搜档网
当前位置:搜档网 › 基于无线传感网络的大型结构健康监测系统_尚盈

基于无线传感网络的大型结构健康监测系统_尚盈

基于无线传感网络的大型结构健康监测系统_尚盈
基于无线传感网络的大型结构健康监测系统_尚盈

文章编号:1004-9037(2009)02-0254-05

基于无线传感网络的大型结构健康监测系统

尚 盈 袁慎芳 吴 键 丁建伟 李耀曾

(南京航空航天大学智能材料与结构航空科技重点实验室,南京,210016)

摘要:针对大型碳纤维复合材料机翼盒段壁板结构,实现了基于无线传感网络的多点应变结构健康监测系统,采用自组织竞争神经网络成功判别了集中载荷模拟的损伤位置。本系统由传感采集子系统、无线传感网络子系统和终端监控子系统三部分组成。为了降低系统网络功耗及成本,提高系统的稳定性和可靠性,改善传感网络的实时性和同步性,设计了可直接配接无线传感网络节点的低功耗多通道应变传感器信号调理电路和基于无线传感网络的层次路由协议,开发了多通道应变数据采集、网络簇头转发和中继节点接收等主要软件模块。实验证明,相比于传统有线的监测方法和数据采集系统,基于无线传感网络的结构健康监测系统具有负重轻、成本低、易维护和搭建移动方便等优点。

关键词:无线传感网络;结构健康监测;层次路由协议;自组织竞争网络中图分类号:T P2;T P9 文献标识码:A

 基金项目:国家“八六三”高技术研究发展计划(2007AA 032117)资助项目;国家自然科学基金(60772072,50420120133)资助项目;航空基金(20060952)资助项目。 收稿日期:2007-09-05;修订日期:2008-04-17

Large -Scale Structural Health Monitoring System Based

on Wireless Sensor Networks

S hang Ying ,Yuan Shenf ang ,Wu J ian ,Ding J ianw ei ,L i Yaoz eng

(T he A ero nautic Key La bo rat or y o f Smart M ater ial and Str uct ur e,N anjing U niv ersit y o f Aer onautics and A str onautics,N anjing,210016,China)

Abstract :Aimed at the large-scale structure and anisotropy nature o f the carbon fiber compos-ite material w ing box ,a large-scale structural health m onitoring system based on w ireless sen-sor netw orks is presented .A kind of artificial neural netw ork is designed to distinguish the damag e locatio n simulated by the co ncentrated load .The sy stem co nsists o f the sensor data ac-quisition,the w ireless sensor netw or ks,and the terminal monitoring sub-sy stem s.To im pro ve the performance o f the system ,the signal conditio ning circuit and the hierarchical routing pro -to col are designed based o n w ireless sensor netw orks ,the prog rams of data acquisition and Sink node are ex ploited.Experimental result pro ves that the system has advantag es of flexibili-ty o f deplo yment,low maintenance and deploym ent costs .

Key words :w ir eless senso r netw or ks ;str uctural health monitoring ;hierarchical routing ;self -org anizing com petitive netw o rk

引 言

结构健康监测技术是采用智能材料结构的新概念,利用集成在结构中的先进传感/驱动元件网络,在线实时地获取与结构健康状况相关的信息(如应力、应变、温度、振动模态、波传播特性等),结

合先进的信号信息处理方法和材料结构力学建模

方法,提取特征参数,识别结构的状态,包括损伤,并对结构的不安全因素在其早期就加以控制,以消除安全隐患或控制安全隐患的进一步发展,从而实现结构健康自诊断、自修复、保证结构的安全和降低维修费用[1]。

无线传感网络节点具有局部信号处理的功能,

第24卷第2期2009年3月数据采集与处理Jour nal of D ata A cquisition &P ro cessing Vo l.24N o.2M a r.2009

将传统的串行处理、集中决策的系统变成并行的分布式处理,提高了检测系统的运行速度和灵活性。另外,无线传感网络组成的分布式监测系统最大程度地减少了器件连线,减低了系统的搭建、维修费用和难度。

本文选取碳纤维复合材料的大型结构作为研究对象。碳纤维复合材料由于其强度高、比模量大、耐疲劳、耐高温和耐腐蚀等优良性质,已经在飞行器结构中得到大量的应用。以往对于碳纤维复合材料结构的损伤监测大都以小试件来对其进行研究,针对实际的大型碳纤维复合材料结构进行损伤监测的研究较少。飞行器复合材料结构往往形式较复杂,带有加强用T 字型桁条和紧固用螺丝孔,而且材料具有不均匀性和多向异性,这使其内部的损伤特性复杂,损伤形式更多表现为脱层,在结构表面可能完全看不出损伤迹象。现有的各种无损检测方法很难对复合材料结构损伤进行准确的实时在线损伤监测。本系统在结构上布置电阻应变传感器,通过对应变场变化的分析,可以及时发现并确定结构损伤的位置。

针对大型碳纤维复合材料机翼盒段壁板结构,设计了可直接配接无线传感网络的低功耗多通道应变传感器信号调理电路和基于无线传感网络的层次路由协议,开发了多通道应变数据采集、网络簇头转发和中继节点接收等主要软件模块,实现了基于无线传感网络的多点应变监测系统,实验结果显示系统很好地实现了数据可靠传输、短时延、时间同步的性能,并采用神经网络方法判别出结构损伤的位置。

1 多点应变监测系统

选取实际飞机结构中常用的碳纤维复合材料壁板作为研究对象,壁板尺寸为1000mm ×1800mm ,壁板一面粘贴有加强T 字型桁条,板上有加强用螺丝通孔,板厚为2.84mm,铺层共22层,单层厚度为0.12mm 。T 字型桁条铺层共10层,单层厚度0.12mm 。由于此碳纤维复合材料壁板尺寸比较大,本文选取上中部由桁条和螺丝通孔组成一部分300mm ×400mm 的区域作为研究对象,在区域内均匀布置电阻应变片,如图1所示。

本系统由传感采集子系统、无线传感网络子系统和终端监控子系统三部分组成。布置在碳纤维复

合材料壁板上的电阻应变元件和信号调理电路组

图1 多点应变监测系统示意图

成传感采集子系统。

无线传感网络子系统主要由工作在一定网络协议下的无线传感网络节点组成。中继节点和用户的应用程序构成了终端监控子系统。本文依次阐述了各个子系统的设计和实现。

2 传感采集子系统

由于结构健康监测系统的监测采集的信号具有多样性,例如:静态应变信号、动态冲击信号、疲劳损伤信号等,所以独立设计传感采集子系统的优势在于,可以针对各种不同的监测信号,设计不同的传感采集子系统,能灵活地与无线传感网络节点配接,更好地完成结构的健康监测。

2.1 应变桥路电压的设计

桥压电路的设计是这个设计中的重点,它是为应变桥路和其他器件提供电源,尤其是作为应变桥路的电源,它是否稳定、准确关系到后续的数据采集、处理的可靠性。T L431是美国德州仪器公司开发的一种可调式精密基准稳压器,利用两只外部电阻可设定2.5~36V 范围内的任何基准电压值,其电压温度系数很小,为30×10-6

/℃,动态阻抗低,典型值为0.2128,非常适合用于高精度的稳压电源的设计。根据传感采集子系统电源的稳定、准确和低功耗的要求,使用T L431为主要器件搭建了如图2所示的电路。

电路中采用三极管2N 222调节负载电流,输入电压V I 与电阻R 为精密基准稳压器T L431提供大于1mA 的工作电流,使精密基准稳压器T L431的

255

第2期尚 盈,等:基于无线传感网络的大型结构健康监测系统

图2 应变桥路电压原理图

V REF =2.5V,通过调节电阻R 1,R 2,使得桥压V O =3V 。从而实现了桥压电路、信号调理电路的供电设计。

2.2 信号调理电路的设计

信号调理电路的设计实现了多通道应变信号的调理,并且与拥有8通道ADC 的无线传感网络节点实现了配接,这使得以比较少的硬件监测更广的区域成为可能。该部分由放大电路和二阶低通滤波电路组成。其中主要元件是单电源供电的线性放大器AD 623和运算放大器OPA 340。图3是单通道

信号调理电路原理图。

图3 单通道信号调理电路

工作原理:将应变片接成半桥电路,将微应变信号转变成电信号,调节电位器R g 改变AD623的放大增益将信号放大,然后经过一个二阶滤波电路进行滤波处理,最后传送到无线传感节点中进行处理。

2.3 传感采集子系统的标定

在等强度梁上下表面分别布置两片电阻应变传感元件组成应变桥路,反复进行加载、卸载实验,传感采集子系统监测其应变值的变化,把经过调理后的信号传送给无线传感节点。表1是监测到的实

验数据。

表1 实验数据

载荷/N 输出电压y /V 第一循环第二循环第三循环正行程反行程正行程反行程正行程反行程0 1.146 1.144 1.144 1.144 1.144 1.1442 1.221 1.220 1.219 1.219 1.219 1.2194 1.295 1.295 1.294 1.294 1.294 1.2946 1.370 1.369 1.368 1.368 1.368 1.3688 1.444 1.443 1.443 1.443 1.443 1.44310 1.519 1.518 1.518 1.518 1.517 1.51712

1.592

1.592

1.591

1.591

1.591

1.591

由表1的实验数据可以得出无线传感节点接

收的电压变化值y 与加载重量x 之间的关系如图4所示。

图4 电压变化值y 与加载重量x 之间的关系图

传感器静态特性的重复性计算公式为

C R =±$R max

y FS

×100%(1)

式中:$R max 为正反行程中最大的重复性偏差;y FS 为满量程输出。

传感器静态特性的静态误差计算公式为

C =±

3

y FS

1

n -1∑n

i =1

($y i )2×100%(2)

式中:$y i 为各测试点的残差;n 为测试点数。

将表1中的实验数据代入式(1,2)得出传感采集子系统的静态误差C =±0.44%和重复性C R =±0.22%。传感采集子系统的标定结果表明本子系统具有很好的准确、可靠性,为整个系统稳定可靠工作的前提条件。

3 无线传感网络子系统

无线传感网络子系统是整个多点应变监测系统的核心部分,子系统承担了系统的数据采集、转

256

数据采集与处理

第24卷

发和接收的功能,由无线传感网络节点和节点软件模块组成。

3.1 无线传感网络节点的设计[2-3]

无线传感网络节点主要由数字处理模块和射频模块组成。本文主要针对基于无线传感网络的层次路由协议、多通道应变数据采集、网络簇头转发和中继节点接收等主要软件模块进行了研究。

3.2 节点软件的设计

无线传感网络子系统节点软件的设计在新型操作系统TinyOS 内完成。TinyOS 是一种面向传感器网络的嵌入式操作系统,是基于组件的架构方式,支持组件化编程的nesC 语言,实现了用最少的硬件支持网络传感器的并发密集操作。

节点软件设计主要包括基于无线传感网络的层次路由协议和无线传感网络节点的软件模块开发。

路由协议负责将数据从源节点通过网络转发到目的节点,它主要包括两个方面的功能:寻找源节点和目的节点间的优化路径;将数据分组沿着优化路径正确转发。无线传感器网络路由协议按照最终形成的拓扑结构,可以划分为平面路由协议和层次路由协议。在平面路由协议中,所有节点的地位是平等的,原则上不存在瓶颈问题。其缺点是可扩充性差,维护动态变化的路由需要大量的控制信息。在层次结构的网络中,群成员的功能比较简单,不需要维护复杂的路由信息,大大减少了网络中路由控制信息的数量,具有很好的可扩充性,其缺点是群头结点可能会成为网络的瓶颈[4-6]

结合本系统自身特点设计了基于无线传感网络的层次路由协议,开发了多通道应变数据采集、网络簇头转发和中继节点接收等主要软件模块。系统软件开发过程中考虑了无线传感网络应用在结构监测中的特性,并在软件中作了相应的处理。具体处理如下:

3.2.1 延长网络寿命,即节省能量消耗

本文主要在以下3处做了相应的改善,在保证网络正常工作的前提下,尽量节省能量:1采集节点接受到中继节点的采集命令才去执行采集实验数据的功能,否则处于休眠状态节省能量;o节点发送状态下的能量消耗远大于其他状态下的能量消耗,所以软件中采集到的实验数据要经过数据处理再发送,减少通信量而节省能量;?能量消耗和距离的平方成正比,网络结构采用层次结构、多跳

转发的路由方式,避免长距离传输,达到节省能量的目的。

3.2.2 不同节点之间采集数据的时间同步性

在软件中,定义了一个OscopeM sg 的数据包,如表2所示。

表2 OscopeMsg 数据包格式

Dest addr Handle ID Group ID Msg l e n So urce addr Co unter Channel Reading 7e 00

0e

7d

1a

0100

1400

0100

9603

在OscopeM sg 的数据包中定义了一个Counter 参数,它的作用就是记录送数据的个数Counter,采集节点在一个定时器的重复触发下工作的,触发间隔时间是Interval (m s),数据的发送时间记作Timer,表达式如下:

T im er =Counter*Interv al (3)

在后续数据处理过程中,读出数据包中的Counter 参数(发送次数),依照式(3)就可以实现不同节点之间的采集数据时间同步的处理。上述问题得到解决后,无线传感网络子系统就可以实现其数据采集、转发和接收功能,具体工作流程如下:中继节点发送flag start 信号开始,采集节点接受到flagstart 信号后,定时器触发开始采集数据。与此同时根据自己的节点号寻找到自己所在的簇,并把采集、处理后的数据发送给该簇的簇头,再由簇头转发给中继节点,最后通过串口通信发送给用户。具体的流程如图5所示。

图5 程序流程图

4 终端监控子系统

终端监控子系统是整个系统中的数据接收、处理系统,主要由中继节点与用户应用软件组成,中继节点负责把整个网络的采集数据通过串口通信交给计算机进行处理,系统采用神经网络确定损伤位置。

257

第2期尚 盈,等:基于无线传感网络的大型结构健康监测系统

5 多点应变监测实验

5.1 传感器的布置及无线传感网络

如图6所示,在碳纤维复合材料壁板作布置电阻应变片1~16,以相临4个电阻应变片为顶点组成一个方格,区域内共有9个方格,16通道电阻应变片,每2通道配接一个无线传感网络节点,共用8个采集节点,3个簇头转发节点,1个中继节点,图

6

图6 网络拓扑示意图

是网络拓扑示意图。

5.2 实验的加载及损伤定位

布置好电阻应变片,使之与信号调理电路连接,依次在9个方格几何中心处加载40N 的集中载荷模拟损伤,发给无线传感网络节点采集命令,节点接到命令后开始数据的采集、转发、接收。重复做9次1~9方格的加载实验,获得9组实验数据。

数据采集后采用自组织竞争神经网络的学习向量量化(LVQ )网络确定损伤位置[7]。实验中把加载区域的1~9个方格规定为1~9个模式。采用LVQ 网络进行模式识别,表3是采集到的传感器数据和最终神经网络判定模式的结果。

表3 传感器采集的实验数据数据和模式判定结果

格数传感器节点采集的实验数据/mV

123456

78910

111213141516模式11511141212141210-1022-200-1121491514111514140032-200023137141681214150111-2000340-123111311101161116-1111450012101413121071318011156101281213148715181212670-100-1112137111515161310780-100-111112714171317161489

-1

-1-1

00

1

1

18

7

15

17

10

16

16

16

9

实验结果表明,本系统能够很好地完成结构健康监测的数据的采集以及局部信息的处理,很好地满足了无线传感器网络在结构健康监测领域中的特性要求。

6 结束语

无线传感器网络系统由于没有了布线的束缚,使其可监测的范围大大得到了扩展。原来只能对大型结构的部分特性进行监控,对全局的特性只能通过一些算法进行推算或者根本无法获得。另外,在

监控现场布线往往费时费力,还影响其他工种的施工作业。采用无线传感器网络系统能够在大范围的空间中监测大型结构的健康状况在局部作业时,布置监测点方便,也不会影响到其他工种的作业。另外无线传感网络组成的分布式监测系统最大程度地减少了器件连线,降低了系统的搭建、维修费用和难度,在未来的监测系统发挥重要的作用。

参考文献:

[1] 袁慎芳.结构健康监控[M ].北京:国防工业出版社,

2007:1-21.

[2] 孙利民,李建中,陈渝.无线传感器网络[M ].北京:清

华大学出版社,2005:3-23.

[3] 吴键,袁慎芳.无线传感器网络节点的设计和实现

[J ].仪器仪表学报,2006,9:1121-1124.

[4] 李兴凯,谭永东.无线传感器网络协议栈分析[J].传

感器世界,2005,11:24-29.

[5] 马祖长,孙怡宁,梅淘.无线传感器网络综述[J].通信

学报,2004,25(4):114-124.

[6] Sohra bi K ,G ao J,A ilaw adhi V ,et al.Pr ot ocols fo r

self-or g anizat ion o f a w ir eless sensor net wo rk [J ].IEEE Per so nal Co mmunicat ions ,2000,7(5):16-27.[7] 哈根.戴葵等译.神经网络设计[M ].北京:机械工业

出版社,2002:285-344.

作者简介:尚盈(1981-),男,硕士研究生,研究方向:测试技术和无线传感网络;袁慎芳(1968-),女,教授,研究方向:无线传感网络、结构健康监测,E-mail:ysf @https://www.sodocs.net/doc/2514239728.html,;吴键(1979-),男,博士研究生,研究方向:无线传感网络、结构健康监测;丁建伟(1984-),男,硕士研究生,研究方向:无线传感网络、结构健康监测;李耀曾(1983-),男,硕士研究生,研究方向:无线传感网络、结构健康监测。

258

数据采集与处理第24卷

无线传感器网络的特点

无线传感器网络的特点 大规模网络 为了获取精确信息,在监测区域通常部署大量传感器节点,传感器节点数量可能达到成千上万,甚至更多。传感器网络的大规模性包括两方面的含义:一方面是传感器节点分布在很大的地理区域内,如在原始大森林采用传感器网络进行森林防火和环境监测,需要部署大量的传感器节点;另一方面,传感器节点部署很密集,在一个面积不是很大的空间内,密集部署了大量的传感器节点。 传感器网络的大规模性具有如下优点:通过不同空间视角获得的信息具有更大的信噪比;通过分布式处理大量的采集信息能够提高监测的精确度,降低对单个节点传感器的精度要求;大量冗余节点的存在,使得系统具有很强的容错性能;大量节点能够增大覆盖的监测区域,减少洞穴或者盲区。 自组织网络在 传感器网络应用中,通常情况下传感器节点被放置在没有基础结构的地方。传感器节点的位置不能预先精确设定,节点之间的相互邻居关系预先也不知道,如通过飞机播撒大量传感器节点到面积广阔的原始森林中,或随意放置到人不可到达或危险的区域。这样就要求传感器节点具有自组织的能力,能够自动进行配置和管理,通过拓扑控制机制和网络协议自动形成转发监测数据的多跳无线网络系统。在传

感器网络使用过程中,部分传感器节点由于能量耗尽或环境因素造成失效,也有一些节点为了弥补失效节点、增加监测精度而补充到网络中,这样在传感器网络中的节点个数就动态地增加或减少,

从而使网络的拓扑结构随之动态地变化。传感器网络的自组织性要能够适应这种网络拓扑结构的动态变化。动态性网络传感器网络的拓扑结构可能因为下列因素而改变:①环境因素或电能耗尽造成的传感器节点出现故障或失效;②环境条件变化可能造成无线通信链路带宽变化,甚至时断时通;③传感器网络的传感器、感知对象和观察者这三要素都可能具有移动性;④新节点的加入。这就要求传感器网络系统要能够适应这种变化,具有动态的系统可重构性。 可靠的网络 传感器网络特别适合部署在恶劣环境或人类不宜到达的区域,传感器节点可能工作在露天环境中,遭受太阳的暴晒或风吹雨淋,甚至遭到无关人员或动物的破坏。传感器节点往往采用随机部署,如通过飞机撒播或发射炮弹到指定区域进行部署。这些都要求传感器节点非常坚固,不易损坏,适应各种恶劣环境条件。由于监测区域环境的限制以及传感器节点数目巨大,不可能人工“照顾每个传感器节点,网络的维护十分困难甚至不可维护。传感器网络的通信保密性和安全性也十分重要,要防止监测数据被盗取和获取伪造的监测信息。因此,传感器网络的软硬件必须具有鲁棒性和容错性。

基于无线传感器网络的环境监测系统设计与实现

南京航空航天大学 硕士学位论文 基于无线传感器网络的环境监测系统设计与实现 姓名:耿长剑 申请学位级别:硕士 专业:电路与系统 指导教师:王成华 20090101

南京航空航天大学硕士学位论文 摘要 无线传感器网络(Wireless Sensor Network,WSN)是一种集成了计算机技术、通信技术、传感器技术的新型智能监控网络,已成为当前无线通信领域研究的热点。 随着生活水平的提高,环境问题开始得到人们的重视。传统的环境监测系统由于传感器成本高,部署比较困难,并且维护成本高,因此很难应用。本文以环境温度和湿度监控为应用背景,实现了一种基于无线传感器网络的监测系统。 本系统将传感器节点部署在监测区域内,通过自组网的方式构成传感器网络,每个节点采集的数据经过多跳的方式路由到汇聚节点,汇聚节点将数据经过初步处理后存储到数据中心,远程用户可以通过网络访问采集的数据。基于CC2430无线单片机设计了无线传感器网络传感器节点,主要完成了温湿度传感器SHT10的软硬件设计和部分无线通讯程序的设计。以PXA270为处理器的汇聚节点,完成了嵌入式Linux系统的构建,将Linux2.6内核剪裁移植到平台上,并且实现了JFFS2根文件系统。为了方便调试和数据的传输,还开发了网络设备驱动程序。 测试表明,各个节点能够正确的采集温度和湿度信息,并且通信良好,信号稳定。本系统易于部署,降低了开发和维护成本,并且可以通过无线通信方式获取数据或进行远程控制,使用和维护方便。 关键词:无线传感器网络,环境监测,温湿度传感器,嵌入式Linux,设备驱动

Abstract Wireless Sensor Network, a new intelligent control and monitoring network combining sensor technology with computer and communication technology, has become a hot spot in the field of wireless communication. With the improvement of living standards, people pay more attention to environmental issues. Because of the high maintenance cost and complexity of dispose, traditional environmental monitoring system is restricted in several applications. In order to surveil the temperature and humidity of the environment, a new surveillance system based on WSN is implemented in this thesis. Sensor nodes are placed in the surveillance area casually and they construct ad hoc network automatieally. Sensor nodes send the collection data to the sink node via multi-hop routing, which is determined by a specific routing protocol. Then sink node reveives data and sends it to the remoted database server, remote users can access data through Internet. The wireless sensor network node is designed based on a wireless mcu CC2430, in which we mainly design the temperature and humidity sensors’ hardware and software as well as part of the wireless communications program. Sink node's processors is PXA270, in which we construct the sink node embedded Linux System. Port the Linux2.6 core to the platform, then implement the JFFS2 root file system. In order to facilitate debugging and data transmission, the thesis also develops the network device driver. Testing showed that each node can collect the right temperature and humidity information, and the communication is stable and good. The system is easy to deploy so the development and maintenance costs is reduced, it can be obtained data through wireless communication. It's easy to use and maintain. Key Words: Wireless Sensor Network, Environment Monitoring, Temperature and Humidity Sensor, Embedded Linux, Device Drivers

无线传感器网络实验指导书

无线传感器网络 实验指导书 信息工程学院

实验一 质心算法 一、实验目的 掌握合并质心算法的基本思想; 学会利用MATLAB 实现质心算法; 学会利用数学计算软件解决实际问题。 二、实验容和原理 无需测距的定位技术不需要直接测量距离和角度信息。定位精度相对较低,不过可以满足某些应用的需要。 在计算几何学里多边形的几何中心称为质心,多边形顶点坐标的平均值就是质心节点的坐标。 假设多边形定点位置的坐标向量表示为p i = (x i ,y i )T ,则这个多边形的质心坐标为: 例如,如果四边形 ABCD 的顶点坐标分别为 (x 1, y 1),(x 2, y 2), (x 3, y 3) 和(x 4,y 4),则它的质心坐标计算如下: 这种方法的计算与实现都非常简单,根据网络的连通性确定出目标节点周围的信标参考节点,直接求解信标参考节点构成的多边形的质心。 锚点周期性地向临近节点广播分组信息,该信息包含了锚点的标识和位置。当未知结点接收到来自不同锚点的分组信息数量超过某一门限或在一定接收时间之后,就可以计算这些锚点所组成的多边形的质心,作为确定出自身位置。由于质心算法完全基于网络连通性,无需锚点和未知结点之间的协作和交互式通信协调,因而易于实现。 三、实验容及步骤 该程序在Matlab 环境下完成无线传感器中的质心算法的实现。在长为100米的正方形区域,信标节点(锚点)为90个,随机生成50个网络节点。节点的通信距离为30米。 需完成: 分别画出不同通信半径,不同未知节点数目下的误差图,并讨论得到的结果 所用到的函数: 1. M = min(A)返回A 最小的元素. 如果A 是一个向量,然后min(A)返回A 的最小元素. 如果A 是一个矩阵,然后min(A)是一个包含每一列的最小值的行向量。 2. rand X = rand 返回一个单一均匀分布随机数在区间 (0,1)。 X = rand(n)返回n--n 矩阵的随机数字。 ()12341234,,44x x x x y y y y x y ++++++??= ???

(中文)基于无线传感器网络桥梁安全监测系统

基于无线传感器网络的桥梁安全检测系统 摘要 根据桥梁监测无线传感器网络技术的桥梁安全监测系统,以实现方案的安全参数的需要;对整个系统的结构和工作原理的节点集、分簇和关键技术,虽然近年来在无线传感器网络中,已经证明了其潜在的提供连续结构响应数据进行定量评估结构健康,许多重要的问题,包括网络寿命可靠性和稳定性、损伤检测技术,例如拥塞控制进行了讨论。 关键词:桥梁安全监测;无线传感器网络的总体结构;关键技术 1 阻断 随着交通运输业的不断发展,桥梁安全问题受到越来越多人的关注。对于桥梁的建设与运行规律,而特设的桥梁检测的工作情况,起到一定作用,但是一座桥的信息通常是一个孤立的片面性,这是由于主观和客观因素,一些桥梁安全参数复杂多变[1]。某些问题使用传统的监测方法难以发现桥梁存在的安全风险。因此长期实时监测,预报和评估桥梁的安全局势,目前在中国乃至全世界是一个亟待解决的重要问题。 桥梁安全监测系统的设计方案,即通过长期实时桥跨的压力、变形等参数及测试,分析结构的动力特性参数和结构的评价科关键控制安全性和可靠性,以及问题的发现并及时维修,从而确保了桥的安全和长期耐久性。 近年来,桥梁安全监测技术已成为一个多学科的应用,它是在结构工程的传感器技术、计算机技术、网络通讯技术以及道路交通等基础上引入现代科技手段,已成为这一领域中科学和技术研究的重点。 无线传感器网络技术,在桥梁的安全监测系统方案的实现上,具有一定的参考价值。 无线传感器网络(WSN)是一种新兴的网络科学技术是大量的传感器节点,通过自组织无线通信,信息的相互传输,对一个具体的完成特定功能的智能功能的协调的专用网络。它是传感器技术的一个结合,通过集成的嵌入式微传感器实时监控各类计算机技术、网络和无线通信技术、布式信息处理技术、传感以及无线发送收集到的环境或各种信息监测和多跳网络传输到用户终端[2]。在军事、工业和农业,环境监测,健康,智能交通,安全,以及空间探索等领域无线传感器网络具有广泛应用前景和巨大的价值。 一个典型的无线传感器网络,通常包括传感器节点,网关和服务器,如图1

物联网概论学习总结

物联网概论学习总结 The following text is amended on 12 November 2020.

是新一代信息技术的重要组成部分,也是“信息化”时代的重要发展阶段。自2009年8月温家宝总理提出“感知中国”以来,物联网被正式列为国家五大新兴战略性产业之一,写入“政府工作报告”,物联网在中国受到了全社会极大的关注。 基于未来对物联网技术人才的需求,很多高校开设了物联网工程专业。为了提高自身对物联网技术的认识和理解以及对专业课程设置、实验室建设各方面的知识需求,参加了本次高等学校教师网络培训《物联网概论》课程。 本次培训主要包括以下几个部分: 一、介绍了物联网的定义、基本架构及关键技术 物联网是指通过信息传感设备,按照约定的协议,把任何物品与互联网连接起来,进行信息交换和通信以实现智能化识别、定位、跟踪、监控和管理的一种网络。它是在互联网基础上延伸和扩展的网络。它的基本架构从底层到顶层分别为传感网络、接入网络、中间件、应用层。涉及到的关键技术主要包括:射频识别技术、无线传感网技术、嵌入式技术、纳米与微机电技术、分布式管理技术。 二、提出了物联网教学面临的矛盾与需求 物联网教学面临的矛盾与需求主要包括:舆论炒作和应用迟滞的矛盾、局部供给规模化与社会需求碎片化的矛盾、技术供给分散化与需求一体化的矛盾、法治、技术、安全与管理等的不配套性与不确定性的矛盾、人-机对话与物-物对话间的矛盾、标准化建设滞后的矛盾。 三、总结了物联网知识体系构成,并提出了《物联网概论》课程设计原则 物联网知识体系主要由功能体系、系统体系、技术体系、信息体系、标准体系、指标体系构成。《物联网概论》课程应从通识角度给予介绍,相关专业培养的人才,要掌握传感器、微处理器、嵌入式技术和相应的软件技术,无线通讯、高频设计、低功耗、无线传感网络以及3G无线网络设计等技术。 四、指出了《物联网概论》课程教学难点,并给出了课程改进方向 教学难点:各类基本概念、基本标准与基本协议。 改进方向:强化基础知识、基本模式、启发思考与探索;面向国计民生,“感知中国”是物联网教学突破的途径。 五、强调了物联网属于信息化领域,重点对EPC标识体系进行了讲解。 对EPC标识体系的学习主要要求掌握EPC标准体系、了解EPC编码策略和设计思想、掌握EPC编码转换方法。 六、介绍了物联网基础技术,对无线网络技术及其标准和自动识别技术进行了重点讲解 物联网基础技术主要由传感器技术、MEMS技术、无线传感器网络、无线网络技术、自动识别技术、条形码技术、定位技术。 七、通过讲解具体的教学案例来体现教师在教学中的主体地位,展示了在实际教学过程中有效的教学方法,并提出了建设物联网实验室的必要性基于微创新的物联网应用课程中列举了几个具体的教学案例:一卡通教学设计、实验实训室建设案例、实验箱开发案例。提倡以鼓励学生为主的兴趣教学法。通过介绍物联网工程实验室的功能(教师进行科研创新、院系举办竞赛活

无线传感器网络安全技术综述

无线传感器网络安全技术综述 摘要:本文总结了无线传感器网络面临的安全问题,并从安全协议、安全算法、密钥管理、认证技术、入侵检测等方面分析了近年来无线传感器网络所用的安全技术。最后分析总结了无线传感器网络未来安全技术研究应该注意的地方。 关键词:安全问题协议算法认证技术入侵检测 1 引言 无线传感器网络在近些年来发展迅速,被认为是新一代的传感器网络,由于其体积小,成本低,功耗低,具有自组织网络,现已经广泛应用于军事、环境监测、交通管制、森林防火、目标定位、医疗保健、工业控制等场景[1]。 大多无线传感器网络节点被部署在无人值守或地方区域,传感器网络受到的安全威胁就变得更为突出,且由于传感器节点体积小,其储存开销、能量开销、通信开销都受到限制,所以传统无线网络的安全机制并不能完全的应用于无线传感器网络中。缺乏有效的安全机制已经成为传感器网络应用的主要障碍. 近些年来,随着无线传感器网络的发展,其安全技术也有了很大的进步。虽然传感器网络安全技术研究与传统网络有着很大的区别,但他们的出发点有相同的敌方,均需要解决信息机密性、完整性、消息认证、信息新鲜性、入侵检测等问题[2],无线传感器网络的安全协议跟传统网络的安全协议有着其独特性也有其同性。国内外研究人员针对无线传感器网络安全协议、算法、密钥管理、认证技术、体系结构等方面都进行了大量的研究,取得了很多成果。本文将对这些已有的研究成果进行总结分析。 2 无线传感器网络安全概述 无线传感器网路安全要求是基于在传感器节点和网络本身条件限制而言的,如而节点的电池能量、睡眠模式、内存大小、传输半径、时间同步等。部署的环境也是网络安全问题的一个重要因素。 2.1网络受到的威胁和攻击 攻击是一种非法获取服务、信息,改变信息完整性,机密性的行为。无线传感

传感器拓扑结构以及节点结构

无线传感器网络拓扑结构 从无线传感器组网形态和方法来看,有集中式、分布式和混合式。集中式类似于移动通信的蜂窝结构,可以集中管理;分布式结构类似于Ad-hoc网络结构,可自组织网络接入连接,可以分步管理;混合式结构是集中式和分布式结构的组合。其中无线传感器按节点功能及结构层次来看,有可分为平面网络结构、分级网络结构、混合网络结构以及Mesh网络结构。 1、平面网络:结构如下图1.1所示,是无线传感器网络中最简单的拓扑结构,每个节点都为对等结构,具有完全一致的功能特性,也就是每个节点包含相同的MAC、路由、管理和安全等协议。但是由于采用自组织协同算法形成网络,其组网算法比较复杂: 图1.1 无线传感器网络平面网络结构 2、分级网络结构(层次网络结构):如下图1.2所示,分级网络分为上层和下层两个部分—上层为中心骨干节点;下层为一般传感器节点。骨干节点之间或者一般传感器节点间采用的是平面网络结构,然而骨干节点和一般节点之间采用的是分级网络结构。一般传感器节点没有路由、管理及汇聚处理等功能。 图1.2 无线传感器网络分级网络结构

3、混合网络结构:如下图1.3所示,混合网络结构时无线传感器网络中平面网络结构和分级网络结构的一种混合拓扑结构。这种结构和分级网络结构不同的是一般传感器节点之间可以直接通信,可不需要通过汇聚骨干节点来转发数据,但是对所需硬件成本更高。 图1.3 无线传感器网络的混合网络结构 4、Mesh网络结构:如下图1.4所示,这是新型的网络拓扑结构,这是种规则分步的网络,不同于完全连接的网络结构。通常只允许和节点最近的邻居通信。网络内部的节点一般也是相同的,因此Mesh网络也称为对等网。由于通常Mesh 网络结构节点之间存在多条路由路径,网络对于单点或单个链路故障具有较强的容错能力和鲁棒性。其中优点就是尽管所有节点都是对等的地位,且具有相同的计算和通信传输功能,某个节点可被指定为簇首节点,而且可执行额外的功能,一旦簇首节点失效,另外一个节点可以立刻补充并接管原簇首那些额外执行的功能。 图1.4 无线传感器网络的Mesh网络结构

基于无线传感器网络的智能交通系统的设计

一、课题研究目的 针对目前中国的交叉路口多,车流量大,交通混乱的现象研究一种控制交通信号灯的基于无线传感器的智能交通系统。 二、课题背景 随着经济的快速发展,生活方式变得更加快捷,城市的道路也逐渐变得纵横交错,快捷方便的交通在人们生活中占有及其重要的位置,而交通安全问题则是重中之重。据世界卫生组织统计,全世界每年死于道路交通事故的人数约有120 万,另有数100 万人受伤。中国拥有全世界1. 9 %的汽车,引发的交通事故占了全球的15 % ,已经成为交通事故最多发的国家。2000 年后全国每年的交通事故死亡人数约在10 万人,受伤人数约50万,其中60 %以上是行人、乘客和骑自行车者。中国每年由于汽车安全方面所受到的损失约为5180 亿(人民币),死亡率为9 人/ 万·车,因此,有效地解决交通安全问题成为摆在人们面前一个棘手的问题。 在中国,城市的道路纵横交错,形成很多交叉口,相交道路的各种车辆和行人都要在交叉口处汇集通过。而目前的交通情况是人车混行现象严重,非机动车的数量较大,路口混乱。由于车辆和过街行人之间、车辆和车辆之间、特别是非机动车和机动车之间的干扰,不仅会阻滞交通,而且还容易发生交通事故。根据调查数据统计,我国发生在交叉口的交通事故约占道路交通事故的1/ 3,在所有交通事故类型中居首位,对交叉口交通安全影响最大的是冲突点问题,其在很大程度上是由于信号灯配时不合理(如黄灯时间太短,驾驶员来不及反应),以及驾驶员不遵循交通信号灯,抢绿灯末或红灯头所引发交通流运行的不够稳定。随着我国经济的快速发展,私家车也越来越多,交通控制还是延续原有的定时控制,在车辆增加的基础上,这种控制弊端也越来越多的体现出来,造成了十字交叉路口的交通拥堵和秩序混乱,严重的影响了人们的出行。智能交通中的信号灯控制显示出了越来越多的重要性。国外已经率先开展了智能交通方面的研究。 美国VII系统(vehicle infrastructure integration),利用车辆与车辆、车辆与路边装置的信息交流实现某些功能,从而提高交通的安全和效率。其功能主要有提供天气信息、路面状况、交叉口防碰撞、电子收费等。目前发展的重点主要集中在2个应用上: ①以车辆为基础; ②以路边装置为基础。欧洲主要是CVIS 系统(cooperative vehicle infrastructure system)。它有60 多个合作者,由布鲁塞尔的ERTICO 组织统筹,从2006 年2 月开始到2010年6月,工作期为4年。其目标是开发出集硬件和软件于一体的综合交流平台,这个平台能运用到车辆和路边装置提高交通管理效率,其中车辆不仅仅局限于私人小汽车,还包括公共交通和商业运输。日本主要的系统是UTMS 21 ( universal traffic management system for the 21st century , UTMS 21)。是以ITS 为基础的综合系统概念,由NPA (National Police Agency) 等5个相关部门和机构共同开发的,是继20 世纪90 年代初UTMS 系统以来的第2代交通管理系统,DSSS是UTMS21中保障安全的核心项目,用于提高车辆与过街行人的安全。因此,从国外的交通控制的发展趋势可以看出,现代的交通控制向着智能化的方向发展,大多采用计算机技术、自动化控制技术和无线传感器网络系统,使车辆行驶和道路导航实现智能化,从而缓解道路交通拥堵,减少交通事故,改善道路交通环境,节约交通能源,减轻驾驶疲劳等功能,最终实现安全、舒适、快速、经济的交通环境。

无线传感器实验报告

无线传感器网络实验报告 Contiki mac协议与xmac协议的比较 1.简介 无线传感器网络(wireless sensor networks,WSN)节点由电池供电,其能力非常有限,同时由于工作环境恶劣以及其他各种因素,节点能源一般不可补充。因而降低能耗、延长节点使用寿命是所有无线传感器网络研究的重点。 WSN中的能量能耗主要包括通信能耗、感知能耗和计算能耗,其中通信能耗所占的比重最大,因此,减少通信能耗是延长网络生存时间的有效手段。同时,研究表明节点通信时Radio模块在数据收发和空闲侦听时的能耗几乎相同,所以要想节能就需要最大限度地减少Radio模块的侦听时间(收发时间不能减少),及减小占空比。 传统的无线网络中,主要考虑到问题是高吞吐量、低延时等,不需要考虑能量消耗,Radio模块不需要关闭,所以传统无线网络MAC协议无法直接应用于WSN,各种针对传感器网络特点的MAC协议相继提出。现有的WSN MAC协议按照不同的分类方式可以分成许多类型,其中根据信道访问策略的不同可以分为: X-MAC协议 X-MAC协议也基于B-MAC协议的改进,改进了其前导序列过长的问题,将前导序列分割成许多频闪前导(strobed preamble),在每个频闪前导中嵌入目的地址信息,非接收节点尽早丢弃分组并睡眠。 X-MAC在发送两个相邻的频闪序列之间插入一个侦听信道间隔,用以侦听接收节点的唤醒标识。接收节点利用频闪前导之间的时间间隔,向发送节点发送早期确认,发送节点收到早

期确认后立即发送数据分组,避免发送节点过度前导和接收节点过度侦听。 X-MAC还设计了一种自适应算法,根据网络流量变化动态调整节点的占空比,以减少单跳延时。 优点: X-MAC最大的优点是不再需要发送一个完整长度的前导序列来唤醒接收节点,因而发送延时和收发能耗都比较小;节点只需监听一个频闪前导就能转入睡眠。 缺点: 节点每次醒来探测信道的时间有所增加,这使得协议在低负载网络中能耗性比较差。而且分组长度、数据发送速率等协议参数还需进一步确定 X-MAC原理图如图3所示: ContikiMAC协议 一.ContikiMAC协议中使用的主要机制: 1.时间划分

无线传感网络的历史现状与发展趋势

无线传感网络的历史现状与发展趋势 摘要:无线传感器网络将传感器技术、通信技术、计算机技术结合在一起,具有信息采集、传输、处理的能力。传感器网络最初是由于军方的需要而发展期来的,随着传感器网络技术的逐步发展,它的应用也越来越广泛现在已从军事防御普及到社会的各个领域,本文主要介绍了无线传感网络的发展历史。研究现状以及未来的发展趋势。 关键词:无线传感网络;历史现状;发展趋势及前景 引言 科技发展的脚步越来越快,人类已经置身于信息时代。而作为信息获取最重要和最基本的技术——传感器技术,也得到了极大的发展。传感器信息获取技术已经从过去的单一化渐渐向集成化、微型化和网络化方向发展,并将会带来一场信息革命。 无线传感的发展历史 早在上世纪70年代,就出现了将传统传感器采用点对点传输、连接传感控制器而构成传感器网络雏形,我们把它归之为第一代传感器网络。随着相关学科的的不断发展和进步,传感器网络同时还具有了获取多种信息信号的综合处理能力,并通过与传感控制器的相联,组成了有信息综合和处理能力的传感器网络,这是第二代传感器网络。而从上世纪末开始,现场总线技术开始应用于传感器网络,人们用其组建智能化传感器网络,大量多功能传感器被运用,并使用无线技术连接,无线传感器网络逐渐形成。 无线传感器网络是新一代的传感器网络,具有非常广泛的应用前景,其发展和应用,将会给人类的生活和生产的各个领域带来深远影响。发达国家如美国,非常重视无线传感器网络的发展,美国的《技术评论》杂志在论述未来新兴十大技术时,更是将无线传感器网络列为第一项未来新兴技术,《商业周刊》预测的未来四大新技术中,无线传感器网络也列入其

无线传感器网络的体系结构

无线传感器网络的体系结构 李宁 104753071172 (河南大学,河南大学计算机与信息工程学院 475004) 摘要:在对无线传感器应用特征进行分析的基础上,总结了无线传感器体系结构设计的要素,讨论了无线传感器网络的软件体系结构和通信体系结构。通过与传统Ad hoc网络的对比,归纳了无线传感器网络在各层各面设计的特点。文章认为虽然传统的传感器的应用方向主要在军事领域,但在民用领域也存在着广阔的前景。 关键词:无线传感器网络;软件体系结构;通信体系结构;自组织网络 0 引言 目前在无线通信领域和电子领域的进步促进了低成本、低功耗、多功能无线传感器的发展。这些无线传感器体积小,并具有感知、数据处理和短距离通信的能力。与传统的传感器相比,现在的无线传感器网络具有明显的进步。无线传感器网络由大量高密度分布的处于被观测对象内部或周围的传感器节点组成。其节点不需要预先安装或预先决定位置,这样提高了动态随机部署于不可达或危险地域的可行性。 传感器网络具有广泛的应用前景,范围涵盖医疗、军事和家庭等很多领域。例如,传感器网络快速部署、自组织和容错特性使其可以在军事指挥、控制、通信、计算、智能、监测、勘测方面起到不可替代的作用。在医疗领域,传感器网络可以部署用来监测病人并辅助残障病人。其他商业应用还包括跟踪产品质量、监测危险地域等。 无线传感器网络的实现需要自组织(Ad hoc)网络技术。尽管已有许多Ad hoc网络的协议和算法,但并不能够满足传感器网络的需求。具体来说,相对于一般意义上的自组织网络,传感器网络有以下一些特色,需要在体系结构的设计中特殊考虑。 (1) 无线传感器网络中的节点数目高出Ad hoc网络节点数目几个数量级,这就对传感器网络的可扩展性提出了要求。由于传感器节点的数目多开销大,传感器网络通常不具备全球唯一的地址标识,这使得传感器网络的网络层和传输层相对于一般网络而言,有很大的简化。此外,由于传感器网络节点众多,因此,单个节点的价格对于整个传感器网络的成本而言非常重要。 (2)自组织传感器网络最大的特点就是能量受限。传感器节点受环境的限制,通常由电量有限且不可更换的电池供电,所以在考虑传感器网络体系结构以及各层协议设计时,节能是设计的主要考虑目标之一。 (3)由于传感器网络应用的环境的特殊性、无线信道不稳定以及能源受限的特点,传感器网络节点受损的概率远大于传统网络节点,因此自组织网络的健壮性保障是必须的以保证部分传感器网络的损坏不会影响到全局任务的进行。 (4)传感器节点高密度部署,网络拓扑结构变化快,对于拓扑结构的维护也提出了挑战。 上述这些特点使得无线传感器网络有别于传统的自组织网络,并在当前的一些体系结构设计的尝试中得到了突出的表现。 1 传感器网络节点功能结构和拓扑结构 在不同应用中,传感器网络节点的组成不尽相同,但一般都由数据采集、数据处理、数据传输和电源这4部分组成(见图1)。根据具体应用需求,还可能会有定位系统以确定传感节点的位置,有移动单元使得传感器可以在待监测地域中移动,或具有供电装置以从环境中获得必要的能源。此外,还必须有一些应用相关部分,例如,某些传感器节点有可能在深海或

基于无线传感网络的大型结构健康监测系统_尚盈

文章编号:1004-9037(2009)02-0254-05 基于无线传感网络的大型结构健康监测系统 尚 盈 袁慎芳 吴 键 丁建伟 李耀曾 (南京航空航天大学智能材料与结构航空科技重点实验室,南京,210016) 摘要:针对大型碳纤维复合材料机翼盒段壁板结构,实现了基于无线传感网络的多点应变结构健康监测系统,采用自组织竞争神经网络成功判别了集中载荷模拟的损伤位置。本系统由传感采集子系统、无线传感网络子系统和终端监控子系统三部分组成。为了降低系统网络功耗及成本,提高系统的稳定性和可靠性,改善传感网络的实时性和同步性,设计了可直接配接无线传感网络节点的低功耗多通道应变传感器信号调理电路和基于无线传感网络的层次路由协议,开发了多通道应变数据采集、网络簇头转发和中继节点接收等主要软件模块。实验证明,相比于传统有线的监测方法和数据采集系统,基于无线传感网络的结构健康监测系统具有负重轻、成本低、易维护和搭建移动方便等优点。 关键词:无线传感网络;结构健康监测;层次路由协议;自组织竞争网络中图分类号:T P2;T P9 文献标识码:A  基金项目:国家“八六三”高技术研究发展计划(2007AA 032117)资助项目;国家自然科学基金(60772072,50420120133)资助项目;航空基金(20060952)资助项目。 收稿日期:2007-09-05;修订日期:2008-04-17 Large -Scale Structural Health Monitoring System Based on Wireless Sensor Networks S hang Ying ,Yuan Shenf ang ,Wu J ian ,Ding J ianw ei ,L i Yaoz eng (T he A ero nautic Key La bo rat or y o f Smart M ater ial and Str uct ur e,N anjing U niv ersit y o f Aer onautics and A str onautics,N anjing,210016,China) Abstract :Aimed at the large-scale structure and anisotropy nature o f the carbon fiber compos-ite material w ing box ,a large-scale structural health m onitoring system based on w ireless sen-sor netw orks is presented .A kind of artificial neural netw ork is designed to distinguish the damag e locatio n simulated by the co ncentrated load .The sy stem co nsists o f the sensor data ac-quisition,the w ireless sensor netw or ks,and the terminal monitoring sub-sy stem s.To im pro ve the performance o f the system ,the signal conditio ning circuit and the hierarchical routing pro -to col are designed based o n w ireless sensor netw orks ,the prog rams of data acquisition and Sink node are ex ploited.Experimental result pro ves that the system has advantag es of flexibili-ty o f deplo yment,low maintenance and deploym ent costs . Key words :w ir eless senso r netw or ks ;str uctural health monitoring ;hierarchical routing ;self -org anizing com petitive netw o rk 引 言 结构健康监测技术是采用智能材料结构的新概念,利用集成在结构中的先进传感/驱动元件网络,在线实时地获取与结构健康状况相关的信息(如应力、应变、温度、振动模态、波传播特性等),结 合先进的信号信息处理方法和材料结构力学建模 方法,提取特征参数,识别结构的状态,包括损伤,并对结构的不安全因素在其早期就加以控制,以消除安全隐患或控制安全隐患的进一步发展,从而实现结构健康自诊断、自修复、保证结构的安全和降低维修费用[1]。 无线传感网络节点具有局部信号处理的功能, 第24卷第2期2009年3月数据采集与处理Jour nal of D ata A cquisition &P ro cessing Vo l.24N o.2M a r.2009

物联网概论学习体会

《物联网概论》课程学习总结2014年04月起,我有幸第一次参加了XX部组织的高等学校教师网络培训。参加的是由XX教授、XX教授主讲的《物联网概论》课程。两位教授均是在该领域经验丰富、研究颇深的专家。通过参加培训,我学习到了物联网理论的基础知识、发展前景,不但拓宽了自己的知识,而且也对这一领域有了更加清晰的认识。 物联网是指通过各种信息传感设备,实时采集任何需要监控、连接、互动的物体或过程等各种需要的信息,与互联网结合而形成的一个巨大网络。其目的是实现物与物、物与人,所有的物品与网络的连接,方便识别、管理和控制。物联网技术是新一代信息技术的重要组成部分,目前国内方兴未艾,我们青年教师对于新兴技术的学习和研究是非常必要的。通过听取两位教授全面地介绍和讲解,我学习和系统认识了物联网的基本理论、技术基础、EPC电子编码体系,以及物联网在精致农业、食品卫生、社会治安、智能楼宇、感知城市、智能交通、节能环保、旅游观光、生产监控、新型商务和医疗护理等众多重点生产与生活领域中的应用。 教授的讲解内容全面,兼顾理论与实际,既全面介绍了物联网领域的基础知识,又广泛吸收了各国最新的发展成果;所用材料均取自国内外物联网的最新应用与动态。每一章均配有学习目标和思考题,既方便教师教学,又能让学习者全面、实际地学到运用物联网基本知识和技术解决各类实际问题的思路与方法。物联网概论课程的特点是理论联系实际,针对目前物联网在全球蓬勃发展的势态.特别遴选了一批在重点生产与生活领域中的应用案例进行详细的分析与介绍,让我领会到了物联网技术的魅力和巨大的潜力。 这次培训内容主要包括以下几个部分:1、物联网基础、物联网应用、嵌入式开发基础、嵌入式Linux开发环境搭建、嵌入式开发基础及Ubuntu使用、嵌入式Linux内核裁剪与编译等内容,通过开发板与程序烧写器套件分别实现SINK 节点、传感器节点和ROUTER节点,然后与PC机相结合实现无线传感器网络;2、物联网课程的教学设计,理论体系与实验体系的建设,以及《物联网》课程教学中的重难点;3、物联网应用技术专业培养目标,教学方法及手段,以及校企及政府合作开展科研的方向与重点。

湖南大学无线传感器网络实验报告DV-HOP

无线传感器网络 题目:DV-hop定位算法 学生: 学号: 完成时间: 2014.5.121

一、实验目的 1、掌握matlab工具的使用方法。 2、了解DV-hop算法原理,熟悉DV-hop算法代码,分析DV-hop算法实验结果。 二、实验原理 DV-hop算法概述 (一)基本思想: 3、计算位置节点与犀鸟节点的最小跳数 4、估算平均每跳的距离,利用最小跳数乘以平均每条的距离,得到未知节点与信标节点之间的估计距离 5、利用三遍测量法或者极大似然估计法计算未知节点的坐标 (二)定位过程 1、信标节点向邻居节点广播自身未知信息的分组,其中包括跳数字段,初始化为0 2、接受节点记录具有到每条信标节点的最小跳数,忽略来自一个信标节点的较大跳数的分组,然后将跳数数值加1,并转发给邻居节点 3、网络中所有节点能够记录下到每个信标节点最小跳数 (三)计算未知节点与信标节点的实际跳段距离

1、每个信标节点根据记录的其他信标节点的位置信息和相距跳数,估 算平均每跳距离 2、信标节点将计算的每条平均距离用带有生存期字段的分组广播至网络中,未知节点仅仅记录接受到的第一个每跳平均距离,并转发给邻居节点 3、未知节点接受到平均每跳距离后,根据记录的跳数,计算到每个信标节点的跳段距离 (四)利用三边测量法或者极大似然估计法计算自身位置 4、位置节点利用第二阶段中记录的到每个信标节点的跳段距离,利用三边测量法或者极大似然估计法计算自身坐标 三、实验容和步骤 DV-hop代码如下: function DV_hop() load '../Deploy Nodes/coordinates.mat'; load '../Topology Of WSN/neighbor.mat'; if all_nodes.anchors_n<3 disp('锚节点少于3个,DV-hop算法无法执行'); return; end %~~~~~~~~~~~~~~~~~~~~~~~~~最短路经算法计算节点间跳数~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ shortest_path=neighbor_matrix; shortest_path=shortest_path+eye(all_nodes.nodes_n)*2; shortest_path(shortest_path==0)=inf;

无线传感网络概述

无线传感网络概述 学号031241119姓名魏巧班级0312411 一、无线传感器网络(WSN)的定义: 无线传感器网络(WSN)是指将大量的具有通信与计算能力的微小传感器节点,通过人工布设、空投、火炮投射等方法设置在预定的监控区域,构成的“智能”自治监控网络系统,能够检测、感知和采集各种环境信息或检测对象的信息。二、传感器的节点分布及通信方式: 由于传感器节点数量众多,布设时智能采用随机投放的方式,传感器节点的位置不能预先确定。节点之间可以通过无线信道连接,并具有很强的协同能力,通过局部的数据采集、预处理以及节点间的数据交互来完成全局任务,同时节点之间采用自组织网络拓扑结构。由于传感器节点是密集布设的,因此节点之间的距离很短,在传输信息方面多跳(multi—hop)、对等(peer to peer)通信方式比传统的单跳、主从通信方式更适合在无线传感器网络中使用,例如:使用多跳的通信方式可以有效地避免在长距离无线信号传播过程中遇到的信号衰落和干扰等各种问题。 三、WSN运行的环境: 1、WSN可以在独立封闭的环境下(如局域网中)运行。 2、WSN也可以通过网关连接到网络基础设施上(如Internet)。在这种情况中,远程用户可以通过Internet 浏览无线传感器网络采集的信息。 四、无线数据网络的定义及无线自组网络的特点: 主流的无线网络技术,如IEEE 802.11、Bluetooth都是为了数据传输而设计的,我们称之为无线数据网络。 目前,无线数据网络研究的热点问题就是无线自组网络技术,这项技术可以实现不依赖于任何基础设施的移动节点在短时间内的互联。特点有如下几点: (1)无中心和自组性(优点):无线自组网络没有绝对的控制中心,网络中节点通知分布式的算法来协调彼此的行为,这种算法无需人工干预和其他预置网络设施就可以在任何时刻任何地方快速展开并自动组网。 (2)动态变化的网络拓扑(缺点):移动终端能够以任意速度和方式在网中移动,在通过无线信道形成的网络拓扑随时可能发生变化。 (3)受限的无线传输带宽(缺点):无线自组网络采用无线传输技术作为底层通信手段,由于无线信道本身的物理特性,它所能提供的网络带宽相对有线信道要低得多。 (4)移动终端的能力有限(缺点):虽然无线自组网络中移动终端携带方便,轻便灵巧,但是也存在固有缺陷,例如:能源受限,内存较小,CPU性能较低等(5)多跳路由(优点):由于节点发射功率限制,节点覆盖范围有限。因此当它要与其覆盖范围之外的节点进行通信时,需要中间节点的转发。其中转发是由普通节点协作完成的,并不是由专用的路由设备完成的。 (6)安全性较差(缺点):无线自组网络由于采用无线信道、有限电源、分布式控制等技术,使它更容易受到被动窃听、主动入侵、拒绝服务,剥夺“睡眠”等网络攻击。

相关主题