搜档网
当前位置:搜档网 › 弹性模量

弹性模量

弹性模量
弹性模量

材料的“模量”一般前面要加说明语,如弹性模量、压缩模量、剪切模量、截面模量等。这些都是与变形有关的一种指标。

杨氏模量(Young's Modulus):

杨氏模量就是弹性模量,这是材料力学里的一个概念。对于线弹性材料有公式

σ(正应力)=Eε(正应变)成立,式中σ为正应力,ε为正应变,E为弹性模量,是与材料有关的常数,与材料本身的性质有关。杨(ThomasYoung1773~1829)在材料力学方面,研究了剪形变,认为剪应力是一种弹性形变。 1807年,提出弹性模量的定义,为此后人称弹性模量为杨氏模量。钢的杨氏模量大约为

2×1011N·m-2,铜的是1.1×1011 N·m-2。

弹性模量(Elastic Modulus)E:

弹性模量E是指材料在弹性变形范围内(即在比例极限内),作用于材料上的纵向应力与纵向应变的比例常数。也常指材料所受应力如拉伸,压缩,弯曲,扭曲,剪切等)与材料产生的相应应变之比。

弹性模量是表征晶体中原子间结合力强弱的物理量,故是组织结构不敏感参数。在工程上,弹性模量则是材料刚度的度量,是物体变形难易程度的表征。

弹性模量E在比例极限内,应力与材料相应的应变之比。对于有些材料在弹性范围内应力-应变曲线不符合直线关系的,则可根据需要可以取切线弹性模量、割线弹性模量等人为定义的办法来代替它的弹性模量值。根据不同的受力情况,分别有相应的拉伸弹性模量modulus of elasticity for tension (杨氏模量)、剪切弹性模量shear modulus of elasticity (刚性模量)、体积弹性模量、压缩弹性模量等。

剪切模量G(Shear Modulus):

剪切模量是指剪切应力与剪切应变之比。剪切模数G=剪切弹性模量G=切变弹性模量G 切变弹性模量G,材料的基本物理特性参数之一,与杨氏(压缩、拉伸)弹性模量E、泊桑比ν并列为材料的三项基本物理特性参数,在材料力学、弹性力学中有广泛的应用。

其定义为:G=τ/γ,其中G(Mpa)为切变弹性模量;

τ为剪切应力(Mpa);

γ为剪切应变(弧度)。

体积模量K(Bulk Modulus):

体积模量可描述均质各向同性固体的弹性,可表示为单位面积的力,表示不可压缩性。公式如下K=E/(3×(1-2×v)),其中E为弹性模量,v为泊松比。具体可

参考大学里的任一本弹性力学书。

性质:物体在p0的压力下体积为V0;若压力增加(p0→p0+dP),则体积减小为(V0-dV)。则K=(p0+dP)/(V0-dV)被称为该物体的体积模量(modulus of volume

elasticity)。如在弹性范围内,则专称为体积弹性模量。体积模量是一个比较稳定的材料常数。因为在各向均压下材料的体积总是变小的,故K值永为正值,单位MPa。体积模量的倒数称为体积柔量。体积模量和拉伸模量、泊松比之间有关系:E=3K(1-2μ)。

压缩模量(Compression Modulus):

压缩模量指压应力与压缩应变之比。

储能模量E':

储能模量E'实质为杨氏模量,表述材料存储弹性变形能量的能力。储能模量表征的是材料变形后回弹的指标。

储能模量E'是指粘弹性材料在交变应力作用下一个周期内储存能量的能力,通常指弹性;

耗能模量E'':

耗能模量E''是模量中应力与变形异步的组元;表征材料耗散变形能量的能力, 体现了材料的粘性本质。

耗能模量E''指的是在一个变化周期内所消耗能量的能力。通常指粘性

切线模量(Tangent Modulus):

切线模量就是塑性阶段,屈服极限和强度极限之间的曲线斜率。是应力应变曲线上应力对应变的一阶导数。其大小与应力水平有关,并非一定值。切线模量一般用于增量有限元计算。切线模量和屈服应力的单位都是N/m2

截面模量:

截面模量是构件截面的一个力学特性。是表示构件截面抵抗某种变形能力的指标,如抗弯截面模量、抗扭截面模量等。它只与截面的形状及中和轴的位置有关,而与材料本身的性质无关。在有些书上,截面模量又称为截面系数或截面抵抗矩等。

强度:

强度是指某种材料抵抗破坏的能力,即材料抵抗变形(弹性\塑性)和断列的能力(应力)。一般只是针对材料而言的。它的大小与材料本身的性质及受力形式有关。可分为:屈服强度、抗拉强度、抗压强度、抗弯强度、抗剪强度等。

如某种材料的抗拉强度、抗剪强度是指这种材料在单位面积上能承受的最大拉力、剪力,与材料的形状无关。

例如拉伸强度和拉伸模量的比较:他们的单位都是MPa或GPa。拉伸强度是指材料在拉伸过程中最大可以承受的应力,而拉伸模量是指材料在拉伸时的弹性。对于钢材,例如45号钢,拉伸模量在100MPa的量级,一般有200-500MPa,而拉伸模量在100GPa量级,一般是180-210Gpa。

刚度:

刚度(即硬度)指某种构件或结构抵抗变形的能力,是衡量材料产生弹性变形难易程度的指标,主要指引起单位变形时所需要的应力。一般是针对构件或结构而言的。它的大小不仅与材料本身的性质有关,而且与构件或结构的截面和形状有关。

刚度越高,物体表现的越“硬”。对不同的东西来说,刚度的表示方法不同,比如静态刚度、动态刚度、环刚度等。一般来说,刚度的单位是牛顿/米,或者牛顿/毫米,表示产生单位长度形变所需要施加的力。

法向刚度、剪切刚度的单位同样是N/m或N/mm,差别在于力的方向不同

一般用弹性模量的大小E来表示.而E的大小一般仅与原子间作用力有关,与组织状态关系不大。通常钢和铸铁的弹性模量差别很小,即它们的刚性几乎一样,但它们的强度差别却很大。

“弹性模量”是描述物质弹性的一个物理量,是一个总称,包括“杨氏模量”、“剪切模量”、“体积模量”等。所以,“弹性模量”和“体积模量”是包含关系。

一般地讲,对弹性体施加一个外界作用(称为“应力”)后,弹性体会发生形状的改变(称为“应变”),“弹性模量”的一般定义是:应力除以应变。例如:线应变——

对一根细杆施加一个拉力F,这个拉力除以杆的截面积S,称为“线应力”,杆的伸长量dL除以原长L,称为“线应变”。线应力除以线应变就等于杨氏模量E: F/S=E(dL/L)

剪切应变——

对一块弹性体施加一个侧向的力f(通常是摩擦力),弹性体会由方形变成菱形,这个形变的角度a称为“剪切应变”,相应的力f除以受力面积S称为“剪切应力”。剪切应力除以剪切应变就等于剪切模量G: f/S=G*a

体积应变——

对弹性体施加一个整体的压强p,这个压强称为“体积应力”,弹性体的体积减少量(-dV)除以原来的体积V称为“体积应变”,体积应力除以体积应变就等于

体积模量: p=K(-dV/V)

注:液体只有体积模量,其他弹性模量都为零,所以就用弹性模量代指体积模量。

一般弹性体的应变都是非常小的,即,体积的改变量和原来的体积相比,是一个很小的数。在这种情况下,体积相对改变量和密度相对改变量仅仅正负相反,大小是相同的,例如:体积减少百分之0.01,密度就增加百分之0.01。

体积模量并不是负值(从前面定义式中可以看出),也并不是气体才有体积模量,一切固体、液体、气体都有体积模量,倒是液体和气体没有杨氏模量和剪切模量。

拉伸时材料弹性模量E和泊松比的测定

实验三 电测法测定材料的弹性模量和泊松比 弹性模量E 和泊松比μ是各种材料的基本力学参数,测试工作十分重要,测试方法也很多,如杠杆引伸仪法、电测法、自动检测法,本次实验用的是电测法。 一、 实验目的 在比例极限内,验证胡克定律,用应变电测法测定材料的弹性模量E 和泊松比μ。 二、 实验仪器设备和试样 1. 材料力学多功能实验台 2. 静态电阻应变仪 3. 游标卡尺 4. 矩形长方体扁试件 三、 预习要求 1. 预习本节实验内容和材料力学书上的相关内容。 2. 阅读并熟悉电测法基本原理和电阻应变仪的使用操作。 四、实验原理和方法 材料在比例极限范围内,正应力σ和线应ε变呈线性关系,即:εσE = 比例系数E 称为材料的弹性模量,可由式3-1计算,即:ε σ=E (3-1) 设试件的初始横截面面积为o A ,在轴向拉力F 作用下,横截面上的正应力为: o A F = σ 把上式代入式(3-1)中可得: ε o A F E = (3-2) 只要测得试件所受的荷载F 和与之对应的应变ε,就可由式(3-2)算出弹性模量E 。

受拉试件轴向伸长,必然引起横向收缩。设轴向应变为ε,横向应变为ε'。试验表明,在弹性范围内,两者之比为一常数。该常数称为横向变形系数或泊松比,用μ表示,即: ε εμ'= 轴向应变ε和横向应变ε'的测试方法如下图所示。在板试件中央前后的两面沿着试件轴线方向粘贴应变片1R 和'1R ,沿着试件横向粘贴应变片2R 和'2R 。为了消除试件初曲率和加载可能存在偏心引起的弯曲影响,采用全桥接线法。分别是测量轴向应变ε和横向应变ε'的测量电桥。根据应变电测法原理基础,试件的轴向应变和横向应变是每台应变仪应变值读数的一半,即: r εε21= '='r εε2 1 实验时,为了验证胡克定律,采用等量逐级加载法,分别测量在相同荷载增量F ?作用下的轴向应变增量ε?和横向应变增量ε'?。若各级应变增量相同,就验证胡克定律。 五、 实验步骤 1. 测量试件。在试件的工作段上测量横截面尺寸,并计算试件的初始横截面面积o A 2. 拟定实验方案。 1) 确定试件允许达到的最大应变值(取材料屈服点S σ的70%~80%)及所需的最大载 荷值。 2) 根据初荷载和最大荷载值以及其间至少应有5级加载的原则,确定每级荷载的大小。 3) 准备工作。把试件安装在试验台上的夹头内,调整试验台,按图的接线接到两台应 变仪上。 4) 试运行。扭动手轮,加载至接近最大荷载值,然后卸载至初荷载以下。观察试验台 和应变仪是否处于正常工作状态。 5) 正式实验。加载至初荷载,记下荷载值以及两个应变仪读数r ε、'r ε。以后每增加 一级荷载就记录一次荷载值及相应的应变仪读数r ε、' r ε,直至最终荷载值。以上实验重复3遍。

弹性模量计算方法

用户登录 新用户注册Array大学物理实验 第一层次 预备性实验 基础性实验 第二层次 综合与设计1 综合与设计2 第三层次 研究与创新 自学物理实验 近代物理实验 专业物理实验 光电子技术实验 传感器技术实验 单片机应用实验 物理光学实验 应用光学实验 现代光学实验

弯曲法等。 用力F作用在一立方形物体的上面,并使其下面固定(如图一),物体将发生 形变成为斜的平行六面体,这种形变称为切变,出现切变后,距底面不同距离 处的绝对形变不同(AA'>BB'),而相对形变则相等,即 (6-3) 式中称为切变角,当值较小时,可用代替,实验表明,一定限度内切 变角与切应力成正比,此处S为立方体平行于底的截面积,现以符号 表 示切应力 ,则 (6-4) 比例系数G称切变模量。 测量切变模量的方法有静态扭转法、摆动法。 实验目的 1. 掌握测量固体杨氏弹性模量的一种方法。 2. 掌握测量微小伸长量的光杠杆法原理和仪器的调节使用。 3. 学会一种数据处理方法——逐差法。 实验仪器 杨氏模量仪、尺读望远镜、光杠杆、水准仪、千分尺、游标卡尺(精度0.02m m )及1kg砝码9个。 实验的详细装置如图1所示。其中尺读望远镜由望远镜和标尺架组成,望 远镜的仰角可由仰角螺钉调节,望远镜的目镜可以调节,还配有调焦手轮。杨 氏模量仪是一个较大的三脚架,装有两根平行的立柱,立柱上部横梁中央可以 固定金属丝,立柱下部架有一个小平台,用于架设光杠杆。小平台的位置高低 可沿立柱升降、调节、固定。三脚架的三个脚上配有三个螺丝,用于调节小平 台水平。 光杠杆如图2所示,将一个小反射镜装在一个三脚架上,前两脚和镜子同

杨氏弹性模量

几种不同的方法测杨氏弹性模量 卢一鸣(05110538) (东南大学,土木工程学院,南京211189) 摘要:介绍了杨氏弹性模量几种不同的测量方法,有传统的拉伸法、改进过的动力学法和方便的霍尔传感器测量法。 关键词:杨氏弹性模量;拉伸;动力学;霍尔传感器。 Several methods of measuring Young's modulus Lu Yi Ming ((Department of Civil Engineering,South East University ,Nanjing 05110538) Abstract:We introduce several way to measure Young's modulus.For example,stretching method, Kinetic method and Hall sensor method Key words: Young's modulus;stretch;kinetics; Hall sensor. 一、杨氏弹性模量的定义 杨氏模量(Young's modulus)是表征在弹性限度内物质材料抗拉或抗压的物理量,它是沿纵向的弹性模量,也是材料力学中的名词。1807年因英国医生兼物理学家托马斯·杨(Thomas Young, 1773-1829) 所得到的结果而命名。根据胡克定律,在物体的弹性限度内,应力与应变成正比,比值被称为材料的杨氏模量,它是表征材料性质的一个物理量,仅取决于材料本身的物理性质。杨氏模量的大小标志了材料的刚性,杨氏模量越大,越不容易发生形变。 二、目前通用的测量方法 测量杨氏模量的方法一般有拉伸法、梁弯曲法、振动法、内耗法等,还出现了利用光纤位移传感器、莫尔条纹、电涡流传感器和波动传递技术(微波或超声波)等实验技术和方法测量杨氏模量。

弹性模量概念

https://www.sodocs.net/doc/2619152346.html,/question/50928693.html?fr=qrl&fr2=query 弹性模量 开放分类:工程力学 拼音:tanxingmoliang 英文名称:modulusofelasticity 说明:又称杨氏模量。弹性材料的一种最重要、最具特征的力学性质。是物体弹性t变形难易程度的表征。用E表示。定义为理想材料有小形变时应力与相应的应变之比。E以单位面积上承受的力表示,单位为牛/米^2。模量的性质依赖于形变的性质。剪切形变时的模量称为剪切模量,用G表示;压缩形变时的模量称为压缩模量,用K表示。模量的倒数称为柔量,用J表示。 拉伸试验中得到的屈服极限бb和强度极限бS ,反映了材料对力的作用的承受能力,而延伸率δ 或截面收缩率ψ,反映了材料缩性变形的能力,为了表示材料在弹性范围内抵抗变形的难易程度,在实际工程结构中,材料弹性模量E的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变形量来判断其刚度的。一般按引起单为应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为: 式中A0为零件的横截面积。 由上式可见,要想提高零件的刚度E A0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。因此,构件的理论分析和设计计算来说,弹性模量E是经常要用到的一个重要力学性能指标。 在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E,也叫杨氏模量。 弹性模量在比例极限内,材料所受应力如拉伸,压缩,弯曲,扭曲,剪切等)与材料产生的相应应变之比,用牛/米^2表示。 https://www.sodocs.net/doc/2619152346.html,/view/30660.htm?fr=topic 最佳答案 - 由提问者2007-04-29 13:03:31选出 弹性模量反映固体对弹性形变的抵抗能力的物理量,对它的测量方法很多,这种方法测定弹性模量被国家标准总局推荐,该方法比静态法测量精度高,适用范围广。目的是让学生学会一种技能。

常用材料弹性模量

常用材料弹性模量 所谓弹性模量,是以在一定比例限度范围内拉伸应力和拉伸变形之比来表示。实际应用时,多以F-2 、F-5来表示2%或5%伸长时的应力。 在GB∕T 13022-1991中7.3规定:作应力-应变曲线,从曲线的初始直线部分计算拉伸弹和模量,以E(MPa)表示,E=δ∕ξ,式中δ-应力,MPa;ξ-应变。 在初始拉伸阶段,拉伸应力与形变化呈直线段,从这段应力与应变的关系可以计算试样的弹性模量。 而我们通常检测的薄膜断裂拉伸强度以及断裂伸长率,对于张力的设定而言不具有任何参考性,印刷复合时加载在薄膜上的应力必须控制在薄膜产生弹性变形的范围内,否则就是薄膜不可逆的拉伸变形,将产生严重的尺寸变化。 另外,薄膜张力设定还要考虑薄膜材料的受热稳定性,例如印刷干燥温度在50-80℃,复合干燥温度在55-90℃(水胶复合要高一些),复合热鼓温度在50-70℃等。常用材料的热稳定性依次为PET、NY >BOPP>消光OPP>CPP>PE。

下面我们探讨一下常用材料的弹性模量及耐热性对张力设定的影响:1、双向拉伸薄膜 作为表层基材,PET的弹性模量最高,其次是BOPP,再次是消光OPP,而BOPA在干燥条件时有良好的弹性模量(接近于PET薄膜),但受潮后挺度不足(弹性模量大幅降低,印刷套印困难)。同时,PET膜的热稳定性最好,其次是BOPP,再次消光OPP,由于消光OPP膜的弹性模量相对较低,同时热稳定性又较差,印刷冷却收卷后的回缩率较大,在夏季印刷收卷后易容易出现反粘现象,所以印刷消光OPP 时张力要调整得略小,干燥温度适当降低。 2、热封层基材的弹性模量 同时CPP的热稳定性远高于PE薄膜,因而LDPE薄膜的多色套印非常困难,需要配方调整提高其弹性模量及耐热稳定性。 对复合过程来说,最关键的是两贴合薄膜的张力匹配问题,也就是说复合后两层膜的回缩率要尽量一致,不然,轻则卷曲,重则产生遂道现象。例如,消光OPP干复铝箔,铝箔可以认为是不收缩,而消光OPP薄膜在加载复合张力的情况下经过50-80℃的烘箱,由于其弹性模量及耐热性都较PET及普通OPP差,因而松掉张力后的回缩率也会大一些,一般消光膜复合时张力要小干燥温度也要低一些。

关于土体的弹性模量

关于土体的弹性模量、压缩模量与变形模量 2013-05-30 15:39:28| 分类:自然科学|举报|字号订阅根据土体学推算的结果,在弹性阶段,E=Eo=Es(1-2μ^2/(1-μ))。但在实际工程中,经常发现有弹性模量大于压缩模量的情况,并有经验说是E=(2~5)·Es,且有试验数据,但是没有理论上的推导,对试验数据也未实际去研究过。从网络上收集这方面的论述,本篇进行简要总结,并适当修改,今后再逐步去积累这方面的经验。 论述零(关于变形模量和压缩模量的关系,土力学教材) 土的变形模量和压缩模量,是判断土的压缩性和计算地基压缩变形量的重要指标。为了建立变形模量和压缩模量的关系,在地基设计中,常需测量土的侧压力系数ξ 和侧膨胀系数μ(泊松比)。侧压力系数ξ:是指侧向压力δx 与竖向压力δz 之比值,即: ξ =δx/δz 土的侧膨胀系数μ (泊松比):是指在侧向自由膨胀条件下受压时,侧向膨胀的应变εx 与竖向压缩的应变εz 之比值,即μ=εx/εz 。根据材料力学广义胡克定律推导求得ξ 和μ 的相互关系,ξ=μ/(1-μ)或μ=ε/(1 +ε),土的侧压力系数可由专门仪器测得,但侧膨胀系数不易直接测定,可根据土的侧压力系数,按上式求得。 在土的压密变形阶段,假定土为弹性材料,则可根据材料力学理论,推导出变形模量E0 和压缩模量Es 之间的关系。令β=1-2u*u/(1-u),则

Eo=βEs 。 当μ =0 ~0.5 时,β = 1 ~0 ,即Eo/Es 的比值在0 ~ 1 之间变化,即一般Eo 小于Es。但很多情况下Eo/Es 都大于1。其原因为:一方面是土不是真正的弹性体,并具有结构性;另一方面就是土的结构影响;三是两种试验的要求不同),μ、β 的理论换算值: 土的种类及其对应的μ、β 值: 碎石土0.15 ~0.20 ,0.95~0.90 砂土0.20 ~0.25 ,0.90 ~0.83 粉土0.23 ~0.31 ,0.86 ~0.726 粉质粘土0.25~0.35 ,0.83 ~0.62 粘土0.25 ~0.40 ,0.83 ~0.47 注:以上E0 与Es 之间的关系是理论关系。 E --弹性模量;Es --压缩模量;Eo--变形模量。由于土的侧膨胀系数μ(泊松比)是弹性力学的参数,土通常是弹塑性材料,所以μ>0.5 时,它就不能再成为泊松比了。 论述一(实际遇上的情况) 变形模量的定义在表达式上和弹性模量是一样的E=σ/ε ,对于变形模量ε是指应变,包括弹性应变εe和塑性应变εp。对于弹性模量而言,ε 就是指εe(计算变形模量时,应变ε 包括了弹性应变和塑性应变)。 岩土的弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量,即:弹性模量>压缩模量>变形模量。弹性模量也叫杨氏模量(岩土体在弹性限度内应力与应变的比值),压缩模量一般是有侧限的,杨氏模量

材料弹性模量E和泊松比实验测定

实验三 材料弹性模量E 和泊松比μ的测定实验 一、实验目的 1、测定常用金属材料的弹性模量E 和泊松比μ。 2、验证胡克(Hooke )定律。 二、实验仪器设备和工具 1、组合实验台中拉伸装置 2、XL2118系列力&应变综合参数测试仪 三、实验原理和方法 试件采用矩形截面试件,电阻应变片布片方式如图3-1。在试件中央截面上,沿前后两面的轴线方向分别对称的贴一对轴向应变片R1、R1ˊ和一对横向应变片R2、R2ˊ,以测量轴向应变ε和横向应变εˊ。 补偿块 图 3-1 拉伸试件及布片图 1、 弹性模量 E 的测定 由于实验装置和安装初始状态的不稳定性,拉伸曲线的初始阶段往往是非线性的。为了尽可能减小测量误差,实验宜从一初载荷00(0)P P ≠开始,采用增量法,分级加载,分别测量在各相同载荷增量P ?作用下,产生的应变增量ε?,并求出ε?的平均值。设试件初始横截面面积为0A ,又因L L ε=?,则有 A E P ε??=0 上式即为增量法测E 的计算公式。 式中 0A — 试件截面面积 ε? — 轴向应变增量的平均值 组桥方式采用1/4桥单臂测量方式,应变片连接见图3-2。

R 1 R 工作片 Uab A C 补偿片 R 3 R 4 机内电阻 D E 图3-2 1/4桥连接方式 实验时,在一定载荷条件下,分别对前、后两枚轴向应变片进行单片测量,并取其平均值 '11()2 εεε+=。显然ε代表载荷P 作用下试件的实际应变量。而且前后两片应变片可以相互抵消偏心弯曲引起的测量误差。 2、 泊松比μ的测定 利用试件上的横向应变片和纵向应变片合理组桥,为了尽可能减小测量误差,实验宜从一初载荷00(0)P P ≠开始,采用增量法,分级加载,分别测量在各相同载荷增量△P 作用下,横向应变增量ε'?和纵向应变增量ε?。求出平均值,按定义 'εμε ?=? 便可求得泊松比μ。 四、实验步骤 1、明确试件尺寸的基本尺寸,宽30mm ,厚5mm 。 2、调整好实验加载装置。 3、按实验要求接好线,调整好仪器,检查整个测试系统是否处于正常工作状态。 4、均匀缓慢加载至初载荷P 0,记下各点应变的初始读数;然后分级等增量加载,每增加一级 载荷,依次记录各点电阻应变片的应变值,直到最终载荷。将实验记录填入实验报告 5、 作完实验后,卸掉载荷,关闭电源,整理好所用仪器设备,清理实验现场,将所用仪器设备复原,实验资料交指导教师检查签字。

弹性模量及刚度关系

1、弹性模量: (1)定义 弹性模量:材料在弹性变形阶段,正应力和对应的正应变的比值。 材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。 “弹性模量”是描述物质弹性的一个物理量,是一个总称,包括“氏模量”、“剪切模量”、“体积模量”等。所以,“弹性模量”和“体积模量”是包含关系。 一般地讲,对弹性体施加一个外界作用(称为“应力”)后,弹性体会发生形状的改变(称为“应变”),“弹性模量”的一般定义是:应力除以应变。例如: 线应变——对一根细杆施加一个拉力F,这个拉力除以杆的截面积S,称为“线应力”,杆的伸长量dL除以原长L,称为“线应变”。线应力除以线应变就等于氏模量E=( F/S)/(dL/L) 剪切应变——对一块弹性体施加一个侧向的力f(通常是摩擦力),弹性体会由方形变成菱形,这个形变的角度a称为“剪切应变”,相应的力f除以受力面积S称为“剪切应力”。剪切应力除以剪切应变就等于剪切模量G=( f/S)/a 体积应变——对弹性体施加一个整体的压强p,这个压强称为“体积应力”,弹性体的体积减少量(-dV)除以原来的体积V称为“体积应变”,体积应力除以体积应变就等于体积模量: K=P/(-dV/V)

在不易引起混淆时,一般金属材料的弹性模量就是指氏模量,即正弹性模量。单位:E(弹性模量)吉帕(GPa) (2)影响因素 弹性模量是工程材料重要的性能参数,从宏观角度来说,弹性模量是衡量物体抵抗弹性变形能力大小的尺度,从微观角度来说,则是原子、离子或分子之间键合强度的反映。 凡影响键合强度的因素均能影响材料的弹性模量,如键合方式、晶体结构、化学成分、微观组织、温度等。因合金成分不同、热处理状态不同、冷塑性变形不同等,金属材料的氏模量值会有5%或者更大的波动。 但是总体来说,金属材料的弹性模量是一个对组织不敏感的力学性能指标,合金化、热处理(纤维组织)、冷塑性变形等对弹性模量的影响较小,温度、加载速率等外在因素对其影响也不大,所以一般工程应用中都把弹性模量作为常数。 (3)意义 弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。 弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力。它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的

弹性模量定义与公式定稿版

弹性模量定义与公式 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

弹性模量 开放分类:基本物理概念工程力学物理学自然科学 “弹性模量”的一般定义是:应力除以应变,即弹性变形区的应力-应变曲线的斜率:其中λ是弹性模量,【stress应力】是引起受力区变形的力,【strain应变】是应力引起的变化与物体原始状态的比,通俗的讲对弹性体施加一个外界作用,弹性体会发生形状的改变称为“应变”。材料在弹性变形阶段,其应力和应变成正比例关系(即胡克定律),其比例系数称为弹性模量。弹性模量的单位是达因每平方厘米。“弹性模量”是描述物质弹性的一个物理量,是一个总称,包括“杨氏模量”、“剪切模量”、“体积模量”等。所以,“弹性模量”和“体积模量”是包含关系。 编辑摘要 基本信息?编辑信息模块 中文名:弹性模量其他外文名:Elastic Modulus 定义:应力除以应变类型:定律 目录 1定义 2线应变 3体积应变 4意义 5说明

6单位指标 定义/弹性模量?编辑 混凝土弹性模量测定仪图册 弹性模量modulusofelasticity,又称弹性系数,杨氏模量。 弹性材料的一种最重要、最具特征的力学性质。是物体变形难易程度的表征。用E表示。定义为理想材料在小形变时应力与相应的应变之比。 根据不同的受力情况,分别有相应的拉伸弹性模量?(杨氏模量)、剪切弹性模量?(刚性模量)、体积弹性模量?等。它是一个材料常数,表征材料抵抗弹性变形的能力,其数值大小反映该材料弹性变形的难易程度。 对一般材料而言,该值比较稳定,但就高聚物而言则对温度和加载速率等条件的依赖性较明显。 对于有些材料在弹性范围内应力-应变曲线不符合直线关系的,则可根据需要可以取切线弹性模量、割线弹性模量等人为定义的办法来代替它的弹性模量值。 线应变/弹性模量?编辑

土的弹性模量测定

Es测定 仪器设备 1.固结仪:如附图8-1所示,试样面积30cm2,高2cm。 2.量表:量程10mm,最小分度0.01mm。 3.其它:刮土刀、电子天平、秒表。 操作步骤 (1)切取试样:用环刀切取原状土样或制备所需状态的扰动土样。 (2)测定试样密度:取削下的余土测定含水率,需要时对试样进行饱和。 (3)安放试样:将带有环刀的试样安放在压缩容器的护环内,并在容器内顺次放上底板、湿润的滤纸和透水石各一,然后放入加压导环和传压板。 (4)检查设备:检查加压设备是否灵敏,调整杠杆使之水平。 (5)安装量表:将装好试样的压缩容器放在加压台的正中,将传压钢珠与加压横梁的凹穴相连接。然后装上量表,调节量表杆头使其可伸长的长度不小于8mm,并检查量表是否灵活和垂直(在教学试验中,学生应先练习量表读数)。 (6)施加预压:为确保压缩仪各部位接触良好,施加1kPa的预压荷重,然后调整量表读数至零处 (7)加压观测: 1)荷重等级一般为50、100、200、400kPa。 2)如系饱和试样,应在施加第一级荷重后,立即向压缩容器注满水。如系非饱和试样,需用湿棉纱围住加压盖板四周,避免水分蒸发。 3)压缩稳定标准规定为每级荷重下压缩24小时,或量表读数每小时变化不大于0.005 mm认为稳定。测记压缩稳定读数后,施加第二级荷重。依次逐级加荷至试验结束。 4)试验结束后迅速拆除仪器各部件,取出试样,必要时测定试验后的含水率。 试验注意事项 1.首先装好试样,再安装量表。在装 量表的过程中,小指针需调至整数位,大指针调至零,量表杆头要有一定的伸缩范围,固定在量表架上。 2.加荷时,应按顺序加砝码;试验 中不要震动实验台,以免指针产生移动。 计算及制图 1.按下式计算试样的初始孔隙比: 附图8-1 固结仪示意图 1-水槽;2-护环;3-环刀;4-加压上盖; 5-透水石;6-量表导杆;7-量表架;8-试样

弹性模量定义与公式

弹性模量 开放分类: 弹性模量”的一般定义是:应力除以应变,即弹性变形区的应力一应变曲线的斜率:其中入 是弹性模量,【stress应力】是引起受力区变形的力,【strain应变】是应力引起的变化与 物体原始状态的比,通俗的讲对弹性体施加一个外界作用,弹性体会发生形状的改变称为应 变”材料在弹性变形阶段,其应力和应变成正比例关系(即胡克定律),其比例系数称为弹性模量。弹性模量的单位是达因每平方厘米。弹性模量”是描述物质弹性的一个物理量, 是一个总称,包括杨氏模量”、剪切模量”、体积模量”等。所以,弹性模量”和体积模量” 是包含关系。 基本信息 中文名:弹性模量其他外文名:Elastic Modulus 定义:应力除以应变类型:定律 目录 1 2 3 4 5 6 定义/弹性模量 弹性模量modulusofelasticity ,又称弹性系数,杨氏模量。 弹性材料的一种最重要、最具特征的力学性质。是物体变形难易程度的表征。用E表示。

定义为理想材料在小形变时应力与相应的应变之比。 根据不同的受力情况,分别有相应的(杨氏模量)、(刚性模量)、等。它是一个材料常 数,表征材料抵抗弹性变形的能力,其数值大小反映该材料弹性变形的难易程度。 对一般材料而言,该值比较稳定,但就高聚物而言则对温度和加载速率等条件的依赖性较明显。 对于有些材料在弹性范围内应力-应变曲线不符合直线关系的,则可根据需要可以取切线弹性模量、割线弹性模量等人为定义的办法来代替它的弹性模量值。 对一根细杆施加一个拉力F,这个拉力除以杆的截面积S,称为“线应力”,杆的伸长量dL 除以原长L,称为“线应变”。线应力除以线应变就等于E=( F/S)/(dL/L) 剪切应变: 对一块弹性体施加一个侧向的力 f (通常是摩擦力),弹性体会由方形变成菱形,这个形变 的角度a称为“剪切应变”,相应的力f除以受力面积S称为“剪切应力”。剪切应力除以剪切应变就等于剪切模量G=( f/S)/a 体积应变/弹性模量 对弹性体施加一个整体的压强p,这个压强称为“体积应力”,弹性体的体积减少量(-dV) 除以原来的体积V称为“体积应变”,体积应力除以体积应变就等于体积模量:K=P/(-dV/V)在不易引起混淆时,一般金属材料的弹性模量就是指杨氏模量,即。 单位:E (弹性模量)兆帕(MPa 意义/弹性模量 弹性模量是工程材料重要的性能参数,从宏观角度来说,弹性模量是衡量物体抵抗能力大小 的尺度,从微观角度来说,则是原子、或之间键合强度的反映。凡影响键合强度的因素均能 影响材料的弹性模量,如键合方式、、、微观、温度等。因合金成分不同、热处理状态不同、

弹性模量E 和泊松比μ的测定

00EA A P ==ε σε弹性模量E 和泊松比μ的测定 拉伸试验中得到的屈服极限бb 和强度极限бS ,反映了材料对力的作用的承受能力,而延伸率δ 或截面收缩率ψ,反映了材料缩性变行的能力,为了表示材料在弹性范围内抵抗变行的难易程度,在实际工程结构中,材料弹性模量E 的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变性量来判断其刚度的。一般按引起单为应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为: 式中 A 0为零件的横截面积。 由上式可见,要想提高零件的刚度E A 0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。因此,构件的理论分析和设计计算来说,弹性模量E 是经常要用到的一个重要力学性能指标。 在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E,也叫杨氏模量。横向应变与纵向应变之比值称为泊松比μ,也叫横向变性系数,它是反映材料横向变形的弹性常数。 因此金属才料拉伸时弹性模量E 地测定是材料力学最主要最基本的一个实验,下面用电测法测定低碳钢弹性模量E 和泊松比μ。 (一) 试验目的 1.用电测方法测定低碳钢的弹性模量E 及泊松比μ; 2.验证虎克定律; 3.掌握电测方法的组桥原理与应用。 (二) 试验原理 1.测定材料弹性模量E 一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为: 0EA PL L ?= ? (1) 若已知载荷ΔP 及试件尺寸,只要测得试件伸长ΔL 即可得出弹性模量E。 (2) 由于本试验采用电测法测量,其反映变形测试的数据为应变增量,即 (3) 所以(2)成为: (4) 式中: ΔP——载荷增量,kN; A 0-----试件的横截面面积,cm 为了验证力与变形的线性关心,采用增量法逐级加载,分别测量在相同载荷增量 ΔP 0 )(A L PL E ???=0 ) (L L ??=?εε ???=10A P E

几个基本常数弹性模量-泊松比-应力应变曲线

几个基本常数弹性模量-泊松比-应力应变曲线

全应力-应变曲线 测量岩石的应力应变曲线一般可以有两中试验机:一种是,柔性试验机,使用这种试验机测量时,容易发发生“岩爆”现象,导致试验中不能得到峰值以后的应力应变信息。另种是,刚性试验机,这种试验机刚度比较高,有“让压”的特点,就不会有“岩爆”现象发生,可以得到全应力-应变曲线用以研究岩石破裂的性质。 刚度矩阵的物理意义: 单元刚度矩阵的物理意义,一句话概括说来就是各个节点在广义力的作用下节点的位移变化量。 强度是零件的抗应力程度,反映的是什么时候断裂,破损等 刚度反映的是变形大小,就是零件受力后的变形。 刚度矩阵和柔度矩阵的物理意义: 一般将刚度矩阵记为[D],柔度矩阵为[C],二者互为逆矩阵。 [C]矩阵中任一元素Cij的物理意义为:当微小单元体上仅作用有j方向的单位应力增加,而其他方向无应力增量时,i方向的应变增量分量就等于Cij。 [D]矩阵中任一元素Dij的物理意义为:要使微小单元体只在j方向发生单位应变,而其他方向不允许发生应变,则必须造成某种应力组合,在这种应力组合中,i方向应力分量为Dij。 对于各向异性材料,[D]和[C]都是非对称矩阵,从机理上来说是合理的,然而它给数学模型带来复杂性,也增加了有限元计算的困难。从工程实用的角度来考虑,往往忽略这种非对称性,而处理为对称矩阵。 物理概念:杨氏模量和泊松比 在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E,也叫杨氏模量。而横向应变与

纵向应变之比值称为泊松比μ,也叫横向变性系数,它是反映材料横向变形的弹性常数。 杨氏模量(Young's modulus)是表征在弹性限度内物质材料抗拉或抗压的物理量,它是沿纵向的弹性模量。1807年因英国医生兼物理学家托马斯·杨(Thomas Young, 1773-1829) 所得到的结果而命名。根据胡克定律,在物体的弹性限度内,应力与应变成正比,比值被称为材料的杨氏模量,它是表征材料性质的一个物理量,仅取决于材料本身的物理性质。杨氏模量的大小标志了材料的刚性,杨氏模量越大,越不容易发生形变。 FL/EA=△L,其中F是力,L是长度,E是弹性模量,A是截面积,△L 是长度变化量,也就是形变。弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力。它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。力学里没有弹性系数这个物理量。 杨氏弹性模量是选定机械零件材料的依据之一是工程技术设计中常用的参数。杨氏模量的测定对研究金属材料、光纤材料、半导体、纳米材料、聚合物、陶瓷、橡胶等各种材料的力学性质有着重要意义,还可用于机械零部件设计、生物力学、地质等领域。 测量杨氏模量的方法一般有拉伸法、梁弯曲法、振动法、内耗法等,还出现了利用光纤位移传感器、莫尔条纹、电涡流传感器和波动传递技术(微波或超声波)等实验技术和方法测量杨氏模量。 胡克定律和杨氏弹性模量 固体在外力作用下将发生形变,如果外力撤去后相应的形变消失,这种形变称为弹性形变。如果外力后仍有残余形变,这种形变称为范性形变。 应力(σ)单位面积上所受到的力(F/S)。 应变(ε ):是指在外力作用下的相对形变(相对伸长DL/L)它反映了物体形变的大小。 胡克定律:在物体的弹性限度内,应力与应变成正比,其比例系数称为杨氏模量(记为Y)。用公式表达为: Y=(F·L)/(S·△L) Y在数值上等于产生单位应变时的应力。它的单位是与胁力的单位相同。杨氏弹性模量是材料的属性,与外力及物体的形状无关。 杨氏模数(Young's modulus )是材料力学中的名词,弹性材料承受正向应力时会产生正向应变,定义为正向应力与正向应变的比值。公式记为 E = σ / ε 其中,E 表示杨氏模数,σ 表示正向应力,ε 表示正向应变。 杨氏模量大,说明压缩或拉伸该材料,材料的形变小。 一般的如楼上所说但是有些是各向异性的及各个方向的弹性模量不同用矩阵表示 弹性模量 英文名称:Elastic Modulus,又称Young 's Modulus(杨氏模量) 定义:材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克

弹性模量定义与公式

弹性模量 开放分类:基本物理概念工程力学物理学自然科学 “弹性模量”的一般定义是:应力除以应变,即弹性变形区的应力-应变曲线的斜率:其中 λ是弹性模量,【stress应力】是引起受力区变形的力,【strain应变】是应力引起的变 化与物体原始状态的比,通俗的讲对弹性体施加一个外界作用,弹性体会发生形状的改变称 为“应变”。材料在弹性变形阶段,其应力和应变成正比例关系(即胡克定律),其比例系 数称为弹性模量。弹性模量的单位是达因每平方厘米。“弹性模量”是描述物质弹性的一个 物理量,是一个总称,包括“氏模量”、“剪切模量”、“体积模量”等。所以,“弹性模 量”和“体积模量”是包含关系。 编辑摘要 基本信息编辑信息模块 中文名:弹性模量其他外文名:Elastic Modulus 定义:应力除以应变类型:定律 目录 ?1定义 ?2线应变 ?3体积应变 ?4意义 ?5说明 ?6单位指标 定义/弹性模量编辑 混凝土弹性模量测定仪图册 弹性模量modulusofelasticity,又称弹性系数,氏模量。 弹性材料的一种最重要、最具特征的力学性质。是物体变形难易程度的表征。用E表示。

定义为理想材料在小形变时应力与相应的应变之比。 根据不同的受力情况,分别有相应的拉伸弹性模量(氏模量)、剪切弹性模量(刚性模量)、体积弹性模量等。它是一个材料常数,表征材料抵抗弹性变形的能力,其数值大小反映该材料弹性变形的难易程度。 对一般材料而言,该值比较稳定,但就高聚物而言则对温度和加载速率等条件的依赖性较明显。 对于有些材料在弹性围应力-应变曲线不符合直线关系的,则可根据需要可以取切线弹性模量、割线弹性模量等人为定义的办法来代替它的弹性模量值。 线应变/弹性模量编辑 弹性模量图册 对一根细杆施加一个拉力F,这个拉力除以杆的截面积S,称为“线应力”,杆的伸长量dL 除以原长L,称为“线应变”。线应力除以线应变就等于氏模量E=( F/S)/(dL/L) 剪切应变: 对一块弹性体施加一个侧向的力f(通常是摩擦力),弹性体会由方形变成菱形,这个形变的角度a称为“剪切应变”,相应的力f除以受力面积S称为“剪切应力”。剪切应力除以剪切应变就等于剪切模量G=( f/S)/a 体积应变/弹性模量编辑 对弹性体施加一个整体的压强p,这个压强称为“体积应力”,弹性体的体积减少量(-dV)除以原来的体积V称为“体积应变”,体积应力除以体积应变就等于体积模量: K=P/(-dV/V) 在不易引起混淆时,一般金属材料的弹性模量就是指氏模量,即正弹性模量。 单位:E(弹性模量)兆帕(MPa) 意义/弹性模量编辑 弹性模量是工程材料重要的性能参数,从宏观角度来说,弹性模量是衡量物体抵抗弹性变形能力大小的尺度,从微观角度来说,则是原子、离子或分子之间键合强度的反映。凡影响键

翻译(弹性模量)

3.2 弹性模型 3.2.1各向异性 各向异性材料在各个方向具有同样的性质我们不能将任何一个方向与任何其他方向区分开。从地下任何地方取出的试样都表现出个性。然而,我们知道土已经以某种方式沉积—例如,沉积性土在垂直方向受重力作用而沉积。另外,沉积速度可能呈季节变化,所以土体或多或少地包含了颗粒尺寸或可塑性略微相异的标志性土层。分层的范围可能会非常小,我们不期望区分不同材料,但在不同方向的分层可能还是足以改变不同方向的土的性质—换句话说就是造成其各向异性。 我们可以将弹性应变增量和应力增量的刚度关系简写为 其中是刚度矩阵,因此是柔度矩阵。对于一个完全整体各向异性弹性材料 其中,每个字母,,...是,在原理上是一个独立的弹性参数,弹性材料刚度矩阵必要的对称性已推导出独立参数的最大值为21。一旦存在矩阵对称性,独立弹性参数的数量就减少了(克兰平,1981)。 例如,对于单斜对称(对称面)柔度矩阵有形式如下: 有13个弹性常数。正交对称(区分、、对称面)给出9个常数: 然而,立方体对称性(同一的、、对称面,与立方体相反面结合的面一起)只给出三个常数:

如果我们进一步要求和设和,那么我们发现(3.1)的各向同性弹性柔度矩阵。 不过,如果岩土工程材料具有一定的组构对称性,减少独立弹性参数的数量,显然是很方便的,正如料想的那样,受构造力、冰、或人推动的大部分材料,将不再拥有任何这类对称性,只要有一个域的弹性反应,我们应该期望要求全部21个弹性参数独立。如果我们选择将这样的材料建模成伴有某些限制对称性的各向同性弹性或各向异性弹性,那么我们不得不分辨到这是对土体和岩石可能不了解的建模结果。 然而,许多土都在横向范围区域内沉积,沉积的对称性基本上是垂直的。从所有水平方向看是一样的,但横向刚度预计将不同于垂直刚度。现在柔度矩阵的形式为: 并且我们可以写为: 这被形容为横向各向同性或六边形对称的交叉各向异性。有5个独立的弹性参数: 和分别是垂直向和水平向不密闭压缩的杨氏模量;是一个垂直面上的剪切模量(图3.9a)。泊松比及分别是与发生在正交于压缩的横向方向和压缩的垂直方向的水平方向上的横向应变有关(图3.9,)主轴与仪器轴平行三轴仪的交叉各向异性土的试验,并没有给我们任何可能性发现查实,因为这要求控制施加对试样垂直和水平面上的剪应力。事实上,我们只能确定5个弹性参数中的3个。如果我们对于垂直轴与三轴仪主轴平行的试样,就径向和轴向的应力和应变书写(3.42),我们发现: 柔度矩阵不是对称的,因为在三轴试验环境中,应变增量和应力增量不是完全共轭的。我们推出:当我们可以分别确定和时,我们可以得到的仅有的另外一个弹性参数是一个复合刚度。 我们不能将和分离开(林斯等,2000)。 另一方面,格拉汉姆和豪斯贝(1983)提出了(3.41)或(3.42)得特殊形式,只用了3个弹性参数,但对于此交叉各向异性材料,要求5个弹性参数是相互依赖的。 这是书写的杨氏模量,在垂直方向杨氏模量,泊松比,连同第三个参数。在水平和垂直方向的刚度比是及其他约束关系: 。

弹性模量定义与公式

弹性模量 开放分类:基木物理概念工程力学物理学自然科学 "弹性模量”得一般定义就是:应力除以应变,即弹性变形区得应力-应变曲线得斜率:其中入就是弹性模量,【s tress应力】就是引起受力区变形得力,【s t ra i n应变】就是应力引起得变化与物体原始状态得比,通俗得讲对弹性体施加一个外界作用,弹性体会发生形状得改变称为"应变”。材料在弹性变形阶段,其应力与应变成正比例关系(即胡克左律),苴比例系数称为弹性模量。弹性模量得单位就是达因每平方厘米。“弹性模量"就是描述物质弹性得一个物理量,就是一个总称,包括“杨氏模量”、“剪切模量”、"体积模量”等。所以,"弹性模疑”与"体积模量”就是包含关系。 編辑摘婆 基本信息编辑信息模块 中文名:弹性模量其她外文名:El a stic Modulus 定义:应力除以应变类型:定律 目录 ?1定义 ?2线应变 ?3体积应变 ?4意义 ?5说明 ?6单位指标 定义/弹性模量编辑 混凝丄弹性模址测定仪图册 弹性模Mmo d u 1 u sof e 1 as t ic i ty,又称弹性系数,杨氏模量。金弹性材料得一种最重要、最具特征得力学性质。就是物体变形难易程度得表征。用E表示。对芒义为理想材料在小形变时应力与相应得

应变之比。A根据不同得受力情况,分别有相应得拉伸弹性模量(杨氏模量)、剪切弹性模量(刚性模虽:)、体积弹性模量等。它就是一个材料常数,表征材料抵抗弹性变形得能力,其数值大小反映该材料弹性变形得难易程度。4对一般材料而言,该值比较稳迄但就高聚物而言则对温度与加载速率等条件得依赖性较明显“对于有些材料在弹性范国内应力-应变曲线不符合直线关系得,则可根拯需要可以取切线弹性模量、割线弹性模量等人为定义得办法来代替它得弹性模量值。 线应变/弹性模量编辑 弹性模址图册 对一根细杆施加一个拉力F,这个拉力除以杆得截而积S,称为“线应力”,杆得伸长MdL 除以原长L,称为“线应变”。线应力除以线应变就等于杨氏模量E二(F/S)/(dL/Lb剪切应变/对一块弹性体施加一个侧向得力f (通常就是摩擦力),弹性体会由方形变成菱形,这个形变得角度a称为“剪切应变”,相应得力f除以受力面积S称为“剪切应力”。剪切应力除以剪切应变就等于剪切模量G=( f/S) /a 体积应变/弹性模量编辑 对弹性体施加一个整体得压强P,这个压强称为“体积应力”,弹性体得体积减少量(- d V)除以原来得体积V称为“体积应变”,体积应力除以体积应变就等于体积模戢:K=P/(-d V/V) 在不易引起混淆时,一般金属材料得弹性模量就就是指杨氏模量,即正弹性模量。》单位:E (弹性模量)兆帕(MPa) 意义/弹性模量编辑 弹性模量就是工程材料重要得性能参数,从宏观角度来说,弹性模量就是衡呈物体抵抗弹性变形能力大小得尺度,从微观角度来说,则就是原子、离子或分子之间键合强度得反映。凡影响键合强度得因素均能影响材料得弹性模量,如键合方式、晶体结构、化学成分、微观组织、温度等。因合金成分不同、热处理状态不同、冷塑性变形不同等,金属材料得杨氏模量值会有砒或者更大得波动。但就是总体来说,金属材料得弹性模量就是一个对组织不敏感得力学性能指标,合金化、热处理(纤维组织)、冷塑性变形等对弹性模量得影响较小,温度、加载速率等外在因素对英影响也不大,所以一般工程应用中都把弹性模量作为常数。》弹性模量可视为衡量材料产生弹性变形难易程度得指标,英值越大,使材料发生一泄弹性变形得应力也越大,即材料刚度越大,亦即在一左应力作用下,发生弹性变形越小。弹性模虽:E就是指材料在外力作用下产生单位弹性变形所需要得应力。它就是反映材料抵抗弹性变形能力得指标,相当于普通弹簧中得刚度。

纤维初始模量

纤维初始模量 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

纤维初始模量 纤维的初始模量即弹性模量(或杨氏模量)是指纤维受拉伸而伸长为原长的1%时所需的应力。 初始模量表征纤维对小形变的抵抗能力,在衣着上则反映纤维对小的拉伸作用或弯曲作用所变形的硬挺度。纤维的初始模量越大,越不易变形,亦即在纤维制品的使用过程中形状的改变越小。例如,在主要的合成纤维品种中,以涤纶的初始模量为最大,其次为腈纶,锦纶则较小,因而涤纶织物挺括,不易起皱,而锦纶织物则易起皱,保形性差。 纤维的初始模量是什么 纤维的初始模量是指纤维在负荷-伸长曲线上起始一段直线部分的应力应变值(StressandStrainrelationshipillustration).在曲线起始部分的斜率.其大小表示纤维在小负荷作用下变形的难易程度,反映了纤维的刚性.初始模量大,表示纤维在小负荷作用下不容易变形,刚性比较好,其制品就比较挺括;反之,初始模量小,那么刚性比较差,制品就比较软.涤纶纤维的初始模量比较高,干态和湿态时几乎相同,所以涤纶产品挺括,免烫性能好.锦纶纤维的初始模量低,所以其织物比较软,没有身骨.羊毛的初始模量也比较低,所以手感柔软. 棉的初始模量也比较高,麻纤维的更高,所以手感刚硬. 强力,强度和断裂伸长率等指标,只能反映纤维一次拉伸到断裂时的性质.然而,在纺织加工和纺织品使用过程中,大量遇到的确实远较强力和断裂伸长率为小的负荷和伸长,因此还必须研究他们在拉伸全过程中的

应力,应变情况,这就有必要引出一些和拉伸曲线有关的其他指标:初始模量,屈服应力和屈服伸长率,断裂功,断裂比功和功系数等

相关主题