搜档网
当前位置:搜档网 › ABAQUS使用时的点点滴滴

ABAQUS使用时的点点滴滴

ABAQUS使用时的点点滴滴
ABAQUS使用时的点点滴滴

ABAQUS学习笔记

一.AQUS-.inp编码介绍

(一).ABAQUS头信息文件段(1-4)

1.*PREPRINT 输出求解过程所要求的信息(在dat文件中)

ie:*PREPRINT, ECHO=YES, HISTORY=YES, MODEL=YES

2.*HEADING 标题输出文件(出现在POST/VIEW窗口中,且出现在结果输出文件中)

ie:*HEADING

STRESS ANALYSIS FOR A PLATE WITH A HOLE

3.*RESTART 要求abaqus/standard输出其POST/view模块所需要的.res文件。其中的FREQ =?控制结果在每次迭代(或载荷步)输出的次数。

ie:*RESTART, WRITE, FREQ=1

4.*FILE FORMAT 要求abaqus/standard输出到.fil中的某些信息。它也用于post。对于在后处理中得到x-y形式的诸如应力-时间、应力-应变图有用!

ie: *FILE FORMAT, ZERO INCREMENT

(二).ABAQUS网格生成段

定义结点、单元,常用的命令有:结点定义(*NODE,*NGEN),单元定义(*ELEMENT,*ELGEN等)。

1.*NODE 定义结点,其格式为:

*NODE

结点号,x轴坐标,y轴坐标,(z轴坐标)

2.*NGEN 在已有结点的基础上进行多个结点的生成,一般是在两结点间以某种方式(直线、圆)产生一定分布规律的结点。

如:*NGEN, LINE=C, NSET=HOLE,

119, 1919, 100, 101 在两结点(结点号为119,1919)间以圆弧形式生成多个结点,100为任意相邻结点的单元号增量,101为圆弧形成时圆心位置的结点(对于直线形式生成没有此结点)。所有这些生成的结点(包括119,1919)被命名成HOLE的集合(这样做的目的是以后的命令中使用到它,比如说对这些结点施加同等条件的边界条件或载荷等,HOLE就是这些结点的代称)。*NGEN使用的前提就是必须存在已有结点。

*NGEN, NSET=OUTER

131, 1031, 100 以线形式形成结点,结点号增量100,结点集合名为OUTER。

*NGEN, NSET=OUTER

1031, 1931, 100 同上生成结点,可以同上结点集合名,这样OUTER就包括这两次生成的所有结点

3.*NFILL 在如上生成的结点集(实际上,代表两条几何意义上的边界线)之间按一定规律(BIAS=?)填充结点。这样所有生成的结点构成一定形状的实体(面)。

如:*NFILL, NSET=PLATE, BIAS=0.8

HOLE, OUTER, 12, 1 以HOLE为第一条边界,OUTER为第二条边界(终止边),以从疏到密的规律(BIAS小于1)分布,其生成结点数在两内外对应结点间为12,1为每组结点号的增量。所有这些结点被置于PLATE的集合中。

下面以上面生成的结点来生成单元:

4.*ELEMENT

定义单元所使用的类型(TYPE=?),然后另行定义通过联结结点形成单元,其结点数目依靠单元类型而变。

*ELEMENT, TYPE=CPS4 //采用四单元的平面应力单元

19, 119, 120, 220, 219 //定义顺序:单元号,以逆时针方向形成单元的各结点号(三)ABAQUS单元

注意:分析前要选择合适的元素,这时要考虑的问题就是:使用什么样类型的单元?有限元的基本思路就是将实际中的连续体离散化,实际结果是将众多离散分析结果的集合,这似乎有点像积分的概念。选择元素种类最重要考虑的是分析必要的现象,满足必要的准确度基础上去掉不必要的细节与准确度。是选择1-D, 2-D or 3-D单元、用于何种分析的单元、是否高阶单元等。

(四)ABAQUS材料

ABAQUS本身提供了丰富的材料库供分析使用,并已能满足常用的分析。但对于新型本构关系的材料abaqus本身是无法体现的,UMAT则为这个问题提供了解决。自己编程将材料的应力应变本构表示出来,ABAQUS调用完成分析。

ABAQUS 的材料行为模式主要分为

弹性材料:

Linear elasticity (线弹性)

No compression or tension elasticity (无压缩或位伸弹性材料,即单力性材料)

Plane stress orthotropic failure (平面应力单元)

Porous elasticity (多孔弹性)

Hypoelasticity (亚弹性)

Hyperelasticity (超弹性)

Foam elasticity (泡沫单元)

Viscoelasticity (粘弹性)

非弹性材料

Classical metal plasticity (塑性)

Metals subjected to cyclic loading (受周期荷载金属单元)

Rate-dependent yield(率相关屈服单元)

Creep and Swelling (蠕变)

Anisotropic yield and creep (各向异性)

Porous metal plasticity (多孔塑性)

Deformation plasticity (塑变单元)

Granular materials or polymers (粒状材料或复合材料)

Clay plasticity (粘土塑性)

Crushable foam plasticity (可压泡沫塑性) Jointed material (?……)

Concrete (混凝土)

(五)ABAQUS 求解

对于一个inp 文件,不进入CAE 时,需要这样做:

1. 检查inp 文件的正确性(当然主要是指keyword 的使用),自己能做检查最好,否则可以

通过:ABAQUS datacheck job=yourjobname

2. 检查确认修正后进行计算:

通过:ABAQUS job=yourjobname

3. 检验分析结果的合理性:不只是会算,更要会对分析结果进行确认。首先要对整个分析

及分析的并键之处成竹在心。然后可以通过以下途径作结果确认:

①自已能够得到的解析解

②实验数据

③其它数值解

④别人的求解结果(当然你得信任他)

⑤直觉与经验

4. 如果迭代无法收敛:需要通过.msg,.sta 文件查看出错信息并做出判断(在CAE 中submit

分析时可以通过monitor 查看),判断依据为:

①结构约束是否足够或过多

②材料数据是否正确

③单元是否适合此分析

④网格有没有过扭曲、奇异

⑤接触单元是否足够

⑥步长是否过大

二.有限元理论

(一)关于应力应变

金属的工程应力(未变形单位面积上的力)称为名义应力,与之相对应的为名义应变(每单位未变形长度的伸长)。----名义应力 0/F A 0/L l Δ-----名义应变

在只考虑的情况下,拉伸和压缩应变是相同的,即:

0l dl Δ→→ 00ln()l dl

d l dl l l l εε=

==∫,其中l 是当前长度,是原始长度,0l ε为真实应变或对数应变。与真实应变对应的真实应力:F A

σ=,F 为材料受力,A 是当前面积。

在ABAQUS 中必须用真实应力和真实应变定义塑性.ABAQUS 需要这些值并对应地在输入文件中解释这些数据。

然而,大多数实验数据常常是用名义应力和名义应变值给出的。这时,必须应用公式将塑性材料的名义应力(变)转为真实应力(变)。

考虑塑性变形的不可压缩性,真实应力与名义应力间的关系为:

00l A lA =,

当前面积与原始面积的关系为:

00l A A l

= 将A 的定义代入到真实应力的定义式中,得到:

00

()nom F F l l A A l l σσ=== 其中0

l l 也可以写为1nom ε+。 这样就给出了真实应力和名义应力、名义应变之间的关系:

(1)nom nom σσε=+

真实应变和名义应变间的关系很少用到,名义应变推导如下: 0001nom l l l l l ε?=

=? 上式各加1,然后求自然对数,就得到了二者的关系:

ln(1)nom εε=+

ABAQUS 中的*PLASTIC 选项定义了大部分金属的后屈服特性。ABAQUS 用连接给定数据点的一系列直线来逼近材料光滑的应力-应变曲线。可以用任意多的数据点来逼近实际的材料性质;所以,有可能非常逼真地模拟材料的真实性质。在*PLASTIC 选项中的数据将材料的真实屈服应力定义为真实塑性应变的函数。选项的第一个数据定义材料的初始屈服应力,因此,塑性应变值应该为零。

在用来定义塑性性能的材料实验数据中,提供的应变不仅包含材料的塑性应变,而是包括材料的总体应变。所以必须将总体应变分解为弹性和塑性应变分量。弹性应变等于真实应力与杨氏模量的比值,从总体应变中减去弹性应变,就得到了塑性应变,其关系为:

/pl t el t E εεεεσ=?=?其中pl ε是真实塑性应变,t ε是总体真实应变,el ε是真实弹性应变。

总体应变分解为弹性与塑性应变分量

实验数据转换为ABAQUS输入数据的示例

下图中的应力应变曲线可以作为一个例子,用来示范如何将定义材料塑性特性的实验特性的实验数据转换为ABAQUS适用的输入格式。名义应力-应变曲线上的6个点将成为*PLASTIC选项中的数据。

第一步是用公式将名义应力和名义应变转化为真实应力和应变。一旦得到这些值,就可以用公式不确定与屈服应力相关联的塑性应变。下面给出转换后的数据。在小应变时,真实应变和名义应变间的差别很小,而在大应变时,二者间的就会有明显的差别;因此,如果模拟的应变比较大,就一定要向abaqus提供正确的应力-应变数据。定义这种材料的输入数据格式在图中给出。

(二). 对于受力的大小,受力的方式,还有本构方程参数的选择对于模型是否收敛影响很大.

泊松比的影响:材料的泊松比的大小对于网格的扰动影响很大,在foam中,由于其泊松比是0,所以它对于单元的扰动不是很大。所以在考虑到经常出现单元节点被翻转过来的现象,可以调整泊松比的大小。

REMESH:对于creep的,特别是材料呈现非线性的状态下,变形很大,就有必要对其进行重新划分网格,用map solution来对其旧网格进行映射。这就要决定何时进行重新划分网格,这个就要看应变的增长幅度了,通过观察网格外形的变化曲线来决定是否要进行重新划分区域。

接触表面的remesh时,网格类型,单元数目等必须和原有的mesh保持一致,这个对于contact的计算十分重要。但是对于刚体表面的remesh没有这个必要的,单元数目可以减少,网格可以粗化,但是对于非刚体,一般将网格进行细化。

对于NIGEOM(非线性):

the load must be applied gradually. We apply the load gradually by dividing the step into increments。

Omit this parameter or set NLGEOM=NO to perform a geometrically linear analysis during the current step. Include this parameter or set NLGEOM=YES to indicate that geometric nonlinearity should be accounted for during the step (stress analysis and fully coupled thermal-stress analysis only). Once the NLGEOM option has been switched on, it will be active during all subsequent steps in the analysis.

几何非线性是与分析过程中模型的几何改变想联系的,几何非线性发生在位移的大小影响到了结构响应的情况,可能由于是大绕度后者是转动;突然的翻转;初应力或载荷硬化。

塑性分析中的注意问题:对于大应变,真实应变和名义应变之间的差值就会很大,所以在给abaqus提供应力-应变数据时,一定要注意正确的给予赋值,在小应变的情况下,真实应变和名义应变之间的差别很小,不是很重要。

对于单元的选择:在ABAQUS中存在一类杂交的单元族,还有一类缩减的单元存在,这些用于模拟超弹性材料的完全不可压缩特性的。但是线性减缩积分单元由于存在所谓的沙漏(hourglass)的数值问题而过于柔软,所以似使得网格容易被扭曲,因而在小冲孔的蠕变模拟中会出现error,因此最好选用其它的单元做分析,当然也可以加hourglass进行补充。数学描述和积分类型对实体单元的准确性都能产生显著的影响。

对于大应变的扭曲的模拟(大变形分析)最好选用细网格划分的线性减缩积分单元(CAX4R,CPE4R,CPS4R,C3D8R等)。

对于接触问题,采用线性减缩积分单元或者非协调单元,在模型中选用非协调单元可以使得网格的扭曲减小到最小。

单元性质:*solid section对于三维和轴对称单元不需要附加任何几何信息的,节点的坐标已经能够完整的定义单元的几何形状。而平面应力和平面应变单元则必须在数据行指定单元的厚度。

数值奇异性:在没有边界的时候,在模型上因为有限的计算精度,讲存在很小的非平衡力,如果模型应用于经理模型而没有边界条件(只有作用力),这个非平衡力就会引起模型发生无限的刚体运动。这个刚体的运动在数学上被称为数值的奇异性。当abaqus在模拟时检验出数值奇异性的时候,会将节点等问题信息打出来。一般模拟结果有奇异性时不可信的,必须要加约束。

后处理:对于一些输出的类型的转化,含义具体可以见CAE26-10

其实对于应力,还有V值的大小的变化,主要还是调起始的时间的步长,这个其实步长可能要取到1e-20,杨镇的曲线,他的起始步长就需要很小的(我用了0.00000000000001),但是不加损伤,后来步长增加很快的,没有什么东西了

三、CAE之点滴

1.在建模作基面(草绘)时,Approximate size的大小对方便地进行平面绘图很有意义。

一般取欲画尺寸的125%。

2.当草绘时,作任一平面图形(一般是闭合的)其边界可以从任意地方开始,但好的起点终点对以后分网很有用处,一般地,起点、终点取习惯上的顶点、圆弧零度位置等特殊位置处,这样网格质量较高。

3.ABAQUS/CAE建模思想与proe等专业CAD软件相似,都是特征建模,即:通过平面产生的基面以拉伸、旋转、扫掠等生成体。

4.作为feature的一种,草绘中对某些关键形状标以尺寸对以后方便的对part进行修改很有用。

5.建模过程中,合理有效的用好基准Datum(面、轴、点)对建立复杂的part有用!6.Part可进行copy,copy的结果是将原part的所有特性(此前已指定)全部继承下来,可以通过delete其中的一些feature来形成新的part,在delete时,某一feature如果前后相关,则与之相关的都将被delete(如:在基准面内做的feature,则删除基准时此feature 也被删除),一旦delete将不能恢复,但如果只是想暂时“不见它”,可以从tool中suppress 它。

7.关于坐标系的问题:在part模块中使用的都是局部坐标系,而模型需要在assembly模块中进行全局定位(此中为整体坐标系)。(这对于只有一个part的模型来说没什么问题,但多个part的模型需要用constrain来进行整合),第一个进入assembly中的part 的坐标系被默认为整体坐标系。

8.刚性曲面的建立,其材料、约束等性质需要通过施加在一个刚性参考点上才能得以实现。9.在assembly中,为防止第二个instance在建立进在视图中与第一个相叠,通常在创建第二个时打开Auto-offset from other instances选项。

ABAQUS帮助范例中文索引

帮助文档ABAQUS Example Problems Menual 1.静态应力/位移分析 1.1.静态与准静态应力分析 1.1.1.螺栓结合型管法兰连接的轴对称分析 1.1. 2.薄壁机械肘在平面弯曲与内部压力下的弹塑性失效 1.1.3.线弹性管线在平面弯曲下的参数研究 1.1.4.橡胶海绵在圆形凸模下的变形分析 1.1.5.混泥土板的失效 1.1.6.有接缝的石坡稳定性研究 1.1.7.锯齿状梁在循环载荷下的响应 1.1.8.静水力学流体单元:空气弹簧模型 1.1.9.管连接中的壳-固体子模型与壳-固体耦合的建立 1.1.10.无应力单元的再激活 1.1.11.黏弹性轴衬的动载响应 1.1.1 2.厚板的凹入响应 1.1.13.叠层复合板的损害和失效 1.1.14.汽车密封套分析 1.1.15.通风道接缝密封的压力渗透分析 1.1.16.震动缓冲器的橡胶/海绵成分的自接触分析 1.1.17.橡胶垫圈的橡胶/海绵成分的自接触分析 1.1.18.堆叠金属片装配中的子模型分析 1.1.19.螺纹连接的轴对称分析 1.1.20.周期热-机械载荷下的汽缸盖的直接循环分析 1.1.21.材料(沙产品)在油井中的侵蚀分析 1.1.2 2.压力容器盖的子模型应力分析 1.1.23.模拟游艇船体中复合涂覆层的应用 1.2.屈曲与失效分析 1.2.1.圆拱的完全弯曲分析 1.2.2. 层压复合壳中带圆孔圆柱形面的屈曲分析 1.2.3.点焊圆柱的屈曲分析 1.2.4. K型结构的弹塑性分析 1.2.5. 不稳定问题:压缩载荷下的加强板分析 1.2.6.缺陷敏感柱型壳的屈曲分析 1.3. 成形分析 1.3.1. 圆柱形坯料墩粗:利用网格对网格方案配置与自适应网格 的准静态分析 1.3. 2. 矩形方盒的超塑性成型 1.3.3. 球形凸模的薄板拉伸 1.3.4. 圆柱杯的深拉伸 1.3.5. 考虑摩擦热产生的圆柱形棒材的挤压成形分析 1.3.6. 厚板轧制成形分析 1.3.7. 圆柱杯的轴对称成形分析 1.3.8. 杯/槽成形分析 1.3.9. 正弦曲线形凹模锻造

abaqus帮助文档中轮胎的例子

外胎是由胎体、缓冲层(或称带束层)、胎面、胎侧和胎圈组成 1、Bead:胎唇部; 2、sidewall:胎侧; 3、tread:胎面;4belt:缓冲层;5、carcass:胎体帘布层。 3.1.8 Treadwear simulation using adaptive meshing in ABAQUS/Standard 3.1.8使用自适应网格在Abaqus/Standard中进行轮胎磨损仿真分析 软件:Abaqus/Standard 这个例子在Abaqus/Standard中使用自适应网格技术对稳态滚动的轮胎进行建模。这次分析使用类似“Steady-state rolling analysis of a tire”Section 3.1.2来建立稳态滚动轮胎的接地印迹和状态。接着,进行稳态传输分析来计算和推测持续分析步,在稳态过程中产生一个近似瞬态磨损解。 问题描述和建模 轮胎描述和有限元建模和“Import of asteady-state rolling tire,”Section 3.1.6一样,但是有一些不一样,在这里需要指出。由于这次分析的中心是轮胎磨损,所以胎面建模需要更加精细。另外台面使用线性弹性材料模型来避免超弹性材料在网格自适应过程中不收敛。 图1所示的是轴对称175SR14轮胎的一半模型。橡胶层用CGAX4和 CGAX3单元建模。加强层使用带有rebar层的SFMGAX1单元模拟。橡胶层和加强层之间潜入单元约束。橡胶层的弹性模量为6Mpa,泊松比为0.49。剩下的轮胎部分用超弹性材料模型模拟。多应变能使用系数C10=10^6,C01=0和D1=2*10^8。用来模拟骨架纤维的刚性层和径向成0°,弹性模量为9.87Gpa。压缩系数设置成受拉系数的百分之一。名义应力应变数据用马洛超弹性模型定义材料本构关系。Belt fibers材料的拉伸弹性模量为172.2Gpa。压缩系数设置成拉伸系数的的百分之一。Belt的纤维走向在轴向±20°内。 旋转前面的轴对称一半模型可得到局部三位模型,如图2所示。我们关注轮胎印迹区域的网格。将局部模型镜像后可得到完整的三维模型。 自适应网格在轮胎磨损计算中的局限性 在这个例子中使用自适应网格必须严格遵守以下条件: 1、圆柱网格不支持自适应网格并且在本例子也没有使用 2、由于梯度状态变量的变形错误严重,自适应网格使用超弹性材料时表现很差。因此胎面用弹性材料定义 3、在自适应网格的范围内不能用包含刚性层的嵌入网格。 4、自适应网格通过网格几何特征来决定自适应网格在自由面光滑的方向,网格几何的特征通常不容易和描述的磨损方向一致。因此,下面将讨论到,通常你需要做额外的工作来明确地描述磨损的方向。 加载

ABAQUS2016版安装步骤.pdf

64位Abaqus2016 Win7安装教程 (一颗星星亲测安装)(关闭防火墙)(关闭杀毒软件)Abaqus2016安装共分为三部分,即License、Solver、CAE,这三部分依次安装。安装文件夹下的内容如下图所示。1位License,2为Solver安装部分,3位CAE安装部分。安装前需要将IE浏览器升级至IE10或IE11,我升级至IE10。 1.License安装 1.在_SolidSQUAD_文件夹下,将所有的文件复制到您要安装的文件夹下,如我的安装文件夹为C:\Simulation Software\ABAQUS 2016\License。 2.复制完成后,打开ABAQUS.lin文件,以记事本格式,如下图,将this_host改为您的计算机名,切记其余的不要改动。

3.右键点击server_install.bat,以管理员身份打开。(只需打开以下即可)。 4.右键点击Imtools.exe,出现下图。 5. 点击Config Serverce,出现下图,选在第1步中复制后的文件,此处和Abaqus 以前的版本一致。 6.点击Start/Stop/Reread,再点击Start Server。

7.至此License安装完成。环境变量不需设置。 2. Solver安装 1. 首先安装3DEXPERIENCE_AbaqusSolver,打开此文件夹,以管理员身份运行Steup.exe。 2.点击下一步。 3.选择安装目录,并下一步。

4.点击下一步。 5.点击安装。 6.安装过程中

7.显示安装完成。 8. 安装CAA_3DEXPERIENCE_AbaqusSolver,打开此文件夹,以管理员身份运行Steup.exe。 9.

ABAQUS关键字(keywords)

ABAQUS帮助里关键字(keywords)翻译 (2013-03-06 10:42:48) 转载▼ 分类:abaqus 转自人人网 总规则 1、关键字必须以*号开头,且关键字前无空格 2、**为注释行,它可以出现在中的任何地方 3、当关键字后带有时,关键词后必须采用逗号隔开 4、参数间都采用逗号隔开 5、关键词可以采用简写的方式,只要程序能识别就可以了 6、不需使用隔行符,如果参数比较多,一行放不下,可以另起一行,只要在上一行的末尾加逗号便可以 ----------------------------------------------------------------------------------------------------------------------------------------- *AMPLITUDE:幅值 这个选项允许任意的载荷、和其它指定的数值在一个分析步中随时间的变化(或者在ABAQUS/Standard分析中随着的变化)。 必需的参数: NAME:幅值曲线的名字 可选参数: DEFINITION:设置definition=Tabular(默认)给出表格形式的幅值-时间(或幅值-频率)定义。设置DEFINITION=EQUALLY SPACED/PERIODIC/MODULATED/DECAY/SMOOTH STEP/SOLUTION DEPENDENT或BUBBLE来定义其他形式的幅值曲线。 INPUT:设置该参数等于替换输入文件名字。 TIME:设置TIME=STEP TIME(默认)则表示分析步时间或频率。TIME=TOTAL TIME表示总时间。 VALUE:设置VALUE=RELATIVE(默认),定义相对幅值。VALUE=ABSOLUTE表示绝对幅值,此时,行中载荷选项内的值将被省略,而且当温度是指定给已定义了温度TEMPERATURE=GRADIENTS(默认)梁上或壳上的,不能使用ABSOLUTE。 对于DEFINITION=TABULAR的可选参数: SMOOTH:设置该参数等于 DEFINITION=TABULAR的数据行 第一行 1、时间或频率 2、第一点的幅值(绝对或相对) 3、时间或频率 4、第二点的幅值(绝对或相对) 等等 基本形式: *Amplitude,name=Amp-1 0.,0.,0.2,1.5,0.4,2.,1.,1.

ABAQUS帮助文档

初始损伤对应于材料开始退化,当应力或应变满足于定义的初始临界损伤准则,则此时退化开始。Abaqus 的Damage for traction separation laws 中包括:Quade Damage、Maxe Damage、Quads Damage、Maxs Damage、Maxpe Damage、Maxps Damage 六种初始损伤准则,其中前四种用于一般复合材料分层模拟,后两种主要是在扩展有限元法模拟不连续体(比如crack 问题)问题时使用。前四种对应于界面单元的含义如下:Maxe Damage 最大名义应变准则:Maxs Damage 最大名义应力准则:Quads Damage 二次名义应变准则:Quade Damage 二次名义应力准则 最大主应力和最大主应变没有特定的联系,不同材料适用不同准则就像强度理论有最大应力理论和最大应变理论一样~ ABAQUS帮助文档10.7.1 Modeling discontinuities as an enriched feature using the extended finite element method 看看里面有没有你想要的 Defining damage evolution based on energy dissipated during the damage process 根据损伤过程中消耗的能量定义损伤演变 You can specify the fracture energy per unit area,, to be dissipated during the damage process directly. 您可以指定每单位面积的断裂能量,在损坏过程中直接消散。Instantaneous failure will occur if is specified as 0. 瞬间失效将发生 However, this choice is not recommended and should be used with care because it causes a sudden drop in the stress at the material point that can lead to dynamic instabilities.

abaqus子结构帮助文档

OVERVIEW OF SUBSTRUCTURES IN Abaqus/CAE 39.Substructures This section explains how to integrate substructures into your analysis in Abaqus/CAE.The following topics are covered: ?“Overview of substructures in Abaqus/CAE,”Section39.1 ?“Generating a substructure,”Section39.2 ?“Specifying the retained nodal degrees of freedom and load cases for a substructure,”Section39.3?“Importing a substructure into Abaqus/CAE,”Section39.4 ?“Using substructure part instances in an assembly,”Section39.5 ?“Recovering?eld output for substructures,”Section39.7 ?“Visualizing substructure output,”Section39.8 39.1Overview of substructures in Abaqus/CAE Substructures are collections of elements that have been grouped together,so the internal degrees of freedom have been eliminated for the https://www.sodocs.net/doc/2c5610139.html,ing a substructure make model de?nition easier and analysis faster when you analyze a model that contains identical pieces that appear multiple times(such as the teeth of a gear),because you can use a substructure repeatedly in a model.Substructures are connected to the rest of the model by the retained degrees of freedom at the retained nodes.Factors that determine how many and which nodes and degrees of freedom should be retained are discussed in “De?ning substructures,”Section10.1.2of the Abaqus Analysis User’s Manual.Substructure de?nition in your model follows two sets of steps: ?“Creating substructures in your model database,”Section39.1.1 ?“Including substructures in your analysis,”Section39.1.2 39.1.1Creating substructures in your model database You can create substructures in Abaqus/CAE by following these general steps: 1.Create or open the model database in which you want to specify substructures in Abaqus/CAE. 2.In the Step module,create a Substructure generation step.Abaqus/CAE converts the entire model into a single substructure.For more information,see“Generating a substructure,” Section39.2. 3.In the Load module,create Retained nodal dofs boundary conditions to determine which degrees of freedom will be retained as external degrees of freedom on the substructure.You can also de?ne a load case in the substructure generation step if you want to apply a load to the substructure at

abaqus帮助文档之地震相应计算分析

2.1.15 Seismic analysis of a concrete gravity dam Products: Abaqus/Standard Abaqus/Explicit In this example we consider an analysis of the Koyna dam, which was subjected to an earthquake of magnitude 6.5 on the Richter scale on December 11, 1967. The example illustrates a typical application of the concrete damaged plasticity material model for the assessment of the structural stability and damage of concrete structures subjected to arbitrary loading. This problem is chosen because it has been extensively analyzed by a number of investigators, including Chopra and Chakrabarti (1973), Bhattacharjee and Léger (1993), Ghrib and Tinawi (1995), Cervera et al. (1996), and Lee and Fenves (1998). Problem description The geometry of a typical non-overflow monolith of the Koyna dam is illustrated in Figure 2.1.15–1. The monolith is 103 m high and 71 m wide at its base. The upstream wall of the monolith is assumed to be straight and vertical, which is slightly different from the real configuration. The depth of the reservoir at the time of the earthquake is = 91.75 m. Following the work of other investigators, we consider a two-dimensional analysis of the non-overflow monolith assuming plane stress conditions. The finite element mesh used for the analysis is shown in Figure 2.1.15–2. It consists of 760 first-order, reduced-integration, plane stress elements (CPS4R). Nodal definitions are referred to a global rectangular coordinate system centered at the lower left corner of the dam, with the vertical y-axis pointing in the upward direction and the horizontal x-axis pointing in the downstream direction. The transverse and vertical components of the ground accelerations recorded during the Koyna earthquake are shown in Figure 2.1.15–3 (units of g = 9.81 m sec–2). Prior to the earthquake excitation, the dam is subjected to gravity loading due to its self-weight and to the hydrostatic pressure of the reservoir on the upstream wall. For the purpose of this example we neglect the dam–foundation interactions by assuming that the foundation is rigid. The dam–reservoir dynamic interactions resulting from the transverse component of ground motion can be modeled in a simple form using the Westergaard added mass technique. According to Westergaard (1933), the hydrodynamic pressures that the water exerts on the dam during an earthquake are the same as if a certain body of water moves back and forth with the dam while the remainder of the reservoir is left inactive. The added mass per unit area of the upstream wall is given in approximate form by the expression , with , where = 1000 kg/m3 is the density of water. In the Abaqus/Standard analysis the added mass approach is implemented using a simple 2-node user element that has been coded in user subroutine UEL. In the Abaqus/Explicit analysis the dynamic interactions between the dam and the reservoir are ignored. The hydrodynamic pressures resulting from the vertical component of ground motion are assumed to be small and are neglected in all the simulations. Material properties

ABAQUS帮助-用户分析手册目录---在帮助文件中查找相关信息

ABAQUS Analysis User’s Manual 目录 第1章介绍 1.1 介绍 1.1.1 介绍:概要 1.2 ABAQUS构造和约定 1.2.1 Input构造规则 1.2.2 约定 1.3 定义一个ABAQUS模型 1.3.1 在ABAQUS中定义一个模型 1.4 参数模型 1.4.1 参数输入 第2章空间模型 2.1 定义节点 2.1.1 节点定义 2.1.2 外形参数变量 2.1.3 节点厚度 2.1.4 节点的法线定义 2.1.5 坐标系统的转换 2.2 定义单元 2.2.1 单元定义 2.2.2 单元建立 2.2.3 定义加筋 2.2.4 定义钢筋作为一个单元属性 2.2.5 方向 2.3 定义表面 2.3.1 表面:概述 2.3.2 定义基于单元的表面 2.3.3 定义基于节点的表面 2.3.4 定义解析刚体表面 2.3.5 对表面进行操作 2.4 定义刚体 2.4.1 刚体定义

2.5 定义积分输出项 2.5.1 积分输出项的定义 2.6 定义不做结构材料的质量 2.6.1 不做结构材料的质量定义 2.7 定义分布 2.7.1 分布的定义 2.8 定义显示体 2.8.1 显示体的定义 2.9 定义一个装配 2.9.1 定义一个装配 2.10 定义矩阵 2.10.1 定义矩阵 第3章执行程序 3.1 执行程序:概述 3.1.1 执行ABAQUS程序:概述 3.2 执行程序 3.2.1 用于获得信息的执行程序 3.2.2 用于ABAQUS/Standard和ABAQUS/Explicit的执行程序 3.2.3 用于ABAQUS/CAE的执行程序 3.2.4 用于ABAQUS/Viewer的执行程序 3.2.5 用于Python的执行程序 3.2.6 用于参数研究的执行程序 3.2.7 用于ABAQUS HTML文件的执行程序 3.2.8 用于许可证有效性的执行程序 3.2.9 用于结果文件(.fil)的ASCII转化的执行程序 3.2.10 用于连接结果文件(.fil)的执行程序 3.2.11 用于查询关键词/问题数据库的执行程序 3.2.12 用于获取例子input文件的执行程序 3.2.13 用于用户自定义执行和子程序的执行程序 3.2.14 用于input文件和输出数据库升级效用的执行程序 3.2.15 用于生成输出数据报告的执行程序 3.2.16 用于重启动分析连接输出数据库(.odb)的执行程序 3.2.17 用于结合子结构输出的执行程序 3.2.18 用于网络输出数据库文件连接器的执行程序 3.2.20 用于将NASTRAN大批数据文件转化为ABAQUS中input文件的执行程序 3.2.21 用于将PAM-CRASH输入文件转化为部分ABAQUS中input文件的执行程序 3.2.22 用于将ABAQUS输出数据库文件转为NASTRAN Output2结果文件的执行程序 3.2.23 用于和ZAERO交换ABAQUS数据的执行程序 3.2.24 加密和解密ABAQUS输入数据的执行程序 3.2.25 用于job执行控制的执行程序 3.3 环境文件设置

abaqus6.13学习手册

abaqus6.13-4+vs2012+IntelFortran2013 SP1 (abaqus6.13-4中Fortran编译器的配置) 目前Abaqus的最新版本已经是 6.13-4,Intel Fortran编译器的最新版本也已经到了IntelParallel Studio XE 2013 SP1 Fortran Compiler, visual studio的版本也有2012了。 想要在Abaqus里用子程序,必须安装Intel Visual Fortran,而安装Intel Visual Fortran前需要安装Microsoft Visual Studio,做好相关设置后通过Abaqus Verification测试子程序以及其他Abaqus功能是否能正常使用。 一、ABAQUS 与Intel Fortran及Visual Studio的兼容性介绍: 大家知道ABAUQS如果需要用User Subroutine必须有Intel Fortran,而Intel Fortran又必须在Visual Studio的环境下运行。三者之间存在的两两兼容问题,必须引起注意。 目前用的比较多的配搭: Abaqus 6.9+VS2005+Intel Fortran 9.1/10.0/10.1 Abaqus 6.10/6.11/6.12+VS2008+Intel Fortran 10.1 Abaqus 6.13-4+VS2012+Intel Fortran XE2013 SP1(我所使用的)

二、ABAQUS 、Intel Fortran、Visual Studio的安装顺序及安装方法: (1)、安装顺序: step1、安装visual studio(VS)(必须在Intel Fortran XE2013安装之前): 一般而言安装VS没有任何难度,需要注意的一点是对于64位系统需要安装64位支持,而在有些版本中该模块是默认安装中没有选中的。为了避免漏装可以在安装时选择完全安装(complete)。此外,为了避免因为非英文版VS产生的各种不可预料的整合问题,建议使用英文版VS。 step 2、安装intel visual fortran (IVF)。 为了实现IVF和VS的整合(integration to visual studio),step 2需要在step 1之后进行。一般情况下,IVF会在安装时自动检测支持的VS版本并进行整合;对于64位系统同样需要安装64位系统支持,推荐完全安装(For Advanced User)。在VS的help中查看”about Microsoft Visual Studio”,整合成功的话可以在已安装组件列表中找到”Intel(R) Fortran Compiler Integration ” step 3、安装ABAQUS。 step3 相对前两步相对独立,甚至可以先于1、2进行。 (2)、安装方法及下载地址: 1、Abaqus6.13-4: 百度网盘:https://www.sodocs.net/doc/2c5610139.html,/s/1hq7PjlM 这是个种子,里面包含window,linux,版本,和帮助文件。

Abaqus帮助文档整理汇总(20200501064837)

Abaqus 使用日记 Abaqus标准版共有“部件(part)”、“材料特性(propoterty)”、“装配(assemble)”、“计算步骤(step)”、“交互(interaction)”、“加载(load)”、“单元划分(mesh)”、“计算(job)”、“后处理(visualization)”、“草图(sketch)”十大模块组成。 建模方法: 一个模型(model)通常由一个或几个部件(part)组成,“部件”又由一个或几个特征体(feature)组成,每一个部分至少有一个基 本特征体(base feature),特征体可以是所创建的实体,如挤压体、切割挤压体、数据点、参考点、数据轴,数据平面,装配体的装配约束、装配体的实例等等。 1.首先建立“部件” (1)根据实际模型的尺寸决定部件的近似尺寸,进入绘图区。绘图 区根据所输入的近似尺寸决定网格的间距,间距大小可以在edit菜单sketcher options选项里调整。 (2)在绘图区分别建立部件中的各个特征体,建立特征体的方法主 要有挤压、旋转、平扫三种。同一个模型中两个不同的部件可以有同 名的特征体组成,也就是说不同部件中可以有同名的特征体,同名特征体可以相同也可以不同。部件的特征体包括用各种方法建立的基本 特征体、数据点(datum point)、数据轴(datum axis)、数据平面(datum plane)等等。

(3)编辑部件可以用部件管理器进行部件复制,重命名,删除等, 部件中的特征体可以是直接建立的特征体,还可以间接手段建立,如首先建立一个数据点特征体,通过数据点建立数据轴特征体,然后建立数据平面特征体,再由此基础上建立某一特征体,最先建立的数据点特征体就是父特征体,依次往下分别为子特征体,删除或隐藏父特征体其下级所有子特征体都将被删除或隐藏。××××特征体被删除后将不能够恢复,一个部件如果只包含一个特征体,删除特征体时部件也同时被删除××××× 2.建立材料特性 (1)输入材料特性参数弹性模量、泊松比等 (2)建立截面(section)特性,如均质的、各项同性、平面应力平面应变等等,截面特性管理器依赖于材料参数管理器 (3)分配截面特性给各特征体,把截面特性分配给部件的某一区域 就表示该区域已经和该截面特性相关联 3.建立刚体 (1)部件包括可变形体、不连续介质刚体和分析刚体三种类型,在 创建部件时需要指定部件的类型,一旦建立后就不能更改其类型。采用旋转方式建立部件,在绘制轴对称部件的外形轮廓时不能超过其对 称轴。 (2)刚体是不能够施加质量、惯性轴等特性的,建立刚体后必须给 刚体指定一个参考点(reference point)。在加载模块里对参考点施加约束和定义其运动,对参考点施加的荷载或运动就相当于施加给了

abaqus帮助文档_friction

Specifying frictional behavior for mechanical contact property options You can specify a friction model that defines the force resisting the relative tangential motion of the surfaces in a mechanical contact analysis. For more information, see ?Frictional behavior,?Section 35.1.5 of the Abaqus Analysis User's Manual. To specify frictional behavior: 1. From the main menu bar, select Interaction Property Create. 2. In the Create Interaction Property dialog box that appears, do the following: ?Name the interaction property. For more information about naming objects, see ?Using basic dialog box components,?Section 3.2.1. ?Select the Contact type of interaction property. 3. Click Continue to close the Create Interaction Property dialog box. 4. From the menu bar in the contact property editor, select Mechanical Tangential Behavior. 5. In the editor that appears, click the arrow to the right of the Friction formulation field, and select how you want to define friction between the contact surfaces: ?Select Frictionless if you want Abaqus to assume that surfaces in contact slide freely without friction. ?Select Penalty to use a stiffness (penalty) method that permits some relative motion of the surfaces (an “elastic slip”) when they should be sticking. While the surfaces are sticking (i.e., ), the magnitude of sliding is limited to this elastic slip. Abaqus will continually adjust the magnitude of the penalty constraint to enforce this condition. For more information, see ?Stiffness method for imposing frictional constraints in Abaqus/Standard” in “Frictional behavior,?Section 35.1.5 of the Abaqus Analysis User's Manual, and ?Stiffness method for imposing frictional constraints in Abaqus/Explicit” in “Frictional behavior,?Section 35.1.5 of the Abaqus Analysis User's Manual. ?Select Static-Kinetic Exponential Decay to specify static and kinetic friction coefficients directly. In this model it is assumed that the friction coefficient decays exponentially from the static value to the kinetic value. Alternatively, you can enter test data to fit the exponential model. (This Friction formulation option also allows you to specify elastic slip.) For more information, see ?Specifying static and kinetic friction coefficients” in “Frictional behavior,?Section 35.1.5 of the Abaqus Analysis User's Manual.

学会使用ABAQUS文档

ABAQUS文档,其实是一个很方便的工具,学会使用它,往往能有事半功倍的效果。我看到一个帖子,关于*SOLID SECTION下面的那个数据行的问题。 考虑到可能还有其他一些网友,对ABAQUS帮助文档不是很熟悉,所以就另写个帖子在此。ABAQUS的在线帮助文档不但能搜索,还有链接转跳功能,看到什么地方,点一下,就链接过去了,所以很方便。 / j: r8 ^# S. P: x1 w以上述问题为例,你不知道*SOLID SECTION下面的那个数据行是怎么回事,你就先在关键字中找“*SOLID SECTION”,关于它的数据行有: Data line to definehomogeneous solid elements, infinite elements, acoustic elements, or truss elements: First (and only) line: 1. Enter any attribute values required. The default for the firstattribute is 1.0. See the description in Pa rt VI, “Elements,” of the ABAQUSAnalysis User’s Manual of the element type being used for a definition of thedata required. Data lines to define acomposite solid:$ O5 F! \5 H$ | First line: 1. Layer thickness. The layer thickness will be adjusted such that the sumof the layer thicknesses corresponds to the element length in the stackdirection. 2. Number of integration points to be used through the layer. This number mustbe an odd number. The default is one integration point. 3. Name of the material forming this layer. 4. Name of the orientation to be used with this layer or the orientationangle, , (in degrees), where measured positive counterclockwise relative to thelocal direction,which must be defined on the *ORIENTA TION definition. Repeat this dataline as often as necessary to define the properties for each layer of thecomposite solid.

abaqus帮助文档_step

Configuring a dynamic, explicit procedure An explicit, dynamic analysis is computationally efficient for the analysis of large models with relatively short dynamic response times and for the analysis of extremely discontinuous events or processes. This type of analysis allows for the definition of very general contact conditions and uses a consistent, large-deformation theory. For more information, see ?Explicit dynamic analysis,?Section 6.3.3 of the Abaqus Analysis User's Manual. To create or edit a dynamic, explicit procedure: 1. Display the Edit Step dialog box following the procedure outlined in ?Creating a step,?Section 14.9.2 (Procedure type:General; Dynamic, Explicit), or ?Editing a step,?Section 14.9.3. 2. On the Basic, Incrementation, Mass scaling, and Other tabbed pages, configure settings such as the time period for the step, the maximum time increment, the increment size, mass scaling definitions, and bulk viscosity parameters as described in the following procedures. To configure settings on the Basic tabbed page: 1. In the Edit Step dialog box, display the Basic tabbed page. 2. In the Description field, enter a short description of the analysis step. Abaqus stores the text that you enter in the output database, and the text is displayed in the state block by the Visualization module. 3. In the Time period field, enter the time period of the step. 4. Select an Nlgeom option: ?Toggle Nlgeom Off to perform a geometrically linear analysis during the current step. ?Toggle Nlgeom On to indicate that Abaqus/Explicit should account for geometric nonlinearity during the step. Once you have toggled Nlgeom on, it will be active during all subsequent steps in the analysis. 5. Toggle on Include adiabatic heating effects if you are performing an adiabatic stress analysis. This option is relevant only for metal plasticity. For more information, see ?Adiabatic analysis,?Section 6.5.5 of the Abaqus Analysis User's Manual.

相关主题