搜档网
当前位置:搜档网 › 毕业设计外文翻译-燃煤锅炉的燃烧进程控制

毕业设计外文翻译-燃煤锅炉的燃烧进程控制

毕业设计外文翻译-燃煤锅炉的燃烧进程控制
毕业设计外文翻译-燃煤锅炉的燃烧进程控制

Controlling the Furnace Process in Coal-Fired Boilers The unstable trends that exist in the market of fuel supplied to thermal power plants and the situations in which the parameters of their operation need to be changed (or preserved), as well as the tendency toward the economical and environmental requirements placed on them becoming more stringent, are factors that make the problem of controlling the combustion and heat transfer processes in furnace devices very urgent. The solution to this problem has two aspects. The first involves development of a combustion technology and accordingly, the design of a furnace device when new installations are designed. The second involves modernization of already existing equipment. In both cases, the technical solutions being adopted must be properly substantiated with the use of both experimental and calculation studies.

The experience Central Boiler-Turbine Institute Research and Production Association (TsKTI) and specialists gained from operation of boilers and experimental investigations they carried out on models allowed them to propose several new designs of multi fuel and maneuverable—in other words, controllable—furnace devices that had been put in operation at power stations for several years. Along with this, an approximate zero-one-dimensional, zone wise calculation model of the furnace process in boilers had been developed at the TsKTI, which allowed TsKTI specialists to carry out engineering calculations of the main parameters of this process and calculate studies of furnaces employing different technologies of firing and combustion modes .

Naturally, furnace process adjustment methods like changing the air excess factor, stack gas recirculation fraction, and distribution of fuel and air among the tiers of burners, as well as other operations written in the boiler operational chart, are used during boiler operation. However, the effect they have on the process is limited in nature. On the other hand, control of the furnace process in a boiler implies the possibility of making substantial changes in the conditions under which the combustion and heat transfer proceed in order to considerably expand the range of loads, minimize heat losses, reduce the extent to which the furnace is contaminated with slag, decrease the emissions of harmful substances, and shift to another fuel. Such a control can be obtained by making use of the following three main factors:

(1) The flows of oxidizer and gases being set to move in the flame in a desired aerodynamic manner;

(2) The method used to supply fuel into the furnace and the place at which it is admitted thereto;

(3) The fineness to which the fuel is milled.

The latter case implies that a flame-bed method is used along with the flame method for

combusting fuel. The bed combustion method can be implemented in three design versions: mechanical grates with a dense bed, fluidized-bed furnaces, and spouted-bed furnaces.

As will be shown below, the first factor can be made to work by setting up bulky vortices transferring large volumes of air and combustion products across and along the furnace device. If fuel is fired in a flame, the optimal method of feeding it to the furnace is to admit it to the zones near the centers of circulating vortices, a situation especially typical of highly intense furnace devices. The combustion process in these zones features a low air excess factor (α< 1) and a long local time for which the components dwell in them, factors that help make the combustion process more stable and reduce the emission of nitrogen oxides.

Also important for the control of a furnace process when solid fuel is fired is the fineness to which it is milled; if we wish to minimize incomplete combustion, the degree to which fuel is milled should be harmonized with the location at which the fuel is admitted into the furnace and the method for supplying it there, for the occurrence of unburned carbon may be due not only to incomplete combustion of large-size fuel fractions, but also due to fine ones failing to ignite (especially when the content of volatiles Vdaf < 20%).

Owing to the possibility of pictorially demonstrating the motion of flows, furnace aerodynamics is attracting a great deal of attention of researchers and designers who develop and improve furnace devices. At the same time, furnace aerodynamics lies at the heart of mixing (mass transfer), a process the quantitative parameters of which can be estimated only indirectly or by special measurements. The quality with which components are mixed in the furnace chamber proper depends on the number, layout, and momentum of the jets flowing out from individual burners or nozzles, as well as on their interaction with the flow of flue gases, with one another, or with the wall.

It was suggested that the gas-jet throw distance be used as a parameter determining the degree to which fuel is mixed with air in the gas burner channel. Such an approach to estimating how efficient the mixing is may to a certain degree be used in analyzing the furnace as a mixing apparatus. Obviously, the greater the jet length (and its momentum), the longer the time during which the velocity gradient it creates in the furnace will persist there, a parameter that determines how completely the flows are mixed in it. Note that the higher the degree to which a jet is turbulized at the outlet from a nozzle or burner, the shorter the distance which it covers, and, accordingly, the less completely the components are mixed in the furnace volume. Once through burners have advantages over swirl ones in this respect.

It is was proposed that the extent to which once through jets are mixed as they penetrate with velocity w2and density ρ2 into a transverse (drift) flow moving with velocity w1 and having density ρ1 be correlated with the relative jet throw distance in the following way

Where ks is a proportionality factor that depends on the ―pitch‖ between the jet axe s (k s= 1.5~1.8).

The results of an experimental investigation in which the mixing of gas with air in a burner and then in a furnace was studied using the incompleteness of mixing as a parameter are reported in 5.

A round once through jet is intensively mixed with the surrounding medium in a furnace within its initial section, where the flow velocity at the jet axis is still equal to the velocity w2 at the nozzle orifice of radius r0.The velocity of the jet blown into the furnace drops very rapidly beyond the confines of the initial section, and the axis it has in the case of wall-mounted burners bends toward the outlet from the furnace.

One may consider that there are three theoretical models for analyzing the mixing of jets with flow rate G2 that enter into a stream with flow rate G1. The first model is for the case when jets flow into a ―free‖ space (G1= 0),the second model is for the case when jets flow into a transverse (drift) current with flow rate G1 G2,and the third model is for the case when jets flow into a drift stream with flow rate G1

At a = 0.07, the length of the round jet’s initial section is equal to10 r0and the radius the jet has at the transition section (at the end of the initial section) is equal to 3.3 r0. The mass flow rate in the jet is doubled in this case. The corresponding minimum furnace cross-sectional area Ff for a round once through burner with the outlet cross-sectional area F b will then be equal to and the ratio Ff/Fb≈20. This value is close to the actual values found in furnaces equipped with once through burners. In furnaces equipped with swirl burners, a= 0.14 and Ff/Fb≈10. In both cases, the interval between the burners is equal to the jet diame ter in the transition section dtr, which differs little from the value that has been established in practice and recommended in.

The method traditionally used to control the furnace process in large boilers consists of equipping them with a large number of burners arranged in several tiers. Obviously, if the distance between the tiers is relatively small, operations on disconnecting or connecting them affect the entire process only slightly. A furnace design employing large flat-flame burners

equipped with means for controlling the flame core position using the aerodynamic principle is a step forward. Additional possibilities for controlling the process in TPE-214 and TPE-215 boilers with a steam output of 670 t/h were obtained through the use of flat-flame burners arranged in two tiers with a large distance between the tiers; this made it possible not only to raise or lower the flame, but also to concentrate or disperse the release of heat in it. A very tangible effect was obtained from installing multifold (operating on coal and open-hearth, coke, and natural gases) flat-flame burners in the boilers of cogeneration stations at metallurgical plants in Ukraine and Russia.

Unfortunately, we have to state that, even at present, those in charge of selecting the type, quantity, and layout of burners in a furnace sometimes adopt technical solutions that are far from being optimal. This problem should therefore be considered in more detail.

If we increase the number of burners nb in a furnace while retaining their total cross-sectional area (ΣF b=idem) and the total flow rate of air through them, their equivalent diameters deq will become smaller, as will the jet momentums Gbwb, resulting in a corresponding decrease in the jet throw distance hb and the mass they eject. The space with high velocity gradients also becomes smaller, resulting in poorer mixing in the furnace as a whole. This factor becomes especially important when the emissions of NOx and CO are suppressed right inside the furnace using staged combustion (at αb < 1) under the conditions of a fortiori no uniform distribution of fuel among the burners.

A quantitative relationship was established between the parameters characterizing the quality with which once through jets mix with one another as they flow into a limited space with the geometrical parameter of concentration = with n b= idem and G b= idem. By decreasing this parameter we improve the mass transfer in the furnace; however, this entails an increase in the flow velocity and the expenditure of energy (pressure drop) in the burners with the same F b. At the same time, we know from experience and calculations that good mixing in a furnace can be obtained without increasing the head loss if we resort to large long-range jets. This allows a much less stringent requirement to be placed on the degree of uniformity with which fuel must be distributed among the burners. Moreover, fuel may in this case be fed to the furnace location where it is required from process control considerations.

For illustration purposes, we will estimate the effect the number of burners has on the mixing in a furnace at = = idem. schematically shows the plan views of two furnace chambers differing in the number of once through round nozzles (two and four) placed in a tier (on one side of the furnace). The furnaces have the same total outlet cross-sectional areas of the nozzles (ΣF b) and the same jet velocities related to these areas (wb). The well-known swirl furnace of the TsKTI has a design close to the furnace arrangement under consideration.

According to the data, the air fraction βair that characterizes the mixing and enters through once through burners into the furnace volume beneath them can be estimated using the formula βair = 1 – (3) which has been verified in the range = 0.03–0.06 for a furnace chamber equipped with two frontal once through burners. Obviously, if we increase the number of burners by a factor of 2, their equivalent diameter, the length of the initial section of jets S0 and the area they ―serve‖ will reduce by a factor of Then, for example, at = 0.05, the fraction βair will decrease from 0.75~ 0.65. Thus, Eq. (3) may be written in the following form for approximately assessing the effect of once through burners on the quality of mixing in a furnace:βair = 1 – 3.5f nb ' ,where is the number of burners (or air nozzles) on one wall when they are arranged in one tier both in one sided and opposite manners.

The number of burners may be tentatively related to the furnace depth af (at the same = idem) using the expression (5)

It should be noted that the axes of two large opposite air nozzles ( = 1)—an arrangement implemented in an inverted furnace—had to be inclined downward by more than 50°.

One well-known example of a furnace device in which once through jets are used to create a large vortex covering a considerable part of its volume is a furnace with tangentially arranged burners. Such furnaces have received especially wide use in combination with pulverizing fans. However, burners with channels having a small equivalent diameter are frequently used for firing low-calorific brown coals with high content of moisture. As a result, the jets of air-dust mixture and secondary air that go out from their channels at different velocities(w2/w1 = 2~3) become urbanized and lose the ability to be thrown a long distance; as a consequence, the flame comes closer to the water walls and the latter are contaminated with slag. One method by which the tangential combustion scheme can be improved consists of organizing the so-called concentric admission of large jets of air-dust mixture and secondary air with the fuel and air nozzles spaced apart from one another over the furnace perimeter, accompanied by intensifying the ventilation of mills. Despite the fact that the Temperature level in the flame decreases, the combustion does not become less stable because the fuel mixes with air in a stepwise manner in a horizontal plane.

V ortex furnace designs with large vortices the rotation axes of which are arranged transversely with respect to the main direction of gas flow have wide possibilities in terms of controlling the furnace process. Four furnace schemes with a controllable flame are described, which employ the principle of large jets colliding with one another; three of these schemes have been implemented. A boiler with a steam capacity of 230 t/h has been retrofitted in accordance with one of these schemes (with an inverted furnace) .Tests of this boiler, during which air-dust mixture was fed at a velocity of 25–30 m/s from the boiler front using a high

concentration dust system, showed that the temperature of gases at the outlet from the furnace had a fairly uniform distribution both along the furnace width and depth. A simple method of shifting the flame core over the furnace height was checked during the operation of this boiler, which consisted of changing the ratio of air flow rates through the front and rear nozzles; this allowed a shift to be made from running the furnace in a dry-bottom mode to a slag-tap mode and vice versa. A bottom-blast furnace scheme has received rather wide use in boilers equipped with different types of burners and mills. Boilers with steam capacities ranging from 50 to 1650 t/h with such an aerodynamic scheme of furnaces manufactured by ZiO and Sibenergomash have been installed at a few power stations in Russia and abroad. We have to point out that, so far as the efficiency of furnace process control is concerned, a combination of the following two aerodynamic schemes is of special interest: the inverted scheme and the bottom-blast one. The flow pattern and a calculation analysis of the furnace process in such a furnace during the combustion of lean coal are presented in .

Below, two other techniques for controlling the furnace process are considered. Boilers with flame–stoker furnaces have gained acceptance in industrial power engineering, devices that can be regarded to certain degree as controllable ones owing to the presence of two zones in them. Very different kinds of fuel can be jointly combusted in these furnaces rather easily. An example of calculating such a furnace device is given. As for boilers of larger capacity, work on developing controllable two-zone furnaces is progressing slowly. The development of a furnace device using the so-called VIR technology (the transliterated abbreviation of the Russian introduction, innovation, and retrofitting) can be considered as holding promise in this respect. Those involved in bringing this technology to the state of industry standard encountered difficulties of an operational nature (the control of the process also presented certain difficulties). In our opinion, these difficulties are due to the fact that the distribution of fuel over fractions can be optimized to a limited extent and that the flow in the main furnace volume has a rather sluggish aerodynamic structure. It should also be noted that the device for firing the coarsest fractions of solid fuel in a spouting bed under the cold funnel is far from being technically perfect.

Centrifugal dust concentrators have received acceptance for firing high-reactive coals in schemes employing pulverizing fans to optimize the distribution of fuel as to its flow rate and fractions. The design of one such device is schematically shown. Figure shows a distribution of fuel flow rates among four tiers of burners that is close to the optimum one. This distribution can be controlled if we furnish dust concentrators with a device with variable blades, a solution that has an adequate effect on the furnace process.

燃煤锅炉的燃烧进程控制

存在于火电厂的市场的燃料供应,某些操作参数需要改变(或保留)的情况下,以及经济和环境方面倾向的要求使他们变得更加严格的不稳定趋势是导致使控制燃烧与传热过程炉设备非常紧迫的主要因素。解决这个问题的办法有两个方面。第一阶段包括发展燃烧技术和当新装置设计时高炉的设计。第二阶段包括现有的现代化设备。在两种情况下,技术精髓的采用必须通过类似试验与计算研究的使用来证实。有着丰富经验的机组研究和生产协会( TsKTI )和齐奥专家取得锅炉操作和实验进行了调查,他们的模式使他们能够提出一些新设计的混和机动性,换言之,可控炉装置已在发电站投入使用多年,与此同时,一种近似零一维,锅炉炉膛燃烧进程总线计算模型在TsKTI 已经研制成功,这一模型允许TsKTI 专家获取计算这一进程中的主要参数,计算研究炉膛采用不同技术时的发射与燃烧方式。当然,火炉燃烧进程的调整方法有诸如改变空气过剩系数,烟气再循环率,燃料和空气在锅炉空间内的分配,以及其它在锅炉运行期间书面的控制图表。然而,它们对进程的影响自然是有限的。另一方面,控制锅炉的燃烧进程很可能意味着在某种条件下发成实质性改变,在这种条件下发生燃烧和传热,目的是大幅度扩大负荷量,尽量减少热损失,减少炉渣的污染程度,减少排放的有害物质,并且转型成再燃物。这种控制,可利用以下三个主要因素:

(1)流动的氧化剂和气体以一种期望的空气动力学方式在火焰中流动

(2)将燃料供应到火炉的方法并证实燃料已经供应到地方了

(3)经过研磨的优良燃料

后者意味着火炉床的方法被用作带有火焰的燃料燃烧过程。流化床燃烧的方法可以实施三个设计版本:带有密集床的机械炉,流化床锅炉,以及喷动床炉。

正如一下所要展示的,第一个因素可以通过在锅炉装置周围建立一些庞大的漩涡转移大量的空气和燃烧产品来实现。如果燃料进给是在火焰中进行,最佳的进给方式是将其进给到漩涡中心区域附近,这种方式特别适用在高度密集炉设备中。在这一区域的燃

,在这一很长过程时间内这些成分都要存在于此,烧过程具有较低的空气过剩因数1

这一因素有助于使燃烧过程更稳定和减少排放的氮氧化物。

同样重要的是,对于锅炉燃烧控制过程,当固体燃料燃烧时,也要优化将燃料碾磨精化。如果我们要尽量减少不完全燃烧,燃料的研磨程度应该与位置相协调,在这一位置上,燃料被送进炉膛,同时供应燃料应讲究方法,因为碳的不完全燃烧不但是因为大型燃料组分不完全燃烧,而且还因为某些经过研磨的细质不燃烧的缘故。(特别是某些挥发性的成分Vdaf<20%)。

由于存在绘画般的显示流体运动的可能性,锅炉空气动力学吸引了大量研究人员和设计师的关注,他们一直致力于发展和改进锅炉设备。与此同时,锅炉空气动力学的关

键在于混合中心(集中的传递),这一过程的可估计的定量参数,只能间接或特殊的测量。成分在炉膛内混合的质量严格上取决于数量,布局,还有从个别炉膛和喷嘴喷射出来的流体动力,以及它们与流动的废气或与墙壁的相互作用。

有人建议,气体喷射距离可以作为参数确定气体燃烧器通道中燃料与空气的混合程度。这种如何估计有效混合的做法可以在一定的程度上用于混合装置的炉的分析。显然,越大的喷射距离(和其势头),造成的在炉膛内持续存在的速度梯度的时间越长,一个参数,确定如何流动中完全混合。注意,在喷嘴或燃烧器出口的喷射高度越高,它涵盖的距离越短,因此,组成部分不完全是在炉体内混合。一旦通过燃烧器便在漩涡这方面具有优势。

还有人提议,因为它们以速度w

2和密度ρ

2

渗透变成横向(漂移)流移动速度w

1

密度ρ

1

,所以在喷嘴混合的程度与气体喷射距离密切相关,以下列方式:公式(1)

Ks是相称的因素,取决于射流轴线之间的距离(Ks= 1.5至1.8)天然气与空气在炉中混合,然后在炉中使用不完整的混合技术的实验研究结果作为一个参数在[5]报告。

第一轮曾经是密集射流与周围介质以其最初的形式混合的熔炉,在这里喷气轴的流

速仍然是等于在喷嘴孔半径r

的速度W2。喷嘴吹入到炉的速度下降非常迅速,超越了最初一节的限制,壁挂式燃烧器的轴弯曲对准炉的出口。

有人可能会认为,有三个理论模型用于分析流量G

2和流量G

1

混流喷射的原理。第一

种模式是喷射流入“自由”空间的情况( G

1

= 0 );第二个模型是喷射流入横向(漂移)

的情况下,当前的流量G

1 G2;第三个模型是当喷射流入漂移流的情况下,此时流量

G 1

2

。第二种模型描述的是混合气体燃烧器,第三种模式描述的是在炉膛内的混合。我

们认为,与第二种模式相比在不久的将来我们即将拥有的混合模式更接近于第一种模

式,因为0

1/G

2

< 1 ,我们将假定喷射的漂移距离h等同于自由喷射的初始长度S

.

正在漂流的喷射的弹射能力等同于自由喷射的长度,初始喷射的长度能够用众所周知的

公式确G.N.Abramovich :S

0 = 0.67r

/ a,在这里,a代表喷射结构因数,r

代表喷

嘴半径。

在a= 0.07时,喷嘴的初始喷射圆长等同于10倍的r

,喷射过渡段(在初始喷射结

束时)的半径等同于3.3倍r

.集中喷射的流量是这种情形的两倍。相应的最小炉周围的

代表性区域F

f 一旦通过燃烧器出口区域Fb,这两个区域将相等同,他们的比例是F

f

/F

b

≈20。一旦通过燃烧器,这一值将接近于基于锅炉设备的实际值。带有旋流的锅炉燃烧器,a = 0.14和Ff/F

b

≈10。在两种情况下,燃烧器之间的距离与在过渡阶段的喷射直径dtr相等,这与建立于实践与建议的价值差别很小。

传统的方法来控制大型锅炉的炉内过程包括给他们配备了大量的燃烧器,并将这些燃烧器安排在几个层次。显然,如果层之间的距离比较小,断开或连接的行为对整个过程的影响可以忽略。锅炉设计采用大平面火焰燃烧器装备,意味着利用空气动力学原理

控制火焰的燃烧中心是锅炉发展历程中先前迈出的一大步。对于控制蒸汽产量为600t/h TPE-214 and TPE-215 型锅炉进程,更多可能性是通过在两个距离较大的层面上采用平面火焰燃烧器。这使人们有可能不仅提高或降低的火焰,而且还能集中或分散释放的热量。一个非常明显的效果,是在乌克兰和俄罗斯的联产锅炉冶金产业中安装万能(用于煤炭和平炉,焦化,自然气体)平面燃烧器。

不幸的是,我们必须指出,即使在目前,那些负责选择炉具类型,数量和布局所采用的技术解决方案,还远远没有得到优化。因此这个问题应考虑更多的细节。

如果我们增加炉具数量,同时保留其总截面积( ΣF b =idem )和通过他们的空气总

量,他们的等效直径deq 将变得越来越小,而喷射动量G bwb 也会减小,导致喷射距离的

相应减少和集中退出。带有高流速梯度的空间也变小,导致作为整体的炉子混合性变差。在燃料分配不均匀的情况下,当采用分级燃烧(at αb<1)时,喷射氮氧化物和碳氧化物的比例很正确的时候,这一因素变得非常重要。定量关系被建立在以质量和几何参数的浓度为特征的参数上,质量取决于混合喷射进入有限空间的流量,几何参数的浓度为=f ΣF b /F f , n b =idem,G b =idem 。通过降低这个参数我们提高炉的传质;然而,这需要我

们在相同的F b 下,增加流体速度和能源的支出。与此同时,我们从经验和计算中得知,

良好的混合炉,如果我们采用大型的远程喷射炉,可不增加顶端的损失。这让很多不是很严格的要求可以置于一致的水平上,在这一水平上,燃料必须被分配在炉内。此外,燃料可能在这种情况下被传送至该炉的某一位置,这一位置是需要从过程控制方面去考虑。 为便于说明,我们将估计当=f ΣF b /F f =idem 是混合炉数量的影响。图标1显示了两

炉膛放置在一层(炉子一侧)的喷嘴数量的不同(2或者4)。该炉具有相同的喷嘴区域总出口横断面( ΣF b )和相同的喷射速度联系着这些区域(w b )。众所周知的TsKTI 漩

涡炉有一个接近于考虑下的炉具的设计方案。根据有关数据,以低于额定的量混合并通过燃烧器进入炉体内为特点的空气指数βair ,可用公式进行估计:βair=1-5f ,这一公式范围已经被核实0.03-0.06,为炉膛配备了两个前沿使其一次性通过燃烧器。显然,如果我们增加燃烧器的数量到因数2,其当量直径,初始喷射区域的长度S0和他们所“服务”的区域因数将减小2,例如,当a=0.05,分数βair 将由0.75减少至0.65 ,因此,在通过对经过燃烧器进入炉内混合的质量的影响进行评估后,上述公式可以写成:βair=1-3.5f nb ,在这里nb 是在一面墙上燃烧器(或空气喷嘴)的数量,当它们被安排在一样或相反的方式上。燃烧器的数量可能暂时与炉的深度af 联系(同时

f =idem ),此时用公式。

应当指出的是,在轴上的两个相对的空气喷嘴,('nb =1)—其中一个安排在反向表面—不得倾向下调超过50°。

有关炉装备,有一个很有名的案例。通过喷射用来制造一个很大的漩涡,用来覆盖

炉装置的大部分体积,这种装置是在炉膛四角布置燃烧器。这种装备已经结合研磨鼓风机得到了广泛的采用。然而,带有线路和小的当量直径的燃烧器,经常被用作引燃水份含量较高的低热量褐煤。结果,以不同的速度喷射空气粉尘混合物和从各自不同通道出

去的二级空气(w

2/w

1

= 2–3),这些喷射物形成漩涡从而失去可以远距喷射的能力。因

此,火焰接近于水壁,后者被残渣污染。有一种方法能够使切向燃烧方案得到改进,这种方法是引导所谓的“轴心”吸纳大量的空气粉尘混合物与二次空气,燃料和空气喷嘴彼此不相邻并配有通风机。尽管火焰的温度会下降,燃烧却依然稳定,这时因为燃料和空气的混合过程是在一个循序渐进的水平上进行的。

带有大涡轮横向旋转轴,和主要气流方向有关的涡炉设计具有广泛的可能性用于控制炉进程。四个可控火焰的锅炉计划被记述,它们遵循大型喷嘴彼此相喷射的原理,这其中的三个计划已经被实施了。一个蒸汽能力230吨/小时的锅炉已按照其中的一个计划进行了改装(带有反转炉)。这种锅炉的测试表明了,在炉子的出口处,气体的温度在沿炉子的深度和宽度上都是不均匀分布的。在此期间,空气粉尘混合物在高浓缩除尘机的作用下,以25-30m/s的速度从炉子的前沿喷射。一个测量炉中火焰高度的简单办法是在操作锅炉的过程中进行,这需要考虑通过炉前后方喷嘴不断变化的空气流量比率;这个过程允许由干底模式替换为液态排渣模式,反之亦然。一个底喷炉计划已经在锅炉产业上得到了广泛的应用,这一类锅炉配有不同的燃烧器和粉碎器。蒸汽能力从50—1650t/h这样的气动方案锅炉已经被ZiO 和 Sibener gomash制造,并在俄罗斯等一些国外的发电站得到应用。我们必须指出,迄今为止炉的过程控制效率问题已经受到关注,以下两个气动炉方案格外有趣:反转模式和底喷炉模式。在这种炉燃烧低质煤的过程中,流量和炉的进程计算分析被提出。

下面,其他两个控制炉过程的技术被考虑。带有火焰控制炉的锅炉已经在电力工业中得到了应用,由于在它们的内部存在两个区,这些设备可以被看做在某种程度上具有可控性。各种不同的燃料可以很容易的放到一个炉内一同燃烧。计算这种炉的例子已经在书中第二页给出了。至于大容量锅炉,双炉区控制的锅炉发展的一直很缓慢。发展炉技术所用到的所谓VIR技术(音译缩写俄罗斯引进,创新和改造),可以被视为这方面的曙光。那些致力于把这一技术带进国家行业标准中的人,遇到了自然运作方面的麻烦(过程控制中也介绍了某些问题)。我们认为,这些困难是由于这样一个事实,即燃料的分配比例超过一定分数,导致可以优化程度有限,流体在主炉容体中有着相当缓慢的空气动力学结构。还应该指出,在冷窗下的喷床,用于喷射固体燃料粗糙组分的设备,还远远不够完善。离心除尘技术已经在点燃高活性煤炭方面得到了应用,在这一计划中,采用粉球制造装置用以优化燃料分配,以及其流量和组分。设计图标见表二。图表三显示的是燃料流量在燃烧器的四个不同层次中分配最佳的一个。如果我们提供一个叶片可变的灰尘集中装置,这种分配是可控的。这一设计思想,对锅炉进程控制有深刻的影响。

毕业设计外文翻译资料

外文出处: 《Exploiting Software How to Break Code》By Greg Hoglund, Gary McGraw Publisher : Addison Wesley Pub Date : February 17, 2004 ISBN : 0-201-78695-8 译文标题: JDBC接口技术 译文: JDBC是一种可用于执行SQL语句的JavaAPI(ApplicationProgrammingInterface应用程序设计接口)。它由一些Java语言编写的类和界面组成。JDBC为数据库应用开发人员、数据库前台工具开发人员提供了一种标准的应用程序设计接口,使开发人员可以用纯Java语言编写完整的数据库应用程序。 一、ODBC到JDBC的发展历程 说到JDBC,很容易让人联想到另一个十分熟悉的字眼“ODBC”。它们之间有没有联系呢?如果有,那么它们之间又是怎样的关系呢? ODBC是OpenDatabaseConnectivity的英文简写。它是一种用来在相关或不相关的数据库管理系统(DBMS)中存取数据的,用C语言实现的,标准应用程序数据接口。通过ODBCAPI,应用程序可以存取保存在多种不同数据库管理系统(DBMS)中的数据,而不论每个DBMS使用了何种数据存储格式和编程接口。 1.ODBC的结构模型 ODBC的结构包括四个主要部分:应用程序接口、驱动器管理器、数据库驱动器和数据源。应用程序接口:屏蔽不同的ODBC数据库驱动器之间函数调用的差别,为用户提供统一的SQL编程接口。 驱动器管理器:为应用程序装载数据库驱动器。 数据库驱动器:实现ODBC的函数调用,提供对特定数据源的SQL请求。如果需要,数据库驱动器将修改应用程序的请求,使得请求符合相关的DBMS所支持的文法。 数据源:由用户想要存取的数据以及与它相关的操作系统、DBMS和用于访问DBMS的网络平台组成。 虽然ODBC驱动器管理器的主要目的是加载数据库驱动器,以便ODBC函数调用,但是数据库驱动器本身也执行ODBC函数调用,并与数据库相互配合。因此当应用系统发出调用与数据源进行连接时,数据库驱动器能管理通信协议。当建立起与数据源的连接时,数据库驱动器便能处理应用系统向DBMS发出的请求,对分析或发自数据源的设计进行必要的翻译,并将结果返回给应用系统。 2.JDBC的诞生 自从Java语言于1995年5月正式公布以来,Java风靡全球。出现大量的用java语言编写的程序,其中也包括数据库应用程序。由于没有一个Java语言的API,编程人员不得不在Java程序中加入C语言的ODBC函数调用。这就使很多Java的优秀特性无法充分发挥,比如平台无关性、面向对象特性等。随着越来越多的编程人员对Java语言的日益喜爱,越来越多的公司在Java程序开发上投入的精力日益增加,对java语言接口的访问数据库的API 的要求越来越强烈。也由于ODBC的有其不足之处,比如它并不容易使用,没有面向对象的特性等等,SUN公司决定开发一Java语言为接口的数据库应用程序开发接口。在JDK1.x 版本中,JDBC只是一个可选部件,到了JDK1.1公布时,SQL类包(也就是JDBCAPI)

机械 外文翻译 外文文献 英文文献 液压机械及泵

Hydraulic machinery and pump Hydraulic machinery are machines and tools which use fluid power to do work. Heavy equipment is a common example. In this type of machine, high-pressure liquid - called hydraulic fluid - is transmitted throughout the machine to various hydraulic motors and hydraulic cylinders. The fluid is controlled directly or automatically by control valves and distributed through hoses and tubes. The popularity of hydraulic machinery is due to the very large amount of power that can be transferred through small tubes and flexible hoses, and the high power density and wide array of actuators that can make use of this power. Hydraulic machinery is operated by the use of hydraulics, where a liquid is the powering medium. Pneumatics, on the other side, is based on the use of a gas as the medium for power transmission, generation and control. Hydraulic circuits For the hydraulic fluid to do work, it must flow to the actuator and or motors, then return to a reservoir. The fluid is then filtered and re-pumped. The path taken by hydraulic fluid is called a hydraulic circuit of which there are several types. Open center circuits use pumps which supply a

机械毕业设计英文外文翻译588柱塞式液压缸、起重器和柱塞

附录A译文 (一) 柱塞式液压缸、起重器和柱塞 液压缸、起重器和柱塞的基本术语可以被看作为同义词。通常首先描述的是其基本质特征,“jack”通常用来描述,应用于起重器中的液压缸,而且在大多数应用驱动器的特定工业场合来提供起重装置,“ram”经常被应用于高输出力的大型、重型液压缸,其它一些权威书籍可能将“ram”定义为活塞和杆是相同直径的液压缸,尽管这种液压缸更准确的应该被叫做柱塞式油缸,或置换式液压缸,这些形式的液压缸单一作用式并有其相对的应用局限。 液压缸可为单作用式,在单作用液压缸情况下,运动由弹簧或某种外力或重力使活塞返回到起始位置时释放压力来完成,在这种情况下弹簧返回,再液压条件下可获得的输出力可以被弹簧抗力所减轻。 双作用液压缸再普通应用场合是最常用的,液流上被安装液压缸两端,被选择器交替实现输入口,输出口作用。最大的可获得的输出的仅比单作用液压缸所获得的输出稍小些,因为当液体压力被反向加压时组织泄露,因而增加了摩擦力抵抗运动。 在反向运动时,可获得的力会由于活塞和杆面积的不同而降低了活塞作用面积减少,反向压力也是存在的,这种性能损失也许会很小,但在实际中明显地减少理论性能,而且液压缸的理论性能是有一定规格的,允许的公称公差以适应摩擦损失。 大多数的液压缸是单杆式的,双杆式的液压缸可能被应用在要求特高刚度下。对于双作用式液压缸,冲压力在伸出和缩回是相等的,这里可以估计到相比在相同直径的液压缸由于杆的封闭作用,摩擦力也会两端的密封杆和密封轴承而增大。 液压缸被广泛用于工业液体系统中,这些液压缸也别称为线性原动机或往复原动机。通常液压缸由循环管,活塞和杆运动处两侧的密封组织,活塞杆可被设计在液压缸的一侧或两侧,围绕活塞杆向液压缸外的液体温度可以由正确设计的还有密封垫用途的应用。再这当中我们将学习各种类型的液压缸以及它们是如何应用的液压缸的用途会对工业水利学的学习有很大帮助。

毕业设计外文翻译附原文

外文翻译 专业机械设计制造及其自动化学生姓名刘链柱 班级机制111 学号1110101102 指导教师葛友华

外文资料名称: Design and performance evaluation of vacuum cleaners using cyclone technology 外文资料出处:Korean J. Chem. Eng., 23(6), (用外文写) 925-930 (2006) 附件: 1.外文资料翻译译文 2.外文原文

应用旋风技术真空吸尘器的设计和性能介绍 吉尔泰金,洪城铱昌,宰瑾李, 刘链柱译 摘要:旋风型分离器技术用于真空吸尘器 - 轴向进流旋风和切向进气道流旋风有效地收集粉尘和降低压力降已被实验研究。优化设计等因素作为集尘效率,压降,并切成尺寸被粒度对应于分级收集的50%的效率进行了研究。颗粒切成大小降低入口面积,体直径,减小涡取景器直径的旋风。切向入口的双流量气旋具有良好的性能考虑的350毫米汞柱的低压降和为1.5μm的质量中位直径在1米3的流量的截止尺寸。一使用切向入口的双流量旋风吸尘器示出了势是一种有效的方法,用于收集在家庭中产生的粉尘。 摘要及关键词:吸尘器; 粉尘; 旋风分离器 引言 我们这个时代的很大一部分都花在了房子,工作场所,或其他建筑,因此,室内空间应该是既舒适情绪和卫生。但室内空气中含有超过室外空气因气密性的二次污染物,毒物,食品气味。这是通过使用产生在建筑中的新材料和设备。真空吸尘器为代表的家电去除有害物质从地板到地毯所用的商用真空吸尘器房子由纸过滤,预过滤器和排气过滤器通过洁净的空气排放到大气中。虽然真空吸尘器是方便在使用中,吸入压力下降说唱空转成比例地清洗的时间,以及纸过滤器也应定期更换,由于压力下降,气味和细菌通过纸过滤器内的残留粉尘。 图1示出了大气气溶胶的粒度分布通常是双峰形,在粗颗粒(>2.0微米)模式为主要的外部来源,如风吹尘,海盐喷雾,火山,从工厂直接排放和车辆废气排放,以及那些在细颗粒模式包括燃烧或光化学反应。表1显示模式,典型的大气航空的直径和质量浓度溶胶被许多研究者测量。精细模式在0.18?0.36 在5.7到25微米尺寸范围微米尺寸范围。质量浓度为2?205微克,可直接在大气气溶胶和 3.85至36.3μg/m3柴油气溶胶。

软件开发概念和设计方法大学毕业论文外文文献翻译及原文

毕业设计(论文)外文文献翻译 文献、资料中文题目:软件开发概念和设计方法文献、资料英文题目: 文献、资料来源: 文献、资料发表(出版)日期: 院(部): 专业: 班级: 姓名: 学号: 指导教师: 翻译日期: 2017.02.14

外文资料原文 Software Development Concepts and Design Methodologies During the 1960s, ma inframes and higher level programming languages were applied to man y problems including human resource s yste ms,reservation s yste ms, and manufacturing s yste ms. Computers and software were seen as the cure all for man y bu siness issues were some times applied blindly. S yste ms sometimes failed to solve the problem for which the y were designed for man y reasons including: ?Inability to sufficiently understand complex problems ?Not sufficiently taking into account end-u ser needs, the organizational environ ment, and performance tradeoffs ?Inability to accurately estimate development time and operational costs ?Lack of framework for consistent and regular customer communications At this time, the concept of structured programming, top-down design, stepwise refinement,and modularity e merged. Structured programming is still the most dominant approach to software engineering and is still evo lving. These failures led to the concept of "software engineering" based upon the idea that an engineering-like discipl ine could be applied to software design and develop ment. Software design is a process where the software designer applies techniques and principles to produce a conceptual model that de scribes and defines a solution to a problem. In the beginning, this des ign process has not been well structured and the model does not alwa ys accurately represent the problem of software development. However,design methodologies have been evolving to accommo date changes in technolog y coupled with our increased understanding of development processes. Whereas early desig n methods addressed specific aspects of the

液压马达外文文献翻译、中英文翻译

外文资料 In recent years, the hydraulic motor with brachytely and big torsional moment has great changes, the new structure continuously appears. But, all these hydraulic motors can be divided into two broad categories of single and multi-role according to the role of the number of plunger in each turn. The motors also can be divided into radial and horizontal direction according to the arrangement of the plunger. And the radial motors can be divided into different types according to structure and the summon power way of the plunger. No matter single and multi-role, the plug-hole of radial-piston hydraulic motor is equated by circle, arrayed radial. The plunger displaced by the impulse of pressure oil, then the volume of the cylinder changed, the summon power formed the rotation of the motor, all of these above are the mechanism of action of the motors. The rotor of the single role hydraulic motor has a circle of rotation, each plunger worker once reciprocation. The principal axis is eccentric axis in all the radial-piston hydraulic motors. The multi-role hydraulic motor had a guide rail curve, whose numbers are the action times. The rotor had a circle of rotation, the plunger worker many times reciprocal at the same time. The radial motors can be divided into several categories of plunger, ball blocker, blade. The structure of the single-role motors is simpler, the machine element number of it is less, the technology is better, and the cost is less. But the structure dimension of the single-role motor is longer than the multi-role motor in the same displacement each turn (or output torsional moment), and the single-role motor also have fluctuation of the output torsional moment and rotary speed.The homonymy high-pressure column tune of the single-role motor had major radial unbalance force that causes the brachytely stabilization of the motor became worse. Only increasing the capacity of the bearing, it can meet the requirements of the operating life of the bearing at the same time.

模具毕业设计外文翻译(英文+译文)

Injection Molding The basic concept of injection molding revolves around the ability of a thermoplastic material to be softened by heat and to harden when cooled .In most operations ,granular material (the plastic resin) is fed into one end of the cylinder (usually through a feeding device known as a hopper ),heated, and softened(plasticized or plasticized),forced out the other end of the cylinder, while it is still in the form of a melt, through a nozzle into a relatively cool mold held closed under pressure.Here,the melt cools and hardens until fully set-up. The mold is then opened, the piece ejected, and the sequence repeated. Thus, the significant elements of an injection molding machine become: 1) the way in which the melt is plasticized (softened) and forced into the mold (called the injection unit); 2) the system for opening the mold and closing it under pressure (called the clamping unit);3) the type of mold used;4) the machine controls. The part of an injection-molding machine, which converts a plastic material from a sold phase to homogeneous seni-liguid phase by raising its temperature .This unit maintains the material at a present temperature and force it through the injection unit nozzle into a mold .The plunger is a combination of the injection and plasticizing device in which a heating chamber is mounted between the plunger and mold. This chamber heats the plastic material by conduction .The plunger, on each stroke; pushes unbelted plastic material into the chamber, which in turn forces plastic melt at the front of the chamber out through the nozzle The part of an injection molding machine in which the mold is mounted, and which provides the motion and force to open and close the mold and to hold the mold close with force during injection .This unit can also provide other features necessary for the effective functioning of the molding operation .Moving

毕业设计外文翻译

毕业设计(论文) 外文翻译 题目西安市水源工程中的 水电站设计 专业水利水电工程 班级 学生 指导教师 2016年

研究钢弧形闸门的动态稳定性 牛志国 河海大学水利水电工程学院,中国南京,邮编210098 nzg_197901@https://www.sodocs.net/doc/2d5906653.html,,niuzhiguo@https://www.sodocs.net/doc/2d5906653.html, 李同春 河海大学水利水电工程学院,中国南京,邮编210098 ltchhu@https://www.sodocs.net/doc/2d5906653.html, 摘要 由于钢弧形闸门的结构特征和弹力,调查对参数共振的弧形闸门的臂一直是研究领域的热点话题弧形弧形闸门的动力稳定性。在这个论文中,简化空间框架作为分析模型,根据弹性体薄壁结构的扰动方程和梁单元模型和薄壁结构的梁单元模型,动态不稳定区域的弧形闸门可以通过有限元的方法,应用有限元的方法计算动态不稳定性的主要区域的弧形弧形闸门工作。此外,结合物理和数值模型,对识别新方法的参数共振钢弧形闸门提出了调查,本文不仅是重要的改进弧形闸门的参数振动的计算方法,但也为进一步研究弧形弧形闸门结构的动态稳定性打下了坚实的基础。 简介 低举升力,没有门槽,好流型,和操作方便等优点,使钢弧形闸门已经广泛应用于水工建筑物。弧形闸门的结构特点是液压完全作用于弧形闸门,通过门叶和主大梁,所以弧形闸门臂是主要的组件确保弧形闸门安全操作。如果周期性轴向载荷作用于手臂,手臂的不稳定是在一定条件下可能发生。调查指出:在弧形闸门的20次事故中,除了极特殊的破坏情况下,弧形闸门的破坏的原因是弧形闸门臂的不稳定;此外,明显的动态作用下发生破坏。例如:张山闸,位于中国的江苏省,包括36个弧形闸门。当一个弧形闸门打开放水时,门被破坏了,而其他弧形闸门则关闭,受到静态静水压力仍然是一样的,很明显,一个动态的加载是造成的弧形闸门破坏一个主要因素。因此弧形闸门臂的动态不稳定是造成弧形闸门(特别是低水头的弧形闸门)破坏的主要原是毫无疑问。

本科毕业设计方案外文翻译范本

I / 11 本科毕业设计外文翻译 <2018届) 论文题目基于WEB 的J2EE 的信息系统的方法研究 作者姓名[单击此处输入姓名] 指导教师[单击此处输入姓名] 学科(专业 > 所在学院计算机科学与技术学院 提交日期[时间 ]

基于WEB的J2EE的信息系统的方法研究 摘要:本文介绍基于工程的Java开发框架背后的概念,并介绍它如何用于IT 工程开发。因为有许多相同设计和开发工作在不同的方式下重复,而且并不总是符合最佳实践,所以许多开发框架建立了。我们已经定义了共同关注的问题和应用模式,代表有效解决办法的工具。开发框架提供:<1)从用户界面到数据集成的应用程序开发堆栈;<2)一个架构,基本环境及他们的相关技术,这些技术用来使用其他一些框架。架构定义了一个开发方法,其目的是协助客户开发工程。 关键词:J2EE 框架WEB开发 一、引言 软件工具包用来进行复杂的空间动态系统的非线性分析越来越多地使用基于Web的网络平台,以实现他们的用户界面,科学分析,分布仿真结果和科学家之间的信息交流。对于许多应用系统基于Web访问的非线性分析模拟软件成为一个重要组成部分。网络硬件和软件方面的密集技术变革[1]提供了比过去更多的自由选择机会[2]。因此,WEB平台的合理选择和发展对整个地区的非线性分析及其众多的应用程序具有越来越重要的意义。现阶段的WEB发展的特点是出现了大量的开源框架。框架将Web开发提到一个更高的水平,使基本功能的重复使用成为可能和从而提高了开发的生产力。 在某些情况下,开源框架没有提供常见问题的一个解决方案。出于这个原因,开发在开源框架的基础上建立自己的工程发展框架。本文旨在描述是一个基于Java的框架,该框架利用了开源框架并有助于开发基于Web的应用。通过分析现有的开源框架,本文提出了新的架构,基本环境及他们用来提高和利用其他一些框架的相关技术。架构定义了自己开发方法,其目的是协助客户开发和事例工程。 应用程序设计应该关注在工程中的重复利用。即使有独特的功能要求,也

液压系统液压传动和气压传动毕业论文中英文资料对照外文翻译文献综述

中英文资料对照外文翻译文献综述 液压系统 液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,1795年英国约瑟夫?布拉曼(Joseph Braman,1749-1814),在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905年将工作介质水改为油,又进一步得到改善。 第一次世界大战(1914-1918)后液压传动广泛应用,特别是1920年以后,发展更为迅速。液压元件大约在 19 世纪末 20 世纪初的20年间,才开始进入正规的工业生产阶段。1925 年维克斯(F.Vikers)发明了压力平衡式叶片泵,为近代液压元件工业或液压传动的逐步建立奠定了基础。20 世纪初康斯坦丁?尼斯克(G?Constantimsco)对能量波动传递所进行的理论及实际研究;1910年对液力传动(液力联轴节、液力变矩器等)方面的贡献,使这两方面领域得到了发展。 第二次世界大战(1941-1945)期间,在美国机床中有30%应用了液压传动。应该指出,日本液压传动的发展较欧美等国家晚了近 20 多年。在 1955 年前后 , 日本迅速发展液压传动,1956 年成立了“液压工业会”。近20~30 年间,日本液压传动发展之快,居世界领先地位。 液压传动有许多突出的优点,因此它的应用非常广泛,如一般工业用的塑料加工机械、压力机械、机床等;行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整装置等;土木水利工程用的防洪闸门及堤坝装置、河床升降装置、桥梁操纵机构等;发电厂涡轮机调速装置、核发电厂等等;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等。 一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元

毕业设计外文翻译格式实例.

理工学院毕业设计(论文)外文资料翻译 专业:热能与动力工程 姓名:赵海潮 学号:09L0504133 外文出处:Applied Acoustics, 2010(71):701~707 附件: 1.外文资料翻译译文;2.外文原文。

附件1:外文资料翻译译文 基于一维CFD模型下汽车排气消声器的实验研究与预测Takeshi Yasuda, Chaoqun Wua, Noritoshi Nakagawa, Kazuteru Nagamura 摘要目前,利用实验和数值分析法对商用汽车消声器在宽开口喉部加速状态下的排气噪声进行了研究。在加热工况下发动机转速从1000转/分钟加速到6000转/分钟需要30秒。假定其排气消声器的瞬时声学特性符合一维计算流体力学模型。为了验证模拟仿真的结果,我们在符合日本工业标准(JIS D 1616)的消声室内测量了排气消声器的瞬态声学特性,结果发现在二阶发动机转速频率下仿真结果和实验结果非常吻合。但在发动机高阶转速下(从5000到6000转每分钟的四阶转速,从4200到6000转每分钟的六阶转速这样的高转速范围内),计算结果和实验结果出现了较大差异。根据结果分析,差异的产生是由于在模拟仿真中忽略了流动噪声的影响。为了满足市场需求,研究者在一维计算流体力学模型的基础上提出了一个具有可靠准确度的简化模型,相对标准化模型而言该模型能节省超过90%的执行时间。 关键字消声器排气噪声优化设计瞬态声学性能 1 引言 汽车排气消声器广泛用于减小汽车发动机及汽车其他主要部位产生的噪声。一般而言,消声器的设计应该满足以下两个条件:(1)能够衰减高频噪声,这是消声器的最基本要求。排气消声器应该有特定的消声频率范围,尤其是低频率范围,因为我们都知道大部分的噪声被限制在发动机的转动频率和它的前几阶范围内。(2)最小背压,背压代表施加在发动机排气消声器上额外的静压力。最小背压应该保持在最低限度内,因为大的背压会降低容积效率和提高耗油量。对消声器而言,这两个重要的设计要求往往是互相冲突的。对于给定的消声器,利用实验的方法,根据距离尾管500毫米且与尾管轴向成45°处声压等级相近的排气噪声来评估其噪声衰减性能,利用压力传感器可以很容易地检测背压。 近几十年来,在预测排气噪声方面广泛应用的方法有:传递矩阵法、有限元法、边界元法和计算流体力学法。其中最常用的方法是传递矩阵法(也叫四端网络法)。该方

本科毕业设计外文翻译

Section 3 Design philosophy, design method and earth pressures 3.1 Design philosophy 3.1.1 General The design of earth retaining structures requires consideration of the interaction between the ground and the structure. It requires the performance of two sets of calculations: 1)a set of equilibrium calculations to determine the overall proportions and the geometry of the structure necessary to achieve equilibrium under the relevant earth pressures and forces; 2)structural design calculations to determine the size and properties of thestructural sections necessary to resist the bending moments and shear forces determined from the equilibrium calculations. Both sets of calculations are carried out for specific design situations (see 3.2.2) in accordance with the principles of limit state design. The selected design situations should be sufficiently Severe and varied so as to encompass all reasonable conditions which can be foreseen during the period of construction and the life of the retaining wall. 3.1.2 Limit state design This code of practice adopts the philosophy of limit state design. This philosophy does not impose upon the designer any special requirements as to the manner in which the safety and stability of the retaining wall may be achieved, whether by overall factors of safety, or partial factors of safety, or by other measures. Limit states (see 1.3.13) are classified into: a) ultimate limit states (see 3.1.3); b) serviceability limit states (see 3.1.4). Typical ultimate limit states are depicted in figure 3. Rupture states which are reached before collapse occurs are, for simplicity, also classified and

毕业设计外文翻译

毕业设计(论文) 外文文献翻译 题目:A new constructing auxiliary function method for global optimization 学院: 专业名称: 学号: 学生姓名: 指导教师: 2014年2月14日

一个新的辅助函数的构造方法的全局优化 Jiang-She Zhang,Yong-Jun Wang https://www.sodocs.net/doc/2d5906653.html,/10.1016/j.mcm.2007.08.007 非线性函数优化问题中具有许多局部极小,在他们的搜索空间中的应用,如工程设计,分子生物学是广泛的,和神经网络训练.虽然现有的传统的方法,如最速下降方法,牛顿法,拟牛顿方法,信赖域方法,共轭梯度法,收敛迅速,可以找到解决方案,为高精度的连续可微函数,这在很大程度上依赖于初始点和最终的全局解的质量很难保证.在全局优化中存在的困难阻碍了许多学科的进一步发展.因此,全局优化通常成为一个具有挑战性的计算任务的研究. 一般来说,设计一个全局优化算法是由两个原因造成的困难:一是如何确定所得到的最小是全球性的(当时全球最小的是事先不知道),和其他的是,如何从中获得一个更好的最小跳.对第一个问题,一个停止规则称为贝叶斯终止条件已被报道.许多最近提出的算法的目标是在处理第二个问题.一般来说,这些方法可以被类?主要分两大类,即:(一)确定的方法,及(ii)的随机方法.随机的方法是基于生物或统计物理学,它跳到当地的最低使用基于概率的方法.这些方法包括遗传算法(GA),模拟退火法(SA)和粒子群优化算法(PSO).虽然这些方法有其用途,它们往往收敛速度慢和寻找更高精度的解决方案是耗费时间.他们更容易实现和解决组合优化问题.然而,确定性方法如填充函数法,盾构法,等,收敛迅速,具有较高的精度,通常可以找到一个解决方案.这些方法往往依赖于修改目标函数的函数“少”或“低”局部极小,比原来的目标函数,并设计算法来减少该?ED功能逃离局部极小更好的发现. 引用确定性算法中,扩散方程法,有效能量的方法,和积分变换方法近似的原始目标函数的粗结构由一组平滑函数的极小的“少”.这些方法通过修改目标函数的原始目标函数的积分.这样的集成是实现太贵,和辅助功能的最终解决必须追溯到

液压传动系统外文文献翻译、中英文翻译、外文翻译

中国地质大学长城学院 本科毕业设计外文资料翻译 系别工程技术系 专业机械设计制造及其自动化 学生姓名彭江鹤 学号 05211534 指导教师王泽河 职称教授 2015 年 5 月 4 日

液压传动系统 作者:Hopmans, ArthurH. 摘要 液压传动是由液压泵、液压控制阀、液压执行元件和液压辅件组成的液压系统。液压泵把机械能转换成液体的压力能,液压控制阀和液压辅件控制液压介质的压力、流量和流动方向,将液压泵输出的压力能传给执行元件,执行元件将液体压力能转换为机械能,以完成要求的动作。 关键词:液压传动;气压传动;传动系统; 许多液压传动先前已经设计出允许操作者无限变化输出的变速器,或甚至逆转的传动装置的输出作为相对于输入。通常情况下,这已经通过使用一个旋转斜盘是要么由操作者手动或操作液压动机来改变通过旋转泵头部具有轴向移动的活塞流动的液压流体的。液压流体从泵头活塞的流动,依次转动的马达头通过激励相应的一组活塞在其中违背一固定凸轮的,因此,旋转安装在电动机头的输出轴。 通常情况下,在现有技术的变速器已被被设置有各种功能,例如齿轮减速,刹车设定装置等。不幸的是,这些功能通常是提供外部发送的和显著增加整个装置的体积和质量。申请人确定,这是很期望具有其中基本上所有的这些需要或希望的功能,可以在内部提供的发送,同时还产生一个非常有效的和非常有效的传输的综合传输。 特别是,这种类型的变速器上经常使用的设备,如“零转动半径”剪草机之类的其中一个潜在的危险情况面对操作者,旁观者和设备本身,如果设备我们允许继续被推进应的操作者释放控制,由于当操作者无意中从装置抛出或变得受伤。因此,“故障自动刹车”机制经常被设置为传输自动地返回到中立配置在这种情况下,使得该装置不会继续供电,如果控制被释放。 先前传输这种类型的一般依靠某种外部设备,比如其目的是为了在操作者控制轴返回到中立位置应操作者释放所述轴的反操作偏压弹簧。这种类型的外部设备,可以容易地由用户或篡改损坏。这种回归函数中性到传输本身的整合允许在外部零件的减少可被损坏或不适当取出并大大降低,以支持传输的各种功能所需的外部结构。 在这种类型的用于割草机的使用和类似的传输经常遇到的另一个问题是,操作时会略生涩或有弹性,因为操作者通常无法顺利地控制从一个速度到另一个的过渡,往往试图使突然变化。从这些生涩的操作震动有一种倾向,穿更重的机器和操作上也是如此。因此,理想的是抑制这种传输的输出,以防止这种不平稳的运动。 不仅是它是期望能够有一个返回到中立的功能,如desribed以上,但还希望为操作者有积极的感觉为中立位置时,不论操作者从空档移动到前进或从中立扭转。此功能在本文中称为积极中性功能,并且在一般情况下,该功能需要操作者在从发送到任何一个正向或反向方向的中立姿势变换扩展更多的能量或运动相比,量能量消耗或运动需从一个速度转移到另一个在一个特定的方向。与上面提到的其它特征,最好是需要提供此功能的结构的发送本身内掺入。

模具毕业设计外文翻译

冷冲模具使用寿命的影响及对策 冲压模具概述 冲压模具--在冷冲压加工中,将材料(金属或非金属)加工成零件(或半成品)的一种特殊工艺装备,称为冷冲压模具(俗称冷冲模)。冲压--是在室温下,利用安装在压力机上的模具对材料施加压力,使其产生分离或塑性变形,从而获得所需零件的一种压力加工方法。 冲压模具的形式很多,一般可按以下几个主要特征分类: 1.根据工艺性质分类 (1)冲裁模沿封闭或敞开的轮廓线使材料产生分离的模具。如落料模、冲孔模、切断模、切口模、切边模、剖切模等。 (2)弯曲模使板料毛坯或其他坯料沿着直线(弯曲线)产生弯曲变形,从而获得一定角度和形状的工件的模具。 (3)拉深模是把板料毛坯制成开口空心件,或使空心件进一步改变形状和尺寸的模具。 (4)成形模是将毛坯或半成品工件按图凸、凹模的形状直接复制成形,而材料本身仅产生局部塑性变形的模具。如胀形模、缩口模、扩口模、起伏成形模、翻边模、整形模等。 2.根据工序组合程度分类 (1)单工序模在压力机的一次行程中,只完成一道冲压工序的模具。 (2)复合模只有一个工位,在压力机的一次行程中,在同一工位上同时完成两道或两道以上冲压工序的模具。 (3)级进模(也称连续模)在毛坯的送进方向上,具有两个或更多的工位,在压力机的一次行程中,在不同的工位上逐次完成两道或两道以上冲压工序的模具。 冲冷冲模全称为冷冲压模具。 冷冲压模具是一种应用于模具行业冷冲压模具及其配件所需高性能结构陶瓷材料的制备方法,高性能陶瓷模具及其配件材料由氧化锆、氧化钇粉中加铝、镨元素构成,制备工艺是将氧化锆溶液、氧化钇溶液、氧化镨溶液、氧化铝溶液按一定比例混合配成母液,滴入碳酸氢铵,采用共沉淀方法合成模具及其配件陶瓷材料所需的原材料,反应生成的沉淀经滤水、干燥,煅烧得到高性能陶瓷模具及其配件材料超微粉,再经过成型、烧结、精加工,便得到高性能陶瓷模具及其配件材料。本发明的优点是本发明制成的冷冲压模具及其配件使用寿命长,在冲压过程中未出现模具及其配件与冲压件产生粘结现象,冲压件表面光滑、无毛刺,完全可以替代传统高速钢、钨钢材料。 冷冲模具主要零件 冷冲模具是冲压加工的主要工艺装备,冲压制件就是靠上、下模具的相对运动来完成的。加工时由于上、下模具之间不断地分合,如果操作工人的手指不断进入或停留在模具闭合区,便会对其人身安全带来严重威胁。

相关主题