搜档网
当前位置:搜档网 › 基于随机森林分类的快速标签检测_章沛_陈小瑜

基于随机森林分类的快速标签检测_章沛_陈小瑜

基于随机森林分类的快速标签检测_章沛_陈小瑜
基于随机森林分类的快速标签检测_章沛_陈小瑜

目标检测方法简要综述

龙源期刊网 https://www.sodocs.net/doc/2518628136.html, 目标检测方法简要综述 作者:栗佩康袁芳芳李航涛 来源:《科技风》2020年第18期 摘要:目标检测是计算机视觉领域中的重要问题,是人脸识别、车辆检测、路网提取等领域的理论基础。随着深度学习的快速发展,与基于滑窗以手工提取特征做分类的传统目标检测算法相比,基于深度学习的目标检测算法无论在检测精度上还是在时间复杂度上都大大超过了传统算法,本文将简单介绍目标检测算法的发展历程。 关键词:目标检测;机器学习;深度神经网络 目标检测的目的可分为检测图像中感兴趣目标的位置和对感兴趣目标进行分类。目标检测比低阶的分类任务复杂,同时也是高阶图像分割任的重要基础;目标检测也是人脸识别、车辆检测、路网检测等应用领域的理论基础。 传统的目标检测算法是基于滑窗遍历进行区域选择,然后使用HOG、SIFT等特征对滑窗内的图像块进行特征提取,最后使用SVM、AdaBoost等分类器对已提取特征进行分类。手工构建特征较为复杂,检测精度提升有限,基于滑窗的算法计算复杂度较高,此类方法的发展停滞,本文不再展开。近年来,基于深度学习的目标检测算法成为主流,分为两阶段和单阶段两类:两阶段算法先在图像中选取候选区域,然后对候选区域进行目标分类与位置精修;单阶段算法是基于全局做回归分类,直接产生目标物体的位置及类别。单阶段算法更具实时性,但检测精度有损失,下面介绍这两类目标检测算法。 1 基于候选区域的两阶段目标检测方法 率先将深度学习引入目标检测的是Girshick[1]于2014年提出的区域卷积神经网络目标检测模型(R-CNN)。首先使用区域选择性搜索算法在图像上提取约2000个候选区域,然后使用卷积神经网络对各候选区域进行特征提取,接着使用SVM对候选区域进行分类并利用NMS 回归目标位置。与传统算法相比,R-CNN的检测精度有很大提升,但缺点是:由于全连接层的限制,输入CNN的图像为固定尺寸,且每个图像块输入CNN单独处理,无特征提取共享,重复计算;选择性搜索算法仍有冗余,耗费时间等。 基于R-CNN只能接受固定尺寸图像输入和无卷积特征共享,He[2]于2014年参考金字塔匹配理论在CNN中加入SPP-Net结构。该结构复用第五卷积层的特征响应图,将任意尺寸的候选区域转为固定长度的特征向量,最后一个卷积层后接入的为SPP层。该方法只对原图做一

生存分析-随机森林实验与代码

随机森林模型在生存分析中的应用 【摘要】目的:本文探讨随机森林方法用于高维度、强相关、小样本的生 存资料分析时,可以起到变量筛选的作用。方法:以乳腺癌数据集构建乳腺癌转 移风险评估模型为实例进行实证分析, 使用随机森林模型进行变量选择,然后拟 合cox 回归模型。 结果:随机森林模型通过对变量的选择,有效的解决数据维 度高且强相关的情况,得到了较高的 AUC 值。 一、数据说明 该乳腺癌数据集来自于NCBI ,有77个观测值以及22286个基因变量。通过 筛选选取454个基因变量。将数据随机分为训练集合测试集,其中2/3为训练集, 1/3为测试集。绘制K-M 曲线图: 二、随机森林模型 随机森林由许多的决策树组成,因为这些决策树的形成采用了随机的方法, 因此也叫做随机决策树。随机森林中的树之间是没有关联的。当测试数据进入随 机森林时,其实就是让每一颗决策树进行分类,最后取所有决策树中分类结果最 多的那类为最终的结果。因此随机森林是一个包含多个决策树的分类器, 并且其 输出的类别是由个别树输出的类别的众数而定 使用randomForestSRC 包得到的随机森林模型具有以下性质: Kaplan-Meker estlmaie wHh 95% conndence bounds S ?2 S

Number of deaths: 27 Number of trees: 800 Mini mum term inal node size: 3 Average no. of term inal no des: 14.4275 No. of variables tried at each split: 3 Total no. of variables: 452 Analysis: RSF Family: surv Splitting rule: logrank Error rate: 19.87% 发现直接使用随机森林得到的模型,预测误差很大,达到了19.8%进一步考虑使用随机森林模型进行变量选择,结果如下: > our.rf$rfsrc.refit.obj Sample size: 52 Number of deaths: 19 Number of trees: 500 Minimum terminal node size: 2 Average no. of term inal no des: 11.554 No. of variables tried at each split: 3 Total no. of variables: 9 Analysis: RSF Family: surv Splitting rule: logrank *random* Number of random split points: 10 Error rate: 11.4% > our.rf$topvars [1] "213821_s_at" "219778_at" "204690_at" "220788_s_at" "202202_s_at" [6] "211603_s_at" "213055_at" "219336_s_at" "37892_at" 一共选取了9个变量,同时误差只有11.4% 接下来,使用这些变量做cox回归,剔除模型中不显著(>0.01 )的变量,最终 参与模型建立的变量共有4个。模型结果如下: exp(coef) exp(-coef) lower .95 upper .95 '218150_at' 1.6541 0.6046 0.11086 24.6800 '200914_x_at' 0.9915 1.0086 0.34094 2.8833 '220788_s_at' 0.2649 3.7750 0.05944 1.1805 '201398_s_at' 1.7457 0.5729 0.33109 9.2038 '201719 s at' 2.4708 0.4047 0.93808 6.5081

预测方法的分类

预测方法的分类 郑XX 预测方法的分类 由于预测的对象、目标、内容和期限不同,形成了多种多样的预测方法。据不完全统计,目前世界上共有近千种预测方法,其中较为成熟的有150多种,常用的有30多种,用得最为普遍的有10多种。 1-1预测方法的分类体系 1)按预测技术的差异性分类 可分为定性预测技术、定量预测技术、定时预测技术、定比预测技术和评价预测 技术,共五类。 2)按预测方法的客观性分类 可分为主观预测方法和客观预测方法两类。前者主要依靠经验判断,后者主要借 助数学模型。 3)按预测分析的途径分类 可分为直观型预测方法、时间序列预测方法、计量经济模型预测方法、因果分析 预测方法等。 4)按采用模型的特点分类 可分为经验预测模型和正规的预测模型。后者包括时间关系模型、因果关系模 型、结构关系模型等。 1-2 常用的方法分类 1)定性分析预测法 定性分析预测法是指预测者根据历史与现实的观察资料,依赖个人或集体的经验与智慧,对未来的发展状态和变化趋势作出判断的预测方法。 定性预测优缺点 定性预测的优点在于: 注重于事物发展在性质方面的预测,具有较大的灵活性,易于充分发挥人的主观能动作用,且简单的迅速,省时省费用。

定性预测的缺点是: 易受主观因素的影响,比较注重于人的经验和主观判断能力,从而易受人的知识、经验和能力的多少大小的束缚和限制,尤其是缺乏对事物发展作数量上的精确描述。 2)定量分析预测法 定量分析预测法是依据调查研究所得的数据资料,运用统计方法和数学模型,近似地揭示预测对象及其影响因素的数量变动关系,建立对应的预测模型,据此对预测目标作出定量测算的预测方法。通常有时间序列分析预测法和因果分析预测法。 ⅰ时间序列分析预测法 时间序列分析预测法是以连续性预测原理作指导,利用历史观察值形成的时间数列,对预测目标未来状态和发展趋势作出定量判断的预测方法。

决策树和随机森林实验

实验算法决策树和随机森林实验 【实验名称】 决策树和随机森林实验 【实验目的】 掌握决策树和随机森林实验模型应用过程,根据模型要求逬行数据预处理,建模,评价与应用; 【背景描述】 决策树与随机森林,属于监督学习,通过纯化指标的计算,确走分支方式,逐步构建成树形结构。决策树由节点(node )和有向边(directed edge )组成。节点的类型有两种:内部节点和叶子节点。具中,内部节点表示一个特征或属性的测试条件(用于分开具有不同特性的记录),叶子节点表示一个分类。 随机森林顾名思义,是用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵决策树之间是没有关联的。在得到森林之后,当有一个新的输入样本逬入的时候,就让森林中的每一棵决策树分别进行一下判断,看看这个样本应该属于哪一类(对于分类算法),然后看看哪_类被选择最多,就预测这个样本为那一类。 【知识准备】 了解决策树与随机森林模型的使用场景,数据标准。了解Python/Spark数据处理一般方法。了解spark模型调用,训练以及应用方法 【实验要求】 完成决策树和随机森林实验 【实验设备】

Windows或Linux操作系统的计算机。部署Spark r Python r本实验提供centos6.8环境。【实验说明】 采用UCI机器学习库中的wine数据集作为算法数据,训练决策树与随机森林模型,对样本进行聚类。 【实验坏境】 Spark 23.1 r Pyrhon3.X ,实验在命令行pyspark中进行,或者把代码写在py脚本,由于本次为实验,以学习模型为主,所以在命令行中逐步执行代码,以便更加清晰地了解整个建模流程。【实验步骤】第一步:启动pyspark : 命令行中键入pyspark -master local[4],本地模式启动spark与python :

人体目标检测与跟踪算法研究

人体目标检测与跟踪算法研究 摘要:近些年以来,基于视频中人体目标的检测与跟踪技术研究越来越被重视。然而,由于受到目标自身特征多样性和目标所处环境的复杂性和不确定性的影响,现存算法的性能受到很大的限制。本文对目前所存在的问题进行了分析,并提出了三帧差分法和改进阈值分割法相结合的运动目标检测算法和多特征融合的改进运动目标跟踪算法。这两种算法不仅可以准确有效的检测出运动目标而且能够满足实时性的要求,有效的解决了因光照变化和目标遮挡等情况造成的运动目标跟踪准确度下降或跟踪目标丢失等问题。 关键词:三帧差分,Camshift,阈值分割 Research Based on Human Target Detectionand Tracking Algorithm Abstract: In recent years, human object detection and tracking become more and more important. However the complexity, uncertainty environment and the target’s own diversity limit the performance of existing algorithms. The main works of this paper is to study and analysis the main algorithm of the human object detection and tracking, and proposes a new moving target detection method based on three-frame difference method and threshold segmentation and improved Camshift tracking algorithm based on multi-feature fusion. These algorithm can satisfy the real-time, while accurately and efficiently detect moving targets, and also effectively solves the problem of tracking object lost or misplaced under illumination change or target occlusion. Keywords: three-frame difference, Camshift, threshold segmentation 一、绪论 (一)选题的背景和意义 人类和动物主要通过眼睛来感受和认知外部世界。人类通过视觉所获取的信息占了60%[1],因此,在开发和完善人工智能的过程中,赋予机器视觉的功能这一操作极不可缺少。完善上述功能需要以许多技术为基础,特别是运动目标的检测与跟踪技术。近些年以来,此技术受到了越来越多的关注[2]。目前,此技术也在各领域得到了充分的应用,涵盖的领域有智能交通、导航、智能视频监控、精确制导、人机交互和多媒体视频编码压缩技术等。

随机森林实验报告

随机森林实验报告 实验目的 实现随机森林模型并测试。 实验问题 Kaggle第二次作业Non-linear classification 算法分析与设计 一.算法设计背景: 1.随机森林的原子分类器一般使用决策树,决策树又分为拟合树和分类树。这两者的区别在于代价估值函数的不同。 2.根据经验,用拟合树做分类的效果比分类树略好。 3.对于一个N分类问题,它总是可以被分解为N个2分类问题,这样分解的好处是其决策树更加方便构造,更加简单,且更加有利于用拟合树来构建分类树。对于每一个2分类问题,构造的树又叫CART树,它是一颗二叉树。 4.将N个2分类树的结果进行汇总即可以得到多分类的结果。 树构造:

6.随机森林构造: 二.算法思路: 将一个N分类问题转化为N个二分类问题。转化方法是:构造N棵二叉拟合树,这里假设N为26,然后我们给N棵二叉树依次标号为1,2,3...26。1号树的结果对应于该条记录是不是属于第一类,是则输出1,否则输出号树的结果对应于该条记录是不是属于第二类,是则1否则0,依此类推。这样,我们的26棵二叉树的结果就对应了26个下标。 例如对于某条记录,这26个二叉树的结果按序号排列为{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...1,0},那么这条记录的分类应该为25。要将一个26维的0,1序列变回

一个索引,我们只需要找出这个序列中值最大的元素的索引,这个索引即是序列号。 我们将上面的26棵分别对26个索引做是否判断的二分类树视为一个整体,在多线程的环境下,构造多个这样的整体,然后进行求和运算,最后取出每个结果序列中值最大的元素的下标作为分类值,那么久得到了我们想要的结果,随机森林完成。 三.算法流程: 1.读入训练集trainset,测试集testset 2.将训练集分割为输入trainIn,输出trainOut 3.这里假设类别数N为26,将trainOut[记录条数] 映射为 transformTrainOut[训练记录数][26] 4.初始化transformTestOut[测试记录数][26]全部为0 i = 1 : ForestSize: 策树 在这里,我们每一次26分类是由26棵CART共同完成的,CART的cost function采用的是gini系数,CART的最大层数为7,分裂停止条件为当前节点GINI为0或者当前节点所在层数到达了7. 2.随机森林 a.随机森林每次循环的训练集采样为原训练集的. b.对于森林中每一棵决策树每一次分割点的选取,对属性进行了打乱抽样,抽样数为25,即每次分割只在25个属性中寻找最合适的值。并且对于每个选取的属性,我们进行了行采样。即如果这个属性所拥有的属性值数大于30,我们选取其中30个作为分割候选,如果小于30,则全部纳入分割候选。 四.代码详解 1.训练集/测试集的读入 a.在中定义了:

决策树算法的原理与应用

决策树算法的原理与应用 发表时间:2019-02-18T17:17:08.530Z 来源:《科技新时代》2018年12期作者:曹逸知[导读] 在以后,分类问题也是伴随我们生活的主要问题之一,决策树算法也会在更多的领域发挥作用。江苏省宜兴中学江苏宜兴 214200 摘要:在机器学习与大数据飞速发展的21世纪,各种不同的算法成为了推动发展的基石.而作为十大经典算法之一的决策树算法是机器学习中十分重要的一种算法。本文对决策树算法的原理,发展历程以及在现实生活中的基本应用进行介绍,并突出说明了决策树算法所涉及的几种核心技术和几种具有代表性的算法模式。 关键词:机器学习算法决策树 1.决策树算法介绍 1.1算法原理简介 决策树模型是一种用于对数据集进行分类的树形结构。决策树类似于数据结构中的树型结构,主要是有节点和连接节点的边两种结构组成。节点又分为内部节点和叶节点。内部节点表示一个特征或属性, 叶节点表示一个类. 决策树(Decision Tree),又称为判定树, 是一种以树结构(包括二叉树和多叉树)形式表达的预测分析模型,决策树算法被评为十大经典机器学习算法之一[1]。 1.2 发展历程 决策树方法产生于上世纪中旬,到了1975年由J Ross Quinlan提出了ID3算法,作为第一种分类算法模型,在很多数据集上有不错的表现。随着ID3算法的不断发展,1993年J Ross Quinlan提出C4.5算法,算法对于缺失值补充、树型结构剪枝等方面作了较大改进,使得算法能够更好的处理分类和回归问题。决策树算法的发展同时也离不开信息论研究的深入,香农提出的信息熵概念,为ID3算法的核心,信息增益奠定了基础。1984年,Breiman提出了分类回归树算法,使用Gini系数代替了信息熵,并且利用数据来对树模型不断进行优化[2]。2.决策树算法的核心 2.1数据增益 香农在信息论方面的研究,提出了以信息熵来表示事情的不确定性。在数据均匀分布的情况下,熵越大代表事物的越不确定。在ID3算法中,使用信息熵作为判断依据,在建树的过程中,选定某个特征对数据集进行分类后,数据集分类前后信息熵的变化就叫作信息增益,如果使用多个特征对数据集分别进行分类时,信息增益可以衡量特征是否有利于算法对数据集进行分类,从而选择最优的分类方式建树。如果一个随机变量X的可以取值为Xi(i=1…n),那么对于变量X来说,它的熵就是

目标检测算法

function MovingTargetDetectionByMMI() %Moving Target Detection %Based on Maximun Mutual Information % %EDIT BY PSL@CSU %QQ:547423688 %Email:anyuezhiji@https://www.sodocs.net/doc/2518628136.html, %2012-06-01 %读文件 Im1=imread('001.jpg'); Im2=imread('002.jpg'); Im3=imread('003.jpg'); Im1=rgb2gray(Im1); Im2=rgb2gray(Im2); Im3=rgb2gray(Im3); tic; d12=GetDifferenceImg(Im2,Im1); d23=GetDifferenceImg(Im2,Im3); d=d12.*d23; se =; for i=1:4 d = imfilter(d,se); end for i=1:2 d = medfilt2(d,); end %%d=abs((d12-d23).^0.7); d=uint8(d/max(max(d))*255); level = graythresh(d); BW = im2bw(d,level); s=regionprops(BW,'BoundingBox'); figure(1)

subplot(2,2,1); imshow(uint8(d12/max(max(d12))*255)); title('参考帧与前一帧的差值') subplot(2,2,2); imshow(uint8(d23/max(max(d23))*255)); title('参考帧与后一帧的差值') subplot(2,2,3); imshow(BW); title('由前后帧得出的差值') subplot(2,2,4); imshow(Im2); %imshow(d); rectangle('Position',s(1).BoundingBox,'Curvature',,'LineWidth',2,'LineStyle','--','EdgeColor', 'r') title('参考帧与检测结果') %求相邻两帧重合部分差值主函数 function outImg=GetDifferenceImg(R,F) =dwt2(R,'db1'); =dwt2(F,'db1'); CA1=uint8(CA1); CA2=uint8(CA2); fprintf('\n------PSO start\n'); =PSO(CA1,CA2); while mi<1.2 =PSO(CA1,CA2); end fprintf('tx:%f ty:%f ang:%f mi:%f\n',pa(1),pa(2),pa(3),mi); fprintf('------PSO end\n\n'); %pa=; fprintf('------Powell start\n'); mi_old=0; while abs(mi-mi_old)>0.01

随机森林算法介绍及R语言实现

随机森林算法介绍及R语言实现 随机森林算法介绍 算法介绍: 简单的说,随机森林就是用随机的方式建立一个森林,森林里面有很多的决策树,并且每棵树之间是没有关联的。得到一个森林后,当有一个新的样本输入,森林中的每一棵决策树会分别进行一下判断,进行类别归类(针对分类算法),最后比较一下被判定哪一类最多,就预测该样本为哪一类。 随机森林算法有两个主要环节:决策树的生长和投票过程。 决策树生长步骤: 1.从容量为N的原始训练样本数据中采取放回抽样方式(即bootstrap取样) 随机抽取自助样本集,重复k(树的数目为k)次形成一个新的训练集N,以此生成一棵分类树; 2.每个自助样本集生长为单棵分类树,该自助样本集是单棵分类树的全部训 练数据。设有M个输入特征,则在树的每个节点处从M个特征中随机挑选m(m < M)个特征,按照节点不纯度最小的原则从这m个特征中选出一个特征进行分枝生长,然后再分别递归调用上述过程构造各个分枝,直到这棵树能准确地分类训练集或所有属性都已被使用过。在整个森林的生长过程中m将保持恒定; 3.分类树为了达到低偏差和高差异而要充分生长,使每个节点的不纯度达到 最小,不进行通常的剪枝操作。 投票过程: 随机森林采用Bagging方法生成多个决策树分类器。 基本思想: 1.给定一个弱学习算法和一个训练集,单个弱学习算法准确率不高,可以视 为一个窄领域专家; 2.将该学习算法使用多次,得出预测函数序列,进行投票,将多个窄领域专 家评估结果汇总,最后结果准确率将大幅提升。 随机森林的优点: ?可以处理大量的输入变量; ?对于很多种资料,可以产生高准确度的分类器; ?可以在决定类别时,评估变量的重要性; ?在建造森林时,可以在内部对于一般化后的误差产生不偏差的估计;

预测模型分类

预测模型分类及优缺点分析 灰色(系统)预测模型 神经网络预测模型 趋势平均预测法 1 微分方程模型 当我们描述实际对象的某些特性随时间(或空间)而演变的过程、分析它的变化规律、预测它的未来性态、研究它的控制手段时,通常要建立对象的动态微分方程模型。微分方程大多是物理或几何方面的典型.问题,假设条件已经给出,只需用数学符号将已知规律表示出来,即可列出方程,求解的结果就是问题的答案,答案是唯一的,但是有些问题是非物理领域的实际问题,要分析具体情况或进行类比才能给出假设条件。作出不同的假设,就得到不同的方程。比较典型的有:传染病的预测模型、经济增长预测模型、正规战与游击战的预测模型、药物在体内的分布与排除预测模型、人口的预测模型、烟雾的扩散与消失预测模型以及相应的同类型的预测模型。其基本规律随着时间的增长趋势是指数的形式,根据变量的个数建立初等微分模型。微分方程模型的建立基于相关原理的因果预测法。该法的优点:短、中、长期的预测都适合,而.既能反映内部规律,反映事物的内在关系,也能分析两个因素的相关关系,精度相应的比较高,另外对初等模型的改进也比较容易理解和实现。该法的缺点:虽然反映的是内部规律,但是由于方程的建立是以局部规律:的独立性假定为基础,故做中长期预测时,偏差有点大,而且微分方程的解比较难以得到。 2 时间序列法 将预测对象按照时问顺序排列起来,构成一个所谓的时间序列,从所构成的这一组时间序列过去的变化规律,推断今后变化的可能性及变化趋势、变化规律,就是时间序列预测法。时间序列预测一般反映三种实际变化规律:趋势变化、周期性变

化、随机性变化。考虑一组给定的随时间变化的观察值,t=1,2,3,?,n},如何选取合适模型预报,t=n+1,n+3, n+k}的值。 上面的模型统称ARMA模型,是时间序列建模中最重要和最常用的预测手段。 事实上,对实际中发生的平稳时间序列做恰当的描述,往往能够得到自回归、滑动平均或混合的模型,其阶数通常不超过2。时间序列模型其实也是一种回归模型,属于定量预测,其基于的原理是,一方面承认事物发展的延续性,运用过去时间序列的数据进行统计分析就能推测事物的发展趋势;另一方面又充分考虑到偶然因素影响而产生的随机性,为了消除随机波动的影响,利用历史数据,进行统计分析,并对数据进行适当的处理,进行趋势预测。优点是简单易行,便于掌握,能够充分运用原时间序列的各项数据,计算速度快,对模型参数有动态确定的能力,精度较好,采用组合的时间序列或者把时间序列和其他模型组合效果更好。缺点是不能反映事物的内在联系,不能分析两个因素的相关关系,常数的选择对数据修匀程度影响较大,不宜取得太小,只适用于短期预测 3 灰色预测理论模型 灰色预测的基本思路是将已知的数据序列按照某种规则构成动态或非动态的 白色模块,再按照某种变化、解法来求解未来的灰色模型。它的主要特点是模型使用的不是原始数据序列,而是生成的数据序列。其核心体系是灰色模型(GM),即对原始数据作累加生成(或其他方法生成)得到近似的指数规律再进行建模的模型方法。优点是不需要很多的数据,一般只需要4个数据就够,能解决历史数据少、序列的完整性及可靠性低的问题;能利用微分方程来充分挖掘系统的本质,精度高;能将无规律的原始数据进行生成得到规律性较强的生成数列,运算简便,易于检验,具有不考虑分布规律,不考虑变化趋势。缺点是只适用于中长期的预测,只适合指数增长的预测,对波动性不好的时间序列预测结果较差。 4 BP神经网络模型

图像显著性目标检测算法研究

图像显著性目标检测算法研究 随着移动电子设备的不断升级与应用,使用图像来记录或表达信息已成为一种常态。我们要想快速地在海量图像中提取出有价值的信息,那么需要模拟人类视觉系统在机器视觉系统进行计算机视觉热点问题的研究。 图像显著性目标检测对图像中最引人注意且最能表征图像内容的部分进行检测。在图像显著性目标检测任务中,传统的方法一般利用纹理、颜色等低层级视觉信息自下向上地进行数据驱动式检测。 对于含有单一目标或高对比度的自然场景图像,可以从多个角度去挖掘其显著性信息,如先验知识、误差重构等。然而,对于那些具有挑战性的自然场景图像,如复杂的背景、低对比度等,传统的方法通常会检测失败。 基于深度卷积神经网络的算法利用高层级语义信息结合上下文充分挖掘潜在的细节,相较于传统的方法已取得了更优越的显著性检测性能。本文对于图像显著性检测任务存在的主要问题提出了相应的解决方法。 本文的主要贡献如下:为充分挖掘图像多种显著性信息,并使其能够达到优势互补效果,本文提出了一种有效的模型,即融合先验信息和重构信息的显著性目标检测模型。重构过程包括密度重构策略与稀疏重构策略。 密度重构其优势在于能够更准确地定位存在于图像边缘的显著性物体。而稀疏重构更具鲁棒性,能够更有效地抑制复杂背景。 先验过程包含背景先验策略与中心先验策略,通过先验信息可更均匀地突出图像中的显著性目标。最后,把重构过程与先验过程生成的显著特征做非线性融合操作。 实验结果充分说明了该模型的高效性能与优越性能。针对图像中存在多个显

著性目标或者检测到的显著性目标存在边界模糊问题,本文提出了一种基于多层级连续特征细化的深度显著性目标检测模型。 该模型包括三个阶段:多层级连续特征提取、分层边界细化和显著性特征融合。首先,在多个层级上连续提取和编码高级语义特征,该过程充分挖掘了全局空间信息和不同层级的细节信息。 然后,通过反卷积操作对多层级特征做边界细化处理。分层边界细化后,把不同层级的显著特征做融合操作得到结果显著图。 在具有挑战性的多个基准数据集上使用综合评价指标进行性能测试,实验结果表明该方法具有优越的显著性检测性能。对于低对比度或者小目标等问题,本文提出一种新颖模型,即通道层级特征响应模型。 该模型包含三个部分:通道式粗特征提取,层级通道特征细化和层级特征图融合。该方法基于挤压激励残差网络,依据卷积特征通道之间的相关性进行建模。 首先,输入图像通过通道式粗特征提取过程生成空间信息丢失较多的粗糙特征图。然后,从高层级到低层级逐步细化通道特征,充分挖掘潜在的通道相关性细节信息。 接着,对多层级特征做融合操作得到结果显著图。在含有复杂场景的多个基准数据集上与其它先进算法进行比较,实验结果证明该算法具有较高的计算效率和卓越的显著性检测性能。

随机森林与逻辑回归模型在违约预测中的应用

2016年第21期 信息与电脑 China Computer&Communication 计算机工程应用技术 随机森林与逻辑回归模型在违约预测中的应用 刘开元 (广州大学 计算机科学与教育软件学院,广东 广州 510006) 摘 要:近几年来随着国家经济以及汽车消费信贷市场的发展,贷款违约问题逐渐成为各家信贷机构关注的焦点。目前,汽车信贷违约预测的方法还不够完善,为了建立起一套行之有效的模型,笔者通过将随机森林组合算法与逻辑回归相结合,对某商业银行的汽车信贷数据进行分析,构建了一个易于解释且实用的违约判别模型。 关键词:随机森林;逻辑回归;违约预测;汽车贷款 中图分类号:P642.22 文献标识码:A 文章编号:1003-9767(2016)21-111-02 1 引言 21世纪初,车辆信贷市场在国内打开,许多银行预感汽车信贷的获利机遇,纷纷开始进入车贷市场。在接下来的几年里,车辆信贷业务发展迅猛,仅仅两年多的时间里,银行车辆信贷业务增加了数倍,据统计,仅2003年车贷额就增加30亿左右,平均每月增加2亿至3亿,最多的月增加达到6亿多。2003年底,上海一个市的银行发放汽车贷款超过80亿。然而在车贷市场迅猛发展的同时,车贷违约问题逐渐暴露出来,因为车贷风险要比房贷来得快而高,车贷风险释放使银行违约率上升的同时,车贷坏账最终的受害者也是银行本身。为了降低坏账率,构建一个适用的违约判别模型就成为了各家信贷机构关注的重大点。本文在传统决策树模型的基础上引入随机森林组合算法,使得模型在易于解释的同时能得到更好的预测结果。 2 随机森林与逻辑回归组合模型 2.1 决策树与随机森林 决策树是一个贪婪算法,它代表的是对象属性与对象值之间的一种映射关系。决策树通过熵增益率或Gini 系数下降幅度对对象属性进行分组判断,理想的分组应尽量使两组输出变量值的Gini 系数下降幅度或熵增益率最大。 Gini 系数表达式为:2 1i Gini p =?∑。信息熵表达式为:2log ()i i info p p =∑。 其中为样本类别在当前分类样本下出现的频率。 随机森林最早起源于贝尔实验室Tin Kam Ho 提出的随即决策森林(Random Decision Forests )算法,后由Leo Breiman 和Adele Cutler 提出。随机森林实际上由许多决策树组成,最后分类结果取决于各个决策树分类器的简单多数选举。 随机森林是一个由一组决策树分类器(h (X ,f k (θ)),k =1~K )组成的分类器集合,其中为输入向量集, f (x )表示单个决策树,θk 是服从独立同分布的输入向量集的子集,K 表示随机森林中决策树的个数,在给定自变量X 的情况下,每个决策树通 过投标来决定最优的分类结果。 随机森林算法构造如下: (1)对给定的训练样本,随即可重复取样,形成新的子样本数据; (2)对新的子样本数据中的M 个特征变量随机抽取m (m <M )个特征,构造完整的决策树; (3)重复前两个步骤得到K 个决策树,形成随机森林;(4)每个决策树投票,选出最优的分类。随机森林模型如图1 所示。 图1 随机森林模型 2.2 逻辑回归 逻辑回归是一种广义线性回归(Generalized Linear Model ),因此与多元线性回归分析有很多相同之处。它们的模型形式基本上相同,都具有βx+β0,其中β为权重,β0为阈值,区别在于它们的因变量不同,多元线性回归直接将βx+β0作为因变量,即y =βx+β0,而逻辑回归则通过逻辑函数对表达式进行logit 变换,然后根据阈值设定大小决定因变量的值。 逻辑回归算法构造如下。 (1)对给定的训练样本X 进行多元线性回归得到逻辑回归的输入向量h (x ): 011() i n n h x βββ=+x +...+x (2)对h (x )进行logit 变换,得到预测向量集P : () 1 1i i h x p e ?= +作者简介:刘开元(1991-),男,安徽宣城人,研究生。研究方向:数据挖掘与算法。 — 111 —

实验1分类预测模型_神经网络

实验1分类预测模型——神经网络 一、实验目的 1.了解和掌握神经网络的基本原理。 2.熟悉一些基本的建模仿真软件(比如SPSS、Matlab等)的操作和使用。 3.通过仿真实验,进一步理解和掌握神经网络的运行机制,以及其运用的场景,特别是在 分类和预测中的应用。 二、实验环境 PC机一台,SPSS、Matlab等软件平台。 三、理论分析 神经网络起源于生物神经元的研究,其研究的主要对象是人脑。人脑是一个高度复杂的、非线性的、并行处理系统,其中大约有1011个称为神经元的微处理单元。这些神经元之间互相连接,连接数目高达1015.人脑具有联想、推理、判决、和决策的能力,对人脑活动机理的研究一直是一种挑战。通常认为,人脑智能的核心在于其连接机制,即有大量简单处理单元(神经元)的巧妙连接,使得人脑称为一个高度复杂的大规模非线性自适应系统。人工神经网络(Artificial Neural Network, ANN)是一种人脑的抽象计算模型,是一种人脑思维的计算机建模方式。 神经网络是一种运算模型,由大量的节点(或称神经元)和之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则跟据网络的连接方式、权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。 神经网络需要很长的训练时间,对于足够长的训练时间的应用更合适。同时,还需要大量的参数,通常主要靠经验确定,如网络拓扑或结构。神经网络常常因其可解释性差而受到批评。例如,人们很难解释网络中学习的权重和“隐藏单元”的符号含义。 然而,神经网络的优点包括其对噪声数据的高承受能力,以及对未经训练的数据的模式分类能力。因此,在缺乏属性与分类之间联系的知识时,仍然可以使用神经网络。而且,神经网络非常适合连续值的输入和输出,这是大多数决策树算法所不能比拟的。神经网络的算法是固有并行的,我们可以使用并行技术加快计算过程。 人工神经网络是由大量处理单元互联组成的非线性、自适应信息处理系统。它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。人工神经网络具有四个基本特征:

视觉目标检测算法说明

视觉目标检测算法说明 1.功能 通过安装在战车上的摄像头,检测视野范围内的敌方战车。 2.算法: 2.1目标检测与识别 1.颜色检测 采集大量敌方机器人的图片数据,并进行训练,得到对方机器人的颜色区间, 并以此为阈值对整幅图像进行颜色检测,找到疑似敌方机器人的区域,量化 成二值图。 2.滤除噪声点 对得到的二值图像进行开运算处理,滤除颜色检测结果中的噪声点。 3.连通区域检测 对图像中的疑似区域进行连通区域检测,计算出每个疑似区域的外部轮廓, 用矩形近似表示。 4.连通区域合并 根据连通区域之间的距离和颜色相似性,将距离接近且相似性高的连通区域 进行合并。 5.形状和大小过滤 对大量敌方机器人图片进行训练,得到对方机器人的形状信息(例如长宽比) 和大小信息(面积),并以此为依据将不符合的区域过滤掉。 经过以上五步的处理,可以初步得到敌方机器人的位置、大小和形状信息。 2.2目标运动跟踪 对上步中的检测结果进行运动跟踪。 1.状态估计 根据上一时刻地方机器人的运动状态(包括位置和速度),估算当前时刻机 器人的运动状态。 2.轨迹关联 根据位置和颜色信息,对当前时刻机器人的估计状态和检测结果进行关联。 3.状态更新 若上一步中关联成功,更新当前时刻的运动状态。 通过对检测结果进行运动跟踪,可以计算出当前时刻敌方机器人的运动速度和方 向。 2.3预估提前量

1.评估延迟时间 根据己方机器人实际的调试情况,通过多次试验和统计的方法,估算己方机器人从接收命令到炮弹(或子弹)击中目标区域的时间延时(包括图像处理 时间、落弹时间和炮弹飞行时间)。 2.计算提前量 根据延迟时间和敌方机器人的运动速度,计算炮弹发射的提前量,补偿到敌方机器人的运动状态中。 3.总结: 对于机器人战车中的敌方目标检问题,有很多种方法可以实现,视觉检测只是其中的一种方法,而基于颜色识别的目标检测也只是视觉算法中比较简单有效的一种。所以,本段代码只是抛砖引玉的一个样本,适用范围只针对于2014年RoboMasters夏令营的场地和战车,希望可以看到大家更加简单有效的算法。

实验报告及分析_R中bagging回归与随机森林以及boosting回归

一、R中boosting回归 这个主要用R中的mboost包中的mboost函数来实现。但是作为铺助,还要加载party包。函数如下 mboost(formula, data = list(),baselearner = c("bbs", "bols", "btree", "bss", "bns"), ...) 其中的参数需要注意formula的输入格式。至于data也可以是数据框。我们用决策树的boosting方法。要注意查看formula的输入格式,参见下面的具体例子。 一个具体的例子 我们使用我的电脑上自带的数据,即E:\Documents\R中的mg文本文件中的数据。该数据无任何说明,知道它是由6个自变量和一个因变量构成。试验如下。 > library(party) > library(mboost) > w<-read.table('mg.txt',header=T) >B1<-mboost(y~btree(x1)+btree(x2)+btree(x3)+btree(x4)+btree(x5)+btre e(x6),data=w[-1,]) #构建分类器,用除掉第一个样本的数据做训练数据。>y0<-predict(B1,w[1,]) #用第一个样本作测试。 二、bagging回归

与boosting回归想法类似,bagging回归的做法就是不断放回地对训练样本进行再抽样,对每个自助样本都建立一棵回归树,对于每一个观测,每棵树给一个预测,最后将其平均。 使用到的函数包为ipred,使用函数为bagging(),用法如下:bagging(formula, data, subset, na.action=na.rpart, ...) 主要参数介绍: formula:回归方程形式 data:数据集(数据框) control:对树枝的控制,使用函数rpart.control(),可以控制诸如cp值,xval等参量。(注意必须加载过rpart包,才能找到rpart.control 函数) 下面是用bagging对iris数据进行测试的例子。 > data(iris) > ir<-iris > set.seed(124) > count.test<-round(runif(50,1,150)) > test<-ir[count.test,] > library(ipred) > reg<-bagging(Species~.,data=ir)

随机森林原理解释与其中各个参数地含义中文解释

一、RF原理解释: 首先,从给定的训练集通过多次随机的可重复的采样得到多个bootstrap 数据集。接着,对每个 bootstrap 数据集构造一棵决策树,构造是通过迭代的将数据点分到左右两个子集中实现的,这个分割过程是一个搜 索分割函数的参数空间以寻求最大信息增量意义下最佳参数的过程。然后,在每个叶节点处通过统计训练 集中达到此叶节点的分类标签的直方图经验的估计此叶节点上的类分布。这样的迭代训练过程一直执行到 用户设定的最大树深度(随机森林提出者Breiman采用的是 ntree=500 )或者直到不能通过继续分割获取更 大的信息增益为止,网上的代码中作者都是对树的最大深度设置了最大值。 二、函数,参数的中文解释 function model = classRF_train(X,Y,ntree,mtry, extra_options) 随机森林中模型的训练 X, 表示输入的数据矩阵 Y 输出 Ntree 设置的树的数目 Mtry 的默认值为 floor(sqrt(size(X,2)) ,表示不超过矩阵X列数的二次开根值的整数。 extra_options 包含很多控制RF的项 取值为 1或0,默认值为1,表示是否做变量替换 表示预先知道的类,函数首先得到一个升序排列的标签然后给先前的类 同样的排序。 只在分类器中使用的一个向量,长度等于类的数目。对类的观察值是取 对cutoff 投票占的的最大比例的一个。 用于分层抽样 样本的长度 表示终端节点的最小值,这个参数设置得越大会使更小的树生长,耗 时更少。 判断是否需要对预测器的importance 进行评估 决定是否对casewise 的重要性度量进行计算 判别是否计算行之间的距离 判断是否计算out-of-bag 如果设定为TRUE,当随机森林运行的时候输出更多冗长的数据。如果 设置为一些整数,输出每个追踪树。 通过树的数目矩阵跟踪每个样本在树上的in-bag 。 norm_votes 统计每一类的投票数 importance 对于分类器来说是一个列数等于类别数加二,第一列计算精度下降值。在ncalss+1列表示所有类平均精度减少值。最后一列表示Gini 指数平均减小值。在随机森林用于回归的应用 中importance 表示的含义又不一样,我们只用到分类的作用,所以对回归的含义不做介绍。importanceSD 标准差 localImp 包含importance 标准化残差测量值的矩阵 ntree 生长的树的数目 mtry 在每一个分裂节点处样本预测器的个数。 Votes 一个矩阵,行表示每一个输入数据点,列表示每一类,记录投票数。 Proximity 如果proximity=TRUE 表示随机森林被调用。

相关主题