搜档网
当前位置:搜档网 › 基本不等式求最值技巧

基本不等式求最值技巧

基本不等式求最值技巧
基本不等式求最值技巧

基本不等式求最值技巧

一. 加0

在求和的最小值时,为了利用积的定值,有时需要加上零的等价式。

例1. 已知,且,求的最小值。

解:因为,所以,所以,

,所以。式中等号当且仅当时成立,此时。所以当时,

取最小值。

例2. 设,且,求的最小值。

解:因为,,所以,所以,且。

所以

式中等号当且仅当时成立,此时。将它代入

中得。所以当时,取最小值

2. 乘1

在求积的最大值时,为了凑出和的定值,有时需要乘上1的等价式。

例3. 已知,且,求xyz的最大值。

解:因为,且,

所以

式中等号当且仅当时成立,此式可写为,令其比值为t,则,,,把它们代入,解得。所以当,

时,xyz取最大值。

3. 拆式

在运用基本不等式求最值时,为满足解题需要,有时要进行拆式。

例4. 求函数的最小值。

解:因为,所以,

所以

式中等号当且仅当时成立,解得,所以当时,。例5. 设且,求的最小值。

解:因为,

所以

式中等号当且仅当时成立,此时,所以当时,取最小值3。

4. 拆幂

在求积的最大值时,为了满足和为定值时对项数的要求,有时要拆幂。

例6. 设,求函数的最大值。

解:因为,所以

所以

式中等号当且仅当时即时成立。所以当时,。例7. 设,且为定值,求的最大值。

解:因为

所以

式中等号当且仅当时成立,此时。

所以当,取最大值。

5. 平方

在求积的最大值时,有时要凑出和的定值很困难,但积式平方后却容易凑出和的定值。

例8. 设,且为定值,求的最大值。

解:因为,

所以

所以

式中等号当且仅当时成立,此时

所以当时,取最大值。

例9. 已知,求的最大值。

解:因为,所以,

所以

所以。式中等号当且仅当,即时成立。所以当时,。

利用基本不等式求最值的类型及方法

1 利用基本不等式求最值的类型及方法 1 解析:y x 2(x 1) (x 2(x 1) 1) 芳 1(x 1) -1 ?」1(x 1) 2 2 2(x 1) 、几个重要的基本不等式: ① a 2 b 2 2ab a 2 b 2 ab (a 、b R ),当且仅当a = b 时,"=”号成立; 2 1 2 2(x 1) ② a b 2 ab 2 a b ab (a 、b R ),当且仅当a = b 时,“=”号成立; 2 当且仅当 1)即x 2时,“ 5 ”号成立,故此函数最小值是 -。 2 ③ a 3 b 3 c 3 3abc 3 abc ― b 3 3 3 c ( (a 、 立; ④ a b c 3v abc abc a b 3 c (a abc 3 a 、 b 、 c R ),当且仅当a = b = c 时,“=”号成 b 、 c R ),当且仅当a = b = c 时,“=”号 成立? 注:①注意运用均值不等式求最值时的条件:一 “正”、二“定”、三“等”; 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常 要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型n :求几个正数积的最大值。 例2、求下列函数的最大值: ①y x 2 (3 2x)(0 x 2 ② y sin xcosx(0 x ) 2 ② 熟悉一个重要的不等式链: b 2 2 解析:①Q 0 x - ,? 3 2 2x ?- y 当且仅当 (3 2x)(0 x 3 2x 即 x ,?? sin x 2 3 x x (3 2x) 3 )x x (3 2x) [ ] 1 , 2 3 1时,“=”号成立,故此函数最大值是 1 。 0,cos x 0,则y 0 ,欲求y 的最大值,可先求y 2的最大值。 二、函数 f(x) ax X b 0)图象及性质 (1)函数 f(x) ax b a 、 X b 0图象如图: ⑵函数 f(x) ax b a 、 X b 0性质: ①值域:( J 2 ab] [2 一ab,); ②单调递增区间:( 2 . 4 2 y sin x cos x 当且仅当 故此函数最大值是 sin 2 x sin 2 x coSx 1 2 2 2 (sin x sin x 2cosx) 2 1 sin 2 x sin 2x 2co^ x 3 4 「 -------- —) 刃 .2 sin x 2cos x (0 tan x 2,即 x arctan^^ 时“=”号成立, );单调递减区间: b ], a ,[ (0, ,0) ? 评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。通常要 通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。 类型川:用均值不等式求最值等号不成立。 4 x — x 例 3、若 x 、y R ,求 f (x ) (0 x 1)的最小 值。 三、用均值不等式求最值的常见类型 类型I :求几个正数和的最小值。 解法一:(单调性法)由函数 f(x) K ax - (a 、b 0)图象及性质知,当 x (0,1]时,函数 x 例1、求函数y 1 x 2^(x 1) 的最小值。 f (x ) x -是减函数。证明: x 任取 X 2 (0,1]且 0 禺 X 2 1,则 f(xj f(X 2) (X 1 X 2) (— —) (X 1 X 2)4 匹 为 (X 1 X 2)4 , x-1 X 2 X !X 2 X 1X 2

利用基本不等式求最值的技巧Word文档

利用基本不等式求最值的技巧 在运用基本不等式ab b a 222≥+与2b a ab +≤ 或其变式解题时,要注意如下技巧 1:配系数 【例1】已知2 30<-x ,从而 8 9)2232(21)]23(2[21)23(2=-+?≤-=-=x x x x x x y ,当且仅当)23(2x x -=即43=x 时,8 9max =y . 说明:这里运用了2)2(b a ab +≤. 2:添加项 【例2】已知23>x ,求3 22-+=x x y 的最小值. 【分析】按照“积定和最小”的思路,由于322-? x x 不是定值,所以应把x 变凑成23)32(21+-x ,使得13 22)32(21=-?-x x 为定值. 【解】由于2 3>x ,所以032>-x ,于是 2 723322)32(21223322)32(21322=+-?-≥+-+-=-+=x x x x x x y , 当且仅当322)32(21-=-x x 即25=x 时,2 7min =y . 3:分拆项 【例3】已知2>x ,求2 632-+-=x x x y 的最小值. 【分析】按照“积定和最小”的思路,必须把2 632-+-=x x x y 分拆成两项,再配凑适当的系数,使得其积为定值.

【解】由于2>x ,所以, 3124)2(2124)2(2)2(3)22(26322=+-?-≥+-+-=---+-=-+-=x x x x x x x x x x y 当且仅当2 42-=-x x 即4=x 时,3min =y . 4:巧用”1”代换 【例4】已知正数y x ,满足12=+y x ,求y x 21+的最小值. 【解】注意到844244)21()2(21=+?≥++=+?+=+x y y x x y y x y x y x y x ,当且仅当x y y x =4即2 1,41==y x 时,8)21(min =+y x . 一般地有,2)())((bd ac y d x c by ax +≥++,其中d c b a y x ,,,,,都是正数.这里巧妙地利用”1”作出了整体换元,从而使问题获得巧解. 【例5】已知正数z y x ,,满足1=++z y x ,求z y x 941++的最小值. 【解】注意到y z z y x z z x x y y x z y x z y x z y x 499414)941()(941++++++=++?++=++ 36492924214=?+?+?+≥y z z y x z z x x y y x ,当且仅当x y y x =4,x z z x =9,y z z y 49=即2 1,31,61===z y x 时,36)941(min =++z y x . 5:换元 【例6】已知c b a >>,求c b c a b a c a w --+--=的最小值. 【解】设c b y b a x -=-=,,则c a y x -=+,y x ,都是正数,所以42≥++=+++=x y y x y y x x y x w ,当且仅当x y y x =即b c a 2=+时,

基本不等式与余弦定理综合求解三角形面积的最值探究

基本不等式与余弦定理综合求解三角形面积的最值探究 建水县第二中学:贾雪光 从最近几年高考试题的考查情况看,解三角形部分的考查中主要是对用正、余弦定理来求解三 角形、实际应用问题,这两种常见考法中,灵活应用正余弦定理并结合三角形中的内角和定理, 大边对大角,等在三角形中进行边角之间的相互转化,以及与诱导公式特别是sin (A B) si nC、 cos A— sinC的联系是关键。 2 于是多数教师在复习备考过程中,往往都会将大量的时间和精力花在对正余弦定理的变形,转 化,变式应用上,当然这也无可厚非,但是我在高考备考复习教学中发现了这样一类题目,女口:1、在锐角△ ABC中, a, b, c 分别为内角A, B, C的对边,且cos2 A 1 sin2A,a -.7求厶ABC勺面 2 积的最大值;2、已知向量M (si nA,1)与N (3,s in A ??、3cosA)共线,其中人是厶ABC勺内角,(1) 2 求角A的大小;(2)若BC=2,求△ ABC勺面积S的最大值。,△ ABC中, a, b, c分别为内角A, B, C 的对边,向量M (4, 1), N (cos2-,cos2A),M ?N -,(1)求角A的大小;(2)若a . 3是判 2 2 断当b c取得最大值时△ ABC勺形状。面对这样的问题,我们如何来引导学生很自然的过度,用一种近乎水到渠成的方法来求解呢? 实际上我们在教学和学习的过程中往往会忽略一个很明显的问题,那就是余弦定理与基本不 等式的综合,如果我们在讲授正余弦定理的时候能在引入正课时多下一点功夫,我们就会有意外的 收获哦。 我在教学中是这样处理的:实际上在余弦定理中我们总有这样一组公式: 2 2 2 2 2 2 2 2 2 a b c 2bc cos A, b a c 2ac cosB, cab 2ab cosC 同时在基本不等式中我们总有这样一组公式:b2 c2 2bc,a2 c2 2ac ,b2 a2 2ab在三角 形中各边都是正数,所以上面三个式子在a、b是三角形的三边时总是成立的,如果我们将两组公 式综合后会发现这样的一组公式即:a2 2bc (1 cos A) ,b2 2ac (1 cosC) c2 2ab (1 cosc) 于是我们就有方程等式,得到了一组不等式,而在涉及到最值得求解时,我们常用的处理方法是, 一求函数值域;二、导函数;三、基本不等式即均值定理;但是前两种方法显然都不可能用于求解上面两个题目类型的求解,于是在涉及到与解三角形有关的三角形的面积的最大值时我们就只能考虑用均值定理了,自然也就要用到上面我们推导得出的这一组公式罗。

用均值不等式求最值的类型及方法

高三理应培优 (用均值不等式求最值的类型及解题技巧) 均值不等式是《不等式》一章重要内容之一,是求函数最值的一个重要工具,也是高考常考的一个重要知识点。要求能熟练地运用均值不等式求解一些函数的最值问题。 一、几个重要的均值不等式 ①,、)(2 22 22 2 R b a b a ab ab b a ∈+≤?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③, 、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3 + ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链: b a 11 2 +2 a b ab +≤≤≤2 2 2b a +。 二、函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+=b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab ; ②单调递增区间:(,]b a -∞- ,[,)b a +∞;单调递减区间:(0,]b a ,[,0)b a -. 三、用均值不等式求最值的常见类型与解题技巧 类型Ⅰ:求几个正数和的最小值。 例1、求函数2 1 (1)2(1)y x x x =+ >-的最小值。 (技巧1:凑项)解:21(1)2(1)y x x x =+ >-21(1)1(1)2(1)x x x =-++>-2 111 1(1)222(1) x x x x --=+++>- x a b ab 2-ab 2a b - o y

基本不等式求最值的类型与方法,经典大全

专题:基本不等式求最值的类型及方法 一、几个重要的基本不等式: ①,、)(2 22 22 2 R b a b a a b ab b a ∈+≤ ?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③, 、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链: b a 11 2 +2 a b +≤≤≤2 2 2b a +。 二、函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+=b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab ; ②单调递增区间:(,-∞ ,)+∞ ;单调递减区间:(0, ,[0). 三、用均值不等式求最值的常见类型 类型Ⅰ:求几个正数和的最小值。 例1、求函数2 1 (1)2(1) y x x x =+ >-的最小值。 解析:21(1)2(1)y x x x =+ >-21(1)1(1)2(1)x x x =-++>-2 111 1(1)222(1)x x x x --=+++>- 1≥312≥+52=, 当且仅当 2 11 (1) 22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是52。 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型Ⅱ:求几个正数积的最大值。 例2、求下列函数的最大值: ①2 3 (32)(0)2 y x x x =-<< ②2sin cos (0)2y x x x π=<< 解析:① 3 0,3202 x x <<->∴, ∴2 3(32)(0)(32)2y x x x x x x =-<<=??-3(32)[ ]13 x x x ++-≤=, 当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是1。 ② 0,sin 0,cos 02 x x x π << >>∴,则0y >,欲求y 的最大值,可先求2y 的最大值。 2 4 2 sin cos y x x =?2 2 2 sin sin cos x x x =??222 1(sin sin 2cos )2x x x =??22231sin sin 2cos 4( )2327 x x x ++≤?=, 当且仅当22 sin 2cos x x =(0)2 x π < < tan x ?=tan x arc =时 “=”号成立,故 评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。通常要 通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。 类型Ⅲ:用均值不等式求最值等号不成立。 例3、若x 、y + ∈R ,求4 ()f x x x =+ )10(≤、图象及性质知,当(0,1]x ∈时,函数 4 ()f x x x =+是减函数。证明:任取12,(0,1]x x ∈且1201x x <<≤,则

均值不等式求最值的方法

均值不等式求最值的方法 均值不等式是求函数最值的一个重要工具,同时也是高考常考的一个重要知识点。下面谈谈运用均值不等式求解一些函数的最值问题的方法和技巧。 一、几个重要的均值不等式 ①,、)(2 22 22 2 R b a b a ab ab b a ∈+≤?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3 + ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=” 号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链:b a 112 +2a b +≤≤≤ 2 2 2b a +。 二、用均值不等式求最值的常见的方法和技巧 1、求几个正数和的最小值。 例1、求函数2 1 (1)2(1) y x x x =+>-的最小值。 解析: 21(1)2(1)y x x x =+ >-21(1)1(1)2(1)x x x =-++>-2 111 1(1)222(1) x x x x --=+++>- 1 ≥312≥+52=,当且仅当211(1)22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是5 2 。 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 2、求几个正数积的最大值。 例2、求下列函数的最大值: ①23 (32)(0)2 y x x x =-<< ②2sin cos (0)2y x x x π=<< 解析: ①30,3202x x <<->∴,∴23 (32)(0)(32)2 y x x x x x x =-<<=??-

利用基本不等式求最值的类型及方法

利用基本不等式求最值的类型及方法 一、几个重要的基本不等式: ①, 、)(2 22 222R b a b a a b ab b a ∈+≤ ?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③, 、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链: b a 11 2 +2 a b +≤≤≤2 2 2b a +。 二、函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+=b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab ; ②单调递增区间:(,-∞ ,)+∞ ;单调递减区间:(0, ,[0). 三、用均值不等式求最值的常见类型 类型Ⅰ:求几个正数和的最小值。 例1、求函数2 1 (1)2(1) y x x x =+ >-的最小值。 解析:21(1)2(1)y x x x =+ >-21(1)1(1)2(1)x x x =-++>-2 111 1(1)222(1)x x x x --=+++>- 1≥312≥+52=, 当且仅当 2 11 (1)22(1) x x x -=>-即2x =时,“=”号成立,故此函数最小值是52。 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型Ⅱ:求几个正数积的最大值。 例2、求下列函数的最大值: ①2 3(32)(0)2y x x x =-<< ②2sin cos (0)2 y x x x π =<< 解析:① 3 0,3202 x x <<->∴, ∴2 3(32)(0)(32)2y x x x x x x =-<<=??-3(32)[ ]13 x x x ++-≤=, 当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是1。 ② 0,sin 0,cos 02 x x x π << >>∴,则0y >,欲求y 的最大值,可先求2y 的最大值。 2 4 2 sin cos y x x =?2 2 2 sin sin cos x x x =??222 1(sin sin 2cos )2x x x =??22231sin sin 2cos 4( )2327 x x x ++≤?=, 当且仅当22 sin 2cos x x =(0)2 x π < < tan x ?tan x arc =时 “=”号成立,故 评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。通常要 通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。 类型Ⅲ:用均值不等式求最值等号不成立。 例3、若x 、y + ∈R ,求4 ()f x x x =+ )10(≤、图象及性质知,当(0,1]x ∈时,函数 4 ()f x x x =+是减函数。证明:任取12,(0,1]x x ∈且1201x x <<≤,则

基本不等式完整版(非常全面)

2 8 基本不等式专题辅导 2 2 2、基本不等式一般形式(均值不等式) 若 a,b R ,则 a b 2 ab 3、基本不等式的两个重要变形 (1)若 a,b R *,则 2 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数 的和为定植时,它们的积有最小值; a b 6、柯西不等式 (1)若 a, b,c, d R ,则(a 2 b 2)(c 2 d 2) (ac bd )2 (2) 若 a 1, a 2, a 3, bi, b 2, b 3 R ,则有: 2 2 2 2 2 2 2 (a 1 a 2 a 3 )(柑 b ? b 3 ) (aQ a ?b 2 a s b s ) (3) 设a 1,a 2, ,a n 与 db, ,b 是两组实数,则有 2 2 2 p22 2 佝 a 2 a . )(0 b 2 b n )(日山 a 2b 2 a n b n ) 一、知识点总结 1、基本不等式原始形式 二、题型分析 题型一:利用基本不等式证明不等式 (1)若 a,b R ,则 a 2 b 2 2ab 1、设a,b 均为正数,证明不等式:、.ab 二 (2)右 a, b R ,则 ab a,b,c 为两两不相等的实数, (2)若 a, b R ,则 ab b 2 ab bc ca 4、求最值的条件:“一正, 二定,三相等” 5、常用结论 1 (1)若 x 0,则 x — 2 (当且仅当 x 1时取“=”) x 1 (2)若 x 0,则 X - 2 (当且仅当 x 1时取 “=”) X (3)若 ab 0,则-- 2 (当且仅当 a b 时取 “=”) b a 2 2 (4)若 a, b R ,则 ab ( 旦 b)2 a b 2 2 (5)若 a, b R ,贝U 1 . a ab b a 2 b 2 v ------ 1 1 2 2 (1 已知a a,b,c a )(1 1, 求证: b)(1 c) 8abc a, b, c R

均值不等式求最值的常用技巧及习题

利用基本不等式求最值的常用技巧及练习题(含解答)(经典) 一.基本不等式的常用变形 1.若0x >,则12x x + ≥ (当且仅当1x =时取“=” );若0x <,则1 2x x +≤- (当且仅当 _____________时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当____________时取“=”) 2.若0>ab ,则2≥+a b b a (当且仅当____________时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当_________时取“=” ) 注:(1)当两个正数的积为定植时,可以求它们和的最小值,当两个正数的和为定植时, 可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的重要条件“一正,二定,三取等” 二、利用基本不等式求最值的技巧: 技巧一:直接求: 例1 已知,x y R + ∈,且满足 134 x y +=,则xy 的最大值为 ________。 解:因为x >0,y>0 ,所以 34x y +≥=当且仅当34x y =,即x=6,y=8时取等 号) 1, 3.xy ∴≤,故xy 的最大值3. 变式:若44log log 2x y +=,求11 x y +的最小值.并求x ,y 的值 解:∵44log log 2x y += 2log 4=∴xy 即xy=16 2 1211211==≥+∴xy y x y x 当且仅当x=y 时等号成立 技巧二:配凑项求 例2:已知5 4x < ,求函数14245 y x x =-+-的最大值。

基本不等式与最大最小值资料讲解

3.2 基本不等式与最大(小)值 1.已知a >0,b >0,则1a +1b +2ab 的最小值是 ( ). A .2 B .2 2 C .4 D .5 解析 ∵1a +1b +2ab ≥2ab +2ab ≥4. 当且仅当????? a = b ,ab =1, 即a =b =1时,原式取得最小值4. 答案 C 2.函数y =3x 2+6x 2+1的最小值是 ( ). A .32-3 B .-3 C .6 2 D .62-3 解析 y =3? ????x 2+2x 2+1=3? ?? ??x 2+1+2x 2+1-1≥3·(22-1)=62-3. 答案 D 3.下列函数中,最小值为4的函数是 ( ). A .y =x +4x B .y =sin x +4sin x (0<x <π) C .y =e x +4e -x D .y =log 3x +log x 81 解析 对于A ,x +4x ≥4或者x +4x ≤-4;对于B ,等号成立的条件不满足;对于D ,也 是log 3x +log x 81≥4或者log 3x +log x 81≤-4,所以答案为C. 答案 C 4.当x =________时,函数f (x )=x 2(4-x 2)(0<x <2)取得最大值________. 解析 ∵f (x )=x 2·(4-x 2)≤? ?? ??x 2+4-x 222=4,当且仅当x 2=4-x 2,即x =2时取等号, ∴f (x )max =4. 答案 2 4 5.某公司一年购买某种货物200吨,分成若干次均匀购买,每次购买的运费为2万元,一年存储费用恰好为每次的购买吨数(单位:万元),要使一年的总运费与总存储费用之和最小,则每次应购买________吨. 解析 设每次都购买x 吨,则需要购买200x 次,则一年的总运费为200x ×2=400x 万元,一

均值不等式求最值的十种方法

用均值不等式求最值的方法和技巧 一、几个重要的均值不等式 ①,、)(2 22 2 2 2 R b a b a a b ab b a ∈+≤?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(3 33 33 3 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④) (333 3 +∈? ? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链:b a 112+ 2a b ab +≤≤≤ 2 2 2 b a +。 一、拼凑定和 通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。 例1 (1) 当时,求(82)y x x =-的最大值。 (2) 已知01x <<,求函数3 2 1y x x x =--++的最大值。 解:()()()()()()2 22 111111y x x x x x x x =-+++=+-=+- ()()3 11111322241422327 x x x x x x ++?? ++- ?++=???-≤= ? ??? 。

当且仅当1 12x x +=-,即13 x =时,上式取“=”。故max 3227 y = 。 评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系,求“积”的最大值。 例2 求函数)01y x x =<<的最大值。 解: y ==。 因 ()()3 2222221122122327x x x x x x ??++- ???-≤= ? ? ? ?? , 当且仅当 ()2 212 x x =-,即3x =时,上式 取“ =”。故max 9 y = 。 评注:将函数式中根号外的正变量移进根号内的目的是集中变元,为“拼凑定和”创造条件。 例3 已知02x <<,求函数()2 64y x x =-的最大值。 解:()()()2 2 2 22 2 2 36418244y x x x x x =-=?-- ()()3 2223 24418818327x x x ??+-+-?? ?≤=???? 。 当且仅当()2 2 24x x = -,即3x =时,上 式取“=”。

基本不等式求最值技巧

基本不等式求最值技巧 一. 加0 在求和的最小值时,为了利用积的定值,有时需要加上零的等价式。 例1. 已知,且,求的最小值。 解:因为,所以,所以, ,所以。式中等号当且仅当时成立,此时。所以当时, 取最小值。 例2. 设,且,求的最小值。 解:因为,,所以,所以,且。 所以 式中等号当且仅当时成立,此时。将它代入 中得。所以当时,取最小值 。

2. 乘1 在求积的最大值时,为了凑出和的定值,有时需要乘上1的等价式。 例3. 已知,且,求xyz的最大值。 解:因为,且, 所以 式中等号当且仅当时成立,此式可写为,令其比值为t,则,,,把它们代入,解得。所以当, 时,xyz取最大值。 3. 拆式 在运用基本不等式求最值时,为满足解题需要,有时要进行拆式。 例4. 求函数的最小值。 解:因为,所以, 所以

式中等号当且仅当时成立,解得,所以当时,。例5. 设且,求的最小值。 解:因为, 所以 式中等号当且仅当时成立,此时,所以当时,取最小值3。 4. 拆幂 在求积的最大值时,为了满足和为定值时对项数的要求,有时要拆幂。 例6. 设,求函数的最大值。 解:因为,所以 所以 式中等号当且仅当时即时成立。所以当时,。例7. 设,且为定值,求的最大值。

解:因为 所以 式中等号当且仅当时成立,此时。 所以当,取最大值。 5. 平方 在求积的最大值时,有时要凑出和的定值很困难,但积式平方后却容易凑出和的定值。 例8. 设,且为定值,求的最大值。 解:因为, 所以 所以 式中等号当且仅当时成立,此时

所以当时,取最大值。 例9. 已知,求的最大值。 解:因为,所以, 所以 所以。式中等号当且仅当,即时成立。所以当时,。

数学3.3.2基本不等式与最大(小)值教案(北师大必修5)

3.3.2基本不等式与最大(小)值 授课类型:新授课 【教学目标】 12 a b +≤ ;会应用此不等式求某些函数的最值。 22a b +≤,并会用此定理求某些函数的最大、最小值。 3.情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论 与实际相结合的科学态度和科学道德。 【教学重点】 2a b +≤ 的应用 【教学难点】 2 a b +≤ 求最大值、最小值。 【教学过程】 1.课题导入 1.重要不等式:如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a 2.基本不等式:如果a,b 是正数,那么 ).""(2号时取当且仅当==≥+b a ab b a 3. 我们称b a b a ,2 为+的算术平均数,称b a ab ,为的几何平均数. ab b a a b b a ≥+≥+2222和成立的条件是不同的:前者只要求a,b 都是实数,而后 者要求a,b 都是正数。 2.讲授新课 引例(见课本102页) 由引例得出两个重要结论: 设0,0x y >>,则: (1) 若x y s +=(和为定值),则当x y =时,积xy 取得最大值2 4 s ; (2) 若xy p =(积为定值),则当x y =时,和x y +取得最小值。 【例题讲解】 例2、3 (见课本103页)

补充例题: 例1 已知m>0, 求证24 624 m m +≥。 [思维切入]因为m>0,所以可把24 m 和6m分别看作基本不等式中的a和b, 直接利用基本不等 式。 [证明] 因为 m>0,,由基本不等式得: 24 6221224 m m +≥==?= 当且仅当24 m =6m,即m=2时,取等号。 例2 求证: 4 7 3 a a +≥ - . [思维切入] 由于不等式左边含有字母a,右边无字母,直接使用基本不等式,无法约掉字母a, 而左边 44 (3)3 33 a a a a +=+-+ -- .这样变形后,在用基本不等式即可得证. [证明] 44 3(3)3337 33 a a a +=+-+≥== -- 当且仅当 4 3 a- =a-3即a=5时,等号成立. 规律技巧总结:通过加减项的方法配凑成基本不等式的形式. 例3 (1) 若x>0,求 9 ()4 f x x x =+的最小值; (2) 若x<0,求 9 ()4 f x x x =+的最大值. [思维切入]本题(1)x>0和 9 4x x ?=36两个前提条件;(2)中x<0,可以用-x>0来转化. 解:(1) 因为 x>0 由基本不等式得: 9 ()412 f x x x =+≥==, 当且仅当 9 4x x =即x= 3 2 时, 9 ()4 f x x x =+取最小值12. (2)因为 x<0, 所以:-x>0, 由基本不等式得: 99 ()(4)(4)()12 f x x x x x -=-+=-+-≥==, 所以:()12 f x≤-. 当且仅当 9 4x x -=-即x=- 3 2 时, 9 ()4 f x x x =+取得最大值-12. 规律技巧总结利用基本不等式求最值时,个项必须为正数,若为负数,则添负号变正.

三元均值不等式求最值及绝对值不等式

三元均值不等式求最值 三元均值不等式: 例1、求函数)0(,322>+=x x x y 的最大值 例2、求函数)01y x x =<<的最大值。 例3、 已知01x <<,求函数321y x x x =--++的最大值。 例4、已知02x <<,求函数()264y x x =-的最大值。 练习: 1、求函数)(,422+∈+=R x x x y 的最小值。 2、0>x 时,求236x x y += 的最小值。 3、求函数)20(,)2(2a x x a x y <<-= 的最大值。 4、若10<>b a ,求证:) (1b a b a -+的最小值。

绝对值不等式 例1、证明(1) b a b a +≥+,(2)b a b a -≥+ 例2、证明 b a b a b a +≤-≤-。 例3、证明 c b c a b a -+-≤-。 例4、已知 2,2c b y c a x <-<-,求证.)()(c b a y x <+-+ 例5、已知 .6,4a y a x <<求证:a y x <-32。 练习: 1、已知 .2,2c b B c a A <-<-求证:c b a B A <---)()(。 2、已知 .6 ,4c b y c a x <-<-求证:c b a y x <+--3232。

解含绝对值不等式 例1、解不等式213+<-x x 。 例2、解不等式x x ->-213。 例3、解不等式 52312≥-++x x 。 例4、解不等式 512≥-+-x x 。 例5、不等式 31++-x x >a ,对一切实数x 都成立,求实数a 的取值范围。 练习: 1、423+≤-x x . 2、x x -≥+21. 3、1422<--x x 4、212+>-x x . 5、 42≥-+x x 6、.631≥++-x x 7、 21<++x x 8、.24>--x x

基本不等式求最值的类型及方法,经典大全

专题:基本不等式求最值的类型及方法 解析:y x 1 2(x 1) (x 2(x 1) 1) 2(x L 2LJ 2 1(x 1) 2 2 2(x 1) 、几个重要的基本不等式: ①a 2 b 2 2ab ab a 2 b 2 (a 、 x 1 x 1 33 立; b R),当且仅当a = b 时,“=”号成立; 2 2(x 1) ③a 3 成立? 注: 二、函数 b 3 2 ab ab 2 (a 、 当且仅当 b R ),当且仅当a = b 时,“=”号成立; 2(x 2(x 1)2 1)即x 2时,“ 5 ”号成立,故此函数最小值是 - 2 3 c 3 3abc abc — b 3 c 3 3 -(a 、 b 、 R ),当且仅当a = b = c 时,“=”号成 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常 要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型n :求几个正数积的最大值。 例2、求下列函数的最大值: 3 3 ----- abc , b c 3v abc abc ---------------- (a 、 3 ① 注意运用均值不等式求最值时的条件: ② 熟悉一个重要的不等式链: ab f(x) ax b (a 、 x 0)图象及性质 (1)函数 f (x) ax a 、 0图象如图: (2)函数 f(x) ax a 、 0性质: ①值域: ,2 ab] [2 ab,); R ),当且仅当a = b = c 时,“=”号 定 、三 等 ; 2 2 a b J -------------- 2 ①y x 2 解析:①Q 0 ?- y (3 2x)(0 x x - ,? 3 2 当且仅当 2 . 4 2 y sin x cos x 当且仅当 故此函数最大值是 (3 2x)(0 ②单调递增区间:( );单调递减区间: :], (0, ] , ,0). 2x x 3 2x 即 x ,?? sin x 2 sin 2 x sin 2 x .2 sin x 2 ② y sin xcosx(0 x ) 2 3 x x (3 2x) 3 )x x (3 2x) [ ] 1 , 2 3 1时,“=”号成立,故此函数最大值是 1 。 0,cos x 0,则y 0 ,欲求y 的最大值,可先求y 2的最大值。 coSx 2cos x (0 1 2 2 2 (sin x sin x 2cosx) 2 1 sin 2 x sin 2x 2co^ x 3 4 二 -------- —) 刃 tan x 2,即 x arctan^^ 时“=”号成立, 评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。通常要 通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。 类型川:用均值不等式求最值等号不成立。 4 x — x 例 3、若 x 、y R ,求 f (x) (0 x 1)的最小值。 三、用均值不等式求最值的常见类型 类型I :求几个正数和的最小值。 解法一:(单调性法)由函数 f(x) K ax 一(a 、b 0)图象及性质知,当 x (0,1]时,函数 x 例1、求函数y x 1 2(x 1)的最小值。 2(x 1)2 f (x) x -是减函数。证明: x 任取 X 2 (0,1]且 0 禺 X 2 1,则

专题27 应用基本不等式求最值的求解策略高中数学黄金解题模板

【高考地位】 基本不等式是《不等式》一章重要内容之一,是求函数最值的一个重要工具,也是高考常考的一个重要知识点。应用基本不等式求最值时,要把握基本不等式成立的三个条件“一正二定三相等”,忽略理任何一个条件,就会导致解题失败,因此熟练掌握基本不等式求解一些函数的最值问题的解题策略是至关重要的。【方法点评】 方法一凑项法 使用情景:某一类函数的最值问题 解题模板:第一步根据观察已知函数的表达式,通常不符合基本不等式成立的三个条件“一正二定三相等”,将其配凑(凑项、凑系数等)成符合其条件; 第二步使用基本不等式对其进行求解即可; 第三步得出结论. 例1已知 5 4 x<,求函数1 42 45 y x x =-+ - 的最大值。 【答案】 max 1 y=. 第三步,得出结论:

故当1x =时,max 1y =。学#科网 点评:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 【变式演练1】【江苏省盐城市阜宁中学2017-2018学年高二上学期第一次学情调研数学(文)试题】函数 4 2(0)y x x x =-->的最大值为________. 【答案】-2 【解析】4422242y x x x x ?? =---+≤-- ??? =2=, 当且仅当4 x x = ,即x =2时,“=”成立 【变式演练2】【2018届山西高三上期中数学(理)试卷】当1x >时,不等式1 1 x a x + ≥-恒成立,则实数a 的取值范围是( ) A .(,2]-∞ B .[2,)+∞ C .[3,)+∞ D .(,3]-∞ 【答案】D 【解析】 考点:均值不等式. 方法二 分离法 使用情景:某一类函数的最值问题 解题模板:第一步 首先观察已知函数的表达式的特征,如分子(或分母)是二次形式且分母(或分子)是一次形式; 第二步 把分母或分子的一次形式当成一个整体,并将分子或分母的二次形式配凑成一次形式的二次函数形式; 第三步 将其化简即可得到基本不等式的形式,并运用基本不等式对其进行求解即可得出所求的结果.

基本不等式求最值教学设计

“基本不等式求最值”的教学设计 一、教材分析 (一)本节教材所处的地位和作用 “算术平均数与几何平均数”是全日制普通高级中学教科书数学北师大版·必修5“不等式”一章的内容,是在学完不等式性质的基础上对不等式的进一步研究.本节内容具有变通灵活性、应用广泛性、条件约束性等特点,所以本节内容是培养学生应用数学知识,灵活解决实际问题,学数学用数学的好素材;同时本节知识又渗透了数形结合、化归等重要数学思想,所以有利于培养学生良好的思维品质. (二)教材处理 依据新大纲和新教材,本节分为二个课时进行教学.第一课时讲解不等式(两个实数的平方和不小于它们之积的2倍)和平均值定理(均值不等式)及它的几何解释.掌握应用定理解决某些数学问题.第二课时讲解应用平均值定理解决某些最值问题和实际问题.本节课为第二课时。为了讲好这节内容,在紧扣新教材的前提下,对例题作适当的调整,适当增加例题. (三)教学目标 1.知识目标: (1)会利用“均值不等式”解决某些最值问题; (2)掌握获得“均值不等式”条件的常用方法。 2.能力目标: (1)学生对问题的探索、研究、归纳,能总结出一般性的解题方法和解题 规律,提高学生的抽象概括能力。 (2)通过学生的口头表述和书面表达提高学生的数学表达和数学交流的能力。 (3)通过例题、变式练习及应用题的解决树立学生的化归思想; (4)通过实际问题发展学生的数学应用意识。 3.德育目标:通过具体问题的解决,增强科学严谨的治学态度,体会“探究学习”在学习过程中的作用,使学生体验成功,增强学习数学的自信心。 (四)教学重点、难点、关键

重点:用均值不等式求解最值问题的思路和基本方法。 难点:均值不等式的使用条件,合理地应用均值不等式。 关键:理解均值不等式的约束条件,掌握化归的数学思想是突破重点和难点的关键。 二、学情分析 我所教的两个班都是文科平行班,大部分学生数学基础较差;学生的理解能 力,运算能力,思维能力等方面参差不齐;但学生有学好数学的自信心,有一定 的学习积极性。 三、教法分析 (一)教学方法 为了激发学生学习的主体意识,又有利于教师引导学生学习,培养学生的数学能力与创新能力,使学生能独立实现学习目标,采用启发探究式学习。其中,在探索结论时,采用发现法;在定理的应用及其条件的教学中采用归纳法;在训练部分,主要采用讲练结合法进行。 (二)教学手段 根据本节知识特点,为突出重点,突破难点,增加教学容量,利用计算机和实物投影辅导教学。 四、教学过程设计 1.复习回顾: 重要不等式:”成立。 时,“当且仅当时,当==≥+∈b a ab b a R b a ,2,22 均值不等式:”成立。时,“当且仅当时,当==+≤∈+b a b a ab R b a ,2 , (设计意图:通过对上节课所学知识的回顾,让学生加深对基本不等式的理解,为下面的求最值做铺垫。) 2.思考探索: 1.把36写成两个正数的积,当这两个数取何值时,它们的和最小? 2.把18写成两个正数的和,当这两个数取何值时,它们的积最大? 设计意图:让学生自己尝试用均值不等式解决最值问题,从而引出下面的结论:当a,b 为正实数时, (1)若ab 为定值,则当a=b 时,其和a+b 有最小值。 (2) 若a+b 为定值,则当a=b 时,其积ab 有最大值。 3.应用基本不等式求最值的条件:

相关主题