搜档网
当前位置:搜档网 › Introduction to Data Mining

Introduction to Data Mining

Introduction to Data Mining
Introduction to Data Mining

Introduction to Data Mining

Abstract:Microsoft? SQL Server? 2005 provides an integrated environment for creating and working with data mining models. This tutorial uses four scenarios, targeted mailing, forecasting, market basket, and sequence clustering, to demonstrate how to use the mining model algorithms, mining model viewers, and data mining tools that are included in this release of SQL Server.

Introduction

The data mining tutorial is designed to walk you through the process of creating data mining models in Microsoft SQL Server 2005. The data mining algorithms and tools in SQL Server 2005 make it easy to build a comprehensive solution for a variety of projects, including market basket analysis, forecasting analysis, and targeted mailing analysis. The scenarios for these solutions are explained in greater detail later in the tutorial.

The most visible components in SQL Server 2005 are the workspaces that you use to create and work with data mining models. The online analytical processing (OLAP) and data mining tools are consolidated into two working environments: Business Intelligence Development Studio and SQL Server Management Studio. Using Business Intelligence Development Studio, you can develop an Analysis Services project disconnected from the server. When the project is ready, you can deploy it to the server. Y ou can also work directly against the server. The main function of SQL Server Management Studio is to manage the server. Each environment is described in more detail later in this introduction. For more information on choosing between the two environments, see "Choosing Between SQL Server Management Studio and Business Intelligence Development Studio" in SQL Server Books Online.

All of the data mining tools exist in the data mining editor. Using the editor you can manage mining models, create new models, view models, compare models, and create predictions based on existing models.

After you build a mining model, you will want to explore it, looking for interesting patterns and rules. Each mining model viewer in the editor is customized to explore models built with a specific algorithm. For more information about the viewers, see "V iewing a Data Mining Model" in SQL Server Books Online.

Often your project will contain several mining models, so before you can use a model to create predictions, you need to be able to determine which model is the most accurate. For this reason, the editor contains a model comparison tool called the Mining Accuracy Chart tab. Using this tool you can compare the predictive accuracy of your models and determine the best model.

To create predictions, you will use the Data Mining Extensions (DMX) language. DMX extends SQL, containing commands to create, modify, and predict against mining models. For more information about DMX, see "Data Mining Extensions (DMX) Reference" in SQL Server

Books Online. Because creating a prediction can be complicated, the data mining editor contains a tool called Prediction Query Builder, which allows you to build queries using a graphical interface. Y ou can also view the DMX code that is generated by the query builder.

Just as important as the tools that you use to work with and create data mining models are the mechanics by which they are created. The key to creating a mining model is the data mining algorithm. The algorithm finds patterns in the data that you pass it, and it translates them into a mining model — it is the engine behind the process.

Some of the most important steps in creating a data mining solution are consolidating, cleaning, and preparing the data to be used to create the mining models. SQL Server 2005 includes the Data Transformation Services (DTS) working environment, which contains tools that you can use to clean, validate, and prepare your data. For more information on using DTS in conjunction with a data mining solution, see "DTS Data Mining Tasks and Transformations" in SQL Server Books Online.

In order to demonstrate the SQL Server data mining features, this tutorial uses a new sample database called AdventureWorksDW. The database is included with SQL Server 2005, and it supports OLAP and data mining functionality. In order to make the sample database available, you need to select the sample database at the installation time in the “Advanced” dialog for component selection.

Adventure Works

AdventureWorksDW is based on a fictional bicycle manufacturing company named Adventure Works Cycles. Adventure Works produces and distributes metal and composite bicycles to North American, European, and Asian commercial markets. The base of operations is located in Bothell, Washington with 500 employees, and several regional sales teams are located throughout their market base.

Adventure Works sells products wholesale to specialty shops and to individuals through the Internet. For the data mining exercises, you will work with the AdventureWorksDW Internet sales tables, which contain realistic patterns that work well for data mining exercises.

For more information on Adventure Works Cycles see "Sample Databases and Business Scenarios" in SQL Server Books Online.

Database Details

The Internet sales schema contains information about 9,242 customers. These customers live in six countries, which are combined into three regions:

North America (83%)

Europe (12%)

Australia (7%)

The database contains data for three fiscal years: 2002, 2003, and 2004.

The products in the database are broken down by subcategory, model, and product.

Business Intelligence Development Studio

Business Intelligence Development Studio is a set of tools designed for creating business intelligence projects. Because Business Intelligence Development Studio was created as an IDE environment in which you can create a complete solution, you work disconnected from the server. Y ou can change your data mining objects as much as you want, but the changes are not reflected on the server until after you deploy the project.

Working in an IDE is beneficial for the following reasons:

The Analysis Services project is the entry point for a business intelligence solution. An Analysis Services project encapsulates mining models and OLAP cubes, along with supplemental objects that make up the Analysis Services database. From Business Intelligence Development Studio, you can create and edit Analysis Services objects within a project and deploy the project to the appropriate Analysis Services server or servers.

If you are working with an existing Analysis Services project, you can also use Business Intelligence Development Studio to work connected the server. In this way, changes are reflected directly on the server without having to deploy the solution.

SQL Server Management Studio

SQL Server Management Studio is a collection of administrative and scripting tools for working with Microsoft SQL Server components. This workspace differs from Business Intelligence Development Studio in that you are working in a connected environment where actions are propagated to the server as soon as you save your work.

After the data has been cleaned and prepared for data mining, most of the tasks associated with creating a data mining solution are performed within Business Intelligence Development Studio. Using the Business Intelligence Development Studio tools, you develop and test the data mining solution, using an iterative process to determine which models work best for a given situation. When the developer is satisfied with the solution, it is deployed to an Analysis Services server. From this point, the focus shifts from development to maintenance and use, and thus SQL Server Management Studio. Using SQL Server Management Studio, you can administer your database and perform some of the same functions as in Business Intelligence Development Studio, such as viewing, and creating predictions from mining models.

Data Transformation Services

Data Transformation Services (DTS) comprises the Extract, Transform, and Load (ETL) tools in SQL Server 2005. These tools can be used to perform some of the most important tasks in data mining: cleaning and preparing the data for model creation. In data mining, you typically perform repetitive data transformations to clean the data before using the data to train a mining model.

Using the tasks and transformations in DTS, you can combine data preparation and model creation into a single DTS package.

DTS also provides DTS Designer to help you easily build and run packages containing all of the tasks and transformations. Using DTS Designer, you can deploy the packages to a server and run them on a regularly scheduled basis. This is useful if, for example, you collect data weekly data and want to perform the same cleaning transformations each time in an automated fashion.

Y ou can work with a Data Transformation project and an Analysis Services project together as part of a business intelligence solution, by adding each project to a solution in Business Intelligence Development Studio.

Mining Model Algorithms

Data mining algorithms are the foundation from which mining models are created. The variety of algorithms included in SQL Server 2005 allows you to perform many types of analysis. For more specific information about the algorithms and how they can be adjusted using parameters, see "Data Mining Algorithms" in SQL Server Books Online.

Microsoft Decision Trees

The Microsoft Decision Trees algorithm supports both classification and regression and it works well for predictive modeling. Using the algorithm, you can predict both discrete and continuous attributes.

In building a model, the algorithm examines how each input attribute in the dataset affects the result of the predicted attribute, and then it uses the input attributes with the strongest relationship to create a series of splits, called nodes. As new nodes are added to the model, a tree structure begins to form. The top node of the tree describes the breakdown of the predicted attribute over the overall population. Each additional node is created based on the distribution of states of the predicted attribute as compared to the input attributes. If an input attribute is seen to cause the predicted attribute to favor one state over another, a new node is added to the model. The model continues to grow until none of the remaining attributes create a split that provides an improved prediction over the existing node. The model seeks to find a combination of attributes and their states that creates a disproportionate distribution of states in the predicted attribute, therefore allowing you to predict the outcome of the predicted attribute.

Microsoft Clustering

The Microsoft Clustering algorithm uses iterative techniques to group records from a dataset into clusters containing similar characteristics. Using these clusters, you can explore the data, learning more about the relationships that exist, which may not be easy to derive logically through casual observation. Additionally, you can create predictions from the clustering model created by the algorithm. For example, consider a group of people who live in the same neighborhood, drive

the same kind of car, eat the same kind of food, and buy a similar version of a product. This is a cluster of data. Another cluster may include people who go to the same restaurants, have similar salaries, and vacation twice a year outside the country. Observing how these clusters are distributed, you can better understand how the records in a dataset interact, as well as how that interaction affects the outcome of a predicted attribute.

Microsoft Na?ve Bayes

The Microsoft Na?ve Bayes algorithm quickly builds mining models that can be used for classification and prediction. It calculates probabilities for each possible state of the input attribute, given each state of the predictable attribute, which can later be used to predict an outcome of the predicted attribute based on the known input attributes. The probabilities used to generate the model are calculated and stored during the processing of the cube. The algorithm supports only discrete or discretized attributes, and it considers all input attributes to be independent. The Microsoft Na?ve Bayes algorithm produces a simple mining model that can be considered a starting point in the data mining process. Because most of the calculations used in creating the model are generated during cube processing, results are returned quickly. This makes the model a good option for exploring the data and for discovering how various input attributes are distributed in the different states of the predicted attribute.

Microsoft Time Series

The Microsoft Time Series algorithm creates models that can be used to predict continuous variables over time from both OLAP and relational data sources. For example, you can use the Microsoft Time Series algorithm to predict sales and profits based on the historical data in a cube.

Using the algorithm, you can choose one or more variables to predict, but they must be continuous. Y ou can have only one case series for each model. The case series identifies the location in a series, such as the date when looking at sales over a length of several months or years.

A case may contain a set of variables (for example, sales at different stores). The Microsoft Time Series algorithm can use cross-variable correlations in its predictions. For example, prior sales at one store may be useful in predicting current sales at another store.

Microsoft Neural Network

In Microsoft SQL Server 2005 Analysis Services, the Microsoft Neural Network algorithm creates classification and regression mining models by constructing a multilayer perceptron network of neurons. Similar to the Microsoft Decision Trees algorithm provider, given each state of the predictable attribute, the algorithm calculates probabilities for each possible state of the input attribute. The algorithm provider processes the entire set of cases , iteratively comparing the predicted classification of the cases with the known actual classification of the cases. The errors from the initial classification of the first iteration of the entire set of cases is fed back into the

network, and used to modify the network's performance for the next iteration, and so on. Y ou can later use these probabilities to predict an outcome of the predicted attribute, based on the input attributes. One of the primary differences between this algorithm and the Microsoft Decision Trees algorithm, however, is that its learning process is to optimize network parameters toward minimizing the error while the Microsoft Decision Trees algorithm splits rules in order to maximize information gain. The algorithm supports the prediction of both discrete and continuous attributes.

Microsoft Linear Regression

The Microsoft Linear Regression algorithm is a particular configuration of the Microsoft Decision Trees algorithm, obtained by disabling splits (the whole regression formula is built in a single root node). The algorithm supports the prediction of continuous attributes.

Microsoft Logistic Regression

The Microsoft Logistic Regression algorithm is a particular configuration of the Microsoft Neural Network algorithm, obtained by eliminating the hidden layer. The algorithm supports the prediction of both discrete andcontinuous attributes.)

DataMining分析方法

如有你有帮助,请购买下载,谢谢! 数据挖掘 Data Mining 第一部 Data Mining的觀念............... 错误!未定义书签。 第一章何謂Data Mining ..................................................... 错误!未定义书签。 第二章Data Mining運用的理論與實際應用功能............. 错误!未定义书签。 第三章Data Mining與統計分析有何不同......................... 错误!未定义书签。 第四章完整的Data Mining有哪些步驟............................ 错误!未定义书签。 第五章CRISP-DM ............................................................... 错误!未定义书签。 第六章Data Mining、Data Warehousing、OLAP三者關係為何. 错误!未定义书签。 第七章Data Mining在CRM中扮演的角色為何.............. 错误!未定义书签。 第八章Data Mining 與Web Mining有何不同................. 错误!未定义书签。 第九章Data Mining 的功能................................................ 错误!未定义书签。 第十章Data Mining應用於各領域的情形......................... 错误!未定义书签。 第十一章Data Mining的分析工具..................................... 错误!未定义书签。第二部多變量分析....................... 错误!未定义书签。 第一章主成分分析(Principal Component Analysis) ........... 错误!未定义书签。 第二章因素分析(Factor Analysis) ...................................... 错误!未定义书签。 第三章判別分析法(Discriminant Analysis) ........................ 错误!未定义书签。 第四章集群分析法(Cluster Analysis) ................................. 错误!未定义书签。 第五章典型相關分析(Canonical Correlation Analysis) ..... 错误!未定义书签。 第六章路徑分析(Path Analysis) .......................................... 错误!未定义书签。 第七章迴歸分析 .................................................................. 错误!未定义书签。 第一節何謂迴歸分析 .................................................. 错误!未定义书签。 第二節簡單線性迴歸模式 .......................................... 错误!未定义书签。 第三節羅吉斯迴歸模式(Logistic Regression) ............ 错误!未定义书签。第三部改良的Data Mining理論技術....... 错误!未定义书签。 第一章類神經網路(Artificial Neural Network, ANN) ....... 错误!未定义书签。 0页

力 扣 数 据 结 构 与 算 法

前端如何搞定数据结构与算法(先导篇) 「观感度:?」 「口味:锅包肉」 「烹饪时间:20min」 本文已收录在Github? 为什么要学习数据结构与算法? 在0202年的今天,由于每天被无数的信息轰炸,大多数人已经变得越来越浮躁了,并且丧失了独立思考的能力。 你可能会经常听到这样的感慨: 技术人究竟能走多远?我遇到了天花板 35岁的程序员要如何面对中年危机? 技术更新太快,好累,学不动了 然后,你也变得焦虑起来。那你有没有静下心来想过,如何才能抵御年龄增长并且使自己增值呢? 无非是终身学习,持续修炼自己的内功。内功也就是基础知识和核心概念,这些轰轰烈烈发展的技术本质,其实都是基础知识,也就是我们在大学里学过的基础课-程。 操作系统 计算机组成原理 计算机网络 编译原理

设计模式 数据结构与算法 这也就是为什么越靠谱的面试官越注重你基础知识的掌握程度,为什么越牛的的企业越重视你的算法能力。因为当你拥有了这些,你已经比大多数人优秀了。你的天花板由你自己来决定,大家口中的中年危机可能并不会成为你的危机。新技术来临时,你对它的本质会看得更加透彻,学起来会一通百通。这样的人才,公司培养你也会花费更少的成本。 (不过,一辈子做个开开心心的 CRUD Boy 也是一种选择。) 数据结构与算法之间的关系 Rob Pikes 5 Rules of Programming中的第五条是这样说的: Data dominates. If youve chosen the right data structures and organized things well, the algorithms will almost always be self-evident. Data structures, not algorithms, are central to programming. 数据占主导。如果您选择了正确的数据结构并组织得当,那么这些算法几乎总是不言而喻的。数据结构而非算法是编程的核心。 瑞士计算机科学家,Algol W,Modula,Oberon 和 Pascal 语言的设计师 Niklaus Emil Wirth 写过一本非常经典的书《Algorithms + Data Structures = Programs》,即算法 + 数据结构 = 程序。 我们可以得出结论,数据结构与算法之间是相辅相成的关系。数据结构服务于算法,算法作用于特定的数据结构之上。 数据结构与算法好难,怎么学?

几种排序算法分析

《几种排序算法的分析》 摘要: 排序算法是在C++中经常要用到的一种重要的算法。如何进行排序,特别是高效率的排序是是计算机应用中的一个重要课题。同一个问题可以构造不同的算法,最终选择哪一个好呢?这涉及如何评价一个算法好坏的问题,算法分析就是评估算法所消耗资源的方法。可以对同一问题的不同算法的代价加以比较,也可以由算法设计者根据算法分析判断一种算法在实现时是否会遇到资源限制的问题。排序的目的之一就是方便数据的查找。在实际生活中,应根据具体情况悬着适当的算法。一般的,对于反复使用的程序,应选取时间短的算法;对于涉及数据量较大,存储空间较小的情况则应选取节约存储空间的算法。本论文重点讨论时间复杂度。时间复杂度就是一个算法所消耗的时间。算法的效率指的是最坏情况下的算法效率。 排序分为内部排序和外部排序。本课程结业论文就内部排序算法(插入排序,选择排序,交换排序,归并排序和基数排序)的基本思想,排序步骤和实现算法等进行介绍。 本论文以较为详细的文字说明,表格对比,例子阐述等方面加以比较和总结,通过在参加数据的规模,记录说带的信息量大小,对排序稳定的要求,关键字的分布情况以及算法的时间复杂度和空间复杂度等方面进行比较,得出它们的优缺点和不足,从而加深了对它们的认识和了解,进而使自己在以后的学习和应用中能够更好的运用。

1.五种排序算法的实例: 1.1.插入排序 1.1.1.直接插入排序 思路:将数组分为无序区和有序区两个区,然后不断将无序区的第一个元素按大小顺序插入到有序区中去,最终将所有无序区元素都移动到有序区完成排序。 要点:设立哨兵,作为临时存储和判断数组边界之用。 实现: Void InsertSort(Node L[],int length) { Int i,j;//分别为有序区和无序区指针 for(i=1;i=1)//直到增量缩小为1 { Shell(L,d); d=d/2;//缩小增量 } } Void Shell(Node L[],int d) {

特色课程简介

明亮幼儿园园本特色课程简介 ——浅谈肢体律动在孩子学习成长中的作用奥尔夫音乐教育体系是当今世界最著名、影响最广的音乐教育体系之一。在奥尔夫音乐课堂中,它用儿童最喜欢的方式,比如在说儿歌、拍手、做游戏、唱歌等教学活动中,按韵律、节拍描摹事物形态、动作特点等做动作,培养儿童的节奏感和记忆力,使儿童通过感受韵律、节拍引导动作带来学习的兴趣。我校从08春开始尝试推广奥尔夫音乐教育体系——把肢体律动融入在课堂教学活动中。通过快乐大天使林永哲教授的音乐律动培训,结合我园实际课堂教学情况,在语言、健康、艺术、英语等课程的学习中运用最广泛的就是肢体律动。通过律动在各个课程领域的拓展,在日常的每节课的学习中使右脑潜能得到最大限度的开发。 “左右脑分工理论”认为:人的左脑从事逻辑思维,右脑从事形象思维,右脑是创造力的源泉,是艺术和经验学习的中枢,右脑的存储量是左脑的100万倍,可是在现实生活中,95%的人只使用了自己的左脑,科学家们指出,大多数人终其一生;只运用了大脑潜能的3%——4%,其余的97%都蕴藏在右脑的潜意识之中,这是一个多么令人吃惊和遗憾的事实。由于右脑具有瞬间接受大量刺激的能力,加以训练,不仅可以开发相当一部分潜能,更可促使大脑神经发达,扩大脑容量,进而有助于左脑的发育。肢体律动在日常教学活动过程即起到了刺激右脑潜能发展的作用。 一个6岁以下的孩子,他的动作发展已经成熟,听觉也已成熟,根据奥尔夫音乐课堂理论,我园利用肢体律动可以培养幼儿想象力、创造力,激发幼儿的学习兴趣,充分调动幼儿参与课堂的积极性,加深幼儿对所学内容的理解、记忆,增强幼儿自信心的特点,从而有效提高教学质量,使孩子终身受益。 下面我从四个方面浅谈肢体律动在教学活动中的作用 一、利用肢体律动,培养幼儿的想象力。 因为孩子天性好动,在课堂教学活动中有大量机会让幼儿去动、去玩、去

1998-Data mining-- statistics and more

Data Mining:Statistics and More? David J.H AND Data mining is a new discipline lying at the interface of statistics,database technology,pattern recognition,machine learning,and other areas.It is concerned with the secondary analysis of large databases in order to?nd previously un-suspected relationships which are of interest or value to the database owners.New problems arise,partly as a con-sequence of the sheer size of the data sets involved,and partly because of issues of pattern matching.However,since statistics provides the intellectual glue underlying the e?ort, it is important for statisticians to become involved.There are very real opportunities for statisticians to make signi?-cant contributions. KEY WORDS:Databases;Exploratory data analysis; Knowledge discovery. 1.DEFINITION AND OBJECTIVES The term data mining is not new to statisticians.It is a term synonymous with data dredging or?shing and has been used to describe the process of trawling through data in the hope of identifying patterns.It has a derogatory con-notation because a su?ciently exhaustive search will cer-tainly throw up patterns of some kind—by de?nition data that are not simply uniform have di?erences which can be interpreted as patterns.The trouble is that many of these “patterns”will simply be a product of random?uctuations, and will not represent any underlying structure.The object of data analysis is not to model the?eeting random pat-terns of the moment,but to model the underlying structures which give rise to consistent and replicable patterns.To statisticians,then,the term data mining conveys the sense of naive hope vainly struggling against the cold realities of chance. To other researchers,however,the term is seen in a much more positive light.Stimulated by progress in computer technology and electronic data acquisition,recent decades have seen the growth of huge databases,in?elds ranging from supermarket sales and banking,through astronomy, particle physics,chemistry,and medicine,to o?cial and governmental statistics.These databases are viewed as a re-source.It is certain that there is much valuable information in them,information that has not been tapped,and data min-ing is regarded as providing a set of tools by which that in-formation may be extracted.Looked at in this positive light, it is hardly surprising that the commercial,industrial,and David J.Hand is Professor of Statistics,Department of Statistics,The Open University,Milton Keynes,MK76AA,United Kingdom(E-mail: d.j.hand@https://www.sodocs.net/doc/267569568.html,).economic possibilities inherent in the notion of extracting information from these large masses of data have attracted considerable interest.The interest in the?eld is demon-strated by the fact that the Third International Conference on Knowledge Discovery and Data Mining,held in1997, attracted around700participants. Super?cially,of course,what we are describing here is nothing but exploratory data analysis,an activity which has been carried out since data were?rst analyzed and which achieved greater respectability through the work of John Tukey.But there is a di?erence,and it is this di?erence that explains why statisticians have been slow to latch on to the opportunities.This di?erence is the sheer size of the data sets now available.Statisticians have typically not con-cerned themselves with data sets containing many millions or even billions of records.Moreover,special storage and manipulation techniques are required to handle data collec-tions of this size—and the database technology which has grown up to handle them has been developed by entirely di?erent intellectual communities from statisticians. It is probably no exaggeration to say that most statis-ticians are concerned with primary data analysis.That is, the data are collected with a particular question or set of questions in mind.Indeed,entire subdisciplines,such as ex-perimental design and survey design,have grown up to fa-cilitate the e?cient collection of data so as to answer the given questions.Data mining,on the other hand,is entirely concerned with secondary data analysis.In fact we might de?ne data mining as the process of secondary analysis of large databases aimed at?nding unsuspected relationships which are of interest or value to the database owners.We see from this that data mining is very much an inductive exercise,as opposed to the hypothetico-deductive approach often seen as the paradigm for how modern science pro-gresses(Hand in press). Statistics as a discipline has a poor record for timely recognition of important ideas.A common pattern is that a new idea will be launched by researchers in some other dis-cipline,will attract considerable interest(with its promise often being subjected to excessive media hype—which can sometimes result in a backlash),and only then will statis-ticians become involved.By which time,of course,the intellectual proprietorship—not to mention large research grants—has gone elsewhere.Examples of this include work on pattern recognition,expert systems,genetic algorithms, neural networks,and machine learning.All of these might legitimately be regarded as subdisciplines of statistics,but they are not generally so regarded.Of course,statisticians have later made very signi?cant advances in all of these ?elds,but the fact that the perceived natural home of these areas lies not in statistics but in other areas is demonstrated 112The American Statistician,May1998Vol.52,No.2c 1998American Statistical Association

数据结构经典例题

数据结构例题(及答案) 项目一习题(答案) 一选择题 1. 算法的计算量的大小称为计算的(B )。 A( 效率 B. 复杂性 C. 现实性 D. 难度 2.算法的时间复杂度取决于(C ) A(问题的规模 B. 待处理数据的初态 C. A和B 3(从逻辑上可以把数据结构分为(C )两大类。 A(动态结构、静态结构 B(顺序结构、链式结构 C(线性结构、非线性结构 D(初等结构、构造型结构 4(连续存储设计时,存储单元的地址(A )。 A(一定连续 B(一定不连续 C(不一定连续 D(部分连续,部分不连续 5. 以下属于逻辑结构的是(C )。 A(顺序表 B. 哈希表 C.有序表 D. 单链表 二、判断题 1. 数据元素是数据的最小单位。(×) 2. 记录是数据处理的最小单位。(×) 3. 数据的逻辑结构是指数据的各数据项之间的逻辑关系;(×) 4(程序一定是算法。(×) 5. 在顺序存储结构中,有时也存储数据结构中元素之间的关系。(×) 6. 顺序存储方式的优点是存储密度大,且插入、删除运算效率高。(×) 7. 数据结构的基本操作的设置的最重要的准则是,实现应用程序与存储结构的独立。(?)

8. 数据的逻辑结构说明数据元素之间的顺序关系,它依赖于计算机的储存结构. (×) 三、填空 1(数据的物理结构包括数据元素的表示和数据元素间关系的表示。 2. 对于给定的n个元素,可以构造出的逻辑结构有集合,线性结构,树形 结构,图状结构或网状结构四种。 3(数据的逻辑结构是指数据的组织形式,即数据元素之间逻辑关系的总体。而 逻辑关系是指数据元素之间的关联方式或称“邻接关系”。 4(一个数据结构在计算机中表示(又称映像) 称为存储结构。 5(抽象数据类型的定义仅取决于它的一组逻辑特性,而与在计算机内部如何表 示和实现无关,即不论其内部结构如何变化,只要它的数学特性不变,都不影响 其外部使用。 6(数据结构中评价算法的两个重要指标是算法的时间复杂度和空间复杂度。 7. 数据结构是研讨数据的逻辑结构和物理结构,以及它们之间的相互 关系,并对与这种结构定义相应的操作(运算),设计出相应的算法。 ( 一个算法具有5个特性: 有穷性、确定性、可行性,有零个或多个输入、 有一个或多个输8 出。 四、应用题 1. 1. 数据结构是一门研究什么内容的学科, 答:数据结构是一门研究在非数值计算的程序设计问题中,计算机的操作对象 及对象间的关系和施加于对象的操作等的学科 2. 2. 数据元素之间的关系在计算机中有几种表示方法,各有什么特点, 答:四 种表示方法

微观经济学课程改革

微观经济学课程改革 微观经济学课程是一门理论性与实践性都较强的课程。微观经济学侧重于基本概念、基本图形、基本理论的教授,使学生对市场运行机制的一般原理和规范行为等方面的内容有比较全面的了解。通过本课程的学习,可以使学生掌握微观经济学的基本原理,并培养经济学直觉,培养运用基本的微观经济学方法分析现实经济问题的能力。在实际教学过程中,要精心设计教学内容,丰富教学手段,注重理论与实践相结合,从而提高微观经济学的教学质量。 《微观经济学》是高等院校经济类核心专业课程之一,对培养学生经济学思维和后续经济学课程的学习具有重要意义。该课程是一门理论性较强的课程,同时实践性也很强。微观经济学侧重于基本概念、基本图形、基本理论的教授,使学生对市场运行机制的一般原理和规范行为等方面的内容有比较全面的了解。通过本课程的学习,学生应掌握微观经济学的基本原理,并培养经济学直觉,运用基本的微观经济学方法分析现实经济问题的能力。但在实际教学过程中,如何让学生在有限的课时中将内容庞杂的微观经济学理论清晰、明确的掌握并做到学有所得就显得尤为重要。本文试图在对教学实践情况进行总结并分析的基础上,结合课程特点,对本科阶段的微观经济学教学改革做一些有益的探讨。 一、微观经济学课程的特点

(一)课程的系统性 高鸿业的《西方经济学—微观部分》(第5版)作为微观经济学的经典教材,十分适合本科生学习。该教材共有11章。首先简单介绍西方经济学,然后介绍了消费者理论,包括需求、供给理论、均衡价格和效用论,生产者理论,包括生产论和成本论。接下来讲述不同市场结构下生产者如何生产和定价,包括完全竞争市场和不完全竞争市场理论,以及生产要素的价格决定。最后,在介绍一般均衡的经济效率的基础上,重点分析了市场失灵和政府应如何行使职能避免这一情况。整个微观经济学理论条理清晰、逻辑严密,体现出很强的系统性和连贯性。 (二)理论的抽象性 作为经济学的基础课程,微观经济学对抽象思维有较高的要求。比如,在课程中广泛使用的弹性这一概念,学生在学习过程中就很难理解其含义且很容易混淆;此外,一些距离现实生活比较远的理论,如寡头垄断理论、市场失灵等在现实中也很难找到合适的案例来解释。再者,属于社会科学的微观经济学课程并非如自然科学一般可以在实验室再现,缺乏社会实践经验的学生对于理论的理解缺乏深度。

几种常见内部排序算法比较

常见内部排序算法比较 排序算法是数据结构学科经典的内容,其中内部排序现有的算法有很多种,究竟各有什么特点呢?本文力图设计实现常用内部排序算法并进行比较。分别为起泡排序,直接插入排序,简单选择排序,快速排序,堆排序,针对关键字的比较次数和移动次数进行测试比较。 问题分析和总体设计 ADT OrderableList { 数据对象:D={ai| ai∈IntegerSet,i=1,2,…,n,n≥0} 数据关系:R1={〈ai-1,ai〉|ai-1, ai∈D, i=1,2,…,n} 基本操作: InitList(n) 操作结果:构造一个长度为n,元素值依次为1,2,…,n的有序表。Randomizel(d,isInverseOrser) 操作结果:随机打乱 BubbleSort( ) 操作结果:进行起泡排序 InserSort( ) 操作结果:进行插入排序 SelectSort( ) 操作结果:进行选择排序 QuickSort( ) 操作结果:进行快速排序 HeapSort( ) 操作结果:进行堆排序 ListTraverse(visit( )) 操作结果:依次对L种的每个元素调用函数visit( ) }ADT OrderableList 待排序表的元素的关键字为整数.用正序,逆序和不同乱序程度的不同数据做测试比较,对关键字的比较次数和移动次数(关键字交换计为3次移动)进行测试比较.要求显示提示信息,用户由键盘输入待排序表的表长(100-1000)和不同测试数据的组数(8-18).每次测试完毕,要求列表现是比较结果. 要求对结果进行分析.

详细设计 1、起泡排序 算法:核心思想是扫描数据清单,寻找出现乱序的两个相邻的项目。当找到这两个项目后,交换项目的位置然后继续扫描。重复上面的操作直到所有的项目都按顺序排好。 bubblesort(struct rec r[],int n) { int i,j; struct rec w; unsigned long int compare=0,move=0; for(i=1;i<=n-1;i++) for(j=n;j>=i+1;j--) { if(r[j].key

市幼儿园特色办园情况介绍分析

融合金昌文化资源,探究特色兴园之路——金昌市幼儿园地方文化特色办园经验介绍 《幼儿园教育指导纲要》指出:城乡各类幼儿园都应从实际出发,因地制宜地实施素质教育,要综合利用各种教育资源,为幼儿的发展创造良好的条件,为幼儿一生的发展打好基础。幼儿园的特色教育也应遵从这一新的教育理念,只有有利于幼儿的,才是我们所需要的,特色教育也是如此。 我园认真分析当前幼儿教育形势,认为目前结合地方资源开展园本教学是本市甚至全省幼教工作的一个薄弱环节,而地方文化资源具有不可多得的课程开发与利用价值,又可以与我市发展旅游业的总体方向紧紧结合。因此,近几年,通过园委会及全园教职工反复论证,决定充分提炼和利用地方化特色教育资源,构建适合本地和本园幼儿发展的课程,办出一所凸显地方文化特色教育的优质幼儿园,这将会使金昌市幼儿园处于学前教育行列的领先地位,也是对国家幼教课程和地方幼教课程的有效补充和完善,具有非常重大的意义。 一、特色办园总体目标 (一)借助金昌市发展旅游文化产业的大背景,充分提炼和利用金昌地方特色文化资源,浓缩成核心教育资源,并

结合本园实际,作为核心特色化办园理念融入到环境创设、教学课程及各类幼儿活动中。 (二)通过特色建设,形成一整套体系化的校园文化,让幼儿自觉、自愿、快乐地从任何一个角落都可以得到潜移默化的熏陶,提升幼儿对金昌的认识,激发幼儿对家乡的关注与热爱,让金昌地方文化得以传承和发扬。 (三)充分利用本地多种教育资源,构建和制定出遵循幼儿身心发展规律、适合本园发展的园本课程和教材,从课程、活动等各方面教育中促进幼儿全面发展。 (四)确立“科研兴园、特色兴园”办园方针,科研为先,贯穿始终,不断进行探讨、论证、完善,积极寻找突破口,深入探寻特色办园可持续发展策略。 (五)通过特色办园,从新的高度发挥示范引领作用,增强辐射力,扩展辐射范围,让周边市、县、区幼教同行来园有可看、可学、可借鉴的文化内涵,将金昌市幼儿园打造成一颗学前教育行业的明珠。 二、我园具体做法(分阶段) 第一阶段:前期可行性研究分析 我园的特色教育是在不断的改革与创新中一步一步走 过来的,地方文化特色的确立既不是为了应付一时的检查,也不是为了迎合家长的兴趣,而是从幼儿的实际为出发点,

数据结构(C语言)【经典题库】含标准答案

《数据结构与算法》复习题 选择题 1.在数据结构中,从逻辑上可以把数据结构分为 C 。 A.动态结构和静态结构 B.紧凑结构和非紧凑结构 C.线性结构和非线性结构 D.内部结构和外部结构 2.数据结构在计算机内存中的表示是指 A 。 A.数据的存储结构 B.数据结构 C.数据的逻辑结构 D.数据元素之间的关系 3.在数据结构中,与所使用的计算机无关的是数据的 A 结构。 A.逻辑 B.存储 C.逻辑和存储 D.物理 4.在存储数据时,通常不仅要存储各数据元素的值,而且还要存储 C 。A.数据的处理方法 B.数据元素的类型 C.数据元素之间的关系 D.数据的存储方法 5.在决定选取何种存储结构时,一般不考虑 A 。 A.各结点的值如何 B.结点个数的多少 C.对数据有哪些运算 D.所用的编程语言实现这种结构是否方便。 6.以下说法正确的是 D 。 A.数据项是数据的基本单位 B.数据元素是数据的最小单位

C.数据结构是带结构的数据项的集合 D.一些表面上很不相同的数据可以有相同的逻辑结构 7.算法分析的目的是 C ,算法分析的两个主要方面是 A 。(1)A.找出数据结构的合理性 B.研究算法中的输入和输出的关系C.分析算法的效率以求改进 C.分析算法的易读性和文档性(2)A.空间复杂度和时间复杂度 B.正确性和简明性 C.可读性和文档性 D.数据复杂性和程序复杂性 8.下面程序段的时间复杂度是 O(n2) 。 s =0; for( I =0; i

微观经济学教学大纲

《微观经济学》教学大纲 (Microeconomics) 课程代码:(06110170)学分: 3 总学时数:51理论时数:51实验(实践)时数: 先修课程:无开课对象:工商管理、电子商务、会计 一、课程的性质、目的与任务 1.课程的性质 微观经济学是经济类、管理类本科专业必修的基础课程和核心课程。 2.课程的目的 通过本课程的学习,使学生比较系统地掌握现代微观经济学的基本原理和主要方法,了解现代经济学发展的最新动态,联系实际,运用所学理论和方法分析当前国际经济和中国经济发展的重大问题,为继续学习其他经济和管理专业的基础课和专业课打下良好的基础,并为将来从事经济理论和政策研究或经济管理实际工作提供必要的经济学基础知识和经济分析的基本方法。 3.课程的任务 本课程的任务是使学生掌握微观经济学的基本概念、研究方法、基本理论模型和政策主张,了解现代经济社会市场机制的运行和作用,熟悉政府在市场经济中的作用和相应的微观经济政策。并能够将其运用于对现实问题的理解和分析,提出自己的观点并加以论证。 二、课程内容的基本要求 第一讲经济学十大原理(第一章) [教学目的和要求] 1.介绍经济学的研究对象和十大原理,并简要介绍经济学的基本发展脉络,使学生对经济学的研究对象、研究方法和研究内容先有大致的了解,引起学生学习经济学的兴趣。 2.要求学生掌握经济学研究的典型问题及提出的相应概念。 [教学内容] 1.1 人们如何作出决策 1.2 人们如何相互影响 1.3 整体经济如何运行 [教学重点与难点] 1.经济学的研究对象

2. 十大经济学原理之间的关系 [教学方法与手段] 1.制作内容丰富全面的课件 2.讲授为主,讨论为辅 第二讲像经济学家一样思考(第2章) [教学目的和要求] 1.理解并掌握经济模型的含义、构建过程和运用方法 2.明确经济学中实证分析与规范分析的联系与区别,并能够对各种不同的观点加以甄别。 [教学内容] 2.1作为经济学家的科学家 2.2作为政策顾问的经济学家 2.3经济学家意见分歧的原因 [教学重点与难点] 1.经济学研究的基本方法 2.构建经济模型的过程和步骤 3.如何运用实证分析和规范分析 [教学方法与手段] 1.制作内容丰富全面的课件 2.讲授为主,讨论为辅 3.当堂完成第一次作业 第三讲供给与需求的市场力量(第4章) [教学目的和要求] 1.掌握需求函数和供给函数 2.了解均衡价格的形成和变动 3.理解市场经济的价格机制

对幼儿园开展特色课程的几点建议

特色办学方向:对幼儿园开展特色课程的几点建议案例: 开学前的一天上午,我在幼儿园值班时接待了一位意向报名的家长,她是一名高学历的全职妈妈,这位妈妈自己也是师范专业毕业的,因此对于教育方面的问题懂得也都比较多。 我陪她参观了一下幼儿园的环境,她很满意,但对我们幼儿园的收费有疑问,她对我说:“你们这里的收费在我们柳市镇算是偏高的,如果我选择让我的孩子到你们这儿入学,我的孩子能得到哪些跟其他幼儿园不一样的教育和收获?”于是,我向她解释了我园的特色游泳课程。 对于我的解释和介绍,这位妈妈颇为怀疑的说:“这些都是你们幼儿园的广告,别的幼儿园也都有什么英语特色啊、书法特色啊之类的噱头,但最后还不都是一样,毕业出来的孩子也没听说有什么明明的特别之处的,这些东西也都学得平平的”。其实,对于这样的疑问我听了不在少数,除了这位家长能直观的表达她的怀疑之外,还有很多家长也对现下普遍的特色课程填塞了质疑甚至抱怨。 分析: 随着我国经济体制改革的不断深入,幼儿园之间的竞争也日益激动,以质量求生存、以特色求发展,已成为现今幼儿教育发展的新趋向。但什么才是真正的“特色课程”?特色课程有什么标准呢?我觉得这是在开展特色课程前首要应考虑的问题之一。幼儿园以特色教学创优势,为幼儿园的发展注入活力,这是好事,也应大力提倡。但在此之前,希望我们能把握好正确的方向和方向。但是,纵观大多数幼儿园所宣传并开展的特色课程,我个人所见所知的只是类似于每周上两三节英语课,或开展颇具有争议的珠心算等“超前”能力课程等这样的状态。这跟我作为一个幼儿教师所理解和感受的“特色课程”相差甚远,于是,我疑惑了,什么才是真正的“特色课程”? 措施: 其实,所谓的特色课程是幼儿园根据自己所拥有的资源优势,以及本园教师和幼儿的特点所建立的带有光鲜特色的课程。幼儿园特色课程的项目选择应

数据结构经典例题

数据结构经典例题 1.设计一个算法将L拆分成两个带头节点的单链表L1和L2。 void split(LinkList *&L,LinkList *&L1,LinkList *&L2) { LinkList *p=L->next,*q,*r1; //p指向第1个数据节点 L1=L; //L1利用原来L的头节点 r1=L1; //r1始终指向L1的尾节点 L2=(LinkList *)malloc(sizeof(LinkList));//创建L2的头节点 L2->next=NULL; //置L2的指针域为NULL while (p!=NULL) { r1->next=p; //采用尾插法将*p(data值为ai)插入L1中 r1=p; p=p->next; //p移向下一个节点(data值为bi) q=p->next; //由于头插法修改p的next域,故用q保存*p的后继节点 p->next=L2->next; //采用头插法将*p插入L2中 L2->next=p; p=q; //p重新指向ai+1的节点 } r1->next=NULL; //尾节点next置空 } 2.查找链表中倒数第k个位置上的节点(k为正整数)。若查找成功,算法输出该节点的data域的值,并返回1;否则,只返回0。 typedef struct LNode {int data; struct LNode *link; } *LinkList; int Searchk(LinkList list,int k) { LinkList p,q; int count=0; p=q=list->link; while (p!=NULL) { if (countlink; p=p->link; } if (count

十 大 经 典 排 序 算 法 总 结 超 详 细

数据挖掘十大经典算法,你都知道哪些? 当前时代大数据炙手可热,数据挖掘也是人人有所耳闻,但是关于数据挖掘更具体的算法,外行人了解的就少之甚少了。 数据挖掘主要分为分类算法,聚类算法和关联规则三大类,这三类基本上涵盖了目前商业市场对算法的所有需求。而这三类里又包含许多经典算法。而今天,小编就给大家介绍下数据挖掘中最经典的十大算法,希望它对你有所帮助。 一、分类决策树算法C4.5 C4.5,是机器学习算法中的一种分类决策树算法,它是决策树(决策树,就是做决策的节点间的组织方式像一棵倒栽树)核心算法ID3的改进算法,C4.5相比于ID3改进的地方有: 1、用信息增益率选择属性 ID3选择属性用的是子树的信息增益,这里可以用很多方法来定义信息,ID3使用的是熵(shang),一种不纯度度量准则,也就是熵的变化值,而 C4.5用的是信息增益率。区别就在于一个是信息增益,一个是信息增益率。 2、在树构造过程中进行剪枝,在构造决策树的时候,那些挂着几个元素的节点,不考虑最好,不然容易导致过拟。 3、能对非离散数据和不完整数据进行处理。 该算法适用于临床决策、生产制造、文档分析、生物信息学、空间数据建模等领域。 二、K平均算法

K平均算法(k-means algorithm)是一个聚类算法,把n个分类对象根据它们的属性分为k类(kn)。它与处理混合正态分布的最大期望算法相似,因为他们都试图找到数据中的自然聚类中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 从算法的表现上来说,它并不保证一定得到全局最优解,最终解的质量很大程度上取决于初始化的分组。由于该算法的速度很快,因此常用的一种方法是多次运行k平均算法,选择最优解。 k-Means 算法常用于图片分割、归类商品和分析客户。 三、支持向量机算法 支持向量机(Support Vector Machine)算法,简记为SVM,是一种监督式学习的方法,广泛用于统计分类以及回归分析中。 SVM的主要思想可以概括为两点: (1)它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分; (2)它基于结构风险最小化理论之上,在特征空间中建构最优分割超平面,使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界。 四、The Apriori algorithm Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法,其核心是基于两阶段“频繁项集”思想的递推算法。其涉及到的关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支

相关主题