搜档网
当前位置:搜档网 › 常见电子元器件介绍

常见电子元器件介绍

常见电子元器件介绍
常见电子元器件介绍

常见电子元器件介绍

第一部分:功率电子器件

第一节:功率电子器件及其应用要求

功率电子器件大量被应用于电源、伺服驱动、变频器、电机保护器等功率电子设备。这些设备都是自动化系统中必不可少的,因此,我们了解它们是必要的。

近年来,随着应用日益高速发展的需求,推动了功率电子器件的制造工艺的研究和发展,功率电子器件有了飞跃性的进步。器件的类型朝多元化发展,性能也越来越改善。大致来讲,功率器件的发展,体现在如下方面:

1.器件能够快速恢复,以满足越来越高的速度需要。以开关电源为例,采用双极型晶体管时,速度可以到几十千赫;使用MOSFET和IGBT,可以到几百千赫;而采用了谐振技术的开关电源,则可以达到兆赫以上。

2.通态压降(正向压降)降低。这可以减少器件损耗,有利于提高速度,减小器件体积。

3.电流控制能力增大。电流能力的增大和速度的提高是一对矛盾,目前最大电流控制能力,特别是在电力设备方面,还没有器件能完全替代可控硅。

4.额定电压:耐压高。耐压和电流都是体现驱动能力的重要参数,特别对电力系统,这显得非常重要。

5.温度与功耗。这是一个综合性的参数,它制约了电流能力、开关速度等能力的提高。目前有两个方向解决这个问题,一是继续提高功率器件的品质,二是改进控制技术来降低器件功耗,比如谐振式开关电源。

总体来讲,从耐压、电流能力看,可控硅目前仍然是最高的,在某些特定场合,仍然要使用大电流、高耐压的可控硅。但一般的工业自动化场合,功率电子器件已越来越多地使用MOSFET和IGBT,特别是IGBT获得了更多的使用,开始全面取代可控硅来做为新型的功率控制器件。

第二节:功率电子器件概览

一.整流二极管:

二极管是功率电子系统中不可或缺的器件,用于整流、续流等。目前比较多地使用如下三种选择:

1.高效快速恢复二极管。压降0.8-1.2V,适合小功率,12V左右电源。

2.高效超快速二极管。0.8-1.2V,适合小功率,12V左右电源。

3.肖特基势垒整流二极管SBD。0.4V,适合5V等低压电源。缺点是其电阻和耐压的平方成正比,所以耐压低(200V以下),反向漏电流较大,易热击穿。但速

度比较快,通态压降低。

目前SBD的研究前沿,已经超过1万伏。

二.大功率晶体管GTR

分为:

单管形式。电流系数:10-30。

双管形式——达林顿管。电流倍数:

100-1000。饱和压降大,速度慢。下图虚线部

分即是达林顿管。

图1-1:达林顿管应用

实际比较常用的是达林顿模块,它把GTR、续流二极管、辅助电路做到一个模块内。在较早期的功率电子设备中,比较多地使用了这种器件。图1-2是这种器件的内部典型结构。

`

图1-2:达林顿模块电路典型结构

两个二极管左侧是加速二极管,右侧为续流二极管。加速二极管的原理是引进了电流串联正反馈,达到加速的目的。

这种器件的制造水平是1800V/800A/2KHz、600V/3A/100KHz左右(参考)。

三.可控硅SCR

可控硅在大电流、高耐压场合还是必须的,但在常规工业控制的低压、中小电流控制中,已逐步被新型器件取代。

目前的研制水平在12KV/8000A左右(参考)。

由于可控硅换流电路复杂,逐步开发了门极关断晶闸管GTO。制造水平达到8KV/8KA,频率为1KHz左右。

无论是SCR还是GTO,控制电路都过于复杂,特别是需要庞大的吸收电路。而且,速度低,因此限制了它的应用范围拓宽。

集成门极换流晶闸管IGCT和MOS关断晶闸管之类的器件在控制门极前使用了MOS 栅,从而达到硬关断能力。

四.功率MOSFET

又叫功率场效应管或者功率场控晶体管。

其特点是驱动功率小,速度高,安全工作区宽。但高压时,导通电阻与电压的平方成正比,因而提高耐压和降低高压阻抗困难。

适合低压100V以下,是比较理想的器件。

目前的研制水平在1000V/65A左右(参考)。商业化的产品达到60V/200A/2MHz、500V/50A/100KHz。是目前速度最快的功率器件。

五.IGBT

又叫绝缘栅双极型晶体管。

这种器件的特点是集MOSFET与GTR的优点于一身。输入阻抗高,速度快,热稳定性好。通态电压低,耐压高,电流大。

目前这种器件的两个方向:一是朝大功率,二是朝高速度发展。大功率IGBT模块达到1200-1800A/1800-3300V的水平(参考)。速度在中等电压区域(370-600V),可达到150-180KHz。

它的电流密度比MOSFET大,芯片面积只有MOSFET的40%。但速度比MOSFET低。

尽管电力电子器件发展过程远比我们现在描述的复杂,但是MOSFET和IGBT,特别是IGBT已经成为现代功率电子器件的主流。因此,我们下面的重点也是这两种器件。第三节:功率场效应管MOSFET

功率场效应管又叫功率场控晶体管。

一.原理:

半导体结构分析略。本讲义附加了相关资料,供感兴趣的同事可以查阅。

实际上,功率场效应管也分结型、绝缘栅型。但通常指后者中的MOS管,即MOSFET (Metal Oxide Semiconductor Field Effect Transistor)。

它又分为N沟道、P沟道两种。器件符号如下:

N沟道P沟道

图1-3:MOSFET的图形符号

MOS器件的电极分别为栅极G、漏极D、源极S。

和普通MOS管一样,它也有:

耗尽型:栅极电压为零时,即存在导电沟道。无论V

GS

正负都起控制作用。

增强型:需要正偏置栅极电压,才生成导电沟道。达到饱和前,V

GS 正偏越大,I

DS

越大。

一般使用的功率MOSFET多数是N沟道增强型。而且不同于一般小功率MOS管的横向导电结构,使用了垂直导电结构,从而提高了耐压、电流能力,因此又叫VMOSFET。二.特点:

这种器件的特点是输入绝缘电阻大(1万兆欧以上),栅极电流基本为零。

驱动功率小,速度高,安全工作区宽。但高压时,导通电阻与电压的平方成正比,因而提高耐压和降低高压阻抗困难。

适合低压100V以下,是比较理想的器件。

目前的研制水平在1000V/65A左右(参考)。

其速度可以达到几百KHz,使用谐振技术可以达到兆级。

三.参数与器件特性:

无载流子注入,速度取决于器件的电容充放电时间,与工作温度关系不大,故热稳定性好。

(1)转移特性:

I

D 随U

GS

变化的曲线,成为转移特性。从下图可以看到,随着U

GS

的上升,跨导将越来

越高。

I D

图1-4:MOSFET 的转移特性(2)输出特性(漏极特性):

输出特性反应了漏极电流随V DS 变化的规律。这个特性和V GS 又有关联。下图反映了这种规律。

图中,爬坡段是非饱和区,水平段为饱和区,靠近横轴附近为截止区,这点和GTR 有区别。

图1-5:MOSFET 的输出特性

V GS =0时的饱和电流称为饱和漏电流I DSS 。

(3)通态电阻Ron:

通态电阻是器件的一个重要参数,决定了电路输出电压幅度和损耗。该参数随温度上升线性增加。而且V GS 增加,通态电阻减小。(4)跨导:

MOSFET 的增益特性称为跨导。定义为:G fs =ΔI D /ΔV GS

显然,这个数值越大越好,它反映了管子的栅极控制能力。(5)栅极阈值电压

栅极阈值电压V GS 是指开始有规定的漏极电流(1mA)时的最低栅极电压。它具有负温度系数,结温每增加45度,阈值电压下降10%。(6)电容

MOSFET 的一个明显特点是三个极间存在比较明显的寄生电容,这些电容对开关速度有一定影响。偏置电压高时,电容效应也加大,因此对高压电子系统会有一定影响。

有些资料给出栅极电荷特性图,可以用于估算电容的影响。以栅源极为例,其特性如下:

可以看到:器件开通延迟时间内,电

荷积聚较慢。随着电压增加,电荷快速上升,对应着管子开通时间。最后,当电压

I D

I

V DS

V GS

V GS

增加到一定程度后,电荷增加再次变慢,此时管子已经导通。

图1-6:栅极电荷特性

(8)正向偏置安全工作区及主要参数

MOSFET 和双极型晶体管一样,也有它的安全工作区。不同的是,它的安全工作区是由四根线围成的。

最大漏极电流I DM

:这个参数反应了器件的电流驱动能力。最大漏源极电压V DSM :它由器件的反向击穿电压决定。最大漏极功耗P DM :它由管子允许的温升决定。

漏源通态电阻Ron:这是MOSFET 必须考虑的一个参数,通态电阻过高,会影响输出效率,增加损耗。所以,要根据使用要求加以限制。

图1-7:正向偏置安全工作区

第四节:绝缘栅双极晶体管IGBT

又叫绝缘栅双极型晶体管。一.原理:

半导体结构分析略。本讲义附加了相关资料,供感兴趣的同事可以查阅。该器件符号如下:

N 沟道P 沟道

图1-8:IGBT 的图形符号

注意,它的三个电极分别为门极G、集电极C、发射极E。

G

G

C E

C E

I D V DS

V DSM I DM

P CM

R ON

图1-9:IGBT 的等效电路图。

上面给出了该器件的等效电路图。实际上,它相当于把MOS 管和达林顿晶体管做到了一起。因而同时具备了MOS 管、GTR 的优点。二.特点:

这种器件的特点是集MOSFET 与GTR 的优点于一身。输入阻抗高,速度快,热稳定性好。通态电压低,耐压高,电流大。

它的电流密度比MOSFET 大,芯片面积只有MOSFET 的40%。但速度比MOSFET 略低。大功率IGBT 模块达到1200-1800A/1800-3300V 的水平(参考)。速度在中等电压区域(370-600V),可达到150-180KHz。三.参数与特性:

(1)转移特性

图1-10:IGBT 的转移特性这个特性和MOSFET 极其类似,反映了管子的控制能力。

(2)输出特性

图1-11:IGBT 的输出特性

它的三个区分别为:

靠近横轴:正向阻断区,管子处于截止状态。

爬坡区:饱和区,随着负载电流Ic 变化,U CE 基本不变,即所谓饱和状态。水平段:有源区。(3)通态电压Von:

I C

U GE

V CE

V GE

I C

I

I

IGBT

MOSFET

图1-12:IGBT 通态电压和MOSFET 比较

所谓通态电压,是指IGBT 进入导通状态的管压降V DS ,这个电压随V GS 上升而下降。由上图可以看到,IGBT 通态电压在电流比较大时,Von 要小于MOSFET。

MOSFET 的Von 为正温度系数,IGBT 小电流为负温度系数,大电流范围内为正温度系数。

(4)开关损耗:

常温下,IGBT 和MOSFET 的关断损耗差不多。MOSFET 开关损耗与温度关系不大,但IGBT 每增加100度,损耗增加2倍。

开通损耗IGBT 平均比MOSFET 略小,而且二者都对温度比较敏感,且呈正温度系数。两种器件的开关损耗和电流相关,电流越大,损耗越高。(5)安全工作区与主要参数I CM 、U CEM 、P CM :

IGBT 的安全工作区是由电流I CM 、电压U CEM 、功耗P CM 包围的区域。

图1-13:IGBT 的功耗特性

最大集射极间电压UCEM:取决于反向击穿电压的大小。最大集电极功耗P CM :取决于允许结温。

最大集电极电流ICM:则受元件擎住效应限制。

所谓擎住效应问题:由于IGBT 存在一个寄生的晶体管,当IC 大到一定程度,寄生晶体管导通,栅极失去控制作用。此时,漏电流增大,造成功耗急剧增加,器件损坏。

安全工作区随着开关速度增加将减小。(6)栅极偏置电压与电阻

IGBT 特性主要受栅极偏置控制,而且受浪涌电压影响。其di/dt 明显和栅极偏置电压、电阻Rg 相关,电压越高,di/dt 越大,电阻越大,di/dt 越小。

而且,栅极电压和短路损坏时间关系也很大,栅极偏置电压越高,短路损坏时间越短。

第二部分:开关电源基础

第一节:开关电源的基本控制原理

一.开关电源的控制结构:

一般地,开关电源大致由输入电路、变换器、控制电路、输出电路四个主体组成。如果细致划分,它包括:输入滤波、输入整流、开关电路、采样、基准电源、比较放大、震荡器、V/F 转换、基极驱动、输出整流、输出滤波电路等。

I C U CE

安全工作区

I CM

U CEM

实际的开关电源还要有保护电路、功率因素校正电路、同步整流驱动电路及其它一些辅助电路等。

下面是一个典型的开关电源原理框图,掌握它对我们理解开关电源有重要意义。

图2-1:开关电源的基本结构框图

根据控制类型不同,PM (脉冲调制)电路可能有多种形式。这里是典型的PFM 结构。

二.开关电源的构成原理:

(一)输入电路:

线性滤波电路、浪涌电流抑制电路、整流电路。

作用:把输入电网交流电源转化为符合要求的开关电源直流输入电源。1.线性滤波电路:抑制谐波和噪声。2.浪涌滤波电路:

抑制来自电网的浪涌电流。3.整流电路:

把交流变为直流。

有电容输入型、扼流圈输入型两种,开关电源多数为前者。(二).变换电路:

含开关电路、输出隔离(变压器)电路等,是开关电源电源变换的主通道,完成对带有功率的电源波形进行斩波调制和输出。

这一级的开关功率管是其核心器件。1.开关电路

驱动方式:自激式、他激式。

变换电路:隔离型、非隔离型、谐振型。功率器件:最常用的有GTR、MOSFET、IGBT。调制方式:PWM、PFM、混合型三种。PWM 最常用。2.变压器输出

分无抽头、带抽头。半波整流、倍流整流时,无须抽头,全波时必须有抽头。(三).控制电路:

采样电路

比较放大

基准电源

V/F 转换

震荡器

基极驱动

开关器件

变压器

整流

滤波

保护电路

功率因素校正

滤波

整流

浪涌抑制

输入电路

变换电路

输出电路

控制电路

PM 电路(类型PFM)

向驱动电路提供调制后的矩形脉冲,达到调节输出电压的目的。基准电路:提供电压基准。如并联型基准LM358、AD589,串联型基准AD581、REF192等。

采样电路:采取输出电压的全部或部分。

比较放大:把采样信号和基准信号比较,产生误差信号,用于控制电源PM 电路。V/F 变换:把误差电压信号转换为频率信号。振荡器:产生高频振荡波。

基极驱动电路:把调制后的振荡信号转换成合适的控制信号,驱动开关管的基极。(四).输出电路:

整流、滤波。

把输出电压整流成脉动直流,并平滑成低纹波直流电压。输出整流技术现在又有半波、全波、恒功率、倍流、同步等整流方式。第二节:各类拓补结构电源分析一.非隔离型开关变换器(一).降压变换器

Buck 电路:降压斩波器,入出极性相同。

由于稳态时,电感充放电伏秒积相等,因此:(Ui-Uo)*ton=Uo*toff,Ui*ton-Uo*ton=Uo*toff,Ui*ton=Uo(ton+toff),

Uo/Ui=ton/(ton+toff)=Δ即,输入输出电压关系为:

Uo/Ui=Δ(占空比)

图2-2:Buck 电路拓补结构

在开关管S 通时,输入电源通过L 平波和C 滤波后向负载端提供电流;当S 关断后,L 通过二极管续流,保持负载电流连续。输出电压因为占空比作用,不会超过输入电源电压。

(二).升压变换器

Boost 电路:升压斩波器,入出极性相同。

利用同样的方法,根据稳态时电感L 的充放电伏秒积相等的原理,可以推导出电压关系:

Uo/Ui=1/(1-Δ)

Uo

S

VD

L

C

Ui I Uo I

S I

VD I

L I

C I

图2-3:Boost 电路拓补结构

这个电路的开关管和负载构成并联。在S 通时,电流通过L 平波,

电源对L 充电。当S 断时,L 向负载及电源放电,输出电压将是输入电压Ui+U L ,因而有升压作用。

(三).逆向变换器

Buck-Boost 电路:升/降压斩波器,入出极性相反,电感传输。电压关系:Uo/Ui=-Δ/(1-Δ)

图2-4:Buck-Boost 电路拓补结构

S 通时,输入电源仅对电感充电,当S 断时,再通过电感对负载放电来实现电源传输。所以,这里的L 是用于传输能量的器件。

(四).丘克变换器

Cuk 电路:升/降压斩波器,入出极性相反,电容传输。电压关系:Uo/Ui=-Δ/(1-Δ)。

图2-5:Cuk 变换器电路拓补结构

当开关S 闭合时,Ui 对L1充电。当S 断开时,Ui+EL1通过VD 对C1进行充电。再当S 闭合时,VD 关断,C1通过L2、C2滤波对负载放电,L1继续充电。

这里的C1用于传递能量,而且输出极性和输入相反。

二.隔离型开关变换器

1.推挽型变换器

下面是推挽型变换器的电路。

S2

L

N1N2Ui

T

N2

C1T C2

L2

R

Uo

VD

L1

S

Ui

Ui I

Uo I

S I

VD I D

C I

L

图2-6:推挽型变换电路

S1和S2轮流导通,将在二次侧产生交变的脉动电流,经过全波整流转换为直流信号,再经L、C 滤波,送给负载。

由于电感L 在开关之后,所以当变比为1时,它实际上类似于降压变换器。

2.半桥型变换器

图2-6给出了半桥型变换器的电路图。

当S1和S2轮流导通时,一次侧将通过电源-S1-T-C2-电源及电源-C1-T-S2-电源产生交变电流,从而在二次侧产生交变的脉动电流,经过全波整流转换为直流信号,再经L、C 滤波,送给负载。

同样地,这个电路也相当于降压式拓补结构。

图2-7:半桥式变换电路3.全桥型变换器

下图是全桥变换器电路。

图2-8:全桥式变换电路

当S1、S3和S2、S4两两轮流导通时,一次侧将通过电源-S2-T-S4-电源及电源-S1-T-S3-电源产生交变电流,从而在二次侧产生交变的脉动电流,经过全波整流转换为直流信号,再经L、C 滤波,送给负载。

这个电路也相当于降压式拓补结构。

4.正激型变换器

下图为正激式变换器。

C

2Ui

S2

S1

L

R N1

N2N2

Uo

T C1C2

C

Ui

S3S2

L

R N1N2N2

Uo

T S4

S1L

VD1

VD3

图2-9:正激型变换器电路

当S 导通时,原边经过输入电源-N1-S-输入电源,产生电流。当S 断开时,N1能量转移到N3,经N3-电源-VD3向输入端释放能量,避免变压器过饱和。VD1用于整流,VD2用于S 断开期间续流。

5.隔离型Cuk 变换器

隔离型Cuk 变换器电路如下所示:

图2-10:隔离型Cuk 变换器

当S 导通时,Ui 对L1充电。当S 断开时,Ui+E L1对C11及变压器原边放电,同时给C11充电,电流方向从上向下。附边感应出脉动直流信号,通过VD 对C12反向充电。在S 导通期间,C12的反压将使VD 关断,并通过L2、C2滤波后,对负载放电。

这里的C12明显是用于传递能量的,所以Cuk 电路是电容传输变换电路。

6.电流变换器

能量回馈型电流变换器电路如下图所示。

图2-11:能量回馈型电流变换器电路

该电路与推挽电路类似。不同的是,在主通路上串联了一个电感。其作用是在S1、S2断开期间,使得变压器能量转移到N3绕组,通过VD3回馈到输入端。

(上图怀疑N3同名端反了。)

下面是升压型变换器的电路图:

N2

C12T

C2

L2

R

Uo

S

N1

VD Ui

L1

C11

S2

C

R N1N1

N2N2

Ui

T

L VD1

S2

S1

C

R N1N1

N2N2

Ui

Uo

T

N4N3VD1

VD2

VD3

图2-12:升压型电流变换器电路

该电路也与推挽电路类似,并在主通路上串联了一个电感。在开关导通期间,L积蓄能量。当一侧开关断开时,电感电动势和Ui叠加在一起,对另一侧放电。因此,L有升压作用。

三.准谐振型变换器

在脉冲调制电路中,加入R、L谐振电路,使得流过开关的电流及管子两端的压降为准正弦波。这种开关电源成为谐振式开关电源。

利用一定的控制技术,可以实现开关管在电流或电压波形过零时切换,这样对缩小电源体积,增大电源控制能力,提高开关速度,改善纹波都有极大好处。所以谐振开关电源是当前开关电源发展的主流技术。又分为:

1.ZCS——零电流开关。开关管在零电流时关断。

2.ZVS——零电压开关。开关管在零电压时关断。

具体关于这个技术的简单介绍,见后面相关内容。

四.开关电源的分类总结

开关电源的分类

(一).按控制方式:

脉冲调制变换器:驱动波形为方波。PWM、PFM、混合式。

谐振式变换器:驱动波形为正弦波。又分ZCS(零电流谐振开关)、ZVS(零电压谐振开关)两种。

(二).按电压转换形式:

1.AC/DC:一次电源。

即整流电源。

2.DC/DC:二次电源。

1)Buck电路:降压斩波器,入出极性相同。

2)Boost:升压斩波器,入出极性相同。

3)Buck-Boost:升/降压斩波器,入出极性相反,电感传输。

4)Cuk:升/降压斩波器,入出极性相反,电容传输。

(三).按拓补结构:

1.隔离型:有变压器。

2.非隔离型:无变压器。

第三节:谐振式电源与软开关技术

本节讨论谐振式开关电源的有关知识。

§2-3-1.电路的谐振现象

为了更好地理解谐振式电源,这里回忆一下电路谐振的条件及其特点。

一、串联电路的谐振

一个R、L、C串联电路,在正弦电压作用下,其复阻抗:

Z=R+j(ωL-1/ωC)

一定条件下,使得XL=XC,即ωL=1/ωC,Z=R,此时的电路状态称为串联谐振。

明显地,串联谐振的特点是:

1.阻抗角等于零,电路呈纯电阻性,因而电路端电压U和电流I同相。

2.此时的阻抗最小,电路电流有效值达到最大。

3.谐振频率:ωo=1/√LC。

4.谐振系数或品质因素:

Q=ωoL/R=1/ωoCR=(√L/C)/R。

由于串联谐振时,L、C 电压彼此抵消,因此也称为电压谐振。从外部看,L、C 部分类似于短路。

而此时Uc、UL 是输入电压U 的Q 倍。Q 值越大,振荡越强。这里的Z0=√L/C,我们称为特性阻抗,它决定了谐振的强度。

5.谐振发生时,C、L 中的能量不断互相转换,二者之间反复进行充放电过程,形成正弦波振荡。二、并联电路的谐振

一个R、L、C 并联电路,在正弦电压作用下,其复导纳:Y=1/R-j(1/ωL-ωC)

一定条件下,使得Y L =Y C ,即1/ωL=ωC ,Y=1/R,此时的电路状态称为并联谐振。明显地,串并谐振的特点是:

1.导纳角等于零,电路呈纯电阻性,因而电路端电压U 和电流I 同相。2.此时的导纳最小,电路电流有效值达到最小。3.谐振频率:ωo=1/√LC 。

4.由于并联谐振时,L、C 电流彼此抵消,因此也称为电流谐振。从外部看,L、C 部分类似于开路,L、C 各自有效电流却达到最大。

5.谐振发生时,C、L 中的能量不断互相转换,二者之间反复进行充放电过程,形成正弦波振荡。

§2-3-2.谐振式电源的基本原理

谐振式电源是新型开关电源的发展方向。它利用谐振电路产生正弦波,在正弦波过零时切换开关管,从而大大提高了开关管的控制能力,并减小了电源体积。同时,也使得电源谐波成分大为降低。另外,电源频率得到大幅度提高。PWM 一般只能达到几百K,但谐振开关电源可以达到1M 以上。

普通传统的开关电源功率因素在0.4-0.7,谐振式电源结合功率因素校正技术,功率因素可以达到0.95以上,甚至接近于1。从而大大抑制了对电网的污染。

这种开关电源又分为:

1.ZCS——零电流开关。开关管在零电流时关断。2.ZVS——零电压开关。开关管在零电压时关断。

在脉冲调制电路中,加入L、C 谐振电路,使得流过开关的电流及管子两端的压降为准正弦波。下面是这两种开关的简单原理图。

Ic Ui

S Lr

Cr

VD

Ic

Ui

S Lr

Cr

VD

S Is

Ts

Ton Toff S Us

Ts

on off

图2-13:电流谐振式开关电路电压谐振式开关电路

ZCS 电流谐振开关中,Lr、Cr 构成的谐振电路通过Lr 的谐振电流通过S,我们可以控制开关在电流过零时进行切换。这个谐振电路的电流是正弦波,而Us 为矩形波电压。

ZVS 电压谐振开关中,Lr、Cr 构成的谐振电路的Cr 端谐振电压并联到S,我们可以控制开关在电压过零时进行切换。这个谐振电路的电压是正弦波,而Is 接近矩形波。

以上两种电路,由于开关切换时,电流、电压重叠区很小,所以切换功率也很小。以上开关电源是半波的,当然也可以设计成全波的。所以又有半波谐振开关和全波谐振开关的区分。

§2-3-3.谐振开关的动态过程分析

实际上,谐振开关中的所谓“谐振”并不是真正理论上的谐振,而是L、C 电路在送电瞬间产生的一个阻尼振荡过程。下面,我们对这个过程做一些分析,以了解谐振开关的工作原理。一、零电流开关

实际的零电流开关谐振部分拓补又分L 型和M 型。如下面两组图形所示:

图2-14:L 型零电流谐振开关(中半波,右全波)

图2-15:M 型零电流谐振开关(中半波,右全波)

这里的L1用于限制di/dt,C1用于传输能量,在开关导通时,构成串联谐振。用

零电流开关替代PWM 电路的半导体开关,可以组成谐振式变换器电路。按照Buck 电路的拓补结果,可以得到如下电路:

图2-16:Buck 型准谐振ZCS 变换器(L 型)

S

L1C1

S L1C1

VD1S

L1C1

VD1

S

L1

C1S

L1

C1VD1

S

L1

C1

VD1

Vi

VD2

VD 1L 1

L 2

C2

R L

S

C1

V 0i 1

图2-17:Buck 型准谐振ZCS 变换器(M 型)

这里,我们分析一下L 型电路的工作过程。

假定这是一个理想器件组成的电源。L2远大于L1,从L2左侧看,可以认为流过L2、C2、RL 的输出电流是一个恒流源,电流I 0。谐振角频率:

ω0=1/√L 1C 1。特性阻抗:Z 0=√L 1/C 1)。动态过程如下:

1.线性阶段(t0-t1):

在S 导通前,VD2处于续流阶段。此时V VD2=V C1=0。S 导通时,L1电流由0开始上升,由于续流没有结束,此时初始V L1=Vi。

由V L1=Vi=L 1di/dt,且L1初始电流为0,有:

i 1=Vi(t-t 0)/L 1----------------------------------式1到t1时刻,达到负载电流I 0,因此:此阶段持续时间:T1=t 1-t 0=L 1I 0/Vi

由式1,可以看出,此阶段i 1是时间的线性函数。2.谐振阶段(t1-t2):

在电流i 1上升期间,当i 1小于I 0时,由于i 1无法供应恒流I 0,续流过程将维持。当i 1=I 0时,将以i 1-I 0对C1充电,VD2开始承受正压,VD2电流下降并截止。L1、C1开始串联谐振,i 1因谐振继续上升。

i C1=C 1dV C1/dt=i 1-I 0V L1=L 1di 1/dt=Vi-V C1因而:

i 1=I 0+i C1=I 0+V i /Z 0*sinω0(t-t1)------------------式2其中,i C1为谐振电流。

V C1=V i -V L1=V i -V i cosω0(t-t1)=V i [1-i cosω0(t-t1)]--式3

谐振到t a 时刻,谐振电流归零。如为半波开关,则开关自行关断;如果是全波开关,开关关断后,将通过VD1进行阻尼振荡,将电容能量馈送回电源,到时刻t b 电流第二次为0。本阶段结束,这时的时刻为t2。

Vi

VD2

VD 1

L 1

L 2

C2

R L

S

C1

V 0

V C1在i 1谐振半个周期,i 1=I 0时,达最大值。i 1第一次过零(t a )时,S 断开。如为半波开关,则谐振阶段结束。如为全波开关,C1经半个周期的阻尼振荡到电流为0(t b )时,将放电到一个较小值。

从式2、3,可以看出谐振阶段t a 前,i 1、V C1是时间的正弦函数;如为全波开关,还有一段时间的阻尼振荡波。

3.恢复阶段(t2-t3):

由于VC1滞后1/4个谐振周期,因而在t2后,因L2的作用还将继续向负载放电,直至V C1=0。这阶段,如考虑电流方向性:

I 0=-C 1dV C1/dt

故:V C1=V C1(t2)-I 0(t-t 2)/C 1------------------------------------式4

因此,这个阶段的V C1是时间的线性函数,电压从V C1(t2)逐步下降到零。如为半波开关,则开关分压也将线性上升到输入电源值。

4.续流阶段(t3-t4):

当电容放电到零后,VD2因反压消失而导通,对L2及负载进行续流,以保持电流I 0连续。

此时,我们可以根据电路的要求,选择在适当时间再次开通S,重新开始线性阶段。根据以上导出的各公式,可以得到如下的波形图:图2-18:半波ZCS 开关波形全波ZCS 开关波形

从以上分析可以看出,ZCS 谐振开关变换器的开关管总是在电流为0时进行切换。实际情况与理想分析有所不同,V C1将有所超前。M 型电路分析方法类似,不再赘述。二、零电压开关

ZCS 在S 导通时谐振,而ZVS 则在S 截止时谐振,二者形成对偶关系。分析过程大体类似,此处从略。

综合以上分析过程,我们可以看出,该拓补谐振结构只能实现PFM 调节,而无法实现PWM。原因是脉冲宽度仅受谐振参数控制。要实现PWM,还需要增加辅助开关管。这在本节“四、软开关技术及常见拓补简介”中将予以介绍。§2-3-4.软开关技术及常见软开关拓补简介

软开关技术实际上是利用电容与电感的谐振,使开关器件中的电流或电压按正弦或准正弦规律变化。当电流过零时,使器件关断,当电压过零时,使器件开通,实现开关的近似零损耗。同时,有助于提高频率,提高开关的容量,减小噪声。

t

t

t

t

t

t t

t

S i L V S

V C1

ON ON

S i L

V S

V C1t 0t 1t 3t 4t 0t 1t 3t 4

t 2t 2

I 0

相对于软开关,普通开关电源的转换器也叫硬开关。

按控制方式,软开关可以分为:脉冲宽度脉冲频率调制式(PFM)、脉冲频率调制式(PWM)、脉冲移相式(PS)三种。

一、PWM 变换器

PWM 控制方式是指在开关管工作频率恒定的前期下,通过调节脉冲宽度的方法来实现稳定输出。这是应用最多的方式,适用于中小功率的开关电源。

1.零电流开关PWM 变换器

图2-19:Buck 型ZCS-PWM 变换器

上图是增加辅助开关控制的Buck 型零电流开关变换器。其工作过程与前面过程略有差异:

1)线性阶段(S1、S2导通):开始时,在L R 作用下,S1零电流导通。随后,因Uin 作用,I LR 线性上升,并到达I LR =Io。

2)正向谐振阶段(S1、S2导通-关断):当I LR =Io 时,因C R 开始产生电压,VD 在零电流下自然关断。之后,L R 与C R 开始谐振,经过半个谐振周期,I LR 再次谐振到Io,U CR 上升到最大值,而I CR 为零,S2关断,U CR 和I LR 将被保持,无法继续谐振。

3)保持阶段(S1导通、S2关断):此状态保持时间由PWM 电路要求而定,保持期间,Uin 正常向负载以I 0供电。

4)反向谐振阶段(S1导通-关断、S2导通):当需要关断S1时,可以控制重新打开S2,此时在L R 作用下,S2电流为0。谐振再次开始,当I LR 反向谐振到0时,S1可在零电流零电压下完成关断。

5)恢复阶段(S1关断、S2导通):此后,U CR 在Io 作用下,衰减到0。

6)续流阶段(S1关断、S2导通-关断):UCR 衰减到0后,VD 自然导通开始续流。由于VD 的短路作用,S2可在此后至下一周期到来前以零压零电流方式完成关断。

可见,S1在前四个阶段(线性、谐振、保持)均导通,恢复及续流时关断。S2的作用主要是隔断谐振产生保持阶段。S1、S2的有效控制产生了PWM 的效果,并利用谐振实现了自身的软开关。

该电路的开关管及二极管均在零电压或零电流条件下通断,主开关电压应力低,但电流应力大(谐振作用)。续流二极管电压应力大,而且谐振电感在主通路上,因而负载、输入等将影响ZCS 工作状态。

2.零电压开关PWM 变换器

Uin

C R

VD1

VD

VD S

L R

L L C S

R 0

S 1

S 2

I LR

I 0L L

L R

I 0

VD 2VD 3

图2-20:Boost 型ZVS-PWM 变换器

上面是Boost 型零电压谐振变换器。在每次S1导通前,首先辅助开关管S2导通,使谐振电路起振。S1两端电压谐振为0后,开通S1。S1导通后,迅速关断S2,使谐振停止。此时,电路以常规PWM 方式运行。同样,我们可以利用谐振再次关断S1,C R 使得主开关管可以实现零关断。S1、S2的配合控制,实现软开关下的PWM 调节。

该电路实现了主开关管的零压导通,且保持恒频率运行。在较宽的输入电压和负载电流范围内,可以满足ZVS 条件二极管零电流关断。期缺点是辅助开关管不在软件开关条件下运行,但和主开关管相比,它只处理少量的谐振能量。

3.有源钳位的零电压开关PWM 变换器

下图为有源钳位的ZVS 开关PWM 变换器,这是个隔离型降压变换器。其中,L R 为变压器的漏电感,L M 是变压器的激磁电感。C R 为S1、S2的结电容。这个电路巧妙地利用电路的寄生L R 、C R 产生谐振而达到ZVS 条件。同时,CR 有电压钳位作用,防止S1在关断时过压。

这里的辅助开关S2同样是通过控制谐振时刻,来配合S1进行软开关。该电路具体工作过程从略。

图2-21:有源钳位ZVS-PWM 正激变换器

(这个开关的课堂讲解略)。二、PFM 变换器

PFM 是指通过调节脉冲频率(开关管的工作频率)来实现稳压输出的。它控制电路相对简单,但由于它工作频率不稳定,因此一般用于负载及输入电压相对稳定的场合。

1.Buck 零电流开关变换器

图2-22:Buck 型ZCS 准谐振变换器

R 0

I 0

Uos

C R

VD VD S

L R

L 1

C 1

S 1

Uos

L M

C C

R 0

S 2

C S

L R S 1

C R

该电路就是前面动态过程分析讲的典型ZCS 降压型拓补结构。我们可利用谐振电流过零来实现S1通断,脉宽事实上受谐振电路参数控制,但我们可以控制S1开通时刻(即频率)来实现PFM。

2.Buck 零电压开关变换器

图2-23:Buck 型ZVS 准谐振变换器

这个电路是一个Buck 型电路结构它利用。它直接利用输出电感作为谐振电感,和C R 产生谐振。过程是:

1)线性阶段(S 导通):S 导通时,输入电压Uin 将对C R 充电,并提供输出恒流I 0。开始时,由于续流过程没有结束,VD 将维持一段时间向L R 提供电流。

2)谐振阶段1(S 导通-关断):随着C R 电压的上升,VD 逐步承受反压关断。L R 、C R 开始谐振,输入电源既要提供负载恒定电流,又要提供谐振电流。由于电源钳位作用,VD 无法恢复续流。谐振中,可以选择某一时刻关断S,关断时两端电压为0。

3)谐振阶段2(S 关断):此后,L R 、C R 、C S 共同谐振。当C R 电压谐振到过零时,VD 重新导通续流。

4)谐振阶段3(S 关断-导通):续流期间,L R 、C S 继续谐振。当CS 电压过零时,可以重新开通S。

这个电路是利用S 的关断时刻来达到PFM 调节的。三、PS 软开关变换器

脉冲移相软开关变换器用于桥式变换器。桥式变换器必须是在对角开关管同时导通时,才输出功率。我们可以通过调整对角开关管的重合角度,来达到调节电压的目的。在中、大功率电源中,经常使用这种变换器。

1.移相全桥零电压零电流变换器

下图是移相式PS-FB-ZVZCS-PWM (移相-全桥-零电压零电流-脉宽调制)变换器电路拓补结构图。C 1C 、C 2C 是开关管结电容或并联电容,L R 为变压器的漏电感,L S 为串联的饱和电感,C b 为阻断电容。VD 1-VD 4用做续流二极管。

原理简述:这是一个全波桥软开关变换器,我们可以让S 3、S 4在移相时滞后,则我们把S 1、S 2

称为超前桥臂,S 3、S 4称为滞后桥臂。S 1、S 2可以在L R 、L S 、C 1C 、C 2C 、副边耦合电感等的谐振作用下,实现零电压开关。在电流过零时,由于阻断电容、饱和电感作用,使得零电流有一定保持时间,在此期间,S 3、S 4实现零开关。

如果把L S 、C b 去掉,在S 3、S 4两端并联两个谐振电容,就构成了移相全桥零电压变换器。

Uin

C R

VD

VD S L R

C R

R 0

S

C S

I 0Uos

S 1

S 2

S 3

S 4

C 1C C 2C

VD 1

VD 2

VD 3

VD 4

C b

L S

L R

图解:电子元器件知识大全

电子元器件知识大全:看图识元件 介绍:电压.电流.电阻器.电容器.电感器.二极管.三极管.电位器.稳压块.保险管.集成块IC 无论是硬件DIY爱好者还是维修技术人员,你能够说出主板、声卡等配件上那些小元件叫做什么,又有什么作用吗?如果想成为元件(芯片)级高手的话,掌握一些相关的电子知识是必不可少的。 譬如在检修某硬件时用万用表测量出某个电阻的阻值已为无穷大,虽然可断定这个电阻已损坏,但由于电脑各板卡及各种外设均没有电路图(只有极少数产品有局部电路图),故并不知电阻在未损坏时的具体阻值,所以就无法对损坏元件进行换新处理。可如果您能看懂电阻上的色环标识的话,您就可知道这个已损坏电阻的标称阻值,换新也就不成问题,故障自然也就会随之排除。 诸如上述之类的情况还有很多,比如元器件的正确选用等,笔者在此就不逐一列举了,下面笔者就来说一些非常实用的电子知识,希望大家都能向高手之路再迈上一步。注:下文内容最好结合图一和后续图片进行阅读。看图识元件 一、电压,电流 电压和电流是亲兄弟,电流是从电压(位)高的地方流向电压(位)低的地方,有电流产生就一定是因为有电压的存在,但有电压的存在却不一定会产生电流——如果只有电压而没有电流,就可证明电路中有断路现象(比如电路中设有开关)。另外有时测量电压正常但测量电流时就不一定正常了,比如有轻微短路现象或某个元件的阻值变大现象等,所以在检修中一定要将电压值和电流值结合起来进行分析。在用万用表测试未知的电压或电流时一定要把档位设成最高档,如测量不出值来再逐渐地调低档位。 注:电压的符号是“V”,电流的符号是“A”。二、电阻器 各种材料对它所通过的电流呈现有一定的阻力,这种阻力称为电阻,具有集总电阻这种物理性质的实体(元件)叫电阻器(简单地说就是有阻值的导体)。它的作用在电路中是非常重要的,在电脑各板卡及外设中的数量也是非常多的。它的分类也是多种多样的,如果按用处分类有:限流电阻、降压电阻、分压电阻、保护电阻、启动电阻、取样电阻、去耦电阻、信号衰减电阻等;如果按外形及制作材料分类有:金膜电阻、碳膜电阻、水泥电阻、无感电阻、热敏电阻、压敏电阻、拉线电阻、贴片电阻等;如果按功率分类有:1/16W、1/8W、1/4W、1/2W、1W……等等。

电子元器件分类

电子元器件分类 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

电子半导体元器件的种类介绍 电子元器件的种类很多,而且新开发的产品也层出不穷,这里主要介绍一些最常用的电子元器件的种类和其分类方法。电子元器件可以有很多种方法分类,每种方法考虑侧重点不同,下面举例说明。 例如,发光二极管(LED),可以归为类,又可以和数码管,LCD等归为显示器件类。 同时LED还可以和光耦器件等归为光电器件类。另外光耦器件还可以和三极管,场效应管等归为晶体管类。又例如压敏电阻可以归为电阻类元件,也可以归为保护类元件。 元器件分类,可以根据实际需求和实际情况来确定。要考虑综合因素,同时考虑元器件关键 特性及应用,生产技术,交流方便等综合因素,这样比较符合现实。 下面介绍常用电子元器件的分类。PS大部分电子元器件都有插件和贴片的就不一一说明了! 电阻类:插件薄膜(色环)电阻,金属膜电阻,金属氧化膜电阻,碳膜电阻,绕线电阻,水泥电阻,铝壳电阻,陶瓷片式电阻,热敏电阻,压敏电阻等。 电容类:铝电解电容,钽电容点电容,涤纶电容,聚丙烯薄膜电容,金属化聚丙烯薄膜电容,陶瓷电容,安规电容,抗EMI电容等。 电位器类:线绕电位器,导电塑料电位器,金属陶瓷电位器,碳膜电位器,微调电位器,面板电位器,精密电位器,直滑式电位器等。 磁性元件:绕线片式电感,叠层片式电感,轴向电感,色码电感,径向电感,环形电感,片式磁珠,插件式磁珠,工频变压器,音频变压器,开关电源变压器,脉冲信号变压器,射频变压器等。 开关类:滑动开关,波动开关,轻触开关,微动开关,钮子开关,按键开关,直键开关,旋转开关,拨码开关,薄膜开关等。 继电器:直流电磁继电器,交流电磁继电器,磁保持继电器,舌簧继电器,固态继电器等。 接插件:排针排母,欧式连接器,牛角连接器,简牛连接器,IDC连接器,XH连接器,VH链接器,D-SUB连接器,水晶头水晶座,电源连接器,插头插孔,IC座,射频链接器,光缆连接器,欧式接线端子,栅栏式接线端子,插拔式接线端子,轨道式接线端子,弹簧式接线端子,耳机插座插头,圆形裸端子等。 保险元件:保险丝,熔断器,气体放电管等。

常用电子元器件简介

1.常用电子元器件简介 (1)名称·电路符号·文字符号 (2)555时基集成电路 555时基集成电路是数字集成电路,是由21个晶体三极管、4个晶体二极管和16个电阻组成的定时器,有分压器、比较器、触发器和放电器等功能的电路。它具有成本低、易使用、适应面广、驱动电流大和一定的负载能力。在电子制作中只需经过简单调试,就可以做成多种实用的各种小电路,远远优于三极管电路。 555时基电路国内外的型号很多,如国外产品有:NE555、LM555、A555和CA555等;国内型号有5GI555、SL555和FX555等。它们的内部结构和管脚序号都相同,因此,可以直接互相代换。但要注意,并不是所有的带555数字的集成块都是时基集成电路,如MMV 555、AD555和AHD555等都不是时基集成电路。 常见的555时基集成电路为塑料双列直插式封装(见图5-36),正面印有555字样,左下角为脚①,管脚号按逆时针方向排列。

(图5-36) 555时基集成电路各管脚的作用:脚①是公共地端为负极;脚②为低触发端TR,低于1/3电源电压以下时即导通;脚③是输出端V,电流可达2000mA;脚④是强制复位端MR,不用可与电源正极相连或悬空;脚⑤是用来调节比较器的基准电压,简称控制端VC,不用时可悬空,或通过0.01μF电容器接地;脚⑥为高触发端TH,也称阈值端,高于2/3电源电压发上时即截止;脚⑦是放电端DIS;脚⑧是电源正极VC。 555时基集成电路的主要参数为(以NE555为例)电源电压4.5~16V。 输出驱动电流为200毫安。 作定时器使用时,定时精度为1%。 作振荡使用时,输出的脉冲的最高频率可达500千赫。 使用时,驱动电流若大于上述电流时,在脚③输出端加装扩展电流的电路,如加一三极管放大。 (3)音乐片集成电路 它同模仿动物叫声和人语言集成电路都是模拟集成电路,采用软包装,即将硅芯片用黑的环氧树脂封装在一块小的印刷电路板上。

常用电子元件基础知识(图解)

德江铭信特邦电子科技有限公司——维修部 电子元件基础知识 ( 图解 ) 制作:黄进斌 2016年1月1日

电子元件基础知识(图解) 网址:https://www.sodocs.net/doc/2617314749.html, E-mail: dj@https://www.sodocs.net/doc/2617314749.html, 德江铭信特邦电子科技有限公司——维修部电容 电容器俗称电容。它是在两个金属电机之间夹了一层电介质构成。所以它具有了存储电荷的能力。所以在理论上, 它对直流电流具有隔断的作用,而交流电流则可以通过,随着交流频率越高,它通过电流的能力也越强。一些常 用电容器外观见图1。 图(1) 电容在电子线路中也是广泛应用的器件之一。我们多采用它来滤波、隔直、交流耦合、交流旁路等, 也用它和电感元件一起组成振荡电路。 电容的分类: 按照电介质的不同,电容有很多种。我们常见、常用的电容主要有: 名称优点缺点主要应用 瓷片电容体积特别小,高 频损耗少,耐高 温,价格低廉 容量小普遍应用 涤纶体积小,容量大

电容 电解电容 容量特别大 铝电解电容漏电大,容量不准确。钽电解电容性能好但价格 高 耦合、滤波 云母电容 性能稳定,耐高温、高压。高频性能好 价格高 发光二极管 纸介电容 体积较小,容量较大、价格低 高频性能较差 我们在大多数的电子制作中,经常应用的是瓷片电容和电解电容。 按照结构的不同,我们将容量固定的电容称为固定电容,而可以调节的称为可调或半可调电容。普通 收音机选台的就是使用可变电容。 我们在线路图中常用“C”来代表电容,用图2的符号来表示固定电容,用图3的符号来表示半可变电 容,图4表示可变电容,图5表示双联可变电容。 电解电容一 般容量比较大,从1UF 到10000UF 都比较常见,它是有正负极之份的电容元件,在使用中正 极节高电位端,负极接低电位端,不能够反接。电解电容又分为 铝电解、钽电解、铌电解,市面常见的是前两 种,其中钽电解常被一些音响发烧友用于音响系统。电解电容我们常用图6的符号表示。

初学者必备 电子元件基础知识

初学者必备电子元件基础知识 电源网讯电感元件的分类 概述:凡是能产生电感作用的原件统称为电感原件,常用的电感元件有固定电感器,阻流圈,电视机永行线性线圈,行,帧振荡线圈,偏转线圈,录音机上的磁头,延迟线等。 1 固定电感器 :一般采用带引线的软磁工字磁芯,电感可做在10-22000uh之间,Q值控制在40左右。 2 阻流圈:他是具有一定电感得线圈,其用途是为了防止某些频率的高频电流通过,如整流电路的滤波阻流圈,电视上的行阻流圈等。 3 行线性线圈:用于和偏转线圈串联,调节行线性。由工字磁芯线圈和恒磁块组成,一般彩电用直流电流1.5A电感 116-194uh频率:2.52MHZ

4 行振荡线圈:由骨架,线圈,调节杆,螺纹磁芯组成。一般电感为5mh调节量大于+-10mh.电感线圈的品质因数和固有电容 (1)电感量及精度 线圈电感量的大小,主要决定于线圈的直径、匝数及有无铁芯等。电感线圈的用途不同,所需的电感量也不同。例如,在高频电路中,线圈的电感量一般为0.1uH—100Ho 电感量的精度,即实际电感量与要求电感量间的误差,对它的要求视用途而定。对振荡线圈要求较高,为o.2-o.5%。对耦合线圈和高频扼流圈要求较低,允许10—15%。对于某些要求电感量精度很高的场合,一般只能在绕制后用仪器测试,通过调节靠近边沿的线匝间距离或线圈中的磁芯位置来实现 o (2)线圈的品质因数 品质因数Q用来表示线圈损耗的大小,高频线圈通常为50—300。对调谐回路线圈的Q值要求较高,用高Q值的线圈与电容组成的谐振电路有更好的谐振特性;用低Q值线圈与电容组成的谐振电路,其谐振特性不明显。对耦合线圈,要求可低一些,对高频扼流圈和低频扼流圈,则无要求。Q值的大小,

电子元器件基础知识常用电子元件入门知识

电子元器件基础知识常用电子元件入门知识 阅读:2280次?来源:网络媒体??我要评论? 摘要:电子元器件包括:电阻、电容器、电位器、电子管、散热器、机电元件、连接器、半导体分立器件、电声器件、激光器件、电子显示器件、光电器件、传感器、电源、开关、微特电机、电子变压器、继电器、印制电路板、集成电路、各类电路、压电、晶体、石英、陶瓷磁性材料、印刷电路用基材基板、电子功能工艺专用材料、电子胶(带)制品、电子化学材料及部品等。 电子元器件基础知识常用电子元件入门知识 1.电阻 (1)电阻的作用和外形 电阻在电路中的主要作用是降压、限流、分流、分压和作偏置元件使用。电阻在电路中对低频交流电和直流电的阻碍作用是一样的,用字母R来表示。 电阻的外形如下图所示(图3-1)。 (2)电阻的命名 电阻的型号由四部分组成,其命名方式如下(图3-2)表示:

例如:RH42为:R代表电阻器,H为合成碳膜,4为高电阻,2为序号,意义为高电阻合成碳膜电阻,编号为2。 (3)电阻的识别 电阻的常用单位有欧姆(Ω)、千欧(KΩ)、兆欧(MΩ)等。它们之间的关系是:1兆欧=1000千欧、一千欧=1000欧。电阻的标识方法有直标法和色环法。 ①在生产时直接将电阻阻值的大小印制在电阻器上,如图3-3:

②电阻阻值的大小通过色环来表示,一般有4道或5道色环。4道色环的含义,其中第一道和第二道色环表示2位有效数字,第三道色环表示倍数,第四道色环表示误差等级。5道色环的含义,其中第一道、第二道、第三道环表示3位有效数字,第四道环表示倍数,第五道环表示误差等级(如图3-4)。 色环一般采用棕、红、橙、黄、绿、蓝、紫、灰、白、黑、金、银色来表示,各颜色的含义如下表:

电子元件基础知识精选

电子元件基础知识 电阻,英文名resistance,通常缩写为R,它是导体的一种基本性质,与导体的尺寸、材料、温度有关。欧姆定律说,I=U/R,那么R=U/I,电阻的基本单位是欧姆,用希腊字母“Ω”表示,有这样的定义:导体上加上一伏特电压时,产生一安培电流所对应的阻值。电阻的主要职能就是阻碍电流流过。事实上,“电阻”说的是一种性质,而通常在电子产品中所指的电阻,是指电阻器这样一种元件。师傅对徒弟说:“找一个100欧的电阻来!”,指的就是一个“电阻值”为100欧姆的电阻器,欧姆常简称为欧。表示电阻阻值的常用单位还有千欧(k Ω),兆欧(MΩ)。 1、电阻器的种类电阻器的种类有很多,通常分为三大类:固定电阻,可变电阻,特种电阻。在电子产品中,以固定电阻应用最多。而固定电阻以其制造材料又可分为好多类,但常用、常见的有RT型碳膜电阻、RJ型金属膜电阻、RX型线绕电阻,还有近年来开始广泛应用的片状电阻。型号命名很有规律,R代表电阻,T-碳膜,J-金属,X-线绕,是拼音的第一个字母。在国产老式的电子产品中,常可以看到外表涂覆绿漆的电阻,那就是RT型的。而红颜色的电阻,是RJ型的。一般老式电子产品中,以绿色的电阻居多。为什么呢?这涉及到产品成本的问题,因为金属膜电阻虽然精度高、温度特性好,但制造成本也高,而碳膜电阻特别价廉,而且能满足民用产品要求。 ? ? 电阻器当然也有功率之分。常见的是1/8瓦的“色环碳膜电阻”,它是电子产品和电子制作中用的最多的。当然在一些微型产品中,会用到1/16瓦的电阻,它的个头小多了。再者就是微型片状电阻,它是贴片元件家族的一员,以前多见于进口微型产品中,现在电子爱好者也可以买到了(做无线窃听器?) 2、电阻器的标识这些直接标注的电阻,在新买来的时候,很容易识别规格。可是在装配电子产品的时候,必须考虑到为以后检修的方便,把标注面朝向易于看到的地方。所以在弯脚的时候,要特别注意。在手工装配时,多这一道工序,不是什么大问题,但是自动生产线上的机器没有那么聪明。而且,电阻器元件越做越小,直接标注的标记难以看清。因此,国际上惯用“色环标注法”。事实上,“色环电阻”占据着电阻器元件的主流地位。“色环电阻”顾名思义,就是在电阻器上用不同颜色的环来表示电阻的规格。有的是用4个色环表示,有的用5个。有区别么?是的。4环电阻,一般是碳膜电阻,用3个色环来表示阻值,用1个色环表示误差。5环电阻一般是金属膜电阻,为更好地表示精度,用4个色环表示阻值,另一个色环也是表示误差。下表是色环电阻的颜色-数码对照表: 颜色 有效数字 乘数 允许偏差 黑色 10的0次方 棕色 1 10的1次方 +/- 1% 红色 2 10的2次方 +/- 2%

电子元器件基础知识常用电子元件入门知识

电子元器件基础知识常用电子元件入门知识 Final revision on November 26, 2020

电子元器件基础知识常用电子元件入门知识 阅读:2280次来源:网络媒体 摘要:电子元器件包括:电阻、电容器、电位器、电子管、散热器、机电元件、连接器、半导体分立器件、电声器件、激光器件、电子显示器件、光电器件、传感器、电源、开关、微特电机、电子变压器、继电器、印制电路板、集成电路、各类电路、压电、晶体、石英、陶瓷磁性材料、印刷电路用基材基板、电子功能工艺专用材料、电子胶(带)制品、电子化学材料及部品等。 电子元器件基础知识常用电子元件入门知识 1.电阻 (1)电阻的作用和外形 电阻在电路中的主要作用是降压、限流、分流、分压和作偏置元件使用。电阻在电路中对低频交流电和直流电的阻碍作用是一样的,用字母R来表示。 电阻的外形如下图所示(图3-1)。 (2)电阻的命名 电阻的型号由四部分组成,其命名方式如下(图3-2)表示: 例如:RH42为:R代表电阻器,H为合成碳膜,4为高电阻,2为序号,意义为高电阻合成碳膜电阻,编号为2。 (3)电阻的识别 电阻的常用单位有欧姆(Ω)、千欧(KΩ)、兆欧(MΩ)等。它们之间的关系是:1兆欧=1000千欧、一千欧=1000欧。电阻的标识方法有直标法和色环法。 ①在生产时直接将电阻阻值的大小印制在电阻器上,如图3-3: ②电阻阻值的大小通过色环来表示,一般有4道或5道色环。4道色环的含义,其中第一道和第二道色环表示2位有效数字,第三道色环表示倍数,第四道色环表示误差等级。5道色环的含义,其中第一道、第二道、第三道环表示3位有效数字,第四道环表示倍数,第五道环表示误差等级(如图3-4)。 色环一般采用棕、红、橙、黄、绿、蓝、紫、灰、白、黑、金、银色来表示,各颜色的含义如下表:

常用电子元器件的认识

电子元器件的认识 开关电源(SPS)是由众多的元器件构成,因此,要了解开关电源的原理, 学会看电路图.首先必须掌握元器件的主要性能,结构,工作原理,电路 符号,参数标准方法和质量检测方法,下面将作逐一介绍. 一.电阻器 电阻器简称电阻,英文Resistor 1.电路符号和外形. (a) (b) (c) (a)国外电阻器电路符号.(b)国内符号.(c)色环电阻外形 2.电阻概念: 电阻具有阻碍电流的作用.公式R=U/I常用单位为欧姆(Ω),千欧(KΩ) 和兆欧(MΩ). 1MΩΩ 3.种类 电阻器的种类有:碳膜电阻,金属氧化膜电阻,绕线电阻,贴片电阻, 可调电阻,水泥电阻. 4.性能参数 (1)标称阻值与允许误差 (2)额定功率: 指在特定(如温度等)条件下电阻器所能承受的最大功率,当超过此功 率,电阻器会过热而烧坏.通用碳膜电阻Power Rating Curve (Figure 1) (3) 电阻温度系数 (4). 工作温度范围 Carbon Film :-55℃----+155℃ Metal Film :-55℃----+155℃ Metal Oxide Film :-55℃----+200℃

Chip Film :-55℃----+125℃ 5.标注方法: (1)直标法 (2)色标法 色标法是用色环或色点来表示电阻的标称阻值,误差.色环有四道环和五道环两种.读色环时从电阻器离色环最进的一端读起,在色标法中,色标颜色表示数字如下: 颜色黑棕红橙黄绿蓝紫灰白金银 数字0123456789-1-2四色环中,第一,二道色环表示标称阻值的有效值,第三道色环表示倍数,第四道色环表示允许偏差,五色环中,前三道表示有效值,第四到为倍数,第五道为允许误差.精密电阻常用此法. 例1:有一电阻器,色环颜顺序为:棕,黑,橙,银,则阻值为:10X10 10%(Ω) 6.误差代码 Tolerance ±1%±2%±2.5%±3%±5%±10%±20% Symbols F G H I J K M 7.电阻的分类 (1). 碳膜电阻 (2). 金属膜电阻(保险丝电阻) (3). 金属氧化膜电阻 (4). 绕线电阻

电子元件介绍

电阻 a.四环电阻: 因表示误差的色环只有金色或银色,色环中的金色或银色环一定是第四环. b.五环电阻:此为精密电阻 (1)从阻值范围判断:因为一般电阻范围是0-10M,如果我们读出的阻值超过这个范围,可能是第一环选错了. (2)从误差环的颜色判断:表示误差的色环颜色有银、金、紫、蓝、绿、红、棕.如里靠近电阻器端头的色环不是误差颜色,则可确定为第一环. 识别色环电阻的阻值 目前,电子产品广泛采用色环电阻,其优点是在装配、调试和修理过程中,不用拨动元件,即可在任意角度看清色环,读出阻值,使用方便。一个电阻色环由4部分组成[不包括精密电阻] 四个色环的其中第一、二环分别代表阻值的前两位数;第三环代表10的幂;第四环代表误差。 下面介绍掌握此方法的几个要点: (1)熟记第一、二环每种颜色所代表的数。可这样记忆: 棕=1 红=2, 橙=3, 黄=4, 绿=5, 蓝=6, 紫=7, 灰=8, 白=9, 黑=0。 此乃基本功,多复诵,一定要记住!!!!!!! 大家都记得彩虹的颜色分布吧,一句话,很好记:红橙黄绿蓝靛(diàn)紫,去掉靛,后面添上灰白黑,前面加上棕,对应数字1开始。 从数量级来看,在体上可把它们划分为三个大的等级,即:金、黑、棕色是欧姆级的;红是千欧级,橙、黄色是十千欧级的;绿是兆欧级、蓝色则是十兆欧级的。这样划分一下也好记忆。所以要先看第三环颜色(倒数第2个颜色),才能准确。 第四环颜色所代表的误差:金色为5%;银色为10%;无色为20%。 下面举例说明: 例1四个色环颜色为:黄橙红金 读法:前三颜色对应的数字为432,金为5%,所以阻值为43X10*2=4300=4.3KΩ,误差为5%。

电子元件基础知识44506

电阻器和电容器 电阻器和电容器简称为阻容元件,在各类电子元器件中,它们是生产量最大,使用范围最广 的一类元件。 (一)电阻器(元件符号R) 我们平常在工作中所说的电阻其实是电阻器。 电阻器是一种具有一定阻值,一定几何形状,一定性能参数,在电路中起电阻作用的实体元件。在电路中,它的主要作用是稳定和调节电路中的电流和电压,作为分流器、分压器和消 耗电能的负载使用。 大部分电阻器的引出线为轴向引线,一小部分为径向引线,为了适应现代表面组装技术 (SMT )的需要,还有“无引出线”的片状电阻器(或叫无脚零件),片状电阻器像米粒般 大小、扁平的,一般用自动贴片机摆放,我们公司的SMT机房里面就有。电阻器是非极性 元件,电阻器的阻值可在元件体通过色环或工程编码来鉴别。 种类: 我们常见的电阻器有下列几种: (1)金属膜电阻器(2)碳膜电阻器 (3)线绕电阻器(4)电位器 (5)电阻网络器(6)热敏电阻器 不同的电阻器,不仅其电阻值不同,功能也不一样,所以不同的电阻器是不可以随便替代的。 2.电阻的单位是欧姆(Q ),千欧(K Q ),兆欧(M Q)o 它们的换算公式为106Q =1M Q =103K Q 注意:若在元件体的一端有一宽的银色环,则此元件不是电阻,是电感器,如果这种银色环 与元件体上其它色环宽度相同,则还是电阻。 5 .电阻器的标识方法 (1 )色环法:目前国标上普遍流行色环标识电阻,色环在电阻器上有不同的含义,它具有简单、直观、方便等特点。色环电阻中最常见的是四环电阻和五环电阻。 四环电阻(碳膜电阻) 第一道色环印在电阻的金属帽上,表示电阻有效数字的最高位,也表示电阻值色标法读数的 方向,第二道色环表示有效数字的次高位,第三道色环表示相乘的倍率,第四环表示误差。 金色为土5%,银色为土10%。 值得注意的是:第四环的位置国内外的标法有异,国外有此厂家把第四环也标在另一端的金属 帽上,遇此情况切记:金色或银色的一端不是第一环。第一环是离元件体端部最近的一环。 例:某电阻的色环依次为“黄、紫、红、银”,则该电阻的阻值为4700 Q =4.7K Q,误差为

电子元器件基础知识大全

电子元器件基础知识大全 篇一:电子元器件基础知识 第一讲电子元器件基础知识 课程大纲: 第一章电子元器件分类 第二章集成电路的基础知识第三章集成电路的发展及分类第四章集成电路的命名第五章集成电路的封装第六章集成电路的品牌 第七章集成电路的品牌分销商 第一章电子元器件分类 第一节电子元器件分类●概念: 电子元器件是电子工业发展的基础。它们是组成电子设备的基本单元,属电子工业的中间产品。 ●电子元器件分为两类:半导体、电子元件 第二节行业概念●被动组件 是电子产品中不可缺少的基本组件。电子电路有主动与被动两种装置,所谓被动组件是不必接电就可以动作,而产生调节电流电压,储蓄静电、防治电磁波不干扰、过滤电流杂质等的功能。相对应主动组件,被动足是在电压改变的时候,电阻和阻抗都不会随之改变。被动组件可以涵盖三大类产品:电阻器、电感器和电容器。●半导体分立器件

主要包括半导体二极管、三极管、三极管阵列、MOS场效应管、结型场效应管、光电耦合器、可控硅等各种两端和三端器件。●有源器件和无源器件 简单地讲就是需能(电)源的器件叫有源器件,无需能(电)源的器件就是无源器件。 有源器件一般用来信号放大、变换等,无源器件用来进行信号传输,或者通过方向性进行“信号放大”。电容、电阻、电感都是无源器件,IC、模块等都是有源器件。●摩尔定律 INTEL公司创建人之一戈登·摩尔的经验法则,他曾经这样描述:“随着芯片上的电路复杂度提高,元件数目必将增加,然而每个元件的成本却每年下降一半。”摩尔定律看似非常简单,实则对于半导体工业的发展的指导意义深远。一些分析家预测摩尔定律终将实效——一种自我激励的机制,只要半导体技术和经济的发展还能满足市场需要,摩尔定律还将继续生存下去,只不过是速度上的减缓。 第二章集成电路的基础知识 第一节集成电路的基础介绍我们通常说的“芯片”是指集成电路,它是微电子技术的主要产品。所谓微电子是相对“强电”、“弱电”等概念而言,指它处理的电子信号极其微小,它是现代信息技术的基础,我们通常所接触的电子产品,包括通讯、电脑、智能化系统、自动控制、空间技术、电台、电视等等都是在微电子技术的基础上发展起来的。 我国的信息通讯、电子终端设备产品这些年来有长足发展,但以

电子元件基本基础知识

第1章电子元件的基本知识 第一节电阻器 一、电阻器的种类 电阻器的种类很多,从构成材料来分,有碳膜电阻器、碳质电阻器、金属膜电阻器、绕线电阻器等多种。从结构形式来分,有固定电阻器、可变电阻器和电位器三种。国产电阻器和电位器的型号一般由四部分组成,各部分含义如下: 序号(用数字表示) 分类(用数字、字母表示) 材料(用字母表示) 主称(用字母Z或W表示) 表1-1 电阻器和电位器的型号命名方法(中国) 表1-2电阻器标称值系列

二、电阻器表示法 电阻器的主要参数有两个: 1.标称阻值和允许误差。 在电阻上标注的电阻数值叫作标称阻值。如1.5K 、5.1Ω……。它的实际阻值允许有一定的误差,叫允许误差,分为Ⅰ级(±5%),Ⅱ级(±10%),Ⅲ级(±20%)。如电阻器上标“3K ΩⅠ”,则表示这个电阻的阻值是3K Ω,误差为士5%。 电阻的标称值和误差也可以用色环来表示。在电阻上印有四条色彩鲜艳的园环,紧靠电阻左端的三条色环表示电阻值,最后一条色环表示允许误差。识别方法见表3一2。 微调电阻器和电位器的标称值是它的最大电阻值。如100K 电位器,表示它的阻值可在零至100千欧连续变化。 电阻器的标称阻值和误差一般都标在电阻体上,其表示法有三种: 1)直标法:直标法是用阿拉伯数字和单位符号在电阻器表面直接标出标称阻值,如下图所示,其允许误差直接用百分数表示。 文字符号法是用阿拉伯数字和文字符号两者有规律的组合来表示标称阻值,其允许误差也用文字符号表示(如下表),符号前面的数字表示整数阻值,后面的数字依次表示第一位小数阻值和第二位小数阻值,如下图表示的为金属膜电阻器,额定功率为0.5W ,阻值为5.1k Ω,误差为5% 。 表1-3 电阻误差代号 2)色标法:色标法是用不同颜色的带或点在电阻器的表面标出标称阻值和允许误差。普通电阻器四道色环,精密电阻五道色环。例如电阻器上的色环依次为绿、黑、橙、无色,则表示50×103= 50k Ω±20%。精密电阻的色环依次为棕、蓝、绿、黑、棕,则表示165Ω±1%。 1 2 4 5 1 2 3 4 5 1标称值第一位有效数字; 2标称值第二位有效数字; 3标称值第三位有效数字;

常用电子元件介绍

常见电子元件认识 在我们生产的产品中,PNP,插件接触的元器件有电阻、电容、二极管、三极管、双栅极场效应管、IC、PCB板等,下面分别对其简单说明。 1、电阻(RESISTOR简称RES) 1-01.分类 (1)固定电阻: 按材料分有金属皮膜,碳素皮膜等电阻; 按外形分有插脚电阻,表面电阻等电阻; 按名称分有热敏电阻,压敏电阻,色环电阻,贴片电阻等电阻 (2)微调电阻:亦称半可调电阻 (3)可调电阻:亦称电位器或可变电阻 一般情况下(1)类电阻值不变化,(2)(3)类电阻阻值可随调整而变化,我们常用的有色环电阻,代号类电阻,表面电阻等,此类电阻没有方向性 1-02.基本单位及换算: 如右图(二)所示: A=第一色环(十位数)C=第三色环(幂指数) B=第二色环(个位数)D=最末环(误差值色环)

电阻值计算:R =(A×10+B)×10C A=红色=2C=黄色=4B=黑色=0D=银色=±10% 电阻值:R=(2×10+0)×104 =200KΩ 误差值:=±10% (二) 即该阻值180=200-200×10%≤R≤200+200×10%=220内均为OK 注:区分最末环 1)一般金色、银色为最末环 2)与其它色环隔离较远的一环为最末环 特例:五色环电阻的计算方法与四色环计算方法相同,五色色环前三位 为有效数字,如右图(三)所示:A=第一色环(百位数)A=红色2(三) B=第二色环(十位数)B=红色2C=第三色环(个位数)C=棕色1D=第四色环(幂指数)D=橙色3E=最末环(误差值色环) E=红色=±2% 电阻值计算:R=(A×100+B×10+C)×10 D R=(2×100+2×10+1)×10 3 误差值:=±2% 注:由于五色环电阻阻值准确,通常只有两种误差代号:±1%及±2%1-03-02代号类电阻,如右图(四)所示: 其阻值用三位代号数值来表示。 计算方法有两种:a)用LCR 测试仪直接读出其电阻值; b)根据表面数值来计算 (四) 代号电阻值 10110×10=100Ω10210×100=1KΩ10310×1000=10KΩ10410×10000=100KΩ271 27×10=270 B A C D 分隔开 B A C D E 103

十大常见电子元器件介绍

幻灯片1 十大常见电子元器件介绍 幻灯片2 一、电阻 ●随着电子技术及其应用领域的迅速发展,所用的元器件种类日益增多,学习和掌握常 用元器件的性能、用途、质量判别方法,对提高电气设备的装配质量及可靠性将起重要的保证作用。电阻、电容、电感、二极管、三极管等都是电子电路常用的器件。这里列举出电子行业中常用的十大电子元器件,及相关的基础概念和知识,和大家一起温习一遍。 ●明星一:电阻 ●作为电子行业的工作者,电阻是无人不知无人不晓的。它的重要性,毋庸置疑。人们都 说“电阻是所有电子电路中使用最多的元件。” ●电阻,因为物质对电流产生的阻碍作用,所以称其该作用下的电阻物质。电阻将会导致 电子流通量的变化,电阻越小,电子流通量越大,反之亦然。没有电阻或电阻很小的物质称其为电导体,简称导体。不能形成电流传输的物质称为电绝缘体,简称绝缘体。 ●在物理学中,用电阻来表示导体对电流阻碍作用的大小。导体的电阻越大,表示导体对 电流的阻碍作用越大。不同的导体,电阻一般不同,电阻是导体本身的一种特性。电阻元件是对电流呈现阻碍作用的耗能元件。 ●电阻元件的电阻值大小一般与温度有关,衡量电阻受温度影响大小的物理量是温度系 数,其定义为温度每升高1℃时电阻值发生变化的百分数。 幻灯片3

二、电容 ●电容指的是在给定电位差下的电荷储藏量;记为C,国际单位是法拉(F)。一般来 说,电荷在电场中会受力而移动,当导体之间有了介质,则阻碍了电荷移动而使得电荷累积在导体上;造成电荷的累积储存,最常见的例子就是两片平行金属板。也是电容器的俗称。 ●1、电容在电路中一般用“C”加数字表示。电容是由两片金属膜紧靠,中间用绝缘 材料隔开而组成的元件。电容的特性主要是隔直流通交流。电容容量的大小就是表示能贮存电能的大小,电容对交流信号的阻碍作用称为容抗,它与交流信号的频率和电容量有关。容抗XC=1/2πf c (f表示交流信号的频率,C表示电容容量)电话机中常用电容的种类有电解电容、瓷片电容、贴片电容、独石电容、钽电容和涤纶电容等。 幻灯片4 三、晶体二极管 ●晶体二极管固态电子器件中的半导体两端器件。这些器件主要的特征是具有非线性的 电流-电压特性。此后随着半导体材料和工艺技术的发展,利用不同的半导体材料、掺杂分布、几何结构,研制出结构种类繁多、功能用途各异的多种晶体二极管。制造材料有锗、硅及化合物半导体。晶体二极管可用来产生、控制、接收、变换、放大信号和进行能量转换等。 ●晶体二极管在电路中常用“D”加数字表示. ●作用:二极管的主要特性是单向导电性,也就是在正向电压的作用下,导通电阻很 小;而在反向电压作用下导通电阻极大或无穷大。正因为二极管具有上述特性,无绳电

常用电子元器件介绍

常用电子元器件介绍 电子元件知识——电阻器 电阻:导电体对电流的阻碍作用称为电阻,用符号R表示,单位为欧姆、千欧、兆欧,分别用Ω、KΩ、MΩ表示。 电阻的型号命名方法:国产电阻器的型号由四部分组成(不适用敏感电阻) ①主称②材料③分类④序号 电阻器的分类: ①线绕电阻器 ②薄膜电阻器:碳膜电阻器、合成碳膜电阻器、金属膜电阻器、金属氧化膜电阻器、化学沉积膜电阻器、玻璃釉膜电阻器、金属氮化膜电阻器 ③实心电阻器 ④敏感电阻器:压敏电阻器、热敏电阻器、光敏电阻器、力敏电阻器、气敏电阻器、湿敏电阻器。 ※电阻器阻值标示方法: 1、直标法:用数字和单位符号在电阻器表面标出阻值,其允许误差直接用百分数表示,若电阻上未注偏差,则均为±20%。 2、文字符号法:用阿拉伯数字和文字符号两者有规律的组合来表示标称阻值,其允许偏差也用文字符号表示。符号前面的数字表示整数阻值,后

面的数字依次表示第一位小数阻值和第二位小数阻值。表示允许误差的文字符号文字符号:DFGJKM允许偏差分别为: ±0.5%±1%±2%±5%±10%±20% 3、数码法:在电阻器上用三位数码表示标称值的标志方法。数码从左到右,第一、二位为有效值,第三位为指数,即零的个数,单位为欧。偏差通常采用文字符号表示。 4、色标法:用不同颜色的带或点在电阻器表面标出标称阻值和允许偏差。国外电阻大部分采用色标法。 黑-0、棕-1、红-2、橙-3、黄-4、绿-5、蓝-6、紫-7、灰-8、白-9、金-±5%、银-±10%、无色-±20% 当电阻为四环时,最后一环必为金色或银色,前两位为有效数字,第三位为乘方数,第四位为偏差。 当电阻为五环时,最後一环与前面四环距离较大。前三位为有效数字,第四位为乘方数,第五位为偏差。

电子元件基础知识

橙 橙 黑 金 电子元件基础知识培训 2000/3/22 REV .1 一.电阻 (正确的叫法为电阻器) 1.电阻的实物外形如下图示: 2.电阻在底板上用字母R 表示图形如下表示: 从结构分有:固定电阻器和可变电阻器 3.电阻的分类: 从材料分有:碳膜电阻器、金属膜电阻器、线绕电阻器、热敏电阻等 从功率分有:1/16W 、1/8W 、1/4W (常用)、1/2W 、1W 、2W 、3W 等 4.电阻的单位及换算: 1 M Ω(兆欧姆)=1000 K Ω(千欧姆)=1000'000 Ω (欧姆) 一种为直接用数字表示出来 5.电阻阻值大小的标示: 四道色环电阻 其中均有一 一种是用颜色作代码间接表示出来 五道色环电阻 道色环为误 六道色环电阻 差值色环 6.电阻颜色环代码表: 颜 色 黑 棕 红 橙 黄 绿 蓝 紫 灰 白 金 银 无 数值 0 1 2 3 4 5 6 7 8 9 0.1 0.01 误差值 ±1% ±2% ±5% ±10% ±20% 四道色环电阻的色环顺序的识别方法 如右图: 常用五道色环电阻的误差值色环 颜色是金色或银色,即误差值色环 为第四道色环,其反向的第一道色 环为第一道色环。

四道色环电阻阻值的计算方法: 阻值 = 第一、二道色环颜色代表的数值 × 10第三道色环颜色所代表的数值 即上图电阻的阻值为: 3 3 × 100 = 33Ω(欧姆) 四道色环电阻阻值的快速读取方法: 第一、二道色环颜色所代表的数值不变,第三道色环颜色决定此电阻的单位,其关系如下: 银色 零点几几 Ω 欧姆 金色 几点几 Ω 欧姆 黑色 几十几 Ω 欧姆 棕色 几百几十 Ω 欧姆 红色 几点几 K Ω 千欧姆 橙色 几十几 K Ω 千欧姆 黄色 几百几十 K Ω 千欧姆 绿色 几点几 M Ω 兆欧姆 蓝色 几十几 M Ω 兆欧姆 五道色环电阻的色环顺序识别如右图: 五道色环电阻阻值的计算方法: 阻值 = 第一、二、三道色环颜色所代表的数值 × 10第四道色环颜色所代表的数值 即上图电阻阻值为: 4 4 0 × 10 –2 = 4.4Ω (欧姆) 五道色环电阻阻值的快速读取方法: 第一、二、三道色环颜色所代表的数值不变,第四道色环即决定此电阻的单位,其关系如下: 银色 几点几几 Ω 欧姆 金色 几十几点几 Ω 欧姆 黑色 几百几十几 Ω 欧姆 棕色 几點几几 K Ω 千欧姆 红色 几十几点几 K Ω 千欧姆 橙色 几百几十几 K Ω 千欧姆 黄色 几点几几 M Ω 兆欧姆 绿色 几十几点几 M Ω 兆欧姆 7.电阻的方向性:在底板上即插机时不用分方向电阻的方向性:在底板上即插机时不用分方向电阻的方向性:在底板上即插机时不用分方向。 其中 第一个几表示色环电阻当中的第一个色环代表的数值 第二个几表示色环电阻当中的第二个色环代表的数值 常用五道色环电阻的误差值色 环颜色是棕色或红色,即第五道色环 就是误差色环,第五道色环的颜色环 与其它颜色环相隔较疏,如右图所 示,第五道色环的反向第一道色即为 第一道色环。 其中 第一个几表示色环电阻当中的第一色环所代表的数值 第二个几表示色环电阻当中的第二色环所代表的数值 第三个几表示色环电阻当中的第三色环所代表的数值

常用电子元器件介绍介绍

常用电子元器件介绍 一、电阻器 电阻器是既能导电又有确定电阻数值的元件。它主要用于控制和调节电路中的电流和电压(限流,分流,降压,分压,偏置等),或者作消耗电能的负载电阻没有极性,在电路中它的两根引脚可以交换连接。 主要特性参数 1、标称阻值:电阻器上面所标示的阻值。 2、允许误差:标称阻值与实际阻值的差值跟标称阻值之比的百分数称阻值偏差,它表示电阻器的精度。允许误差与精度等级对应关系如下:±0.5%-0.05、±1%-0.1(或00)、±2%-0.2(或0)、±5%-Ⅰ级、±10%-Ⅱ级、±20%-Ⅲ级 3、额定功率:在正常的大气压力90-106.6KPa及环境温度为-55℃~+70℃的条件下,电阻器长期工作所允许耗散的最大功率。 线绕电阻器额定功率系列为(W):1/20、1/8、1/4、1/2、1、2、4、8、10、16、25、40、50、75、100、150、250、500 非线绕电阻器额定功率系列为(W):1/20、1/8、1/4、1/2、1、2、5、10、25、50、100 4、额定电压:由阻值和额定功率换算出的电压。 5、最高工作电压:允许的最大连续工作电压。在低气压工作时,最高工作电压较低。 6、温度系数:温度每变化1℃所引起的电阻值的相对变化。温度系数越小,电阻的稳定性越好。阻值随温度升高而增大的为正温度系数,反之为负温度系数。 7、老化系数:电阻器在额定功率长期负荷下,阻值相对变化的百分数,它是表示电阻器寿命长短的参数。 电阻器阻值标示方法: 1、直标法:用数字和单位符号在电阻器表面标出阻值,其允许误差直接用百分数表示,若电阻上未注偏差,则均为±20%。 2、文字符号法:用阿拉伯数字和文字符号两者有规律的组合来表示标称阻值,其允许偏差也用文字符号表示。符号前面的数字表示整数阻值,后面的数字依次表示第一位小数阻值和第二位小数阻值。 表示允许误差的文字符号 文字符号D F G J K M 允许偏差±0.5% ±1% ±2% ±5% ±10% ±20% 3、数码法:在电阻器上用三位数码表示标称值的标志方法。数码从左到右,第 一、二位为有效值,第三位为指数,即零的个数,单位为欧。偏差通常采用文字符号表示。 4、色标法:用不同颜色的带或点在电阻器表面标出标称阻值和允许偏差。国外电阻大部分采用色标法。 黑-0、棕-1、红-2、橙-3、黄-4、绿-5、蓝-6、紫-7、灰-8、白-9、金-±5%、银-±10%、无色-±20% 当电阻为四环时,最后一环必为金色或银色,前两位为有效数字,第三位为乘方数,第四位为偏差。 当电阻为五环时,最后一环与前面四环距离较大。前三位为有效数字,第四位

常见电子元件的基本作用

电子元件的基本作用(电容、电感等) 电容: 所谓电容,就是容纳和释放电荷的电子元器件。电容的基本工作原理就是充电放电,当然还有整流、振荡以及其它的作用。另外电容的结构非常简单,主要由两块正负电极和夹在中间的绝缘介质组成,所以电容类型主要是由电极和绝缘介质决定的。在计算机系统的主板、插卡、电源的电路中,应用了电解电容、纸介电容和瓷介电容等几类电容,并以电解电容为主。 纸介电容是由两层正负锡箔电极和一层夹在锡箔中间的绝缘蜡纸组成,并拆叠成扁体长方形。额定电压一般在63V~250V之间,容量较小,基本上是pF(皮法)数量级。现代纸介电容由于采用了硬塑外壳和树脂密封包装,不易老化,又因为它们基本工作在低压区,且耐压值相对较高,所以损坏的可能性较小。万一遭到电损坏,一般症状为电容外表发热。 瓷介电容是在一块瓷片的两边涂上金属电极而成,普遍为扁圆形。其电容量较小,都在pμF(皮微法)数量级。又因为绝缘介质是较厚瓷片,所以额定电压一般在1~3kV左右,很难会被电损坏,一般只会出现机械破损。在计算机系统中应用极少,每个电路板中分别只有2~4枚左右。 电解电容的结构与纸介电容相似,不同的是作为电极的两种金属箔不同(所以在电解电容上有正负极之分,且一般只标明负极),两电极金属箔与纸介质卷成圆柱形后,装在盛有电解液的圆形铝桶中封闭起来。因此,如若电容器漏电,就容易引起电解液发热,从而出现外壳鼓起或爆裂现象。电解电容都是圆柱形(图1),体积大而容量大,在电容器上所标明的参数一般有电容量(单位:微法)、额定电压(单位:伏特),以及最高工作温度(单位:℃)。其中,耐压值一般在几伏特~几百伏特之间,容量一般在几微法~几千微法之间,最高工作温度一般为85℃~105℃。指明电解电容的最高工作温度,就是针对其电解液受热后易膨胀这一特点的。所以,电解电容出现外壳鼓起或爆裂,并非只有漏电才出现,工作环境温度过高同样也会出现。 1.电容器主要用于交流电路及脉冲电路中,在直流电路中电容器一般起隔断直流的作用。 2.电容既不产生也不消耗能量,是储能元件。 3.电容器在电力系统中是提高功率因数的重要器件;在电子电路中是获得振荡、滤波、相移、旁路、耦合等作用的主要元件。 4.因为在工业上使用的负载主要是电动机感性负载,所以要并电容这容性负载才能使电网平衡. 5.在接地线上,为什么有的也要通过电容后再接地咧? 答:在直流电路中是抗干扰,把干扰脉冲通过电容接地(在这次要作用是隔直——电路中的电位关系);交流电路中也有这样通过电容接地的,一般容量较小,也是抗干扰和电位隔离作用. 6.电容补尝功率因数是怎么回事? 答:因为在电容上建立电压首先需要有个充电过程,随着充电过程,电容上的电压逐步提高,这样就会先有电流,后建立电压的过程,通常我们叫电流超前电压90度(电容电流回路中无电阻和电感元件时,叫纯电容电路)。电动机、变压器等有线圈的电感电路,因通过电感的电流不能突变的原因,它与电容正好相反,需要先在线圈两端建立电压,后才有电流(电感电流回路中无电阻和电容时,叫纯电感电路),纯电感电路的电流滞后电压90度。由于功率是电压乘以电流,当电压与电流不同时产生时(如:当电容器上的电压最大时,电已充满,电流为0;电感上先有电压时,电感电流也为0),这样,得到的乘

相关主题