搜档网
当前位置:搜档网 › 溶液表面张力的测定(精)

溶液表面张力的测定(精)

溶液表面张力的测定(精)
溶液表面张力的测定(精)

溶液表面张力的测定-最大气泡法

Determination of Surface Tension Using Maxinum Bubble Pressure Method

一、实验目的及要求

1.掌握最大气泡法测定表面张力的原理和技术。

2. 学会以镜面法作切线,并利用吉布斯吸附公式计算不同浓度下正丁醇溶液的表面吸附量。

3. 求正丁醇分子截面积和饱和吸附分子层厚度。

二、实验原理

在液体的内部任何分子周围的吸引力是平衡的。可是在液体表面层的分子却不相同。因为表面层的分子,一方面受到液体内层的邻近分子的吸引,另一方面受到液面外部气体分子的吸引,而且前者的作用要比后者大。因此在液体表面层中,每个分子都受到垂直于液面并指向液体内部的不平衡力(如图1所示)。

这种吸引力使表面上的分子向内挤促成液体的最小面积。要使液体的表面积增大就必须要反抗分子的内向力而作功增加分子的位能。所以说分子在表面层比在液体内部有较大的位能,这位能就是表面自由能。通常把增大一平方米表面所需的最大功A或增大一平方米所引起的表面自由能的变化值

图1 分子间作用力示意图

ΔG称为单位表面的表面能其单位为J.m-3。而把液体限制其表面及力图使它收缩的单位直线长度上所作用的力,称为表面张力,其单位是N.m-1。

液体单位表面的表面能和它的表面张力在数值上是相等的。欲使液体表面积加△S时,所消耗的可逆功A为:

液体的表面张力与温度有关,温度愈高,表面张力愈小。到达临界温度时,液体与气体不分,表面张力趋近于零。液体的表面张力也与液体的纯度有关。在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小决

定于溶质的本性和加入量的多少。当加入溶质后,溶剂的表面张力要发生变化,。根据能量最低原理,若溶液质能降低溶剂的表面张力,则表面层溶质的浓度应比溶液内部的

浓度大;如果所加溶质能使溶剂的表面张力增加,那么,表面层溶液质的浓度应比内部低。这种现象为溶液的表面吸附。用吉布斯公式(Gibbs)表示:

中:为表面吸附量(mol.m-2),σ为表面张力(J.m-2)。表示在一定温度下表面张力随浓度的改变率。即:

(1)< 0,Г>0,溶质能增加溶剂的表面张力,溶液表面层的浓度大于内部的浓度,称为正吸附作用。

(2)>0,Г<0,溶质能增加溶剂的表面张力,溶液表面层的浓度小于内部的浓度,称为负吸附作用。

通过测定溶液的浓度随表面张力的变化关系可以求得不同浓度下溶液的表面吸附量。如图2是最大气泡法测定表面张力的装置。待测液体置于支管试管中,使毛细管端面与液面相切,液面随时毛细管上升。打开滴液漏斗缓慢抽气。此时,由于毛细管液面所受压力大于支管试管液

图3-77 最大气泡法表面张力测定装置

图2 最大气泡法表面张力测定装置

1-抽气瓶,2-支管试管,3-毛细管,4-恒温槽,5-压差计

压力,毛细管液面不断下降,将从毛细管缓慢析出气泡。如图3-78所示。在气泡形成的过程中,由于表面张力的作用,凹液面产生一个指向液面外的附加压力△P,因此有以下关系:

P大气= P系统+ △P 附加压力与表面张力成正比,与气泡的曲率半径R成反比。

图3气泡形成过程

若毛细管管径较小,则形成的气泡可视为球形。气泡刚形成时,由于表面几乎是平的,所以曲率半径R极大;当气泡形成半球形时,曲率半径R等于毛细管半径r,此时R值最

小。随着气泡的进一步增大,R又趋增大,直至逸出液:

面R=r时,附加压力最大

最大附加压力由数字压力计读出。

用数字压力计可以直接读出压差的值(Pa),最大压差以△h m表示,设ρ为工作介质密度,g为重力加速度,则:

在实验中,使用同一支毛细管和压力计,1/2rρg为常数(仪器常数),用K表示,即:σ=K△h m

用已知表面张力的液体作为标准,可以测得仪器常数K,从而可以测定其它求知液体的表面张力

吸附量与浓度之间的关系可以用Langmuir等温吸附方程式表示:

式中,Γ∞为饱和吸附量,k为经验常数。将上式整理得:

以c/Г∞对c 作图可得到一条直线,其斜率的倒数为Г∞。

如果以N代表1m2表面层的分子数,则:

式中,N A为Avogadro常数,则每个分子的截面积A∞为:

三、仪器试剂

恒温槽装置;数字压力计(或U型管压差计);抽气瓶l个;支管试管(φ25×20cm);毛细管(0.2~0.3mm)1支;烧杯(250mL);T形管1个;重蒸馏水;正丁醇(AR);四、实验步骤

1.仪器常数的测定

将大试管和毛细管清洗干净。在干净的大试管中装入蒸馏水,使毛细管上端塞子塞紧时

毛细管刚好与液面垂直相切。抽气瓶装满水,连接好后旋开下端活塞使水缓慢滴出。控制流速使旗袍气泡从毛细管平稳脱出(每分钟10个气泡),记录气泡脱出瞬间数字压力计的数值,至少三次并取平均值,作为最大压差。根据式K=σ /△h m计算出仪器常数K的值。

2.测定正丁醇溶液的表面张力

用同样的方法测定不同浓度的正丁醇溶液的最大压差,由稀到浓依次测定。每个浓度的溶液测量前,大试管和毛细管一起用该溶液荡洗二至三次。最后重复测定仪器常数。

五、数据处理

1.测定正丁醇水溶液不同浓度下形成气泡时的最大压差,测定溶液的表面张力,并根据吉布斯吸附等温式:

进一步讨论吸附量与浓度的关系,由最大吸附量推算溶质分子截面积

数据是本实验数据处理的关键

2.作图获得的方法示意

(1)将实验点连成平滑的曲线;

(2)过曲线上点作曲线的切线;

(3)由切线的斜率得到偏导数的值。

3.表面张力与浓度实验点关系图

六、注意事项

1. 正丁醇溶液要准确配置,使用过程防止挥发损失。

2. 大试管和毛细管一定要清洗干净,玻璃不挂水珠为好。从毛细管口脱出气泡每次应为一个,即间断脱出。

3. 毛细管端口一定要刚好垂直切入液面,不能离开液面,但亦不可深插。

七、文献值

直链醇分子截面积为21.6*10-16m2

八、创新启示

1. 可用计算机拟合曲线,结果比较客观,避免手工作图的人为误差;

2. 可以得到解析式,为进一步的理论研究提供了很好的条件。

九、提问思考

1. 温度和压强的变化对测定结果有何影响?

2. 浓度的误差对σ-c曲线有何影响?

3. 对同一试样进行测定时,每次脱出气泡一个或连串两个所读结果是否相同,为什么?

溶液中的吸附作用和表面张力的测定

溶液中的吸附作用和表面张力的测定 ——最大气泡压力法 【摘要】本实验采用最大气泡压力法测定了一系列不同浓度的正丁醇溶液的表面张力,并根据Gibbs吸附公式和Langmuir等温方程式的到了表面张力与溶液吸附作用的关系,用作图法求出了正丁醇分子横截面积,从实验上进一步了解表面张力的性质以及表面张力和吸附的关系,并得到了一个测量表面张力的简单有效而又精确的方法。 【关键词】最大气泡法表面张力吸附作用 一、前言 正丁醇是一种表面活性物质,可以使溶液表面张力下降。利用最大气泡压力法,可以测量出正丁醇溶液的表面张力。根据表面张力与气泡压力的关系,由σ-c曲线可以求出溶液界面上的吸附量和单个正丁醇分子的横截面积(S)。 1、物体表面的分子和内部分子能量也不同,表面层的分子受到向内的拉力,有自动缩小的趋势,表面分子的能量比内部分子大。体系产生新的表面(A)所需耗费功(W)的量,其大小应与A成正比。在等温下形成1m2新的表面所需的可逆功为,称为单位表面的表面能,其单位为N·m-1,通常称为表面张力。 2、纯液体情形下,表面层的组成与内部的组成相同,因此液体降低体系表面自由能的途径是缩小其表面积。对于溶液,溶质会影响表面张力,调节溶质在表面层的浓度来降低表面自由能。根据能量最低

原理,溶质能降低溶液的表面张力时,表面层中溶质的浓度应比溶液内部大。反之同理 。这种表面浓度与溶液里面浓度不同的现象叫“吸附”。 Gibbs 用热力学的方法推导出吸附与溶液的表面张力及溶液的浓度间的关系式 =T c RT c ??? ??- ??σ 当( )?σ ?c T <0时, >0,称为正吸附。反之,( )?σ ?c T >0时, <0,称 为负吸附。 正丁醇溶液浓度极小时,溶质分子平躺在溶液表面上,当浓度增加到一定程度时,被吸附了的表面活性物质分子占据了所有表面形成了单分子的饱和吸附层。 在一定温度下,吸附量与溶液浓度之间的关系由Langmuir 等温方程式表示:ΓΓ=?+?∞K C K C 1 或 C C K ΓΓΓ=+ ∞∞ 1 以 C Γ ~C 作图可得一直线,由直线斜率即可求出Γ∞。在饱和吸附情况下,正丁醇分子在气-液界面上铺满一单分子层,则可求得正丁醇分子的横截面积S N 01 = ∞Γ~ 3、最大气泡压力法:当表面张力仪中的毛细管截面与欲测液面相齐时,液面沿毛细管上升。当此压力差在毛细管端面上产生的作用 力稍大于毛细管口溶液的表面张力时,气泡就从毛细管口逸出。 张力与浓度的关系图

表面张力的测量方法

表面张力的测量方法 英才学院 1236305 张雍淋 6121810519 液体表面张力测量在化学、医药、生物工程等领域具有重要意义, 根据液体表面张力的大小可以确定表面活性并计算表面活性剂在溶液表面的吸附量;在合金液体体系中,借助于表面张力还可以评价金相组织及孕育效果等重要参数。目前,测量液体表面张力系数有毛细上升法、最大气泡压力法、液滴法等。 1. 毛细上升法 这个方法,研究的比较早,在理论和实际上都比较成熟。如图 1所示,干净的毛细管浸入液体内部时,如果液体间的分子力小于液体与管壁间的附着力,则液体表面呈凹形。此时表面张力产生的附加力为向上的拉力,并使毛细管内的液面上升, 直到液柱的重力与表面张 力相平衡。 图 1 212cos ()g r r gh πσθπρρ=- 1()2cos g ghr ρρσθ-=

其中:σ—液体的表面张力;r-毛细管的内径;θ-接触角; ρ 1ρ-液体和气体的密度;h-液柱的高度;g-当地的重力加速度。在 和 g 实际应用中一般用透明的玻璃管,如果玻璃被液体完全润湿,可以近似的认为θ= 0。 毛细上升法是测定表面张力最准确的一种方法,国际上也一直用此方法测得的数据作为标准。应用此方法时,要注意选择管径均匀, 透明干净的毛细管,并对毛细管直径进行仔细的标定;毛细管要经过仔细彻底的清洗,毛细管浸入液体时要与液面垂直。 2.最大气泡压力法 如图 2 所示,向插入液体的毛细管轻轻的吹入惰性气体(如 N 2等)。如果选用的毛细管半径很小,在管口形成的气泡基本上是球形的。并且当气泡为半球时,球的半径最小等于毛细管半径 r ;在其前后曲率半径都比r大,如图2 所示。当气泡为半球时,泡内的压力最大,管内外最大压差可由差压计测量得到。 图2

物理化学_溶液表面张力的测定_实验报告

液体表面张力的测定 龚聪(同组人:郭舒隽) 2012.11.8 摘要 我们采用最大气泡压力法测定了不同浓度正丁醇溶液的表面张力,发现随着溶液浓度的升高,表面张力下降,说明正丁醇是一种表面活性物质。 引言 从毛细管鼓出空气泡时,为了克服溶液因表面张力产生的附加压力,毛细管内的压力(大气压)要高于样品管中的压力。附加压力与表面张力成正比,与气泡的曲率半径成反比: 2p= r σ?(1),其中,p ?为附加压力;σ为表面张力;r 为气泡的曲率半径。若毛细 管很小,则形成的气泡基本上是球形的。当气泡开始形成时,表面几乎是平的,这时气泡的半径r 最大;随着气泡的形成,r 逐渐变小,直到气泡成为半球形时,r 等于毛细管的半径R ,附加压力最大,气泡进一步增大,r 变小,附加压力减小,直到气泡逸出。 最大的附加压力m ax 2=p R σ?(2),表面张力m ax =2 R p σ?(3)。 在测量过程中,我们使毛细管端面与液面相切,这样可以忽略鼓泡所需克服的静压力,表面张力可直接用式(3)计算。 对于同一支毛细管, 2 R 称为仪器常数,可用K 表示。我们用表面张力已知的标准物质 ——水来测定仪器的K 值:22= H O H O K p σ?(4)。式(3)可写为m ax =K p σ??(5)。 实验仪器与试剂 表面张力测定仪1套;100m L 容量瓶8个;500m L 烧杯一个;胶头滴管1个;洗瓶1个;碱式滴定管1支 -1 0.5mol L ?正丁醇溶液 实验装置如下图所示

方法 1. 正丁醇溶液的配制 分别向八支100m L 的容量瓶中加入4、8、12、16、20、28、36和40mL 的-10.5mol L ?正丁醇溶液,定容以配制0.02、0.04、0.06、0.08、0.10、0.14、0.18和0.20-1mol L ?的待测溶液并编号0-8。 2. 仪器常数K 的测定 洗净样品管和毛细管; 样品管中装入适量蒸馏水,调节样品管液面高度,使水面与毛细管端面相切; 打开数字压力计电源开关,旋转滴液漏斗上的活塞,使系统与大气相通,按下数字压力计上的“采零”键。关闭活塞,隔绝大气,打开漏斗活塞,水沿漏斗流下,系统的压力开始减小,此时有气泡从毛细管端逸出。控制出气泡的速度,每出一个气泡,压力计读数由小变大,再由大变小,读取6~7个该过程的最大示数。 3. 测定不同浓度正丁醇水溶液的m ax p ? 按照步骤2,从低浓度到高浓度分别测定正丁醇水溶液的m ax p ?。更换溶液时用待测溶液润洗样品管2~3次。 4. 关闭电源,倒掉所配溶液,用蒸馏水洗涤容量瓶和样品管。整理仪器。 数据 表格 1 计算 在本次实验条件下,标准物质—水在16.4°C 下的表面张力为-3 -1 68.7410N m ??。1 由式(4)得仪器常数22-3-4 3 68.7410 = = =2.18100.315010 H O H O K p σ???? 1 数据来源:《大学化学实验——有机及物理化学实验分册》(天津大学出版社)附录三,附表6-13

溶液表面张力的测定详解

学号:201214140123 基础物理化学实验报告 实验名称:溶液表面张测定 12届药学班级1组号 实验人姓名:李楚芳 同组人姓名:罗媛,兰婷 指导老师:邓斌 实验日期:2014-05-30

湘南学院化学与生命科学系 一、 实验目的: 1.加深理解表面张力的性质,表面吉布斯能的意义以及表面张力和吸附的关系。 2. 掌握最大气泡法测定表面张力的原理和技术。 二、 主要实验原理,实验所用定律、公式以及有关文献数据: 当加入溶质后,溶剂的表面张力要发生变化。根据能量最低原理,若溶液质能降低溶剂的表面张力,则表面层溶质的浓度应比溶液内部的浓度大;如果所加溶质能使溶剂的表面张力增加,那么,表面层溶液质的浓度应比内部低。这种现象为溶液的表面吸附。用吉布斯公式(Gibbs )表示: T c σ )d d (RT c Γ- = (1)式 式中,Г为表面吸附量(mol.m -2);σ为表面张力(J.m -2);T为绝对温度(K);C为溶液浓度(mol/L );)(dc d σ T 表示在一定温度下表面张力随浓度的改变率。

当 )( dc d σ T < 0,Г>0,溶质能增加溶剂的表面张力,溶液表面层的浓度大于内部的浓度,称为正吸附作用。 )( dc d σ T >0,Г<0,溶质能增加溶剂的表面张力,溶液表面层的 浓度小于内部的浓度,称为负吸附作用。 可见,通过测定溶液的浓度随表面张力的变化关系可以求得不同浓度下溶液的表面吸附量。 本实验采用最大气泡压力法测定正丁醇水溶液的表面张力值。将欲测表面张力的液体装入试管中,使毛细管的端面与液面相切,液体即沿毛细管上升,直到液柱的压力等于因表面张力所产生的上升力为止。若管内增加一个与此相等的压力,毛细管内液面就会下降,直到在毛细管端面形成一个稳定的气泡;若所增加的压力稍大于毛细管口液体的表面张力,气泡就会从毛细管口被压出。可见毛细管口冒出气泡的需要增加的压力与液体的表面张力成正比。 σ=K △p 式中K 与毛细管的半径有关,对同一支毛细管是常数,可由已知表面张力的液体求得。本实验通过蒸馏水来测得。 由实验测得不同浓度时的表面张力,以浓度为横坐标,表面张力为纵坐标,得σ-c 图,过曲线上任一点作曲线的切线和水平线交纵坐标于b1,b2两点,则曲线在该点的斜率为 c b b c 0b b d d 2121c σ--=--=

溶液表面张力测定实验报告

学号:201114120222 基础物理化学实验报告 实验名称:溶液表面张力的测定 应用化学二班班级 03 组号 实验人姓名: xx 同组人姓名:xxxx 指导老师:杨余芳老师 实验日期: 2013-11-12 湘南学院化学与生命科学系 一、实验目的

1、测定不同浓度正丁醇(乙醇)水溶液的表面张力; 2、了解表面张力的性质,表面自由能的意义及表面张力和吸附的关系; 3、由表面张力—浓度曲线(σ—c 曲线)求界面上吸附量和正丁醇分子的横截面积S ; 4、掌握最大气泡法测定表面张力的原理和技术。 二、实验原理 测定液体表面张力的方法很多,如毛细管升高法、滴重法、环法、滴外形法等等。本实验采用最大泡压法,实验装置如图一所示。 图一中A 为充满水的抽气瓶;B 为直径为0.2~0.3mm 的毛细管;C 为样品管;D 为U 型压力计,内装水以测压差;E 为放空管;F 为恒温槽。 图一 最大泡压法测液体表面张力仪器装置图 将毛细管竖直放置,使滴口瓶面与液面相切,液体即沿毛细管上升,打开抽气瓶的活栓,让水缓缓滴下,使样品管中液面上的压力渐小于毛细管内液体上的压力(即室压),毛细管内外液面形成一压差,此时毛细管内气体将液体压出,在管口形成气泡并逐渐胀大,当压力差在毛细管口所产生的作用力稍大于毛细管口液体的表面张力时,气泡破裂,压差的最大值可由U 型压力计上读出。 若毛细管的半径为r ,气泡从毛细管出来时受到向下的压力为: 式中,△h 为U 型压力计所示最大液柱高度差,g 为重力加速度,ρ为压力计所贮液体的密度。 气泡在毛细管口所受到的由表面张力引起的作用力为2πr?γ,气泡刚脱离管口时,上述二力相等: 若将表面张力分别为和的两种液体用同一支毛细管和压力计用上法测出各 g h p p p ρ?=-=系统大气m ax r g h r p rr πρππ22m ax 2=?=γπρππr g h r p r 22m ax 2 =?=g h r ργ?=2

实验液体的表面张力测定(滴重法)

实验D-13 滴重法测定液体的表面张力 实验目的 用滴重法测量液体的表面张力,学会用校正因子表,迭代计算毛细管的半径。 实验原理 当液体在滴重计(滴重计市售商品名屈氏粘力管)口悬挂尚未下滴时: r :若液体润湿毛细管时为外半径,若不润湿时应使用内半径。 σ: 液体的表面张力。 m :液滴质量(一滴液体)。 g ;重力加速度,当采用厘米.克.秒制时为 981cm /S 2 但从实际观察可知,测量时液滴并未全部落下,有部分收缩回去,故需对上式进行校正: m ’为滴下的每滴液体质量(用分析天平称量)。 f 称为哈金斯校正因子,它是r /v 1/3 的函数;v 是每滴液体的体积;可由每滴液体的质 量除液体密度得到。在上式中r 和f 是未知数,可采用已知表面张力的液体(如蒸馏水)做实验,采用迭代法得到: 设每滴水质量为m ’,体积为v ;先用游标卡尺量出滴重计管端的外直径D ;可得半 径r 0;用r 0作初值;求得r 0/ v 1/3 ;查哈金斯校正因子表(插值法)得f 1;用水的表面 张力σ和f 1代入12'r f m g πσ=;求的第一次迭代结果r 1;再由r 1/ v 1/3 查表得f 2 ;再代 入: 22'r f m g πσ=求得第二次迭代值r 2,同法再由r 2/ v 1/3 代入查表求f 3 ,这样反复迭代 直至相邻两次迭代值的相对误差:┃(r i-1-r i )/ r i ┃≤eps (eps 表示所需精度,如1‰)这时的r 就是要求的结果,记录贴在滴重管上的标签上,半径就标定好了。 求得半径r 后,对待测液体只要测得每滴样品重和密度,就可由r/ v 1/3查表得f ;由: 2'r f m g πσ= 就可求得样品的表面张力。 纯水的表面张力见最大泡压法实验;水和酒精的密度数据见恒温技术与粘度实验。 仪器与药品 屈氏粘力管一根。测液体比重用比重瓶一个。游标卡尺一根(公用)。50ml 和100ml 烧杯各一个。酒精,表面活性剂溶液(每组一个,实验室编好号)。 实验步骤 1.用游标卡尺测量滴重计的外半径。测量酒精从上刻度到下刻度滴下液滴的总质量W 和滴数

实验17液体表面张力的测定

. . 物理化学实验备课材料 实验17 液体表面张力的测定 一、基本介绍 液体的表面张力是指液体与它的蒸气成平衡时体系的界面张力。液体表面张力常常是在空气中测定的。当气相是一个处于低压或中压的惰性气体时,一般液体表面张力值与气相的组成几乎无关。液体的表面张力,源于液体相界面分子受力不平衡,意为相表面的单位长度收缩力,用“σ"表示,其单位是焦耳/平方米(J·m-2)或牛/米(N·m-1).液体表面张力的测定,不仅可以加深对表面张力这一物系热力学性质的认识,而且可以研究表面活性剂的表面活性、分子的横截面积、分子长度等。 二、实验目的1、掌握最大气泡法测定表面张力的原理,了解影响表面张力测定的因素。 2、测定不同浓度正丁醇溶液的表面张力,计算吸附量, 由表面张力的实验数据求分子的截面积及吸附层的厚度。 三、实验原理 1、溶液中的表面吸附 从热力学观点来看,液体表面缩小是一个自发过程,这是使体系总自由能减小的过程,欲使液体产生新的表面ΔA,就需对其做功,其大小应与ΔA 成正比: -W′=σ·ΔA(1) 如果ΔA为1m2,则-W′=σ是在恒温恒压下形成1m2新表面所需的可逆功,所以σ称为比表面吉布斯自由能,其单位为J·m-2。也可将σ看作为作用在界面上每单位长度边缘上的力,称为表面张力,其单位是N·m-1。在定温下纯液体的表面张力为定值,当加入溶质形成溶液时,表面张力发生变化,其变化的大小决定于溶质的性质和加入量的多少。根据能量最低原理,溶质能降低溶剂的表面张力时,表面层中溶质的浓度比溶液内部大;反之,溶质使溶剂的表面张力升高时,它在表面层中的浓度比在内部的浓度低,这种表面浓度与内部浓度不同的现象叫做溶液的表面吸附。在指定的温度和压力

溶液表面张力的测定(拉环法)

溶液表面张力的测定(拉环法) 一实验目的 (1)了解表面自由能、表面张力的意义及表面张力与吸附的关系。(2)通过测定不同浓度乙醇水溶液的表面张力,计算吉布斯表面吸附量和乙醇分子的横截面积,掌握拉环法测定表面张力的原理和技术。二实验原理 (1)表面张力 在温度、压力、组成恒定时,每增加单位表面积,体系的吉布斯自由能的增值称为表面吉布斯自由能(J·m-2),用γ表示。也可以看作是垂直作用在单位长度相界面上的力,即表面张力(N·m-1)。位表面层上分子比同数量内层分子引起体系自由能的增加量称为比表面自由能。比表面和表面张力在数值和量纲上一致,故常用表面张力度量比表面自由能。 (2)影响表面张力的因素 液体的表面张力与温度有关,温度越高,表面张力越小。液体的表面张力与液体的浓度有关,在溶剂中加入溶质,表面张力就会发生变化。 (3)表面张力与吸附量的关系 表面张力的产生是由于表面分子受力不均衡引起的,当加入一种物质后,对某些溶液(包括内部和表面)及固体的表面结构会带来强烈的影响,则必然引起表面张力的改变。如果溶质加入能降低表面吉布斯自由能时,边面层溶质浓度比内部大;反之增加表面吉布斯自由

能时,则溶液在表面的浓度比内部小。由此可见,在指定温度和压力下,溶质的吸附量与溶液的表面张力有关,即吉布斯等温吸附方程: Γ= -(dγ/dc)T(c/RT) 其中Γ为溶质的表面超额,c 为溶质的浓度,γ为溶液的表面张力 a若dγ/dc<0,Γ>0,为正吸附,表面层溶质浓度大于本体溶液,溶质是表面活性剂。 b若dγ/dc>0,Γ<0,为负吸附,表面层溶质浓度小于本体溶液,溶质是非表面活性剂。 溶液的饱和吸附量: c/Γ= c/Γ∞+1/KΓ∞ 分子的截面积: S B = 1/(Γ∞L) L=6.02×1034 (4)吊环法测表面张力的原理 测表面张力的方法很多,有毛细管上升法,滴重法,最大气泡压力法,吊环法等。吊环法是将吊环浸入溶液中,然后缓缓将吊环拉出溶液,在快要离开溶液表面时,溶液在吊环的金属环上形成一层薄膜,随着吊环被拉出液面,溶液的表面张力将阻止吊环被拉出,当液膜破裂时,吊环的拉力将达到最大值。自动界面张力仪将记录这个最大值P。按照公式校正后,可以得出溶液的表面张力数值γ。校正因子: F=0.7250+(0.01452P/C2D+0.04534-1.679r/R)1/2式中P:界面张力仪显示读数值mN·m-1

实验17液体表面张力的测定dyl一

. . 物理化学实验备课材料 实验17 液体表面力的测定 一、基本介绍 液体的表面力是指液体与它的蒸气成平衡时体系的界面力。液体表面力常常是在空气中测定的。当气相是一个处于低压或中压的惰性气体时,一般液体表面力值与气相的组成几乎无关。液体的表面力,源于液体相界面分子受力不平衡,意为相表面的单位长度收缩力,用“σ"表示,其单位是焦耳/平方米(J·m-2)或牛/米(N·m-1).液体表面力的测定,不仅可以加深对表面力这一物系热力学性质的认识,而且可以研究表面活性剂的表面活性、分子的横截面积、分子长度等。 二、实验目的1、掌握最大气泡法测定表面力的原理,了解影响表面力测定的因素。 2、测定不同浓度正丁醇溶液的表面力,计算吸附量, 由表面力的实验数据求分子的截面积及吸附层的厚度。 三、实验原理 1、溶液中的表面吸附 从热力学观点来看,液体表面缩小是一个自发过程,这是使体系总自由能减小的过程,欲使液体产生新的表面ΔA,就需对其做功,其大小应与ΔA 成正比: -W′=σ·ΔA (1) 如果ΔA为1m2,则-W′=σ是在恒温恒压下形成1m2新表面所需的可逆功,所以σ称为比表面吉布斯自由能,其单位为J·m-2。也可将σ看作为作用在界面上每单位长度边缘上的力,称为表面力,其单位是N·m-1。在定温下纯液体的表面力为定值,当加入溶质形成溶液时,表面力发生变化,其变化的大小决定于溶质的性质和加入量的多少。根据能量最低原理,溶质能降低溶剂的表面力时,表面层中溶质的浓度比溶液部大;反之,溶质使溶剂的表面力升高时,它在表面层中的浓度比在部的浓度低,这种表面浓度与部浓度不同的现象叫做溶液的表面吸附。在指定的温度和压力下,溶质的吸

用拉脱法测定液体的表面张力系数实验

实验二、用拉脱法测定液体的表面张力系数 液体表层厚度约m 10 10 -内的分子所处的条件与液体内部不同,液体内部每一分子被 周围其它分子所包围,分子所受的作用力合力为零。由于液体表面上方接触的气体分子,其密度远小于液体分子密度,因此液面每一分子受到向外的引力比向内的引力要小得多,也就是说所受的合力不为零,力的方向是垂直与液面并指向液体内部,该力使液体表面收缩,直至达到动态平衡。因此,在宏观上,液体具有尽量缩小其表面积的趋势,液体表面好象一张拉紧了的橡皮膜。这种沿着液体表面的、收缩表面的力称为表面张力。表面张力能说明液体的许多现象,例如润湿现象、毛细管现象及泡沫的形成等。在工业生产和科学研究中常常要涉及到液体特有的性质和现象。比如化工生产中液体的传输过程、药物制备过程及生物工程研究领域中关于动、植物体内液体的运动与平衡等问题。因此,了解液体表面性质和现象,掌握测定液体表面张力系数的方法是具有重要实际意义的。测定液体表面张力系数的方法通常有:拉脱法、毛细管升高法和液滴测重法等。本实验仅介绍拉脱法。拉脱法是一种直接测定法。 【实验目的】 1.了解737FB 新型焦利氏秤实验仪的基本结构,掌握用标准砝码对测量仪进行定标的方法; 2.观察拉脱法测液体表面张力的物理过程和物理现象,并用物理学基本概念和定律进行分析和研究,加深对物理规律的认识。 3.掌握用拉脱法测定纯水的表面张力系数及用逐差法处理数据。 【实验原理】 1.测量公式推导: 当逐渐拉提冂形铝片框时,?角逐渐变小而接近为零,这时所拉出的液膜前后两个表面的表面张力f 均垂直向下。设拉起液膜将破裂时的拉力为F ,则有 f 2 g )m m (F 0+?+= (1) 式中:m 为粘附在框上的液膜质量,0m 为线框质量。因表面张力的大小与接触面周界长度成正比,则有: )d L (2f 2+?α= (2) 比例系数α称表面张力系数,单位为m /N 。 由(1),(2)式得: ) d L (2g )m m (F 0+?+-= α (3) 由于冂形铝片框很薄,被拉起的水膜很薄,m 较小,可以将其忽略,且一般有d L >>,那么L d L ≈+,于是(3)式可以简化为 : L 2g m F 0?-= α (4)

表面张力的测定实验报告

浙江万里学院生物与环境学院 化学工程实验技术实验报告 实验名称:溶液表面张力的测定 (1)实验目的 1、掌握最大气泡法测定表面张力的原理和技术 2、通过对不同浓度正丁醇溶液表面张力的测定,加深对表面张力、表面自由能和表面吸附量关系的理解 3、学习使用Matlab处理实验数据 (2)实验原理 1、表面自由能:从热力学观点看,液体表面缩小是一个自发过程,这是使

体系总的自由能减小的过程。如欲使液体产生新的表面A ?,则需要对其做功。功的大小应与A ?成正比:-W=σA ? 2、 溶液的表面吸附:根据能量最低原理,溶质能降低溶液的表面张力时,表面层中溶 质的浓度应比溶液内部大,反之,溶质使溶液的表面张力升高时,它在表面层中的浓度比在内部的浓度低。这种表面浓度与溶液里面浓度不同的现象叫“吸附”。显然,在指定温度和压力下,吸附与溶液的表面张力及溶液的浓度有关。Gibbs 用热力学的 方法推导出它们间的关系式 T c RT c )(??-=Γσ (1)当0 0,溶质能减少溶剂的表面张力,溶液表面层的浓度大于内部的浓度,称为正吸附,此类物质叫表 面活性物质。(2)当0>??? ????T c σ时,Γ<0,溶质能增加溶剂的表面张力,溶液表面 层的浓度小于内部的浓度,称为负吸附,此类物质叫非表面活性物质。由 T c RT c )(??- =Γσ 可知:通过测定溶液的浓度随表面张力的变化关系可以求得不同浓 度下溶液的表面吸附量。 3、 饱和吸附与溶质分子的横截面积:吸附量Γ浓度c 之间的关系,有Langmuir 等温方程式表示:c K c K ·1·+Γ=Γ∞ 4、 最大泡压法: (3) 实验装置与流程:将燃烧热实验的主要设备、仪器和仪表等 按编号顺序添入图下面相应位置: 图11-4 最大气泡法测表面张力装置

液体表面张力系数的测定doc.DOC

佛山科学技术学院实验室开放基金项目 研究报告 项目名称:液体表面张力系数的测定 申请者:李京玲吕咏思朱家欢蔡小玲朱绍进刘本明所在学院:理学院 指导老师: 类别: ■自然科学类学术论文 ?哲学社会科学类社会调查报告和学术论文 ?科技发明制作A □科技发明制作B

液体表面张力系数的测定 姓名:李京玲吕咏思朱家欢蔡小玲朱绍进刘本明班级:10物理学(师范) 摘要: 关键词:液体表面张力 引言 有时候,我们会觉得很奇怪,为什么有的笑昆虫能在液体上自由自在的行走?为什么银针能在水面上浮着而不沉下去呢?为什么少量水银在干净的玻璃版上会收缩成球冠状,而水却会扩张开来?等等的这些原因,激起我们想要研究液体表面张力的动力。 【实验目的】 1.掌握用焦利秤测量微小力的原理和方法。 2.用拉脱法测量室温下水的表面张力系数。 【实验仪器】 约利弹簧秤、砝码、烧杯、金属框、游标卡尺等。 【实验原理】 液体分子之间存在分子力,其有效作用半径约10-8cm。液体表面层内的分子所处的环境和液体内部分子不同。液体内部每个分子四周都被同类的其他分子所包围,它受到周围分子的合力为零。但处于液体表面层内的分子,由于液体上方为气相,分子数很少,因而表面层内每个分子受到向上的引力比向下的引力少,合力不为零,即液体表面处于张力状态。表面分子有从液面挤入液体内部的倾向,使液面自然收缩,直到处于动态平衡,即在同一时间内脱离液面挤入液体内部的分子数和因热运动而到达液面的分子数相等为止。因而,在没有外力作用时液滴总是呈球形,即是其表面积缩到最小。 表面张力的大小可以用表面张力系数来描述。 设在液面上作一厂为L的线段,此线段两侧的液体之间存在着互相牵引的力f,这种力的方向恒与线段垂直,大小与线段长度L成正比,即 F=ɑL (1) 其比例系数ɑ为液体表面张力系数,定义为作用在单位长度上的表面张力,单位为N/m。实验证明,表面张力系数ɑ的大小与液体的种类、纯度、温度和它上方的气体成分有关,温度越高,液体中所含杂质越多,则表面张力系数越小。

表面张力及测定

基础知识2 第三讲表(界)面张力 3.0 思考题 (1)什么是表(界)面张力?降低表(界)面张力有什么意义?(2)简述:表面张力的测定方法(常用的有7种)及各自的适用范围。 (3)解释:毛细上升法、脱环法、滴重法、吊片法、最大气泡法、停滴法、悬滴法。 (4)写出Szyszkowski公式,指出其研究内容和用途。(5)解释:表面张力曲线的最低点现象。 (6)什么是表面活性剂样品纯净与否的重要标志? (7)正、负离子表面活性剂混合会发生什么现象?为什么?(8)解释:表面活性剂降低水表面张力的能力、效率 (9)什么是溶液的平衡表面张力、动表面张力?影响动表面张力的因素存在哪些定性规律? (10)什么是溶液表面张力时间效应?如何测定?影响因素?(11)简述:振荡射流法的基本原理。 (12)液液界面由哪些途径形成,是否自发进行? (13)解释:界面张力、界面自由能、界面张力曲线转折点。(14)何谓“超低界面张力”?有何实际应用?简述旋滴法测定超低界面张力的基本原理。

3.1 基本概念 1.界面、界面现象、界面张力(界面自由能)表面张力现象.A VI 2.毛细上升法、脱水法、滴重法、吊片法、最大气泡法、停滴法、 悬滴法(7种测定界面张力的方法) 3.表面张力曲线的最低点现象 4.振荡射流法 5.Szyszkowski公式 6.超低界面张力、旋滴法 3.2 基本原理 1.测定界面张力方法的原理(常用的7种方法) ①毛细上升法 ②脱环法 ③滴重法 ④吊片法 ⑤最大气泡法 ⑥停滴法 ⑦悬滴法 2.振荡射流法的工作原理。 3.应用“超低界面张力”技术解决注水油井后期石油开采的基本 原理。

溶液表面张力的测定(精)

溶液表面张力的测定-最大气泡法 Determination of Surface Tension Using Maxinum Bubble Pressure Method 一、实验目的及要求 1.掌握最大气泡法测定表面张力的原理和技术。 2. 学会以镜面法作切线,并利用吉布斯吸附公式计算不同浓度下正丁醇溶液的表面吸附量。 3. 求正丁醇分子截面积和饱和吸附分子层厚度。 二、实验原理 在液体的内部任何分子周围的吸引力是平衡的。可是在液体表面层的分子却不相同。因为表面层的分子,一方面受到液体内层的邻近分子的吸引,另一方面受到液面外部气体分子的吸引,而且前者的作用要比后者大。因此在液体表面层中,每个分子都受到垂直于液面并指向液体内部的不平衡力(如图1所示)。 这种吸引力使表面上的分子向内挤促成液体的最小面积。要使液体的表面积增大就必须要反抗分子的内向力而作功增加分子的位能。所以说分子在表面层比在液体内部有较大的位能,这位能就是表面自由能。通常把增大一平方米表面所需的最大功A或增大一平方米所引起的表面自由能的变化值 图1 分子间作用力示意图 ΔG称为单位表面的表面能其单位为J.m-3。而把液体限制其表面及力图使它收缩的单位直线长度上所作用的力,称为表面张力,其单位是N.m-1。 液体单位表面的表面能和它的表面张力在数值上是相等的。欲使液体表面积加△S时,所消耗的可逆功A为: 液体的表面张力与温度有关,温度愈高,表面张力愈小。到达临界温度时,液体与气体不分,表面张力趋近于零。液体的表面张力也与液体的纯度有关。在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小决 定于溶质的本性和加入量的多少。当加入溶质后,溶剂的表面张力要发生变化,。根据能量最低原理,若溶液质能降低溶剂的表面张力,则表面层溶质的浓度应比溶液内部的

利用滴重法测定液体表面张力

摘要 本文论述了用滴重法测定液体表面张力的基本原理、测定装置、测试步骤和该方法的应用特点。 Abstract: The basic principle, device and method for measuring liquid surface tension with the drop weight method are reviewed in this paper. Besides, the application features of this method are introduced. 关键词 液体表面张力 滴重法 Keywords Liquid surface tension; Drop weight method 前言 表面张力的知识对基础科学研究和生产应用都具有重要意义。它决定了很多工业生产的质量,例如:食品、农业化学制品、药品的生产和冶金[1]、炼钢等等。人们针对表面张力也做了大量的研究,很多发达国家将表面张力测定作为检测和控制环境污染的标准程序之一。 滴重法是一种较好的测定表面张力的方法,此方法操作简单,温度控制方便,试样尺寸小,再现性好,而且能够测量液-气界面和液-液界面的张力。在适当的条件下,滴重法的精度可以达到±m 。 测量原理 图1 滴重法示意图 如图1所示,对于液体从很细的管口中缓慢滴出的过程,液滴在表面张力的支撑下缓慢长大,当重量比表面张力稍大时,液滴就将落下来。设管口的半径为r ,落下的液滴质量为m ,其表面张力为σ,当重力加速度为g ,则可以得到: σr mg 2π= (1) 但实际过程并不是这么简单,当液滴落下时,首先式中部变细,大部分落下来,剩下的一部分变成小液滴,接着落下来。即使采用毛细管,应用公式(1)也会产生很大的误差,因此Harkins 就引入了校正因子f ,则更精确的表面张力可以表示为: rf mg σ2π= (2) 其中f 与液滴的大小V 和管口的半径r 有关,根据f 与3/1V r 的关系,可以从表中查得相应的修正系数[2]。

实验报告:表面张力的测定

实验报告:表面张力的测定 一、实验目的 1.液体表面张力的测定,了解物质体系性质、溶液表面结构、分子间相互作用(特别是表面分子相互作用),可用来帮助计算等张比容,工业设计中用来帮助估算塔板效率等。 2.熟悉表面张力中常用的测定方法:(1)毛细管升高法(2)滴重法。 二、实验原理 (1)毛细管升高法: 当一根洁净的、无油脂的毛细管浸进液体,液 体在毛细管内升高到h 高度。在平衡时、毛细管中 液柱重量与表面张力关系为22cos r r g h πγθπρ= 2cos g hr ργθ = 式中,γ为表面张力,g 为重力加速度,ρ为液体密度,r 为毛细管半径。 如果液体对玻璃润湿θ=0,cos θ=1,则2g h r ργ= 。 (2)滴重法: 当达到平衡时,从外半径为r 的毛细管 滴下的液体质量,应等于毛细管周边乘 以表面张力,即2mg r πγ=式中:m 为 液滴质量,r 为毛细管外半径,γ为表面 张力,g 为重力加速度。 事实上,滴下来的仅仅是液滴的一部分。 因此,式中给出的仅仅是理想液滴。经 实验证明,滴下来的液滴大小是V/3r 的 函数,即有f(V/3r )所决定(其中V 是液滴体积)所以式子可变为32(/)mg ryf V r π=或32(/) mg rf V r γπ=其中F 称为校正因子。 三、实验仪器 毛细管升高法:约25cm 长、0.2mm 直径的毛细管毛细管,读数显微镜,小试管,25°C 恒温槽。 滴重法:毛细管(末端磨平),称量瓶,读数显微镜。

四、实验步骤 毛细管升高法: 1、将毛细管洗净、干燥,于小试管中倾入蒸馏水,按图装好。 2、用吸耳球在X 管处慢慢地将空气吹入试管中,待毛细管中液体升高后,停止吹气并 使试管内外压力相等。待液体回到平衡位置,用度数显微镜测量其高度h 。测定完毕后从X 管吸气,降低毛细管内液面,停止吸气并使管内外压力相等,恢复到平衡位置测量高度。如果毛细管洁净,则两次测量的高度应相等,否则应清洗毛细管。 3、测定毛细管内径。将毛细管插入高锰酸钾溶液后,洗净毛细管外层,用读数显微镜 测量毛细管的内径。 4、用密度计测量高锰酸钾的密度。 滴重法: 1、按图二装好仪器,把待测液体充满毛细管,并调节液位使液滴按一定时间间隔滴下。 在保证液滴不受震动的条件下用称量瓶搜集30滴,用电子分析天平称重。 2、用游标卡尺测量毛细管的外径。 3、从液滴重量及液体密度计算滴下液滴体积。然后求出v/r 3数值,从表中查出校正因 子F 数值。根据式子求出表面张力。 五、数据记录 毛细管升高法: 升高高度h/cm 5.67 5.67 溶液密度ρ/(g/3cm ) 0.9981 内径r/mm 0.654 (读数显微镜) 0.220(用水测定毛细管升高h ,计算 所得) 滴重法: 液体+瓶质量m1/g 26.1130 瓶质量m2/g 22.8806 外径r/mm 7.64 六、数据处理 毛细管升高法: m N cm N mm cm g N cm g ghr /0907.0/1007.92 102654.067.5/108.9/9981.02433=?=÷÷????== --ργ 滴重法: cm cm cm h 67.5267.567.5=+=

液体表面张力的测量预习报告

液体表面张力系数的测量实验 液体沿表面总是存在着使液面紧张且向液体内收缩的力称为表面张力。液体的许多现象,如毛细管现象、湿润现象、泡沫的形成等,都与表面张力有关。表面张力系数是液体表面的重要力学性质:对于不同种类的液体,其表面张力不同,而对于同一种液体,其表面张力系数随着温度及其所含杂志的改变而增大或减小。这些性质广泛应用于工业生产中,如浮法选矿、液体的传输技术、化工生产线的设计等等都要对液体的表面张力进行研究。 测定液体表面张力系数的方法很多。常用的有拉脱法和毛细管升高法。本次实验介绍用拉脱法测定液体表面张力系数。 一、实验目的 1.用砝码对硅压阻力敏传感器进行定标,计算该传感器的灵敏度,学习传感器的定标方法; 2.观察拉脱法测量表面张力的过程,并用物理学基本概念进行分析,加深对物理规律的认识; 3.测量纯水和其它液体(如:甘油)的表面张力系数。 二、实验仪器 实验仪器主要由液体表面张力系数测量实验仪主机以及实验装置以及镊子、砝码组成。应用电脑采集测量时需要壹根串口转USB 连接线、电脑和采集软件,仪器装置见下图。 三、实验原理 一个金属环固定在传感器上,将该环浸没于液体中,并渐渐拉起圆环,当它从液面拉脱瞬间传感器受到的拉力差值f 为 απ)(21D D f += (1) 式中: 1D 、2D 分别为圆环外径和内径,α为液体表面张力系数,g 为重力加速度,所以液体表面张力系数为:

)](/[21D D f +=πα (2) 实验中,液体表面张力可以由下式得到: B U U f /)(21-= (3) B 为力敏传感器灵敏度,单位V/N 。1U ,2U 分别为即将拉断水柱时数字电压表读数以及拉 断时数字电压表的读数。 四、实验步骤 1.连接硅压阻力敏传感器,并开机预热15~20分钟。测量吊环内外直径,然后清洗玻璃器皿(盛装待测液体)和吊环,给实验装置加水(注意加水量不可过多,可以参考装置外壁加水刻度线); 2.将吊环挂在力敏传感器的钩上,将力敏传感器转至水容器外部,这样取放砝码比较方便。待吊环晃动较小时,对仪器进行调零,然后用镊子安放砝码对传感器进行定标,取放砝码时应尽量轻; 3.将待测液体倒入玻璃器皿后,再将盛有待测液体的玻璃器皿小心地放入空的塑料容器,并一起放入实验圆筒内;将力敏传感器转至容器内,并轻轻挂上吊环,可以轻触吊环,让其晃动 说明:之所以不将测量液体直接倒入塑料容器内进行测量,是防止某些待测液体与塑料容器发生化学反应而影响测量结果。 4.关闭橡皮球阀门,反复挤压橡皮球使装置内部液体液面上升,当吊环下沿部分均浸入待测液体中时,及时松开橡皮球的阀门,这时液面缓慢下降,观察环浸入液体中及从液体中拉起时的物理过程和现象。特别应注意吊环即将拉断液柱前一瞬间数字电压表读数值为U 1,拉断后数字电压表读数为U 2。记下这两个数值。 5.用计算机采集时,在环接触液面开始下降时点开始采集按钮,可以通过软件实时采集传感器输出电压值的变化过程,通过鼠标移动测量拉脱瞬间的电压值以及拉断后的电压值,计算测量液体的表面张力,并与手动测量的结果进行比较。 五、注意事项 1.实验前,吊环须严格处理干净:可用NaOH 溶液洗净油污或杂质后,用纯水冲洗干净,并用热吹风烘干;

液体表面张力系数的测定报告记录模板

液体表面张力系数的测定报告记录模板

————————————————————————————————作者:————————————————————————————————日期:

液体表面张力系数的测定实验报告模板 【实验目的】 1.了解水的表面性质,用拉脱法测定室温下水的表面张力系数。 2.学会使用焦利氏秤测量微小力的原理和方法。 【实验仪器】 焦利秤,砝码,烧杯,温度计,镊子,水,游标卡尺等。 【实验原理】液体具有尽量缩小其表面的趋势,好像液体表面是一张拉紧了的橡皮膜一样。这种沿着表面的、收缩液面的力称之为表面张力。测量表面张力系数的常用方法:拉脱法、毛细管升高法和液滴测重法等。此试验中采用了拉脱法。拉脱法是直接测定法,通常采用物体的弹性形变(伸长或扭转)来量度力的大小。液体表面层内的分子所处的环境跟液体内部的分子不同。液体内部的每一个分子四周都被同类的其他分子所包围,他所受到的周围分子合力为零。由于液体上方的气象层的分子很少,表层内每一个分子受到的向上的引力比向下的引力小,合力不为零。这个力垂直于液面并指向液体内部。所以分子有从液面挤入液体内部的倾向,并使得液体表面自然收缩,直到处于动态平衡。 表面张力 f 与线段长度 L 成正比。即有: f = αL (1) 比例系数α称为液体表面张力系数,其单位为Nm-1。 将一表面洁净的长为 L、宽为 d 的矩形金属片(或金属丝)竖直浸入水中,然后慢慢提起一张水膜,当金属片将要脱离液面,即拉起的水膜刚好要破裂时,则有 F = mg + f (2) 式中 F 为把金属片拉出液面时所用的力;mg 为金属片和带起的水膜的总重量; f 为表面张力。此时, f 与接触面的周围边界 2(L+ d ),代入(2)式中可得α = F ? mg2( L + d ) 本实验用金属圆环代替金属片,则有 α= F ? mg π (d1 + d2 ) 式中 d1、d2 分别为圆环的内外直径。

液体表面张力的测定

物化實驗 第一組 實驗名稱:液體表面張力的測定指導教授:吳瑞泰教授 班級:四化材三甲 學生:林育江 學號:1100101111

實驗目的: 測定不同的液體的表面張力,並觀察溫度及溶液濃度變化對水表面張力的影響。 相關原理: 表面張力之現象是極為常見的,如葉片上的水珠成球狀、水銀瀉地與下雨的雨滴等。 分子因為互相吸引而成液體,而液體四周皆為等受力,合力為零。然而,液體表面的分子受到的引力並不均勻,導致統一呈現往液體內部進行的合力。這意味著,當分子從內部移動到表面時需要作功,而單位液面所高出來的表面位能,我們稱之為表面張力。

實驗步驟: (一)校正表面張力計 0.張力計的鋼絲扭力隨時間而改變所以要校正。 1.將表面張力計從盒子小心搬出 2.將水平儀裝設完成 3.取出鉑銥環掛於細桿鉤上,並歸零 4.鬆開固定鈕 5.調整小鈕拉緊鋼線鬆緊,調整大鈕可扭動鋼絲帶動細桿上 下 6.旋緊固定鈕 7.微調指針,細桿立即為向上翹即校正完畢 8.指針歸零,實驗開始。 (二)開始測定 1.測定95%乙醇水溶液,將溶液倒進培養皿,使鉑銥還輕觸 液面 2.靜置,逆時方向轉至液膜破裂,紀錄指針讀數 3.做第二次,歸零,重複步驟2,紀錄讀數求平均 4.移走培養皿,取下鉑銥環,以丙酮清洗風乾 5.將鉑銥環掛回鉤上

6.測定其他樣品,重複步驟 7.利用95%調出乙醇10%20%30%40%50%,測定之並記錄。 8.測量其他液體 (三)利用砝碼測作檢量線,獲得鋼絲扭力與角度的關係圖 1.將樣品平台降低,轉至一旁,移去培養皿,指針歸零 2.撕一小張紙片,大小約比環大,秤取其質量並記錄 3.將紙片放在鉑銥環上 4.將100mg的砝碼放置在紙片上,而後測量其角度 5.逐次加入100mg砝碼,直到刻度大於前面所測試樣之最大 值 6.繪圖 (四)計算表面張力 1.直接法 2.間接法

乙醇表面张力的测定

最大气泡压力法测定溶液的表面张力 一、实验目的 1.掌握最大气泡压力法测定表面张力的原理和技术。 2.通过对不同浓度乙醇溶液表面张力的测定,加深对表面张力、表面自由能、表面张力和吸附量关系的理解。 二、基本原理 在一个液体的内部,任何分子周围的吸引力是平衡的。可是在液体表面层的分子却不相同。因为表面层的分子一方面受到液体内层分子的吸引另一方面受到液体外部气体分子的吸引,而且前者的作用力比后者大。因此在液体表面表面层中,每个分子都受到垂直于并指向液体内部的不平衡力。这种吸引力使表面上的分子向内挤,促成液体的最小面积。要使液体的表 面积增大,就必须要反抗分子的内向力而作功,增加分子的位能。 所以说分子在表面层比在液体内部有较大的位能,这位能就是表 面自由能,通常把增大一平方米表面所需的最大功A或增大一 平方米所引起的表面自由能的变化△G,称为单位表面的表面能, 其单位为J·m-1;而把液体限制其表面及力图使它收缩的单位 直线长度上所作用的力,称为表面张力,其单位是N·m-1。液 体单位表面的表面能和它的表面张力在数值上是相等的。如欲使 液体表面面积增加ΔS时,所消耗的可逆功A应该是: 一A=ΔG=σΔS (1) 液体的表面张力与温度有关,温度愈高,表面张力愈小。到达临界温度时,液体与气体不分,表面张力趋近于零。液体的表面张力也与液体的纯度有关,在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小,决定于溶质的本性和加入量的多少。 对纯溶剂而言,其表面层与内部的组成是相同的,但对溶液来说却不然。当加入溶质后,溶剂的表面张力要发生变化。根据能量最低原则,若溶质能降低溶剂的表面张力,则表面层中溶质的浓度应比溶液内部的浓度大,如果所加溶质能使溶剂的表面张力升高,那么溶质在表面层中的浓度应比溶液内部的浓度低。这种表面浓度与溶液内部浓度不同的现象叫做溶液的表面吸附。在一定的温度和压力下,溶液表面吸附溶质的量与溶液的表面张力和加入的溶质量(即溶液的浓度)有关,它们之间的关系可用吉布斯(Gibbs)公式表示: Γ=-()T (2) 式中:Γ为吸附量(mol.m-1);σ为表面张力(J·m—’);T为绝对温度(K);c为溶液浓度 (mol.L-1”);R为气体常数(8.314J.K—I·mol-1)。()T表示在一定温度下表面张力 随溶液浓度而改变的变化率。如果σ随浓度的增加而减小,也即()T <0,则Γ>0,此时溶液表面层的浓度大于溶液内部的浓度,称为正吸附作用。如果σ随浓度的增加而增加即()T >0,则Γ<0,此时溶液表面层的浓度小于溶液本身的浓度,称为负吸附作用。 从(2)式可看出,只要测定 溶液的浓度和表面张力,就可 求得各种不同浓度下溶液的吸 附量Γ。 在本实验中,溶液浓度的 测定是应用浓度与折光率的对 应关系,表面张力的测定是应 用 最大气泡压力法。

相关主题