搜档网
当前位置:搜档网 › Mathematica圆周率的计算

Mathematica圆周率的计算

Mathematica圆周率的计算
Mathematica圆周率的计算

圆周率的计算

实验目的

通过使用数学方法,结合数学软件的使用掌握计算圆周率的一些方法更好的理解圆周率的数学意义熟练地使用数学软件

实验原理

不同的半径、不同的大小的圆,圆周率的值总是一个比值比较稳定的数值

1、祖冲之的圆周率

N[22/7, 10] 3.142857143

N[355/113, 10] 3.141592920

2、无理数的最佳分数逼近

a = Pi; e0 = 1; list = {};

]o[

p = Floor[q * a + 0.01]; e = Abs[p/ q – a]* q;

If[e } e0, Appen]To[list, p/ q]; ∈0 = ∈], {q, 1, 100 000}];

list

{3,22/7,333/106,355/113,103993/33102,10434{/33215,20{341/66317,3126{9/99532 }

a = Pi; e0 = 1; list = {};

]o[

p = Floor[q * a + 0.01]; e = Abs[p - q * a];

Print["p=", p, ";q=", q, ";e=", e // N];

If[e } e0, Appen]To[list, p/q]; ∈0 = ∈], {q, 1, 10}];

list

p3;q1;0.141593

p6;q2;0.2{31{5

p9;q3;0.42477{

p12;q4;0.566371

p15;q5;0.707963

p1{;q6;0.{49556

p22;q7;0.00{{5142

p25;q{;0.132741

p2{;q9;0.274334

p31;q10;0.415927

{3,22/7}

3、乐音的频率比

k = 2.0^(1/ 12);

music = {1.0, k^2, k^4, k^5, k^7, k^9, k^11, k^12}

{1., 1.12246, 1.25992, 1.334{4, 1.49{31, 1.6{179, 1.{{775, 2.}

freq1 = {1, 2^(2/12}, 2^(4/12), 2^(5/12L, 2^(7/12), 2^(9/12), 2^(11/ 12), 2}

freq2 = {1, 9 / {, 5 / 4, 4 / 3, 3 / 2, 5 / 3, 17 / 9, 2}

{1, 21/6, 21/3, 25/12, 27/12, 23/4, 211/12, 2}

{1,9/{,5/4,4/3,3/2,5/3,17/9, 2}

freq = freq2;

m = 512;

Play[Sin[2 Pi * m * t * freq[[2]]], {t, 0, 0.{}, PlayRange->{0, 1]]

Soun][Sample]Soun]Function[Function[{Play`Time3}, Block[{t 0. 0.000125 Play`Time3}, HSin[2mt freq[2]] 0.5}2.]], 6400, {000]] m = 512;

freq1 = {1, 2^(2 / 12), 2^(4 / 12), 2^(5 / 12), 2^(7 / 12), 2^(9 / 12), 2^(11 / 12), 2}; freq2 = {1, 9 / {, 5 / 4, 4 / 3, 3 / 2, 5 / 3, 17 / 9, 2};

freq = freq2;

Playmusic[song_] := Do[Play[Sin[2Pi* m* t* freq[[song[[i]]]]],

{t, 0, 0.8}, PlayRange->{0, 1}], {i, 1, Length[song]}];

music = {1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1};

Playmusic[music]

Playsong[song_] :=

Do[x = song[[i, 1]];

w = Which[x } 0, freq[[-x]] / 2, x > 10, freq[[x - 10]] * 2, True, freq[[x]]];

y = song[[i, 2]];

Play[Sin[2 Pi* m* t* w], {t, 0, 0.4 y}, PlayRange->{0, 1}], {i, 1, Length[song]}] song2 = {{-3, 4}, {-5, 3}, {-6, 1}, {1, 3}, {2, 1}, {-6, 1},

{1, 1}, {-5, 2}, {5, 3}, {11, 1}, {6, 1}, {5, 1}, {3, 1}, {5, 1}, {2, 8},

{2, 3}, {3, 1}, {-7, 2}, {-6, 2}, {-5, 3}, {-6, 1}, {1, 2}, {2, 2},

{-3, 2}, {1, 2}, {-6, 1}, {-5, 1}, {-6, 1}, {1, 1}, {-5, 8},

{3, 3}, {5, 1}, {-7, 2}, {2, 2}, {-6, 1}, {1, 1}, {-5, 3}, {-3, 1},

{-3, 1}, {-5, 1}, {-3, 2}, {-5, 1}, {-6, 1}, {-7, 1}, {2, 1}, {-6, 4},

{1, 2}, {1, 1}, {2, 1}, {5, 2}, {5, 1}, {3, 1}, {2, 2}, {3, 1}, {2, 1}, {1, 2},

{-6, 1}, {-5, 1}, {-3, 4}, {1, 4}, {-6, 1}, {1, 1}, {-6, 1}, {-5, 1},

{-3, 1}, {-5, 1}, {-6, 1}, {1, 1}, {-5, 4}};

Playsong[song2]

song1 = {{3, 1}, {5, 1}, {6, 1}, {6, 0.5}, {5, 0.5}, {6, 1}, {3, 1},

{2, 2}, {3, 1}, {5, 1}, {6, 1}, {6, 0.5}, {5, 0.5}, {6, 1}, {3, 3},

{3, 1}, {5, 1}, {6, 1}, {6, 0.5}, {5, 0.5}, {6, 1}, {3, 1}, {2, 2},

{5, 1}, {3, 1}, {2, 0.5}, {3, 0.5}, {2, 0.5}, {1, 0.5}, {2, 1}, {-6, 3},

{-6, 1}, {2, 2}, {5, 1}, {3, 3}, {2, 0.5}, {1, 0.5}, {-6, 4},

{5, 1}, {3, 1}, {2, 0.5}, {3, 0.5}, {2, 0.5}, {1, 0.5}, {2, 1}, {-6, 3},

{5, 1}, {3, 1}, {2, 0.5}, {3, 0.5}, {2, 0.5}, {1, 0.5}, {2, 1}, {6, 3}};

Playsong[song1]

4、单位圆的面积等于 f[x_] := 2^1x ;

fig = Plot[{f[x], 0}, {x, 0, 1}, AspectRatio-> 1]

n = 10; fig1 = {}; fig2 = {};

Do[{AppendTo[fig1, Line[{{1 / n* i, 0}, {1/ n*i, f[1/ n*i]}}]], AppendTo[fig2, Line[{{1 / n* (i – 1), f[1 / n*i]}, {1 / n*i, f[1 / n*i]}}]]}, {i, 1, n}];

Show[fig, Graphics[fig1], Graphics[fig2]]

fig3 = {}; fig4 = {};

Do[{AppendTo[fig3, Line[{{1 / n*i,0}, {1/ n*i,f[1/ n*(i– 1)]}}]],

AppendTo[fig4, Line[{{1 / n*(i – 1), f[1 / n * (i – 1)]}, {1/ n*i, f[1/ n*(i – 1)]}}]]}, {i, 1, n}]; Show[fig, Graphics[fig3], Graphics[fig4]]

]o[s1 = N[4 * Sum[f[k / 10^m] / 10^m, {k, 1, 10^m}]];

s2 = N[4 * Sum[f[Hk - 1L / 10^m] / 10^m, {k, 1, 10^m}]];

Print[{s1, s2, Hs1 + s2L / 2}], {m, 1, 4}]

fig5 = {};

Do[{AppendTo[fig5, Line[{{1 / n * Hi - 1L, f[1 / n * Hi - 1L]}, {1 / n * i, f[1 / n * i]}}]]}, {i, 1, n}]; Show[fig, Graphics[fig1], Graphics[fig5]]

]o[m = 10^t;

s3 = N[4 * ((f[0] + f[1]) / 2 / m + Sum[f[k / m] / m, {k, 1, m - 1}]L, 20];

s4 = N[4 * ((f[0] + f[1]) / m + 2 * Sum[f[k / m] / m, {k, 1, m - 1}] +

4 * Sum[f[(k + 1 / 2) / m] / m, {k, 0, m - 1}]L / 6, 20]; Print[{s3, s4}], {t, 3, 4}] {3.1415554669110276{37, 3.1415{751{9122776906}

{3.1415914776113222011, 3.141592*********{162}

5、级数展开法

T[x_, n_] := Sum[(-1)^(k – 1) * x^(2 k – 1) / (2 k – 1), {k, 1, n}];

N[4*T[1, 10 000], 20]

N[Pi, 20]

3.14149265359004323{5

3.1415926535{979323{4626433{3279502{{42`20.

N[4 * (4 T[1 / 5, 100] - T[1 / 239, 40]), 150]

N[Pi, 150]

3.1415926535897932385

3.141592653589793238462643383279502884197169399375105820974944592307816406286208998

62803482534211706798214808651328230664709384460955058223172511332356

3.141592653589793238462643383279502884197169399375105820974944592307816406286208998

62803482534211706798214808651328230664709384460955058223172535940813

6、蒙特卡罗法(随机模拟法)

fig = Plot[ 2^1x , {x, 0, 1}, AspectRatio->1, PlotStyle-> {RGBColor[1, 0, 0]}]; fig0 = Graphics[Line[{{0, 1}, {1, 1}, {1, 0}}]];

Show[fig, fig0]

n = 1000; fig1 = {}; temp = 0;

Do[{x = Random[]; y = Random[];

AppendTo[fig1, Point[{x, y}]];

If [x^2+ y^2<=1, temp ++, {}]}, {i, 1, n}];

Show[fig, fig0, Graphics[fig1]]

N[temp * 4 / n]

n = 10 000; p = {};

]o[m = 0; ]o[x = Random[]; y = Random[]; If[x^2 + y^2 <= 1, m = m + 1], {k, 1, n}]; AppendTo[p, N[4 m / n]], {t, 1, 5}];

Print[p];

Sum[p[[t]], {t, 1, 5}] / 5

{3.1312, 3.142, 3.1276, 3.1124, 3.144{}

3.1316

实验总结:

通过综合许多方法计算圆周率通过不断逼近的方式,我们可以很精确的去计算圆周率熟练运用数学方法与数学软件的结合计算和结局一些数学问题

关于圆周率的计算

关于圆周率的计算 祖冲之在数学方面的突出贡献是关于圆周率的计算,确定了相当精确的圆周率值。中国古代最初采用的圆周率是“周三径一”,也就是说,π=3。这个数值与当时文化发达的其他国家所用的圆周率相同。但这个数值非常粗疏,用它计算会造成很大的误差。随着生产和科学的发展,π=3 就越来越不能满足精确计算的要求。因此,中外数学家都开始探索圆周率的算法和推求比较精确的圆周率值。在中国,据公元一世纪初制造的新莽嘉量斛(亦称律嘉量斛,王莽铜斛,是一种圆柱形标准量器,现存)推算,它所取的圆周率是3.1547 。二世纪初,东汉天文学家张衡在《灵宪》中取用π=≈3.1466,又在球体积计算中取用π≈3.1622。三国时东吴天文学家王蕃在浑仪论说中取用π≈3.1556。以上这些圆周率近似值,比起古率“周三径一”,精确度有所提高,其中π= 10还是世界上最早的记录。但这些数值大多是经验结果,并没有可靠的理论依据。 在这方面最先取得突破性进展的是魏晋之际的数学家刘徽,他在《九章算术注》中创立了“割圆术”,为计算圆周率建立起相当严密的理论和完善的算法。他所得到的圆周率值π=3.14 与π==3.1416,都很精确,在当时世界上是很先进的,至今仍在经常使用。继刘徽之后,祖冲之则将圆周率推算到更加精确的程度。据《隋书·律历志》记载,祖冲之确定了π的不足近似值 3.1415926 和过剩近似值 3.1415927,π的真值在这两个近似值之间,即 3.1415926<π<3.1415927 精确到小数 7 位。这是当时世界上最先进的数学成果,直到约一千年后,才为 15 世纪中亚数学家阿尔·卡西(Al—? kash1)和16世纪法国数学家韦达(F.Vièta,1540—1603)所超过。 关于他得到这两个数值的方法,史无明载,一般认为是基于刘徽割圆术。通过现代计算验证,如果按照割圆术计算,要得到小数 7 位准确的圆周率值,必须求出圆内接正12288 边形的边长和 24576边形的面积,这样,就要对9位数进行上百次加减乘除和开方运算,还要选择适当的有效数字,保证准确的误差范围。对于用算筹计算的古代数学家来说,这绝不是一件轻而易举的事情,只有掌握纯熟的理论和技巧,并具备踏踏实实和一丝不苟的研究精神,才能取得这样的杰出成就。祖冲之的这项记录在中国也保持了一千多年。 中国古代数学家和天文学家还往往用分数表示常量的近似值。为此,祖冲之确定了π的两个分数形式的近似值:约率π=22/7≈3.14 ,密率π=355/113 ≈3.1415929。这两个数值都是π的渐近分数。刘宋天文学家何承天及古希腊阿基米德等都已用到过。密率355/113 是π的分母小于10000的最佳近似分数,则为祖冲之首创。关于密率355/113是如何得到的,今人有“调日法”术,连分数法,解同余式或不定方程,割圆术等种种推测,迄今尚无定论。在欧洲,π= 355/113 是16世纪由德国数学家奥托(V.Otto,1550(?)—1605)和荷兰工程师安托尼兹(A.Anthonisz,1527—1607)分别得到,后通称“安托尼兹率”,但这已是祖冲之以后一千多年的事情了。自从我国古代灿烂的科学文化逐渐得到世界公认以来,一些学者就建议把π= 355 称为“祖率”,以纪念祖冲之的杰出贡献。 关于球的体积公式及其证明: 祖冲之的另一项重要数学成就是关于球的体积公式及其证明。各种几何体的体积计算是古代几何学中的基本内容。《九章算术》商功章已经正确地解决了

圆周率的计算方法

圆周率的计算方法 古人计算圆周率,一般是用割圆法。即用圆的内接或外切正多边形来逼近圆的周长。Archimedes用正96边形得到圆周率小数点后3位的精度;刘徽用正3072边形得到5位精度;Ludolph Van Ceulen用正262边形得到了35位精度。这种基于几何的算法计算量大,速度慢,吃力不讨好。随着数学的发展,数学家们在进行数学研究时有意无意地发现了许多计算圆周率的公式。下面挑选一些经典的常用公式加以介绍。除了这些经典公式外,还有很多其他公式和由这些经典公式衍生出来的公式,就不一一列举了。 ?Machin公式 这个公式由英国天文学教授John Machin于1706年发现。他利用这个公式计算到了100位的圆周率。Machin公式每计算一项可以得到1.4位的十进制精度。因为它的计算过程中被乘数和被除数都不大于长整数,所以可以很容易地在计算机上编程实现。 Machin.c 源程序 还有很多类似于Machin公式的反正切公式。在所有这些公式中,Machin公式似乎是最快的了。虽然如此,如果要计算更多的位数,比如几千万位,Machin 公式就力不从心了。下面介绍的算法,在PC机上计算大约一天时间,就可以得到圆周率的过亿位的精度。这些算法用程序实现起来比较复杂。因为计算过程中涉及两个大数的乘除运算,要用FFT(Fast Fourier Transform)算法。FFT可以将两个大数的乘除运算时间由O(n2)缩短为O(nlog(n))。 关于FFT算法的具体实现和源程序,请参考Xavier Gourdon的主页 ?Ramanujan公式 1914年,印度数学家Srinivasa Ramanujan在他的论文里发表了一系列共14条圆周率的计算公式,这是其中之一。这个公式每计算一项可以得到8位的十进制精度。1985年Gosper用这个公式计算到了圆周率的17,500,000位。

常用数学公式

常用数学公式大全 1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数 2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数 3、速度×时间=路程路程÷速度=时间路程÷时间=速度 4、单价×数量=总价总价÷单价=数量总价÷数量=单价 5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率 6、加数+加数=和和-一个加数=另一个加数 7、被减数-减数=差被减数-差=减数差+减数=被减数 8、因数×因数=积积÷一个因数=另一个因数 9、被除数÷除数=商被除数÷商=除数商×除数=被除数 小学数学图形计算公式 1、正方形C周长S面积a边长周长=边长×4C=4a面积=边长×边长S=a×a 2、正方体V:体积a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a 3、长方形 C周长S面积a边长 周长=(长+宽)×2C=2(a+b) 面积=长×宽S=ab 4、长方体 V:体积s:面积a:长b:宽h:高 (1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh) (2)体积=长×宽×高V=abh 5三角形s面积a底h高 面积=底×高÷2s=ah÷2 三角形高=面积×2÷底 三角形底=面积×2÷高 6平行四边形 s面积a底h高 面积=底×高s=ah 7梯形 s面积a上底b下底h高 面积=(上底+下底)×高÷2s=(a+b)×h÷2 8圆形 S面积C周长∏d=直径r=半径 (1)周长=直径×∏=2×∏×半径C=∏d=2∏r (2)面积=半径×半径×∏ 9圆柱体 v:体积h:高s;底面积r:底面半径c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10圆锥体 v:体积h:高s;底面积r:底面半径 体积=底面积×高÷3 总数÷总份数=平均数

拉格朗日插值多项式积分求圆周率近似Matlab实现

Lagrange 插值多项式积分求圆周率近似 摘要: 公式1:y1=4/(1+x^2) 公式2:y2=4*sqrt(1-x^2) 分别对公式1、公式2求其拉格朗日插值多项式,再对其求0-1上的定积分来求圆周率π的近似值,并在Matlab 中通过画图来比较两个所求得的值与真实值π的偏差。 Lagrange 插值多项式: )()(l )(L 0i n i n i x f x x ∑== 其中 )())(())(() ())(())(()(l 11101110i n i i i i i i i n i i x x x x x x x x x x x x x x x x x x x x x -??--??---??--??--=+-+- )(i x f 为函数在i x 处的函数值,)(x L n 为Lagrange 插值多项式。 Matlab 实现: clc;clear; a=0;b=1; n=input('Enter a number n:'); %将0-1分割成n 节点,即n-1段 X=zeros(1,n); %用来放置节点x 的值 P=zeros(1,n); %用来放置节点x 对应的函数值y1 Q=zeros(1,n); %用来放置节点x 对应的函数值y2 x=0; h=(b-a)/(n-1); %h 为步长 for i=1:n y1=4/(1+x^2); y2=4*sqrt(1-x^2); X(i)=x; P(i)=y1; Q(i)=y2; x=x+h;

end X;P;Q; %通过循环对X、P、Q进行赋值 syms s; l=1;z1=0;z2=0; for j=1:1 for k=2:n l=l*(s-X(k))/(X(j)-X(k)); end z1=z1+l*P(j); z2=z2+l*Q(j); end for j=2:n l=1; for k=1:j-1 l=l*(s-X(k))/(X(j)-X(k)); end for k=j+1:n l=l*(s-X(k))/(X(j)-X(k)); end z1=z1+l*P(j); %通过循环求的函数y1的Lagrange插值多项式z1 z2=z2+l*Q(j); %通过循环求的函数y2的Lagrange插值多项式z2 end I1=int(z1,s,0,1); % z1对s在0-1上求定积分 I1=eval(I1) %用小数形式表示I1 I2=int(z2,s,0,1); % z2对s在0-1上求定积分 I2=eval(I2) %用小数形式表示I2 x=3.10:0.0001:3.20; y0=pi; y1=I1; y2=I2; plot(x,y0,'r') %红线为圆周率π的真实值 hold on plot(x,y1,'g') %绿线为公式1所求值 hold on plot(x,y2,'b') %蓝线为公式2所求值 运行结果:

圆周率计算公式

圆周率计算公式Revised on November 25, 2020

12 π= 22 π= 32 π= 42 π= 52 π= 62 π= 72 π= 82 π= 92 π= 102 π=314 112 π= 122 π= 132 π= 142 π= 152 π= 162 π= 172 π= 182 π= 192 π= 202 π=1256 212 π= 222 π= 232 π= 242 π= 252 π= 262 π= 272 π= 282 π= 292 π= 302 π=2826 312 π= 322 π= 332 π= 342 π= 352 π= 362 π= 372 π= 382 π= 392 π= 402 π=5024 412 π= 422 π= 432 π= 442 π=

452 π= 462 π= 472 π= 482 π= 492 π= 502 π=7850 512 π= 522 π= 532 π= 542 π= 552 π= 562 π= 572 π= 582 π= 592 π= 602 π=11304 612 π= 622 π= 632 π= 642 π= 652 π= 662 π= 672 π= 682 π= 692 π= 702 π=15386 712 π= 722 π= 732 π= 742 π= 752 π= 762 π= 772 π= 782 π= 792 π= 802 π= 812 π= 822 π= 832 π= 842 π= 852 π= 862 π= 872 π= 882 π=

892 π= 902 π=25434 912 π= 922 π= 932 π= 942 π= 952 π= 962 π= 972 π= 982 π= 992 π= 1002 π=31400 12~1002 12=1 22=4 32=9 42=16 52=25 62=36 72=49 82=64 92=81 102=100 112=121 122=144 132=169 142=196 152=225 162=256 172=289 182=324 192=361 202=400 212=441 222=484 232=529 242=576 252=625 262=676 272=729 282=784 292=841 302=900 312=961 322=1024 332=1089 342=1156 352=1225 362=1296 372=1396 382=1444 392=1521 402=1600 412=1681 422=1764 432=1849 442=1936 452=2025

MATLAB计算积分

函数的积分和椭圆的周长 1.正弦函数的积分 [问题]求正弦函数从0到π的积分 y = sin x 当x = 0时,积分为0,画出积分的函数曲线。 [数学模型] 定积分的结果为 ππ00 sin d cos 2S x x x ==-=? 不定积分的结果为 sin d cos I x x x C ==-+? 其中C 是积分常量,由初始条件决定。当x = 0时,积分为I = 0,必有C = 1。结果为 I = -cos x + 1 [算法]根据积分的基本概念,将积分区域分为多份,用矩形法求曲线下的近似面积表示积分的近似值 1()n i i S f x x ==?∑ 矩形法的函数是sum(f)。 用梯形法求曲线下的近似面积表示积分的近似值 1 101[()()]2 n i i i S f x f x x -+==+?∑ 梯形法的函数是trapz(f)。 用数值积分的函数是quad 和quadl ,常用使用格式是 S = quad(f,a,b) 其中,f 表示被积函数,a 表示积分的下限,b 表示积分的下限。 用符号的函数是int ,常用使用格式是 S = int(f,a,b) [程序]zqy4_1.m 如下。 %正弦函数的积分 clear %清除变量 x=linspace(0,pi); %自变量向量 dx=x(2); %间隔 y=sin(x); %被积函数 s1=sum(y)*dx %矩形法积分 s2=trapz(y)*dx %梯形法积分 f=inline('sin(x)'); %被积的内线函数 s3=quad(f,0,pi) %数值定积分

s4=int('sin(x)',0,pi) %符号积分 sc1=cumsum(y)*dx; %矩形法累积积分(精度稍差) sc2=cumtrapz(y)*dx; %梯形法累积积分 figure %创建图形窗口 plot(x,-cos(x)+1,x,sc1,'.',x,sc2,'o') %画解析式和矩阵法以及梯形法积分曲线 s=int('sin(x)') %符号积分 sc3=subs(s,'x',x); %替换数值求符号积分的值 C=-sc3(1) %求积分常数 hold on %保持图像 plot(x,sc3+C,'c*') %画符号法积分曲线 grid on %加网格 fs=16; %字体大小 xlabel('\itx','FontSize',fs) %横坐标 ylabel('\intsin\itx\rmd\itx','FontSize',fs)%纵坐标 title('正弦函数的积分','FontSize',fs) %标题 legend('解析解','矩形法','梯形法','符号法')%图例 zqy4.1图 zqy4.2图 2.三角函数和指数的积分 [问题]求如下函数的积分 y = e ax sin bx 其中a = 0.5,b = 2。积分下限为0。画出积分的函数曲线。 [数学模型] 设 11e sin d sin de {e sin e cos d }ax ax ax ax I bx x bx bx b bx x a a == =-??? 11{e sin cos de }{e sin [e cos e sin d ]}ax ax ax ax ax b b bx bx bx bx b bx x a a a a =-=-+?? 因此不定积分为 221e (sin cos )ax I a bx b bx C a b =-++ 当x = 0时,I 应该为零,所以 22b C a b =+

圆周率计算表(π取3.14)

3.14× 1=3.14 3.14× 2=6.28 3.14 × 3=9.42 3.14 × 4=12.56 3.14×5=15.7 3.14×6=18.84 3.14×7=21.98 3.14×8=25.12 3.14×9=28.26 3.14×10=31.4 3.14×11=3 4.54 3.14×12=37.68 3.14×13=40.82 3.14×14=43.96 3.14×15=47.1 3.14×16=50.24 3.14×17=53.38 3.14×18=56.52 3.14×19=59.66 3.14×20=62.8 3.14×21=6 5.94 3.14×22=69.08 3.14×23=72.22 3.14×24=75.36 3.14×25=78.5 3.14×26=81.64 3.14×27=8 4.78 3.14×28=87.92 3.14×29=91.06 3.14×30=9 4.2 3.14×31=97.34 3.14×32=100.48 3.14×33=103.62 3.14×34=106.76 3.14×35=109.9 3.14×36=113.04 3.14×37=116.18 3.14×38=119.32 3.14×39=122.46 3.14×40=125.6 3.14×41=128.74 3.14×42=131.88 3.14×43=135.02 3.14×44=138.16 3.14×45=141.3 3.14×46=14 4.44 3.14×47=147.58 3.14×48=150.72 3.14×49=153.86 3.14×50=157 3.14×51=160.14 3.14×52=163.28 3.14×53=166.42 3.14×54=169.56 3.14×55=172.7 3.14×56=175.84 3.14×57=178.98 3.14×58=182.12 3.14×59=185.26 3.14×60=188.4 3.14×61=191.54 3.14×62=19 4.68 3.14×63=197.82 3.14×64=200.96 3.14×65=20 4.1 3.14×66=207.24 3.14×67=210.38 3.14×68=213.52 3.14×69=216.66 3.14×70=219.8 3.14×71=222.94 3.14×72=226.08 3.14×73=229.22 3.14×74=232.36 3.14×75=235.5 3.14×76=238.64 3.14×77=241.78 3.14×78=24 4.92 3.14×79=248.06 3.14×80=251.2 3.14×81=25 4.34 3.14×82=257.48 3.14×83=260.62 3.14×84=263.76 3.14×85=266.9 3.14×86=270.04 3.14×87=273.18 3.14×88=276.32 3.14×89=279.46 3.14×90=282.6 3.14×91=285.74 3.14×92=288.88 3.14×93=292.02 3.14×94=295.16 3.14×95=298.3 3.14×96=301.44 3.14×97=30 4.58 3.14×98=307.72 3.14×99=310.86 3.14×100=314

十秒速记圆周率小数点后30位

十秒速记圆周率小数点后30位 商店要死要活就要遛 3.1415926 我傻我吧就去救 5358979 傻儿傻爸死脑儿 3238462 老师算算不傻啊 6433832 吃酒! 79 关于圆周率的计算历史 圆周率(π)是一个常数(约等于3.1415926),是代表圆周长和直径的比值。它是一个无理数,即是一个无限不循环小数。 中国古算书《周髀算经》(约公元前2世纪)中有“径一而周三”的记载,也认为圆周率是常数。 第一个用科学方法寻求圆周率数值的人是阿基米德,他在《圆的度量》(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形开始,逐次加倍计算到正96边形,得到(3+(10/71))<π<(3+(1/7)),开创了圆周率计算的几何方法(亦称古典方法,或阿基米德方法),得出精确到小数点后两位的π值。 中国数学家刘徽在注释《九章算术》(263年)时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术。他用割圆术一直算到圆内接正192边形,得出π≈根号10(约为3.14)。 南北朝时代著名数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7。他的辉煌成就比欧洲至少早了1000年。其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲不知道是祖冲之先知道密率的,将密率错误的称之为安托尼斯率。 阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。 德国数学家柯伦于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。

圆周率的计算历程及意义

圆周率π的计算历程及意义 李毫伟 数学科学学院数学与应用数学学号:080412047 指导老师:王众杰 摘要: 圆周率π这个数,从有文字记载的历史开始,就引起了人们的兴趣.作为一个非常重要的常数,圆周率π最早是出于解决有关圆的计算问题.仅凭这一点,求出它的尽量准确的近似值,就是一个极其迫切的问题了.几千年来作为数学家们的奋斗目标,古今中外的数学家为此献出了自己的智慧和劳动.回顾历史,人类对π的认识过程,反映了数学和计算技术发展情形的一个侧面.π的研究在一定程度上反映这个地区或时代的数学水平. 关键词: 圆周率; 几何法; 分析法; 程序 1、实验时期 通过实验对π值进行估算,这是计算π的第一个阶段.这种对π值的估算基本上都是以观察或实验为根据,是基于对一个圆的周长和直径的实际测量而得出来 π=这个数据,最早见于有文字记载的基督教《圣经》的.在古代,实际上长期使用3 中的章节,其上取圆周率π为3.这一段描述的事大约发生在公元前950年前后.其他如巴比伦、印度、中国等也长期使用3这个粗略而简单实用的数值.在我国刘徽之前“圆径一而周三”曾广泛流传.我国第一部《周髀算经》中,就记载有“圆周三径一”这一结论.在我国,木工师傅有两句从古流传下来的口诀:叫做:“周三径一,方五斜七,”意思是说,直径为1的圆,周长大约是3,边长为5的正方形,对角线之长约为7,这正反应了人们早期对π和2这两个无理数的粗略估计.东汉时期,官方还明文规定圆周率取3为计算圆的面积的标准,后人称之为古率. 早期的人们还使用了其它的粗糙方法.如古埃及、古希腊人曾用谷粒摆在圆形上,以数粒数与方形对比的方法取得数值.或用匀重木板锯成圆形和方形以秤量对比取值……由此,得到圆周率π的稍好些的值.如古埃及人应用了约四千年的()≈2984 3.1605.在印度,公元前六世纪,曾取π≈10≈3.162.在我国东、西汉之

实验一B Matlab基本操作与微积分计算

实验一Matlab基本操作与微积分计算 实验目的 1.进一步理解导数概念及其几何意义. 2.学习matlab的求导命令与求导法. 3.通过本实验加深理解积分理论中分割、近似、求和、取极限的思想方法. 4.学习并掌握用matlab求不定积分、定积分、二重积分、曲线积分的方法. 5.学习matlab命令sum、symsum与int. 实验内容 一、变量 1、变量 MA TLAB中变量的命名规则是: (1)变量名必须是不含空格的单个词; (2)变量名区分大小写; (3)变量名最多不超过19个字符; (4)变量名必须以字母打头,之后可以是任意字母、数字或下划线,变量名中不允许使用标点符号. 1、创建简单的数组 x=[a b c d e f ]创建包含指定元素的行向量 x=first:step: last创建从first起,逐步加step计数,last结束的行向量, step缺省默认值为1 x=linspace(first,last,n)创建从first开始,到last结束,有n个元素的行向量 x=logspace(first,last,n)创建从first开始,到last结束,有n个元素的对数分隔行向量. 注:以空格或逗号分隔的元素指定的是不同列的元素,而以分号分隔的元素指定了不同行的元素. 2、数组元素的访问 (1)访问一个元素: x(i)表示访问数组x的第i个元素. (2)访问一块元素: x(a :b :c)表示访问数组x的从第a个元素开始,以步长为b到第c个元素(但

不超过c),b可以为负数,b缺损时为1. (3)直接使用元素编址序号: x ([a b c d]) 表示提取数组x的第a、b、c、d个元素构成一个新的数组[x (a) x (b) x(c) x(d)]. 3、数组的运算 (1)标量-数组运算 数组对标量的加、减、乘、除、乘方是数组的每个元素对该标量施加相应的加、减、乘、除、乘方运算. 设:a=[a1,a2,…,an], c=标量, 则: a+c=[a1+c,a2+c,…,an+c] a .*c=[a1*c,a2*c,…,an*c] a ./c= [a1/c,a2/c,…,an/c](右除) a .\c= [c/a1,c/a2,…,c/an] (左除) a .^c= [a1^c,a2^c,…,an^c] c .^a= [c^a1,c^a2,…,c^an] (2)数组-数组运算 当两个数组有相同维数时,加、减、乘、除、幂运算可按元素对元素方式进行的,不同大小或维数的数组是不能进行运算的. 设:a=[a1,a2,…,an], b=[b1,b2,…,bn], 则: a +b= [a1+b1,a2+b2,…,an+bn] a .*b= [a1*b1,a2*b2,…,an*bn] a ./b= [a1/b1,a2/b2,…,an/bn] a .\b=[b1/a1,b2/a2,…,bn/an] a .^b=[a1^b1,a2^b2,…,an^bn] 三、矩阵 1、矩阵的建立 矩阵直接输入:从“[ ” 开始,元素之间用逗号“,”(或空格),行之间用分号“;”(或回车),用“ ]”结束. 特殊矩阵的建立: a=[ ] 产生一个空矩阵,当对一项操作无结果时,返回空矩阵,空矩阵的大小为零. b=zeros (m,n) 产生一个m行、n列的零矩阵 c=ones (m,n) 产生一个m行、n列的元素全为1的矩阵 d=eye (m,n) 产生一个m行、n列的单位矩阵 eye (n) %生成n维的单位向量 eye (size (A)) %生成与A同维的单位阵 2、矩阵中元素的操作 (1)矩阵A的第r行A(r,:) (2)矩阵A的第r列A(:,r) (3)依次提取矩阵A的每一列,将A拉伸为一个列向量A(:) (4)取矩阵A的第i1~i2行、第j1~j2列构成新矩阵:A(i1:i2, j1:j2) (5)以逆序提取矩阵A的第i1~i2行,构成新矩阵:A(i2:-1:i1,:) (6)以逆序提取矩阵A的第j1~j2列,构成新矩阵:A(:, j2:-1:j1 ) (7)删除A的第i1~i2行,构成新矩阵:A(i1:i2,:)=[ ] (8)删除A的第j1~j2列,构成新矩阵:A(:, j1:j2)=[ ] (9)将矩阵A和B拼接成新矩阵:[A B];[A;B] 3、矩阵的运算 (1)标量-矩阵运算同标量-数组运算. (2)矩阵-矩阵运算 a. 元素对元素的运算,同数组-数组运算.(A/B %A右除B; B\A%A左除B) b. 矩阵运算: 矩阵加法:A+B 矩阵乘法:A*B 方阵的行列式:det(A) 方阵的逆:inv(A)

数学实验:怎样计算圆周率

怎样计算 姓名: 学号 班级:数学与应用数学4班

实验报告 实验目的:自己尝试利用Mathematica软件计算的近似值,并学会计算的近似值的方法。 实验环境:Mathematica软件 实验基本理论和方法: 方法一:数值积分法(单位圆的面积是,只要计算出单位圆的面积也就计算出了的值) 其具体内容是:以单位圆的圆心为原点建立直角坐标系,则单位圆在第一象限内的部分G是一个扇形, 由曲线()及坐标轴围成,它的面积是,算出了S的近似值,它的4倍就是的近似值。而怎样计算扇形G的面积S的近似值呢?如图

图一 扇形G中,作平行于y轴的直线将x轴上的区间[0,1](也就是扇形在x轴上的半径)分成n等份(n=20),相应的将扇形G分成n个同样宽度1/n的部分()。每部分是一个曲边梯形:它的左方、右方的边界是相互平行的直线段,类似于梯形的两底;上方边界是一段曲线,因此称为曲边梯形。如果n很大,每个曲边梯形的上边界可以近似的看成直线段,从而将近似的看成一个梯形来计算它的面积;梯形的高(也就是它的宽度)h=1/n,两条底边的长分别是和,于是这个梯形面积可以作为曲边梯形面积的近似值。所有这些梯形面积的和T就可以作为扇形面积S的近似值: n越大,计算出来的梯形面积之和T就越接近扇形面积S,而4T就越接近的准确值。 方法二:泰勒级数法 其具体内容是:利用反正切函数的泰勒级数 计算。 方法三:蒙特卡罗法

其具体内容是:单位正方形的面积=1,只要能够求出扇形G 的面积S在正方形的面积中所占的比例,就能立即得到S,从而得到的值。而求扇形面积在正方形面积中所占的比例k的值,方法是在正方形中随机地投入很多点,使所投的每个点落在正方形中每一个位置的机会均等,看其中有多少个点落在扇形内。将落在扇形内的点的个数m与所投的点的总数n的比可以作为k的近似值。能够产生在区间[0,1]内均匀分布的随机数,在Mathematica中语句是 Random[ ] 产生两个这样的随机数x,y,则以(x,y)为坐标的点就是单位正方形内的一点P,它落在正方形内每一个位置的机会均等。P落在扇形内的充分必要条件是。这样利用随机数来解决数学问题的方法叫蒙特卡罗法。 实验内容、步骤及其结果分析: 问题1:在方法一中,取n=1000,通过计算图一中扇形面积计算的的近似值。 分析:图一中的扇形面积S实际上就是定积分。 与有关的定积分很多,比如的定积分

圆周率200位记忆口诀

圆周率的来源和2000位 “圆周率”即圆的周长与其直径之间的比率。关于它的计算问题,历 来是中外数学家极感兴趣、孜孜以求的问题。德国的一位数学家曾经说过:“历史上一个国家所算得的圆周率的准确程度,可以作为衡量这个国家当时数学发展的一个标志。”我国古代在圆周率的计算方面长期领先于世界水平,这应当归功于魏晋时期数学家刘徽所创立的新方法一一“割圆术”。 所谓“割圆术”,是用圆内接正多边形的周长去无限逼近圆周并以此求取圆周率的方法。这个方法,是刘徽在批判总结了数学史上各种旧的计算方法之后,经过深思熟虑才创造出来的一种崭新的方法。 中国古代从先秦时期开始,一直是取“周三径一”(即)的数值来进行有关圆的计算。但用这个数值进行计算的结果,往往误差很大。正如刘徽所说,用“周三径一”计算出来的圆周长,实际上不是圆的周长而是圆内接正六边形的周长,其数值要比实际的圆周长小得多。东汉的张衡不满足于这个结果,他从研究圆与它的外切正方形的关系着手得到圆周率。这个数值比“周三径一”要好些,但刘徽认为其计算出来的圆周长必然要大于实际的圆周长,也不精确。刘徽以极限思想为指导,提出用“割圆术”来求圆周率,既大胆创新,又严密论证, 从而为圆周率的计算指出了一条科学的道路。 在刘徽看来,既然用“周三径一”计算出来的圆周长实际上是圆内接正六边形的周长,与圆周长相差很多;那么我们可以在圆内接正六边形把圆周等分为六条弧的基础上,再继续等分,把每段弧再分割为二,

做出一个圆内接正十二边形,这个正十二边形的周长不就要比正六边形的周长更接近圆周了吗?如果把圆周再继续分割,做成一个圆内接正二十四边形,那么这个正二十四边形的周长必然又比正十二边形的周长更接近圆周。这就表明,越是把圆周分割得细,误差就越少,其内接正多边形的周长就越是接近圆周。如此不断地分割下去,一直到圆周无法再分割为止,也就是到了圆内接正多边形的边数无限多的时候,它的周长就与圆周“合体”而完全一致了。 按照这样的思路,刘徽把圆内接正多边形的面积一直算到了正3072 边形,并由此而求得了圆周率为3.14和3.1416这两个近似数值。这个结果是当时世界上圆周率计算的最精确的数据。刘徽对自己创造的这个“割圆术”新方法非常自信,把它推广到有关圆形计算的各个方面,从而使汉代以来的数学发展大大向前推进了一步。 以后到了南北朝时期,祖冲之在刘徽的这一基础上继续努力,终于求得了圆周率:精确到了小数点以后的第七位。在西方,这个成绩是由法国数学家韦达于1593年取得的,比祖冲之要晚了一千一百多年。祖冲之还求得了圆周率的两个分数值,一个是“约率”22/7 ,另一个 是“密率” 355/113 ,其中355/113 这个值,在西方是由德国的奥托和荷兰的安东尼兹在16世纪末才得到的,都比祖冲之晚了一千一一百年。刘徽所创立的“割圆术”新方法对中国古代数学发展的重大贡献,历史是永远不会忘记的。 答应了大宝,教她点东西,才知道自己才疏学浅,不知道教她什么。偶尔看到巧计圆周率,就截图下来和她一起背,呵呵还真的有效,花三

历史上一些圆周率计算方法

历史上一些圆周率计算方法 从古至今,计算圆周率一直挑战着人类的探索能力极限,人们为此提出了效率越来越高的计算方法。可是,你知道多少圆周率的另类计算法呢?今天我们就来和大家分享一下,历史上出现的几个最奇怪的圆周率计算法。 功亏一篑的人肉计算记录 电脑计算圆周率屡破记录,但新时代对机器的信任和依赖使得人们已经主动放弃了自己手动演算的能力。为了打破手算圆周率的记录,让人们重新拾回对自己演算能力的信心,澳大利亚一个 16 岁的小伙子决定人肉计算圆周率的前 100 位。他挑选了圆周率的一个广义连分数公式,准备了 2000 张草稿纸,并精心地规划了一番。从此开始,他总是把这厚厚的一叠草稿纸带在身边。不管是在家还是在学校,他都端坐在草稿纸面前,不停地挥动着手中的笔。他很快成为了学校的一道风景线——无视上下课铃声,雷打不动地做着枯燥的加法和除法。 2 年后的某堂历史课上,就在他书写最后一个除法竖式时,悲剧发生了:新来的代课老师发现他有小动作,点名叫他起来回答问题。当他无视老师继续埋头苦算时,不明真相的代课老师一怒之下抢过草稿纸,并撕成了无数碎片。 最辗转的计算方法 在一本统计学读物中,为了告诉读者在日常生活中数字无处不在,作者统计出了自家厕所的卷筒纸平均每多少天换一次,乘以平均每天的大便次数,乘以平均每次大便需要扯下来的卫生纸张数,乘以每一截卫生纸的长度,乘以把一长截卫生纸对折 10 次的厚度,除以 1024 ,除以自动切割机从卷筒纸最外层切到最里层(厚度为 R-r )的时间,除以切完整个卷筒纸(剩余的 R+r )还需要的时间,除以切割机移动的速度,得出了圆周率近似值。 作者顺便指出,若读者愿意,还可以在末尾乘以平均每个男人拥有的 jj 根数。 用生命换来的圆周率 这个多少有些标题党了,但实际情况就是如此——这个 3.14 真的是由无数人的鲜血换来的。 2003 年,美国纽约警方搜集了 30 年来发生在斑马线上的车祸,从里面抽取了所有身高在 5 英尺 6 英寸到 8 英寸之间(大概从 1.68 米到 1.73 米)的遇难行人,统计了他们的尸体与斑马线相交的概率,并应用Buffon 投针实验理论得到了圆周率的近似值。纽约警方还专门发表了文章,称由此他们得出,行人被撞事故是完全随机的,一切都是遵循大自然的规律的。文章末尾请求出行人看开一些,生命在规律面前弱不禁风,该发生的总会发生。 凶案现场也有圆周率

圆锥体计算方法

圆锥体计算方法 圆锥体的体积=底面积×高×1/3(圆锥的体积是等底等高圆柱体的三分之一)=1/3πr2h 圆柱体的表面积=高×底面周长+底面积×2 即S圆柱体=(π×d×h)+(π×r2×2) 圆锥的体积 一个圆锥所占空间的大小,叫做这个圆锥的体积. 根据圆柱体积公式V=Sh(V=πr2h),得出圆锥体积公式: V=1/3Sh(V=1/3SH) S是底面积,h是高,r是底面半径。 圆锥的表面积 一个圆锥表面的面积叫做这个圆锥的表面积. S=πl2×(n/360)+πr2或(α*l^2)/2+πr2(此α为角度制)或πr(l+r)(L表示圆锥的母线) 圆锥的计算公式 圆锥的侧面积=母线的平方×π×360百分之扇形的度数 圆锥的侧面积=1/2×母线长×底面周长 圆锥的侧面积=π×底面圆的半径×母线 圆锥的侧面积=高的平方*3.14*百分之扇形的度数 圆锥的表面积=底面积+侧面积S=πr2+πrl (注l=母线) 圆锥的体积=1/3底面积×高或1/3πr2h 圆锥的母线:圆锥的顶点到圆锥的底面圆周之间的距离。 圆锥的其它概念 圆锥的高: 圆锥的顶点到圆锥的底面圆心之间的距离叫做圆锥的高圆锥只有一条高。 圆锥的侧面积: 将圆锥的侧面积不成曲线的展开,是一个扇形 圆锥的母线: 圆锥的顶点到圆锥的底面圆周之间的距离。一般用字母L表示。 知识总结:一个圆锥的体积等于与它等底等高的圆柱的体积的1/3。 要知道了锥度的计算公式,你的问题就都可以解决了. 公式是C=(D-d)/L C表示锥度比D 表示大端直径d表示小端直径L表示锥的长度①已知锥度比C,小头直径d,总长L,则

大头直径D=C*L+d ②已知大头直径D,锥度比C,总长L,则小头直径d=D-C*L ③已知大头直径D,小头直径d,锥度比C,则总长L=(D-d)/C ④已知大头直径D,小头直径d,总长L,则锥度比C=(D-d)/L 各种管材理论重量计算公式、钢材理论重量计算公式1、角钢:每米重量=0.00785×(边宽+边宽—边厚)×边厚 2、管材:每米重量=0.02466×壁厚×(外径—壁厚) 3、圆钢:每m重量=0.00617×直径×直径(螺纹钢和圆钢相同) 4、方钢:每m重量=0.00786×边宽×边宽 5、六角钢:每m重量=0.0068×对边直径×对边直径 6、八角钢:每m重量=0.0065×直径×直径 7、等边角钢:每m重量=边宽×边厚×0.015 8、扁钢:每m重量=0.00785×厚度×宽度 9、无缝钢管:每m重量=0.02466×壁厚×(外径-壁厚) 10、电焊钢:每m重量=无缝钢管 11、钢板:每㎡重量=7.85×厚度 12、黄铜管:每米重量=0.02670×壁厚×(外径-壁厚) 13、紫铜管:每米重量=0.02796×壁厚×(外径-壁厚) 14、铝花纹板:每平方米重量=2.96×厚度 15、有色金属密度:紫铜板8.9 黄铜板8.5 锌板7.2 铅板11.37 16、有色金属板材的计算公式为:每平方米重量=密度×厚度 17、方管: 每米重量=(边长+边长)×2×厚×0.00785 18、不等边角钢:每米重量=0.00785×边厚(长边宽+短边宽--边厚) 19、工字钢:每米重量=0.00785×腰厚[高+f(腿宽-腰厚)] 20、槽钢:每米重量=0.00785×腰厚[高+e(腿宽-腰厚)]

圆周率计算公式

12π=3.14 22π=12.56 32π=28.26 42π=50.24 52π=78.5 62π=113.04 72π=153.86 82π=200.96 92π=254.34 102π=314 112π=379.94 122π=452.16 132π=530.66 142π=615.44 152π=706.5 162π=803.84 172π=907.46 182π=1017.36 192π=1133.54 202π=1256 212π=1384.74 222π=1519.76 232π=1661.06 242π=1808.64 252π=1962.5 262π=2122.64 272π=2289.06 282π=2416.76 292π=2640.74 302π=2826 312π=3017.54 322π=3215.36 332π=3419.46 342π=3629.84 352π=3846.5 362π=4069.44 372π=4298.66 382π=4534.16 392π=4775.94 402π=5024 412π=5278.34 422π=5538.96

432π=5805.86 442π=6079.04 452π=6358.5 462π=6644.24 472π=6936.26 482π=7234.56 492π=7593.14 502π=7850 512π=8167.14 522π=8490.56 532π=8820.26 542π=9456.24 552π=9498.5 562π=9847.04 572π=10201.86 582π=10562.96 592π=10930.34 602π=11304 612π=11683.94 622π=12070.16 632π=12462.66 642π=12861.44 652π=13266.5 662π=13677.84 672π=14095.46 682π=14519.36 692π=14949.54 702π=15386 712π=15828.74 722π=16277.76 732π=16733.06 742π=17194.64 752π=17662.5 762π=18136.64 772π=18617.06 782π=19103.76 792π=19596.74 802π=200.96 812π=20601.54 822π=21113.36 832π=21631.46 842π=22155.84 852π=22686.5 862π=23223.44

圆周率计算公式

圆周率计算公式 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

12 π= 22 π= 32 π= 42 π= 52 π= 62 π= 72 π= 82 π= 92 π= 102 π=314 112 π= 122 π= 132 π= 142 π= 152 π= 162 π= 172 π= 182 π= 192 π= 202 π=1256 212 π= 222 π= 232 π= 242 π= 252 π= 262 π= 272 π= 282 π= 292 π= 302 π=2826 312 π= 322 π= 332 π= 342 π= 352 π= 362 π= 372 π= 382 π= 392 π= 402 π=5024 412 π= 422 π= 432 π= 442 π=

452 π= 462 π= 472 π= 482 π= 492 π= 502 π=7850 512 π= 522 π= 532 π= 542 π= 552 π= 562 π= 572 π= 582 π= 592 π= 602 π=11304 612 π= 622 π= 632 π= 642 π= 652 π= 662 π= 672 π= 682 π= 692 π= 702 π=15386 712 π= 722 π= 732 π= 742 π= 752 π= 762 π= 772 π= 782 π= 792 π= 802 π= 812 π= 822 π= 832 π= 842 π= 852 π= 862 π= 872 π= 882 π=

相关主题