搜档网
当前位置:搜档网 › 12864C-1中文字库说明书

12864C-1中文字库说明书

12864C-1中文字库说明书
12864C-1中文字库说明书

LCD12864汉字显示

//在12864液晶上显示汉字和英文字符 /***********************头文件*********************/ #include "regx52.h" typedef unsigned char uchar; typedef unsignedintuint; sbitlcdrs=P1^5; //12864:0写指令,1写数据 sbitlcdwr=P1^6; //12864读写信号 sbitlcden=P1^7; //12864片选信号 uchar code tab[]={" ATI-51S"}; uchari; /***********************1ms延时函数**********************/ void delay(uint z) { uint y; while(z--) { for(y=0;y<125;y++); } } /***********************LCD写指令写数据**********************/ voidwrite_comdata(uchara,uchardatas) { lcdrs=a; lcdwr=0; delay(1); P0=datas; lcden=1; delay(1); lcden=0; } /***********************光标位置*********************/ void cursor(uchar x, uchar y ) { uchar address; switch(x){ case 0: address=0x80+y;break; case 1: address=0x90+y;break;

带字库12864液晶详解

12864液晶 一、概述 带中文字库的128X64是一种具有4位/8位并行、2线或3线串行多种接口方式,内部含有国标一级、二级简体中文字库的点阵图形液晶显示模块;其显示分辨率为128×64, 内置8192个16*16点汉字,和128个16*8点ASCII字符集.利用该模块灵活的接口方式和简单、方便的操作指令,可构成全中文人机交互图形界面。可以显示8×4行16×16点阵的汉字. 也可完成图形显示.低电压低功耗是其又一显著特点。由该模块构成的液晶显示方案与同类型的图形点阵液晶显示模块相比,不论硬件电路结构或显示程序都要简洁得多,且该模块的价格也略低于相同点阵的图形液晶模块。 基本特性: l 低电源电压(VDD:+3.0--+5.5V) l 显示分辨率:128×64点 l 内置汉字字库,提供8192个16×16点阵汉字(简繁体可选) l 内置 128个16×8点阵字符 l 2MHZ时钟频率 l 显示方式:STN、半透、正显 l 驱动方式:1/32DUTY,1/5BIAS l 视角方向:6点 l 背光方式:侧部高亮白色LED,功耗仅为普通LED的1/5—1/10 l 通讯方式:串行、并口可选 l 内置DC-DC转换电路,无需外加负压 l 无需片选信号,简化软件设计 l 工作温度: 0℃ - +55℃ ,存储温度: -20℃ - +60℃ 模块接口说明

*注释1:如在实际应用中仅使用串口通讯模式,可将PSB接固定低电平,也可以将模块上的J8和“GND”用焊锡短接。 *注释2:模块内部接有上电复位电路,因此在不需要经常复位的场合可将该端悬空。 *注释3:如背光和模块共用一个电源,可以将模块上的JA、JK用焊锡短接。 2.2并行接口 管脚号管脚名称电平管脚功能描述 1 VSS 0V 电源地 2 VCC 3.0+5V 电源正 3 V0 - 对比度(亮度)调整 RS=“H”,表示DB7——DB0为显示数据 4 RS(CS)H/L RS=“L”,表示DB7——DB0为显示指令数据 R/W=“H”,E=“H”,数据被读到DB7——DB0 5 R/W(SID) H/L R/W=“L”,E=“H→L”, DB7——DB0的数据被写到IR或DR 6 E(SCLK) H/L 使能信号 7 DB0 H/L 三态数据线 8 DB1 H/L 三态数据线 9 DB2 H/L 三态数据线 10 DB3 H/L 三态数据线 11 DB4 H/L 三态数据线 12 DB5 H/L 三态数据线 13 DB6 H/L 三态数据线 14 DB7 H/L 三态数据线 15 PSB H/L H:8位或4位并口方式,L:串口方式(见注释1) 16 NC - 空脚 17 /RESET H/L 复位端,低电平有效(见注释2) 18 VOUT - LCD驱动电压输出端 19 A VDD 背光源正端(+5V)(见注释3) 20 K VSS 背光源负端(见注释3)

利用树莓派B+成功实现NAS家庭服务器(流媒体播放、文件共享及下载机)

利用树莓派B+成功实现NAS家庭服务器 (流媒体播放、文件共享及下载机) 一、家庭服务器实现的主要功能 1、流媒体播放服务:利用DLNA实现电视、手机、电脑播放其上面的媒体文件。 2、文件共享:利用samba实现手机、电脑等终端与服务器的文件共享。 3、自动下载:利用aria2c实现自动下载。 先上几张效果图: 用orico的包装盒做了个机箱。 内部效果,线还是有些凌乱

放在桌上,感觉还不错,呵呵 二、准备工作 1、树莓派B+ 2、安装raspbian系统,具体安装方法见:树莓派学习笔记(1):入手树莓派。 3、设置固定IP为192.168.1.120,设置方法见:树莓派学习笔记(3):利用VNC远程控制树莓派。 4、安装vnc软件,安装方法见:树莓派学习笔记(3):利用VNC远程控制树莓派。 5、准备了一块旧移动硬盘(80G)

6、准备了可外接供电的usb hub一个,树莓派本身输出电流较小,很难保证移动硬盘的运行,所以加了一个可外接供电的usb hub。 三、安装samba实现文件共享 1、准备硬盘 硬盘进行分区和格式化,这里我直接就分了一个区,格式化为ext4格式,据网上介绍说如果是fat或者ntfs等格式可能会出现权限问题,于是干脆直接格式化为ext4格式。硬盘在树莓派上格式化会比较慢,我就在电脑上进行了格式化。电脑操作系统是windows7,利用软件MiniTool Partition Wizard Home Edition 8.0,下载地址:https://www.sodocs.net/doc/251321840.html,/download.html。具体使用方法是先将原分区删除,然后点击creat,在格式那里选ext4,类型我选的primary,label用的nas,然后点击apply就开始格式化硬盘了。(如果用容量较小的U盘,可以直接用树莓派格式化,命令为:mkfs -t ext4 /dev/sdb1) 2、将硬盘挂载到树莓派上 树莓派开机后,用putty连接(连接方法见树莓派学习笔记(1):入手树莓派)后,为方便操作直接进行root用户(具体方法见https://www.sodocs.net/doc/251321840.html,/xiaowuyi/p/3980037.html一楼评论处),然后运行df –h,查看硬盘挂载情况。 root@raspberrypi:/home/pi# df -h Filesystem Size Used Avail Use% Mounted on rootfs 2.9G 2.4G 387M 87% / /dev/root 2.9G 2.4G 387M 87% / devtmpfs 183M 0 183M 0% /dev tmpfs 38M 792K 37M 3% /run tmpfs 5.0M 0 5.0M 0% /run/lock tmpfs 75M 0 75M 0% /run/shm /dev/mmcblk0p1 56M 9.7M 47M 18% /boot /dev/sda1 70G 24M 67G 1% /media/nas 最后一行/dev/sda1说明硬盘已经挂载。为下一步安装samba,将共享文件夹设为/samba。于是新建文件夹:

12864中文资料及字库说明书

FYD12864液晶中文显示模块 一、概述 FYD12864-0402B是一种具有4位/8位并行、2线或3线串行多种接口方式,内部含有国标一级、二级简体中文字库的点阵图形液晶显示模块;其显示分辨率为128×64, 内置8192个16*16点汉字,和128个16*8点ASCII字符集.利用该模块灵活的接口方式和简单、方便的操作指令,可构成全中文人机交互图形界面。可以显示8×4行16×16点阵的汉字. 也可完成图形显示.低电压低功耗是其又一显著特点。由该模块构成的液晶显示方案与同类型的图形点阵液晶显示模块相比,不论硬件电路结构或显示程序都要简洁得多,且该模块的价格也略低于相同点阵的图形液晶模块。 基本特性: ●●低电源电压(VDD:+3.0--+5.5V) ●●显示分辨率:128×64点 ●●内置汉字字库,提供8192个16×16点阵汉字(简繁体可选) ●●内置 128个16×8点阵字符 ●●2MHZ时钟频率 ●●显示方式:STN、半透、正显 ●●驱动方式:1/32DUTY,1/5BIAS ●●视角方向:6点 ●●背光方式:侧部高亮白色LED,功耗仅为普通LED的1/5—1/10 ●●通讯方式:串行、并口可选 ●●内置DC-DC转换电路,无需外加负压 ●●无需片选信号,简化软件设计 ●●工作温度: 0℃ - +55℃ ,存储温度: -20℃ - +60℃ 二、方框图

三、模块接口说明 *注释1:如在实际应用中仅使用串口通讯模式,可将PSB接固定低电平,也可以将模块上的J8和“GND”用焊锡短接。*注释2:模块内部接有上电复位电路,因此在不需要经常复位的场合可将该端悬空。 *注释3:如背光和模块共用一个电源,可以将模块上的JA、JK用焊锡短接。 2.2并行接口

树莓派启动指南-无需屏幕键盘

目录 第一步:格式化SD卡 (2) 第二步:下载安装系统镜像 (2) 第三步:通过SSH连接树莓派 (3) 第四步:设置树莓派 (6) 第五步:使用windows远程桌面访问树莓派桌面 (8) 第六步:建立VNC获取树莓派桌面 (9) 第七步:安装3.5寸触摸屏驱动 (11) 第八步:配置摄像头 (15)

第一步:格式化SD卡 说明:未安装过Raspbian系统的SD卡可通过windows直接格式化,若要重新安装系统需要通过SDFormatter软件格式化。因为windows无法识别SD文件类型,导致无法完全格式化,建议使用软件格式化SD卡。 1、下载SDFormatter软件 下载地址:https://www.sodocs.net/doc/251321840.html,/rpi/SDFormatterv4.zip 2、在电脑端解压安装然后插入你要格式化的Miscro SD卡,然后打开软件运行 3、选择对应Miscro SD卡对应的磁盘符 4、确认无误,点击格式化既可以完成 格式化后,SD卡为FAT32格式 第二步:下载安装系统镜像 1、下载安装系统写入工具win32diskimager 下载地址:https://https://www.sodocs.net/doc/251321840.html,/projects/win32diskimager/ 2、下载系统镜像 下载地址:https://https://www.sodocs.net/doc/251321840.html,/downloads/raspbian/ 一般选择RASPBIAN STRETCH WITH DESKTOP镜像,下载种子文件通过迅雷下载更快。 3、下载好文件后:

启动Win32DiskImager,映像文件处选择Raspbian系统映像文件,设备处选择盘符为你读卡器的盘符,点写入,然后点一下Yes确定操作,开始系统写入,写入完成,提示成功。 将Micro SD卡插入树莓派,接通电源启动 4、备份系统 新建一个后缀为.img的文件,在Win32DiskImager中打开,然后选择设备,点击读取,等待读取完成,SD卡中的映像便备份到此img文件中了。之后可通过读取操作完成恢复。 第三步:通过SSH连接树莓派 1、无显示器获取树莓派IP 若路由器有多余网线接口可直接通过网线连接路由器和树莓派上网,否则可以使用如下方式使树莓派联网: 将网线一端接到树莓派,另一端接到笔记本。 如果现在笔记本已经通过WIFI连接到互联网,可以将无线网卡的互联网资源共享给本地连接。以win7系统为例,开始——控制面板——网络和Internet——网络和共享中心——查看网络状态和任务——更改适配器设置,找到无线网络连接右键“属性”,在共享选项卡上选中“允许其他网络用户通过此计算机的Internet 连接来连接(N)”选项,点确定。

12864液晶显示图片原理(完整版)

51单片机综合学习 12864液晶原理分析1 辛勤学习了好几天,终于对12864液晶有了些初步了解~没有视频教程学起来真有些累,基本上内部程序写入顺序都是根据程序自我变动,然后逆向反推出原理…… 芯片:YM12864R P-1 控制芯片:ST7920A带中文字库 初步小结: 1、控制芯片不同,寄存器定义会不同 2、显示方式有并行和串行,程序不同 3、含字库芯片显示字符时不必对字符取模了 4、对芯片的结构地址一定要理解清楚

5、显示汉字时液晶芯片写入数据的顺序(即显示的顺序)要清楚 6、显示图片时液晶芯片写入数据的顺序(即显示的顺序)要清楚 7、显示汉字时的二级单元(一级为八位数据写入单元)要清楚 8、显示图片时的二级单元(一级为八位数据写入单元)要清楚 12864点阵液晶显示模块(LCM)就是由128*64个液晶显示点组成的一个128列*64行的阵列。每个显示点对应一位二进制数,1表示亮,0表示灭。存储这些点阵信息的RAM称为显示数据存储器。要显示某个图形或汉字就是将相应的点阵信息写入

到相应的存储单元中。图形或汉字的点阵信息由自己设计,问题的关键就是显示点在液晶屏上的位置(行和列)与其在存储器中的地址之间的关系。由于多数液晶显示模块的驱动电路是由一片行驱动器和两片列驱动器构成,所以12864液晶屏实际上是由左右两块独立的64*64液晶屏拼接而成,每半屏有一个512*8 bits显示数据RAM。左右半屏驱动电路及存储器分别由片选信号CS1和CS2选择。显示点在64*64液晶屏上的位置由行号(line,0~63)与列号(column,0~63)确定。512*8 bits RAM中某个存储单元的地址由页地址(Xpage,0~7)和列地址(Yaddress,0~63)确定。每个存储单元存储8个液晶点的显示信息。

树莓派安装opencv

树莓派学习笔记——apt方式安装opencv 0.前言 本文介绍如何在树莓派中通过apt方式安装opencv,并通过一个简单的例子说明如何使用opencv。相比于源代码方式安装opencv,通过apt方式安装过程步骤简单些,消耗的时间也少一些。通过apt方式安装没有自动生成opencv.pc文件,所以在编写makefile文件时不能直接使用pkg-config工具,而需要逐个指定opencv_core、opencv_imgproc 等动态链接库。 【相关博文】 【树莓派学习笔记——源代码方式安装opencv】 更多内容请参考——【树莓派学习笔记——索引博文】 1.安装opencv 开始之前进行必要的更新工作。 sudo apt-get update 安装opencv。 sudo apt-get install libcv-dev 安装过程比较缓慢,请耐心等待。 安装完成之后,opencv相关的头文件被安装到/usr/lib目录中,该目录是linux默认头文件查找路径。opencv的相关动态链接库被安装到/usr/lib目录中。这些动态链接库包括: 【opencv_calib3d】——相机校准和三维重建

【opencv_core】——核心模块,绘图和其他辅助功能 【opencv_features2d】——二维特征检测 【opencv_flann】——快速最邻近搜索 【opencv_highgui】——GUI用户界面 【opencv_imgproc】——图像处理 【opencv_legacy】——废弃部分 【opencv_ml】——机器学习模块 【opencv_objdetect】——目标检测模块 【opencv_ocl】——运用OpenCL加速的计算机视觉组件模块【opencv_video】——视频分析组件 2.简单示例 【C++】——通过代码载入一张图片,通过opencv把彩色图片转换为黑白图片,并把原图和转换后的图片输出到屏幕中。 [cpp]view plaincopy 1.#include 2.#include 3.#include 4.#include https://www.sodocs.net/doc/251321840.html,ing namespace cv; https://www.sodocs.net/doc/251321840.html,ing namespace std; 7.int main (int argc, char **argv) 8.{ 9. Mat image, image_gray; 10. image = imread(argv[1], CV_LOAD_IMAGE_COLOR ); 11.if (argc != 2 || !image.data) { 12. cout << "No image data\n"; 13.return -1; 14. } 15.

LCD12864编码显示汉字

#include <> #include <> #define uint unsigned int #define uchar unsigned char #define DATA P0 //LCD12864数据线 sbit RS=P2^2; // 数据\指令选择 sbit RW=P2^1; // 读\写选择 sbit EN=P2^0; // 读\写使能 sbit CS1=P2^3; // 片选1 sbit CS2=P2^4; // 片选2 /********************************/ /* 定义中文字库*/ /********************************/ uchar code Hzk[]={ /*-- 文字: 各 --*/ /*-- 宋体12; 此字体下对应的点阵为:宽x高=16x16 --*/ 0x00,0x20,0x20,0x10,0x08,0x8F,0xB4,0x44,0x44,0xA4,0x9C,0x04,0x00,0x00,0x00, 0x00, 0x02,0x02,0x02,0x01,0x7F,0x42,0x42,0x42,0x42,0x42,0x42,0x7F,0x01,0x03,0x01, 0x00, /*-- 文字: 位 --*/ /*-- 宋体12; 此字体下对应的点阵为:宽x高=16x16 --*/ 0x00,0xC0,0x30,0xEC,0x03,0x2A,0xC8,0x09,0x0A,0x0E,0x08,0xE8,0x48,0x08,0x00, 0x00, 0x01,0x00,0x00,0x7F,0x20,0x20,0x20,0x27,0x20,0x30,0x2E,0x21,0x20,0x20,0x20, 0x00, /*-- 文字: 单 --*/ /*-- 宋体12; 此字体下对应的点阵为:宽x高=16x16 --*/ 0x00,0x00,0xF8,0x28,0x29,0x2E,0x2A,0xF8,0x28,0x2C,0x2B,0x2A,0xF8,0x00,0x00, 0x00, 0x08,0x08,0x0B,0x09,0x09,0x09,0x09,0xFF,0x09,0x09,0x09,0x09,0x0B,0x08,0x08, 0x00, /*-- 文字: 机 --*/ /*-- 宋体12; 此字体下对应的点阵为:宽x高=16x16 --*/ 0x08,0x08,0xC8,0xFF,0x48,0x88,0x08,0x00,0xFE,0x02,0x02,0x02,0xFE,0x00,0x00, 0x00,

玩转12864液晶(1)--显示字符

在我们常用的人机交互显示界面中,除了数码管,LED,以及我们之前已经提到的LCD1602之外,还有一种液晶屏用的比较多。相信接触过单片机的朋友都知道了,那就是12864液晶。顾名思义,12864表示其横向可以显示128个点,纵向可以显示64个点。我们常用的12864液晶模块中有带字库的,也有不带字库的,其控制芯片也有很多种,如KS0108 T6963,ST7920等等。在这里我们以ST7920为主控芯片的12864液晶屏来学习如何去驱动它。(液晶屏采用金鹏的OCMJ4X8C) 关于这个液晶屏的更多信息,请参考它的DATASHEET,附件中有下载。 我们先来了解一下它的并行连接情况。 下面是电路连接图

从上面的图可以看出,液晶模块和单片机的连接除了P0口的8位并行数据线之外,还有RS,RW,E等几根线。其中R/S是指令和数据寄存器的选择控制线(串行模式下为片选),R/W 是读写控制线(串行模式下是数据线),E是使能线(串行模式下为时钟线)。 通过这几根控制线和数据线,再结合它的时序图,我们就可以编写出相应的驱动程序啦。 看看并行模式下的写时序图:

根据这个时序图,我们就可以写出写数据或者写命令到LCD12864液晶的子程序。 读时序图如下: 根据这个时序图我们就可以从LCD12864液晶模块内部RAM中读出相应的数据,我们的忙检测函数就是根据这个时序图写出来的。以及后面章节中讲的画点函数等都要用到读时序。有了这两个时序图,然后我们再看看OCMJ4X8C的相关指令集,就可以编写出驱动程序了。这里要注意的是指令集分为基本指令集和扩充指令集,其中扩充指令集主要是与绘图相关,在此后的章节中会有相应的介绍。 下面让我们根据这些编写出它的驱动程序吧。 我的硬件测试条件为:STC89C516(11.0592MHz) + OCMJ4X8C 实际显示效果图片如下: 程序部分如下,请结合液晶模块的DATASHEET看程序,这样能够更加快速的弄懂程序的流程。大致有如下几个函数:写数据,写指令,忙检测,初始化,指定地址显示字符串等等。[p][/p] #include "reg52.h" #include "intrins.h" sbit io_LCD12864_RS = P1^0 ;

12864串行显示中文讲解

12864串行显示中文,按键选择显示页面,并且可调数值。 单片机P1口接矩阵按键,其它接口按程序中定义去接 只需要接12864LCD上GND VCC RS RW E PSB RST A K 程序如下 /********************************12864.h头文件*******************************/ #ifndef _12864_h #define _12864_h /*****包含头文件**************/ #include /********定义I/0口**********/ #define GPIO_KEY P1 sbit LCD12864_SCLK = P2^7; //E sbit LCD12864_SID = P2^5; //RW sbit LCD12864_CS = P2^6; //RS sbit LCD12864_RET= P2^0; sbit LCD12864_PSB =P2^2; /*声明全局变量*/ extern unsigned char keyvalue; /******声明全局函数*********/ void Delay1ms(unsigned int); //声明延时函数 unsigned char KeyDown(void); void LCD_sendbyte(unsigned char); void WrCom(unsigned char); void WrDat(unsigned char); void LcdInit(void); //void Print(unsigned char); void SetAddress( unsigned char,unsigned char ); void DisplayString(unsigned char x ,unsigned char y,unsigned char *add); #endif /********************************12864.C*************************************/ #include"12864.h" #include #include"string.h" //#define LCM_ST7920_FIRST_LINE_ADDRESS 0x80 //#define LCM_ST7920_SECOND_LINE_ADDRESS 0x90 //#define LCM_ST7920_THIRD_LINE_ADDRESS 0x88 //#define LCM_ST7920_FOURTH_LINE_ADDRESS 0x98

12864中文字库

梁国书for(;1;) study; FYD12864液晶中文显示模块

(一) (一)概述 (3) (二)(二)外形尺寸 1 方框图 (3) 2 外型尺寸图 (4) (三)(三)模块的接口 (4) (四)(四)硬件说明 (5) (五) 指令说明 (7) (五)(五)读写操作时序 (8) (六)(六)交流参数 (11) (七)(七)软件初始化过程 (12) (八)(八)应用举例 (13) (九)(九)附录 1半宽字符表 (20) 2 汉字字符表 (21) 一、概述 FYD12864-0402B是一种具有4位/8位并行、2线或3线串行多种接口方式,内部含有国标一级、二级简体中文字库的点阵图形液晶显示模块;其显示分辨率为128×64, 内置8192个16*16点汉字,和128个16*8点ASCII字符集.利用该模块灵活的接口方式和简单、方便的操作指令,可构成全中文人机交互图形界面。可以显示8×4行16×16点阵的汉字. 也可完成图形显示.低电压低功耗是其又一显著特点。由该模块构成的液晶显示方案与同类型的图形点阵液晶显示模块相比,不论硬件电路结构或显示程序都要简洁得多,且该模块的价格也略低于相同点阵的图形液晶模块。 基本特性: ●●低电源电压(VDD:+3.0--+5.5V) ●●显示分辨率:128×64点

●●2MHZ时钟频率 ●●显示方式:STN、半透、正显 ●●驱动方式:1/32DUTY,1/5BIAS ●●视角方向:6点 ●●背光方式:侧部高亮白色LED,功耗仅为普通LED的1/5—1/10 ●●通讯方式:串行、并口可选 ●●内置DC-DC转换电路,无需外加负压 ●●无需片选信号,简化软件设计 ●●工作温度: 0℃ - +55℃ ,存储温度: -20℃ - +60℃ 二、方框图 3、外形尺寸图

树莓派系统安装

软件下载 1.快速开机指南 英文版.pdf 中文版.doc 2.SD卡格式化工具,可选。 SD Formatter 4.0 for SD/SDHC/SDXC 3.NOOBS(ver:1.3.9),可选。 NOOBS.zip NOOBS自身并不是操作系统,而是树莓派官方推荐的启动管理软件。通过NOOBS,可以免镜像刷写工具安装系统,并可以不拔卡在树莓派上直接重装系统。官方推荐第一次使用树莓派,要用NOOBS安装系统。但NOOBS占用卡空间较大,需要特殊的分区结构,这都是存在的问题。是否使用NOOBS,可以自行考虑。个人的建议是手动下载镜像和刷写工具创建SD卡,不要理睬NOOBS。 4.镜像烧录工具 Win32DiskImager v0.9.zip (https://www.sodocs.net/doc/251321840.html,) USB Image Tool(使用介绍) 5.操作系统 根据偏好选择下列之一。 5.1 Raspbian “wheezy” 是Debian7.0在ARMv6的编译版,加上针对树莓派深度定制的硬件驱动与软件程序。官方推荐系统。如果你第一次使用树莓派,请下载这个。Debian的软件策略偏保守,稳定第一,升级是次要的。 下载链接:https://www.sodocs.net/doc/251321840.html,/raspbian_latest 默认帐号:Username: pi Password: raspberry 发布日期:2014-06-20 5.2 OpenELEC 运行快、且用户体验友好的一款XBMC媒体中心。 下载链接:https://www.sodocs.net/doc/251321840.html,/openelec_latest 发布日期:2014-06-14 5.3 Pidora Pidora是社区对Fedora在树莓派上的移植。不是Fedora官方版,但被Fedora官网推荐用于树莓派。Pidora基于Fedora 18,采用另一个轻量桌面环境XFCE。Fedora的软件策略相比于Debian,是略偏向先锋的。Fedora能用到版本稍新,但也经受过实测调试的软件包。 下载链接:https://www.sodocs.net/doc/251321840.html,/pidora_latest

树莓派使用说明

1:树莓派介绍: Raspberry Pi(中文名为“树莓派”,简写为RPi,或者RasPi/RPi)是为学生计算机编程教育而设计,只有信用卡大小的卡片式电脑,其系统基于Linux。 树莓派由注册于英国的慈善组织“Raspberry Pi 基金会”开发,Eben·Upton/埃·厄普顿为项目带头人。2012年3月,英国剑桥大学埃本·阿普顿(Eben Epton)正式发售世界上最小的台式机,又称卡片式电脑,外形只有信用卡大小,却具有电脑的所有基本功能,这就是Raspberry Pi电脑板,中文译名"树莓派"!这一基金会以提升学校计算机科学及相关学科的教育,让计算机变得有趣为宗旨。基金会期望这一款电脑无论是在发展中国家还是在发达国家,会有更多的其它应用不断被开发出来,并应用到更多领域。 一句话:树莓派是一个卡片大小的开发板,上面可以运行Linux系统,我们可以用它开发我想要的设备。 2:树莓派的种类 A型:1个USB、无有线网络接口、功率2.5W,500mA、256MB RAM(基本已经见不到了)B型:2个USB、支持有线网络、功率3.5W,700mA、512MB RAM、26个GPIO(市售还有很多)。 B+型:4个USB口、支持有线网络,功耗1W,512M RAM 40个GPIO(2014新出的,推荐使用) 3:树莓派参数: B型: 处理器BroadcomBCM2835(CPU,GPU,DSP和SDRAM,USB) CPU ARM1176JZF-S核心(ARM11系列)700MHz GPU Broadcom VideoCrore IV,OpenGL ES 2.0,1080p 30 h.264/MPEG-4 AVC高清解码器 内存512MByte USB 2.02(支持USB hub扩展) 影像输出Composite RCA(PAL & NTSC),HDMI(rev 1.3 & 1.4),raw LCD Panels via DSI 14 HDMI resolution from 640x350 to 1920x1200 plus various PAL andNTSC standards 音源输出 3.5mm插孔,HDMI 板载存储SD/MMC/SDIO卡插槽 网络接口10/100以太网接口 外设8xGPIO、UART、I2C、带两个选择的SPI总线,+3.3V,+5V,ground(负极)额定功率700mA(3.5W) 电源输入5V / 通过MicroUSB或GPIO头 总体尺寸85.60 x 53.98 mm(3.370 x 2.125 in) 操作系统Debian GNU/linux,Fedora,Arch Linux ARM,RISC OS, XBMC B+改进

12864液晶显示程序(图案+文字)

#include sbit LCD12864_RS = P2^0; //RS控制引脚 sbit LCD12864_RW = P2^1; //RW控制引脚 sbit LCD12864_EN = P2^2; //EN控制引脚 sbit LCD12864_PSB = P2^3; //模式选择引脚,ST7920控制器,1为8位并行接口,0为串行接口 #define LCDPORT P0//数据引脚 void LCD12864_Init(void); //LCD12864初始化函数 void LCD12864_WriteInfomation(unsigned char ucData,bit bComOrData); //向LCD12864写入数据,bComOrData为1时写入的是数据,0时写入的是命令 void LCD12864_CheckBusy(void);//忙检测函数 void LCD12864_DisplayImage(unsigned char code *ucImage); void Delay(unsigned int uiCount); unsigned char code ucPic1[]={ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x14,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x06,0x30,0x01,0xE0,0x00,0x00,0x2A,0x00,0x00,0xD8,0x00,0x00,0x00,0x00,0x00, 0x00,0x0F,0x7B,0x63,0xE0,0x00,0x00,0x22,0x00,0x01,0x24,0x00,0x00,0x00,0x00,0x00, 0x00,0x0F,0xFB,0x63,0x07,0x34,0x00,0x14,0x00,0x01,0x04,0x00,0x00,0x00,0x00,0x00, 0x00,0x0D,0xDB,0x63,0x01,0xBC,0x00,0x08,0x00,0x00,0x88,0x00,0x00,0x00,0x00,0x00, 0x00,0x0C,0x1B,0x63,0x07,0xB0,0x00,0x00,0x00,0x00,0x50,0x00,0x00,0x00,0x00,0x00, 0x00,0x0C,0x1B,0x63,0xED,0xB0,0xDB,0x00,0x01,0x00,0x20,0x00,0x00,0x00,0x00,0x00, 0x00,0x0C,0x19,0xE1,0xE7,0xB0,0xDB,0x00,0x02,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x0C,0x19,0xE1,0xE7,0xB0,0xDB,0x00,0x02,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x60,0x00,0x00,0x00,0x00,0x04,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x03,0xC0,0x00,0x00,0x00,0x00,0x08,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x08,0x05,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x10,0x0A,0x80,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x0A,0x00,0x00,0xFF,0xF8,0xE0,0x05,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x06,0xC0,0x15,0x00,0x1F,0xFF,0xFF,0xC0,0x02,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x09,0x20,0x11,0x00,0xFB,0xFF,0xE1,0xF8,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x08,0x20,0x0A,0x03,0x9F,0x00,0x9E,0x3E,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x04,0x40,0x04,0x0E,0x70,0x00,0x81,0xC7,0x80,0x01,0x40,0x00,0x00,0x00,0x00, 0x00,0x02,0x80,0x00,0x1D,0x80,0x00,0xE0,0x61,0xE0,0x02,0xA0,0x00,0x00,0x00,0x00, 0x00,0x01,0x00,0x00,0x77,0x9F,0xFC,0xF0,0x18,0xF8,0x02,0x20,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x01,0xDF,0x00,0x00,0xF3,0x0C,0x3C,0x01,0x40,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x03,0x9E,0x00,0x00,0xF8,0x06,0x1E,0x00,0x80,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x07,0x0E,0x30,0x01,0xFC,0x7F,0x07,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x07,0x0E,0x30,0x01,0xFC,0x7F,0x07,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x7E,0xFF,0xFF,0xFF,0xFF,0xFF,0x83,0xC0,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x0F,0xFD,0xFF,0xFF,0xFF,0xFF,0xFC,0x01,0xF0,0x00,0x00,0x00,0x00,0x00,

基于proteus的不带字库的12864的仿真程序(带仿真图)

基于proteus的不带字库的12864的仿真 程序(带仿真图) 作者:心如止水(武汉工程大学) /****************************************************** ****** 本程序为不带字库的12864汉字及英文字符的显示程序, 可以说此程序是所有12864显示程序中最简单最易懂的 显示程序。之所以写这个程序,是因为我看很多学单片 机的人(特别是初学者)对12864有一种恐惧感,觉得它 很难,看完这个程序,相信你能明白它的显示原理。 还要注意的是:带中文字库和不带中文字库的程序不一样, 不可混用。 ******************************************************* *****/ 先上图吧,哈哈

下面看程序吧,相信你一定能看懂,很简单的哟!!!#include #define uchar unsigned char #define uint unsigned int //sbit databus=P1; #define databus P1

//sbit Reset = P3^0; //复位 sbit rs = P3^7; //指令数据选择 sbit e = P3^5; //指令数据控制 sbit cs1 = P3^3; //左屏幕选择,低电平有效 sbit cs2 = P3^4; //右屏幕选择 sbit wr = P3^6; //读写控制 //sbit busy = P1^7; //忙标志 void SendCommand(uchar command); //写指令 void WriteData(uchar dat);//写数据 void LcdDelay(uint time); //延时 void SetOnOff(uchar onoff);//开关显示 void ClearScreen(uchar screen); //清屏 void SetLine(uchar line); //置页地址 void SetColum(uchar colum);//置列地址 void SetStartLine(uchar startline);//置显示起始行 void SelectScreen(uchar screen);//选择屏幕 void Show1616(uchar lin,uchar colum,uchar *address);//显示一个汉字 void InitLcd(); //初始化 void ResetLcd(); //复位 void Show_english(uchar lin,uchar colum,uchar *address); const uchar code hzk[] = { /*-- 文字: I --*/ /*-- 宋体12; 此字体下对应的点阵为:宽x高=8x16 --*/ 0x00,0x08,0x08,0xF8,0x08,0x08,0x00,0x00,0x00,0x20,0x20,0x3F,0x20,0x20,0x00,0x00, /*-- 文字: --*/ /*-- 宋体12; 此字体下对应的点阵为:宽x高=8x16 --*/ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /*-- 文字: c --*/ /*-- 宋体12; 此字体下对应的点阵为:宽x高=8x16 --*/ 0x00,0x00,0x00,0x80,0x80,0x80,0x00,0x00,0x00,0x0E,0x11,0x20,0x20,0x20,0x11,0x00, /*-- 文字: a --*/ /*-- 宋体12; 此字体下对应的点阵为:宽x高=8x16 --*/ 0x00,0x00,0x80,0x80,0x80,0x80,0x00,0x00,0x00,0x19,0x24,0x22,0x22,0x22,0x3F,0x20, /*-- 文字: n --*/ /*-- 宋体12; 此字体下对应的点阵为:宽x高=8x16 --*/ 0x80,0x80,0x00,0x80,0x80,0x80,0x00,0x00,0x20,0x3F,0x21,0x00,0x00,0x20,0x3F,0x20, /*-- 文字: --*/ /*-- 宋体12; 此字体下对应的点阵为:宽x高=8x16 --*/ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

安装配置树莓派的最佳工具

安装配置树莓派的最佳工具——NOOBS 如果你想找一种最简单的方式启动你的树莓派,不用再左顾右盼啦!树莓派基金会开发的New Out Of Box Software (NOOBS)(以下简称NOOBS)让这个强有力的小平台比任何时候都更容易配置和启动。 为什么我们要做NOOBS? 为一个树莓派安装操作系统当然算不上这个世界上最困难的事情,但是这需要一系列的工具并且需要知道如何使用这些工具。NOOBS系统不仅可以非常方便的让一张空白的SD卡摇身变为安装了Rasbian系统的启动盘,而且还可以预包装其他可选的树莓派操作系统,比如Pidora(基于Fedora的系统)、RISC OS 、Arch(Arch Linux 的树莓派版),甚至像RaspBMC和OpenELEC这样的XMBC系统也不在话下。 换句话说,你可以很容易的安装并测试运行任何流行的树莓派操作系统而不必同那些琐碎的安装步骤和系统镜像较劲。不使用NOOBS的唯一理由是你想要创建一个多操作系统的启动盘,这样在启动时你可以在多个操作系统之间进行切换。 以前,你得需要像BerryBoot这样的boot管理器来实现多操作系统启动功能。随着NOOBS v1.3的发布,多系统启动功能也包含在内了,功能甚至比BerryBoot还要强大,因为NOOBS的解决方案里各操作系统的内核是独立的,而不像BerryBoot那样是共享型的。结果就是,你安装的所有的操作系统都是高度独立的。如果你对某系统的配置做出修改,比如说超频或者修改RaspBMC中的内存配置,那么你仍然可以让Rasbian系统保持默认的配置(反之亦然)。 准备好NOOBS

相关主题