为此,在教学过程中让学生自己去感受幂函数的图像和性质是这一堂课的突破口.因此,这节课的难点是幂函数图像和性质的发现过程,教学重点是幂函数的性质及运用.首先,从学生已经掌握的最简单的幂函数y=x,y=x2和y=x-1的知识出发,利用实例,由师生共同归纳、总结出幂函数的定义,认清幂函数的特点,深刻理解其定义域.其次,举出几个简单的幂函数引导学生从定义出发研究其定义域、值域、奇偶性、单调性、是否过公共定点这几个性质,让学生自己去探究,把主动权交给学生.然后,再由学生自己结合性质去画幂函数的图像,让学生在获得一定的感性认识的基础上,通过归纳、比较上升为理性认识,从而形成对概念与性质的完整认识.最后通过例题3与练习,让学生利用图像与性质,比较两个数的大小,从而提高学生获取知识的能力. 教学设计 一、问题情景 下列问题中的函数各有什么共同特征?

高中数学创新能力培养

高中数学创新能力培养 发表时间:2019-07-05T17:09:04.277Z 来源:《成功》2018年第10期作者:于梅 [导读] 高中学生的创新能力是贯穿于整个数学教学活动中的,要善于引导学生进行发现问题,分析问题,解决问题,并能够总结问题,从而在此基础上,培养学生的数学创新能力,为终身的学习打下良好的基础。教师要在教学活动中突出对学生的创新能力培养;教师应当创造一个活泼轻松的教学环境;教师应充分保护学生的学习兴趣和创新兴趣。 莱西市实验学校山东莱西 266600 【摘要】高中学生的创新能力是贯穿于整个数学教学活动中的,要善于引导学生进行发现问题,分析问题,解决问题,并能够总结问题,从而在此基础上,培养学生的数学创新能力,为终身的学习打下良好的基础。教师要在教学活动中突出对学生的创新能力培养;教师应当创造一个活泼轻松的教学环境;教师应充分保护学生的学习兴趣和创新兴趣。 【关键词】高中数学;创新能力;教学观念;教学环境 一、数学教学中的创新教育 在数学教学中,为了培养学生的创新能力,对学生进行必要的引导十分关键。 1.加强学生自学能力培养 从人生发展的角度而言,使学生具备自学的能力十分重要。很多情况下,一个人知识的获得需要依靠自身主动学习、积极探索钻研以及积累来实现。因此,在数学教学过程中,教师应当努力为学生创设自学的机会,对学生的自学给予科学的引导,提升学生的自学能力,进而带动学生创新能力的发展。通过实践可以发现,具有较强自学能力的学生学习主动性高,对知识的掌握更具有深度与广度,学习悟性高,学习能力强。 2.对学生进行逆向思维引导 从常规习惯相反的方向思考问题就是逆向思维。也就是说,逆向思维对问题的思考与探索是从完全相反或对立的角度展开的。逆向思维是对常规的一种突破,属于创新思维方法之一,具有绝妙奇特的特点。从高中数学教学实际情况来看,很多学生思维定式十分严重,缺乏创新思维。所以,在教学过程中,教师要积极引导学生敢于打破常规,能够从多角度甚至是反向与对立的角度对问题展开深入的思考与探索,进而产生创新的见解。 3.对学生的侧向思维进行引导 在特定条件下,利用曲径通幽、旁敲侧击的方法探索新的解决途径,拓展思维流向,由此及彼,从侧面新的角度探索问题解决的方法就是侧向思维法。侧向思维和逆向思维比较,主要区别表现为逆向思维是逆向的,侧向思维是平行同向的,其突出优点就是能够降低思维定式产生的消极影响,从侧面对问题进行换角度思考,增强问题解决的应变性,对现有的论证与观点进行突破,最终实现创新。 4.对学生的多向思维进行引导 逆向思维、侧向思维与别的发散形式的综合其实就是多向思维。多向思维能够调动思维的活力,从多角度对问题进行探索,有利于产生新颖独到的见解。在数学教学过程中,激活学生的创新思维,有利于学生主体地位的落实,更有利于学生创新能力的培养。 二、营造民主和谐的课堂氛围,为培养创新思维创造有利环境 构建民主和谐的课堂氛围,有利于学生创新思维的培养,所以丰富教学形式,优化课程结构,建立和谐的师生关系十分关键。教师应结合具体的教学内容综合运用合作学习、探究学习、自主学习等学习模式,增强课堂教学方式的灵活性。充分利用教材中的研究性素材,为培养创造性思维创设有利环境。创新能力需要在实践探索中形成,单纯依靠死记硬背是难以实现的,研究性学习为学生亲身参与实践创设了条件,学生在这样的切身体验中有利于形成主动探索、质疑与勤于动手的习惯,以增强学生的求知欲望,提高学生的创新能力,进而提升学生分析问题、解决问题的能力。例如,在讲“统计”时,可以让学生对学校每周学生体育锻炼时间的分布情况,以及自己家庭中每月开支情况展开调查统计。学生在这些过程中提升了自我与他人的交流合作能力,学生对信息收集与利用能力得到了锻炼与提高,为学生创新能力的培养创造了良好的条件。 三、激发学生的创新兴趣,培养学生的创新能力,实现持久发展 “兴趣是最好的老师”。如果学生对所学内容缺乏兴趣,就会在学习过程中表现得十分被动,难以使学生产生强烈的求知欲望。学生在数学学习过程中饱含兴趣,对学习就会形成创新的动力。兴趣是维持创新持久的动力条件。在数学教学过程中,教师要善于利用学生的好奇心,设置恰当的问题,激发学生的求知欲望。教师设置的问题,要结合学生的实际发展情况,做到难易适度,以激发学生对知识展开进一步探求的冲动,进而使学生自觉产生质疑,自觉探索解决,从而培养学生的创新能力。教师要充分激发学生的好胜心,这样学生才会敢于面对失败,在数学学习过程中勇于探索,具备较强的自信心。教师要善于为学生创设各种机会,使学生在数学学习中体验到成功的快乐,这对于学生创新能力的培养十分重要。教师要对学生多多鼓励与赞扬,培养学生学习的自信心。 总之,新课程改革突出强调了培养学生创新能力的重要性。在高中数学教学过程中,教师应把学生创新能力的培养贯穿于教学的各个环节,从多方位锻炼学生的思维发展,提升学生的质疑能力、探究能力,使学生形成较强的创新能力,这对于学生终身学习具有深远的意义。 参考文献: [1]杨帆.高中数学教学论文:更新观念,解放思想,迎接新课程. [2]林奇兵.创新数学教学思想激发学生学习兴趣. 【作者简介】于梅;出生日期:1981.9;性别:女;籍贯:山东省莱西市店埠镇;民族:汉族;毕业学校:山东理工大学;单位:莱西市实验学校;学历:本科;职称:二级教师;方向:高中数学教学与研究。

高中数学经典创新题精选60题

高中数学经典创新题精选60题 1.在实数集R上定义运算*:x*y=x·(1-y).若关于x的不等式x*(x-a)>0的解集是集合{x|-1≤x≤1}的子集,则实数a的取值范围是() A.[0,2]B.[-2,-1)∪(-1,0] C.[0,1)∪(1,2]D.[-2,0] 解析:选D.依题意可得x(1-x+a)>0.因为其解集为{x|-1≤x≤1}的子集,所以当a≠-1时,0<1+a≤1或-1≤1+a<0,即-1<a≤0或-2≤a<-1.当a=-1时,x(1-x+a)>0的解集为空集,符合题意.所以-2≤a≤0.故选D. 2.A,B,C三个学生参加了一次考试,A,B的得分均为70分,C的得分为65分.已知命题p:若及格分低于70分,则A,B,C都没有及格.则下列四个命题中为p的逆否命题的是() A.若及格分不低于70分,则A,B,C都及格 B.若A,B,C都及格,则及格分不低于70分 C.若A,B,C至少有一人及格,则及格分不低于70分 D.若A,B,C至少有一人及格,则及格分高于70分 解析:选C.根据原命题与它的逆否命题之间的关系知,命题p的逆否命题是若A,B,C至少有一人及格,则及格分不低于70分.故选C. 3.在射击训练中,某战士射击了两次,设命题p是“第一次射击击中目标”,命题q 是“第二次射击击中目标”,则命题“两次射击中至少有一次没有击中目标”为真命题的充要条件是() A.(﹁p)∨(﹁q)为真命题B.p∨(﹁q)为真命题 C.(﹁p)∧(﹁q)为真命题D.p∨q为真命题 解析:选A.命题p是“第一次射击击中目标”,命题q是“第二次射击击中目标”,则命题﹁p是“第一次射击没击中目标”,命题﹁q是“第二次射击没击中目标”,故命题“两次射击中至少有一次没有击中目标”为真命题的充要条件是(﹁p)∨(﹁q)为真命题,故选A. 4.若函数y=f(x)对定义域D中的每一个x1,都存在唯一的x2∈D,使f(x1)·f(x2)=1成立,则称f(x)为“影子函数”,有下列三个命题:() ①“影子函数”f(x)的值域可以是R; ②“影子函数”f(x)可以是奇函数;

高中数学新课程创新教学设计案例(共50课时)

1 集合的概念和表示方法 教材分析 集合概念的基本理论,称为集合论.它是近、现代数学的一个重要基础.一方面,许多重要的数学分支,如数理逻辑、近世代数、实变函数、泛函分析、概率统计、拓扑等,都建立在集合理论的基础上.另一方面,集合论及其反映的数学思想,在越来越广泛的领域中得到应用.在小学和初中数学中,学生已经接触过集合,对于诸如数集(整数的集合、有理数的集合)、点集(直线、圆)等,有了一定的感性认识.这节内容是初中有关内容的深化和延伸.首先通过实例引出集合与集合元素的概念,然后通过实例加深对集合与集合元素的理解,最后介绍了集合的常用表示方法,包括列举法,描述法,还给出了画图表示集合的例子.本节的重点是集合的基本概念与表示方法,难点是运用集合的两种常用表示方法———列举法与描述法正确表示一些简单的集合. 教学目标 1. 初步理解集合的概念,了解有限集、无限集、空集的意义,知道常用数集及其记法. 2. 初步了解“属于”关系的意义,理解集合中元素的性质. 3. 掌握集合的表示法,通过把文字语言转化为符号语言(集合语言),培养学生的理解、化归、表达和处理问题的能力. 任务分析 这节内容学生已在小学、初中有了一定的了解,这里主要根据实例引出概念.介绍集合的概念采用由具体到抽象,再由抽象到具体的思维方法,学生容易接受.在引出概念时,从实例入手,由具体到抽象,由浅入深,便于学生理解,紧接着再通过实例理解概念.集合的表示方法也是通过实例加以说明,化难为易,便于学生掌握. 教学设计 一、问题情境 1. 在初中,我们学过哪些集合? 2. 在初中,我们用集合描述过什么? 学生讨论得出:

在初中代数里学习数的分类时,学过“正数的集合”,“负数的集合”;在学习一元一次不等式时,说它的所有解为不等式的解集. 在初中几何里学习圆时,说圆是到定点的距离等于定长的点的集合.几何图形都可以看成点的集合. 3. “集合”一词与我们日常生活中的哪些词语的意义相近? 学生讨论得出: “全体”、“一类”、“一群”、“所有”、“整体”,…… 4. 请写出“小于10”的所有自然数. 0,1,2,3,4,5,6,7,8,9.这些可以构成一个集合. 5. 什么是集合? 二、建立模型 1. 集合的概念(先具体举例,然后进行描述性定义) (1)某种指定的对象集在一起就成为一个集合,简称集. (2)集合中的每个对象叫作这个集合的元素. (3)集合中的元素与集合的关系: a是集合A中的元素,称a属于集合A,记作a∈A; a不是集合A中的元素,称a不属于集合A,记作a A. 例:设B={1,2,3},则1∈B,4B. 2. 集合中的元素具备的性质 (1)确定性:集合中的元素是确定的,即给定一个集合,任何一个对象是否属于这个集合的元素也就确定了.如上例,给出集合B,4不是集合的元素是可以确定的. (2)互异性:集合中的元素是互异的,即集合中的元素是没有重复的. 例:若集合A={a,b},则a与b是不同的两个元素.

平面向量的数量积的运算律

第十二教时 平面向量的数量积的运算律 要求学生掌握平面向量数量积的运算律,明确向量垂直的充要条件 复习: 1 ?平面向量数量积(内积)的定义及其几何意义、性质 2 ?判断下列各题正确与否: 1若a = 0,则对任一向量b ,有a b = 0。 2若a 0,则对任一非零向量b ,有ab 0。 3 若 a 0, ab = 0,则 b = 0。 4若ab = 0,则a 、b 至少有一个为零。 5 若 a 0, a b = a c ,贝U b = c 。 6若a b = ac ,贝U b = c 当且仅当a 0时成立。 7对任意向量a 、b 、c ,有(a b ) c a (b c )。 8对任意向量a ,有a 2 = |a|2。 平面向量的运算律 1 .交换律:a b = b a 证:设 a , b 夹角为,贝U a b = |a||b|cos , b a = |b||a|cos 二 a b = b a ??? c (a + b ) = ca + c b 即:(a + b ) c = a c + b c 4.例题:P118-119 例二、例三、例四 (从略) 三、应用例题:(《教学与测试》第27课P156例二、例三) 例一、已知a 、b 都是非零向量,且a + 3b 与7a 5b 垂直, 解:如图:」ABCD 中:AB DC , AD BC , AC = AB AD 2 ■ 2 ? |AC |2=| AB AD |2 AB AD 而 BD = AB AD ? |BD |2=| AB AD |2 AB AD ?'?I c | |a + b| cos =|c| |a| cos 1 + |c| |b| cos 2 2.( a) b = (a b) =a( b) 证 :若 > 0, ( a) b = |a||b|cos , (ab): = |a||b|cos , a (b): = |a||b|cos , 若 < 0, ( a) b =| a||b|cos() (ab): = |a||b|cos , a (b): =|a || b|cos() 3. (a + b) c =a c + b c 在平面内取一点 0,作OA = a, AB = b , |a||b|( cos ) = |a||b|cos , |a||b|( cos ) = |a||b|cos 。 __ !, __ p _____ h 2 ___ 2 ___ t k ? | AC |2 + |BDf = 2 AB 2AD = | AB |2 | BC |2 | DC |2 四、 小结:运算律 五、 作业:P119 习题5.6 7、8 《教学与测试》P152练习 |AD |2 ??? a + b (即OB )在c 方向上的投影 等于a 、b 在c 方向上的投影和, 即:|a + b| cos = |a| cos 1 + |b| cos 2 教材: 目的: 过程: (V ) (x ) (x ) (x ) (x ) (x ) (x ) (V ) a 4 b 与7a 2b 垂直, 求a 与b 的夹角。 解:由(a + 3b)(7a 5b)= 0 7a 2 + 16a b 15b 2 = 0 ① (a 4b)(7a 2b)= 0 7a 2 30a b + 8b 2 = 0 ② 两式相减:2a b = b 代入①或②得:a 2 = b 2 设a 、b 的夹角为, 则 cos : =a b b 2 1 ? =60 |a||b| 2|b|2 2 2AB AD 例二、求证:平行四边形两条对角线平方和等于四条边的平方和

相关主题