搜档网
当前位置:搜档网 › 机器学习与计算机视觉大牛族谱

机器学习与计算机视觉大牛族谱

机器学习与计算机视觉大牛族谱
机器学习与计算机视觉大牛族谱

在机器学习、计算机视觉和人工智能领域,顶级会议才是王道。国内教材和CNKI上的至少是N年前的东西。有人会质疑这些会议都只是EI。是的,这的确非常特殊:在别的大部分领域,会议都是盛会,比如society of neuroscience的会议,每次都有上万人参加,带个abstract 和poster就可以去。但在所讨论的几个领域,顶级会议的重要性无论怎么强调都不为过。

可以从以下几点说明:(1)因为机器学习、计算机视觉和人工智能领域发展非常迅速,新的工作层出不穷,如果把论文投到期刊上,一两年后刊出时就有点out了。因此大部分最新的工作都首先发表在顶级会议上,这些顶级会议完全能反映“热门研究方向”、“最新方法”。(2)很多经典工作大家可能引的是某顶级期刊上的论文,这是因为期刊论文表述得比较完整、实验充分。但实际上很多都是在顶级会议上首发。比如PLSA, Latent Dirichlet Allocation 等。(3)如果注意这些领域大牛的pulications,不难发现他们很非常看重这些顶级会议,很多人是80%的会议+20%的期刊。即然大牛们把最新工作发在顶级会议上,有什么理由不去读顶级会议?

以下是不完整的列表,但基本覆盖。

机器学习顶级会议:NIPS, ICML, UAI, AISTATS; (期刊:

JMLR, ML, Trends in ML, IEEE T-NN)

计算机视觉和图像识别:ICCV, CVPR, ECCV; (期刊:IEEE T-PAMI, IJCV, IEEE T-IP)

人工智能:IJCAI, AAAI; (期刊AI)

另外相关的还有SIGRAPH, KDD, ACL, SIGIR, WWW等。

特别是,如果做机器学习,必须地,把近4年的NIPS, ICML翻几遍;如果做计算机视觉,要把近4年的ICCV, CVPR, NIPS, ICML翻几遍。

Zisserman还有一个不错的学生、lifeifei的合作者Rob Fergus

按研究方向分分,应该更合理一些。

现在计算机视觉,计算机图形图像,机器学习开始融合到一起了吧。

J. Malik,Zhu Songchu偏segmentation;

D. Lowe, S. Ullman, Poggio 偏于从生物视觉的启发来研究视觉;

Zisserman, Schmid, Lowe研究局部特征;

Luc Van Goo,Long Quanl三维重建;

Perona, Li Feife,Freeman视觉学习,物体分类;

还有运动分析,视觉跟踪,纹理分析………….

MIT的Brain & Cognitive Science Dept和CSAIL里面聚集了一帮人,有的作low level有的作mid level to high level的。他们的工作是值得关注的。

当然说视觉还是要从伟大的David Marr开始。Tomaso Poggio, Richard Whitman是Marr 的同事,传承了其理念,一直往下走。Poggio最近几年比较重点的工作放在他那个hierarchical model上。

T. Poggio的第一个PhD学生是Christof Koch (kLab at Caltech)。哦,顺便说一下Koch 的另外一个导师是Valentino Breitenberg——同样是影响了一个时代的大人物。Koch研究重点兴趣在consciousness上,在Nature上的很多文章体现了他的研究思想。不过他们也做不少初级的视觉问题,诸如attention。

Koch比较知名的弟子比如Laurent Itti和Li Feifei。

Richard Whitman 年纪比较大了,个人不是很关注他现在做的东西。不过他所在的Perceptual Science Group,是一个非常有影响力的地方,这个组其他大家比较熟悉的老师有Aude Oliva和EH Adelson。Adelson最著名的一个事儿是色彩恒常相关的视错觉,93年发在Science上的那篇。

关于Oliva,前面的帖子错了,她不是Poggio的学生,这家伙和Torralba是老乡,同在法国念书,主要从心理学那条路子开始做,成名之役是hybrid image,和Antonio Torrralba 一起搞的。这个Hybrid Image 其实80年代就有了,但是最开始从心理学方向上探讨,没有非常有影响力的文章。后来开始靠谱作自然图像统计,得到Gist theory,当然这个illusion 本身后来转投SIGGRAPH,其影响是深远的。嗯,这个和CV关系不大。

Perceptual Science Group出了不少牛人,他们的alumni list可谓超豪华阵容:

Yair Weiss, Josh Tenenbaum, Pawan Sinha, Bill Fre eman……

机器学习与计算机视觉大牛族谱收藏

包括Phd和Post-doc, co-supervise关系

David Marr(MIT)

--------Shimon Ullman(Weizmann)

---------Daniel Huttenlocher(Cornell)

---------Demetri Terzopoulos(UCLA)

--------Dimitris Meta xas(Rutgers)

-------Eric Grimson(MIT)

------Pedro Felzenszwalb(Uchicago)

------Polina Golland(MIT)

-----Xiaogang Wang(CUHK)

---------Daniel Huttenlocher(Cornell)

Marvin Minsky(MIT,Turning Award)

-----Berthold Horn(MIT)

-----Tomas Lozano-Perez(MIT)

-----John Canny(UC B erkeley)(Canny edge detector)

-----Paul Viola(Microso ft)

Olivier Faugeras(Uparis XI)

-----Martial Hebert(CMU)

-------Derek Hoiem(UIUC)

-----Jean Ponce(UIUC)

------Lazbnik(UNC)(Spatial Pyramid Matching)

-----Zhengyou Zhang(Microsoft)

Takeo Kanade(CMU)

------Qifa Ke(Microsoft)

-------Shree Nayar(Columbia)

--------Srinivasa Narasimhan(CMU)

-------Simon Baker(Microsoft)

-------Richard Szeliski(Microsoft)

-------Carlo Tomasi(Duke)

-------James Rehg(GIT)

------Jianxin Wu(NTU)

Whitman Richards(MIT)

-----Alex Pentland(MIT)

-----Trevor Darrell(UC Berkeley)

------Kristen Grauman(UTex as)(Pyramid Matching Kernel)

------Joshua Tenenbaum(MIT)(Isomap)

-----Tom Griffiths(UC Berkeley)

Andrew Blake(Microsoft)

-----Andrew Zisserman(Oxford)

------Andrew Fitzgibbon(Microsoft)

------Josef Sivic(INRIA)(Video Google)

------Rob Fergus(NYU)

------Roberto Cipolla(Cambridge)

------Alan Yuille(UCLA)

Thomas Huang(UIUC)

------Yong Rui(Microsoft)

------Ying Wu(Northwestern)

------Qi Tian(UTSA)

------ Chang Wen Chen (Buffalo)

------- Jiebo Luo (Kodak)

------Nebojsa Jojic(Microsoft)

------Vladimir Pavlovic(Rutgers)

------Shuicheng Yan(NUS)

David Mumford(Brown, Fields Medal)

-----SongChun Zhu(UCLA)

Azriel Rosenfeld(Maryland)

------Narendra Ahuja(UIUC)

------Charles Dyer(Wisconsin)

------Larry Davis(Maryland)

------Shmuel Peleg(Hebrew)

Christopher Brown(Rochester)

-------Yiannis Aloimonos(Maryland)

------Robert Pless(WUSTL)

------LoongFah Cheong(NUS)

Thomas Binfold(Stanford)

----David Kriegman(UCSD)

----David Lowe(UBC)(SIFT)

----Jitendra Malik(UC Berkeley)

-------Pietro Perona(Caltech)

-------Fei-fei Li(Stanford)

------Stefano Soatto(UCLA)

------Max Welling(UCI)

------Jianbo Shi(Upenn)(Ncut)

-------Yizhou Yu(UIUC)

-------Serge Belongie(UCSD)(Shape Context)

------Alexei Efros(CMU)

-------Derek Hoiem(UIUC)

------Alexander Berg(Stony brook)

------Christoph Bregler(NYU)

Edward Adelson(MIT)

-----Willian Freeman(MIT)

-----Ce Liu(Microsoft)

----- Rob Fergus(NYU)

-----Yais Weiss(Hebrew)

-------Anat Levin(Weizmann) -----Kevin Murphy(UBC)

------Josef Sivic(INRIA)

------Antonio Torralba(MIT)(GIST)

------Eirk Sudderth(Brown)

Tomaso Poggio(MIT)(HMAX)

-----[Partha Niyogi](UChicago)

------Mikhail Belkin(OSU)(LE)

------Xiaofei He(ZJU)(LPP)

------Christof Koch(Caltech)

------Tomas Serre(Brown)

Michael Jordan(UC Berkeley)

------

------Tommi Jaakkola(MIT)

------Martin Wainwright(UC Berkeley)

-----Xuanlong Nguye n(UMich)

------Andrew Ng(Stanford)

------Honglak Lee(Umich) ------Lawrence Saul(UCSD)

------Fei Sha(USC)

------David Blei(Princeton)(LDA)

------Eric Xing(CMU)

------Ben Taskar(Upenn)

------Yair Weiss(Hebrew)

(HDP)

-----Erik Sudderth(Brown)

-----Yoshua Bengio(Umontreal)

-----Francis Bach(INRIA)

-----Kevin Murphy(UBC)

Daphne Koller(Stanford)

-----Nir Friedman(Hebrew)

-----Carlos Guestrin(CMU)

-----Ben Taskar(Upenn)(M3N)

Geoffrey Hinton(Toronto)

-----Yee-Whye The(UCL)

-----Yann Lecun(NYU)

------Zoubin Ghahramani(CMU,Cambridge) -----Max Welling(UCI)

-----[Sam Roweis](NYU)(LLE)

Tom Mitchell(CMU)

-----Oren Etzioni(UWashington)

-----Geoffrey Gordon(CMU)

-----Sebasitian Thrum(Stanford)

-----Andrew McCallum(Umass)

John Lafferty(CMU)(CRF)

-----Chengxiang Zhai(UIUC)

-----Qiaozhu Mei(Umich) -----Xiaojin Zhu(Wisconsin)

-----David Blei(Princeton)

A tree stucture of cv guys.

David Marr

—–>Shimon Ullman (Weizmann)

—–>Eric Grimson (MIT)

—–>Daniel Huttenlocher (Cornell)

—–>Pedro Felzenszwalb (Chicago)

Thomas Binford (Stanford)

—–>David Lowe (UBC)

—–>Jitendra Malik (UC Berkeley)

—–>Pietro Perona (Caltech)

—–>Stefano Soatto (UCLA)

—–>Fei-Fei Li (Princeton)

—–>Jianbo Shi (UPenn)

—–>Yizhou Yu (UIUC)

—–>Christoph Bregler (NYU)

—–>Serge Belongie (UCSD)

—–>Alyosha Efros (CMU)

Andrew Blake (Microsoft Research Cambridge)

—–>Andrew Zisserman (Oxford)

—–>Andrew Fitzgibbon (Microsoft Research Cambridge)

—–>Roberto Cipolla (Cambridge)

—–>Alan Yuille (UCLA)

(UK这个学派的师承关系不太清楚, 这是我听说加上自己猜测的. 事实上, 几个

非常优秀的researcher如Vladimir Kolmogorov虽然不是Andrew Blake的学生, 但是

也属于这个学派. )

Thomas Huang (UIUC)

—–>Yong Rui (Microsoft Research Redmond)

—–>Nebojsa Jojic (Microsoft Research Redmond)

—–>Ying Wu (Northwestern University)

—–>Hai Tao (UCSC)

—–>Yuncai Liu (SJTU)

(Huang这个系的人太多, 而且很怪的是, UIUC的web上信息不全, 在此仅列出我知道的.)此外, 还有Takeo Kanade等非常有名的大牛, 囿于篇幅, 不一一列举.

从上得知, 加州派基本占了cv的半壁江山. 最近几年, 特别活跃的cv guys是

USA

Jitendra Malik, UC Berkeley

Pietro Perona, Caltech

Serge Belongie, UCSD

Jianbo Shi, UPenn

Stefano Soatto, UCLA

Fei-Fei Li, Princeton

William Freeman, MIT

Trevor Darrell, MIT

Simon Baker, CMU

Yanxi Liu, CMU

Songchun Zhu, UCLA

Alan Yuille, UCLA

Yi Ma, UIUC

Michael Black, Brown

Carlo Tomasi, Duke

Ramin Zabih, Cornell

Shree Nayar, Columbia

Rama Chellappa, Maryland

Steve Seitz, University of Washington

Europe

Andrew Zisserman, Oxford, UK

Andrew Fitzgibbon, Microsoft Research Cambridge, UK Roberto Cipolla, Cambridge, UK

Jean Ponce, INRIA, France

Cordelia Schmid, INRIA, France

Bill Triggs, LEAR, France

Yair Weiss, Hebrew University, Israel

Anat Levin, Hebrew University, Israel

Michal Irani, Weizmann, Israel

Luc van Gool, University of Leuven/ETH Zurich, Czechic China

Harry Shum, MSRA

Xiaoou Tang, MSRA/CUHK

Jian Sun, MSRA

Steve Lin, MSRA

Yasuyuki Matsushita, MSRA

Zhouchen Lin, MSRA

Long Quan, HKUST

Chi-Keung Tang, HKUST

Olivier Faugeras

—Ponce UIUC

—lazebnik

—Zhengyou Zhang MSR

—Martial Hebert CMU

Mit AI lab

poggio

—Oliva

—serre

Freeman 80年代还来太原理工扶贫了—Y. Weiss

—Levin

—Antonio Torralba (research scientist)Trevor Darrell

—Grauman

江南营_江南深度研学之旅(1)

诗梦江南,入画寻踪 ——长清区实验小学江南深度研学实践之旅 【课程简介】 一道水,一架桥,一支橹声,隽秀婉约的聚合了太多的历史文化。此次研学活动旨在让同学们了解祖国江南,同时感受一场从远古传说,到春秋的吴越文化,到南北朝的文人风骨,再到明清以及近代的大儒伟人的历史盛宴。活动中,同学们将一起寻访王羲之、蔡元培、鲁迅、周恩来等名人伟人故里,穿越历史,冶爱国之志,体悟文化魅力;一起走进园,欣赏宋代江南私家园林的秀美景观,探寻园林蕴含的文化涵;一起游历西湖,领略“淡妆浓抹总相宜”的如画美景;一起走进综合性人文科学博物馆博物馆、中国黄酒博物馆,全面了解历史文化。 【课程特色】 ●文化名镇江南风采 ●穿越时空触摸历史 【行程简表】

上午探访安昌古镇漫游小桥流水梦回江南水乡游历江南小镇,画笔描绘 第五天 下午乘坐高铁前往:车次G60东-西 15:22-19:48辅导员送站一次相聚一生情谊备注:因天气交通等原因,组委会保留调整活动顺序及个别项目的权力,保证活动总量不变。 【活动费用】 2900/人;包含火车(往返高铁)及活动期间所有的费用。 ?【人文积淀-理性思维】·第一天下午·钱塘江·六和塔 钱塘江潮被誉为“天下第一潮”,是世界一大自然奇观,它是天体引力和地球自转的离心作用,加上湾喇叭口的特殊地形所造成的特大涌潮。六和塔位于省市西湖之南,钱塘江畔 月轮山上,是中国现存最完好的砖木结构古塔之一。 小任务1:学生面对浩渺的钱塘江,接受审美教育,并结合手册提示,探究钱塘江大潮的在科学原理; 小任务2:学生走进六和塔,收集关于六和塔的传说故事,留下自己与六和塔最美的合照; ?【审美情趣-人文积淀】·第二天上午·西湖·省博物馆 西湖,是一首诗,一幅天然图画,一个美丽动人的故事,不论是多年居住在这里的人还是匆匆而过的旅人,无不为这天下无双的美景所倾倒。平湖秋月、断桥残雪、柳浪闻莺、花 港观鱼、雷峰夕照、双峰插云、南屏晚钟、三潭印月,西湖十景个擅其胜。省博物馆是省规 模最大的综合性人文科学博物馆,文物品类丰富,年代序列完整。 小任务1:集体创绘,全体学生齐动手,集体协作,面对美景,协作创作最美的西湖; 小任务2:走进博物馆,寻访国宝,找一找最能代表江南文化的文物,向小组同学分享并交流;

计算机视觉的应用

运动目标检测 目录 基于统计背景模型的运动目标检测方法 背景模型提取 运动目标检测 后处理 基于统计背景模型的运动目标检测方法 问题:(1)背景获取:需要在场景存在运动目标的情况下获得背景图像(2)背景扰动:背景中可以含有轻微扰动的对象,如树枝、树叶的摇动,扰动部分不应该被看做是前景运动目标(3)外界光照变化:一天中不同时间段光线、天气等的变化对检测结果的影响(4)背景中固定对象的移动:背景里的固定对象可能移动,如场景中的一辆车开走、一把椅子移走,对象移走后的区域在一段时间内可能被误认为是运动目标,但不应该永远被看做是前景运动目标(5)背景的更新:背景中固定对象的移动和外界光照条件的变化会使背景图像发生变化,需要及时对背景模型进行更新,以适应这种变化(6)阴影的影响:通常前景目标的阴影也被检测为运动目标的一部分,这样讲影响对运动目标的进一步处理和分析首先利用统计的方法得到背景模型,并实时地对背景模型进行更新以适应光线变化和场景本身的变化,用形态学方法和检测连通域面积进行后处理,消除噪声和背景扰动带来的影响,在HSV色度空间下检测阴影,得到准确的运动目标。 背景模型提取 前提假设在背景模型提取阶段,运动目标在场景区域中运动,不会长时间停留在某一位置视频流中某一像素点只有在前景运动目标通过时,它的亮度值才发生大的变化,在一段时间内,亮度值主要集中在很小的一个区域中,可以用这个区域内的平均值作为该点的背景值。具体实现过程:在YUV颜色空间下,Y值的变化范围为0~255,将该范围划分成若干区间[0,T][T,2T]…[Nt,255],n=255/T,对于每个像素点,统计一段时间内每个区间内亮度值的出现的次数。找出出现次数最多的那个区间,将该区间内所有值的平均值作为背景模型在该点的亮度值。这种方法不受前景运动目标的影响。 运动目标检测 检测当前图像和背景图像中对应像素点的差异,如果差值大于一定阈值,则判定该像素为前景运动目标

小象学院 基于深度学习的计算机视觉

基于深度学习的计算机视觉 全套课程已完结 课程名称: 《基于深度学习的计算机视觉》需要课程叫薇心:Bainchen888 主讲老师: 张宗健悉尼科技大学计算机视觉博士 曾任职澳大利亚联邦科学与工业研究院(CSIRO )研究工程师,Vancl技术中心研究院图像研发工程师,研究领域为计算机视觉,具体涉及:图像场景理解、图像语言问题、深度神经网络、图像检索、Human ReID、数据分析及预测、信号模式识别等 课程简介: 1. 基本理解计算机视觉中针对图像的重要研究问题。由浅及深得讲解图像的存储、预处理、特征提取、以及学术界和工业界中的主要应用问题。 2. 重点介绍深度学习的神经网络(DNN)模型在计算机视觉领域的应用。具体涉及在计算机视觉领域如何应用卷积神经网络(CNN)、区域卷积网络(R-CNN)、全卷积网络(FCN)、长短时记忆网络(LSTM)、生成对抗网络(GAN)等解决图像应用的难点。 3. 课程将使用Python语言及深度网络框架Tensorflow进行案例实践教学。 面向人群:

1. 想入门计算机视觉的学生或从业者 2. 想学习深度学习的学生或从业者 3. 想了解和学习Tensorflow框架的学生或从业者 学习收益: 1. 循序渐进得学习计算机视觉中的一些重要研究问题 2. 学习不同深度神经网络(DNN)模型在计算机视觉的成功应用 3. 了解DNN的设计及改进思路 4. 学习深度学习框架Tensorflow的基本使用 开课时间: 2017年5月12日 学习方式: 在线直播,共10次课,每次2小时 每周2次(周一、周五,晚上20:00 - 22:00) 直播后提供录制回放视频,可在线反复观看,有效期1年 课程大纲: 第一讲课题介绍/Introduction 1. 主要研究问题 2. 开源库介绍(OpenCV,Caffe,Theano,Tensorflow,Torch等) 3. 应用案例:基于Python语言的OpenCV库配置 第二讲图像数据处理/Image Data Processing 1. 空域分析及变换(Sobel,拉普拉斯,高斯,中值等) 2. 频域分析及变换(Fourier & Wavelet Transform) 3. 模板匹配,金字塔,滤波器组 4. 主成分分析/PCA,奇异值分解/SVD,聚类/Cluster 5. 应用案例:人脸检测方法——基于OpenCV库

西电计算机视觉大作业

数字水印技术 一、引言 随着互联网广泛普及的应用,各种各样的数据资源包括文本、图片、音频、视频等放在网络服务器上供用户访问。但是这种网络资源的幵放也带了许多弊端,比如一些用户非法下载、非法拷贝、恶意篡改等,因此数字媒体内容的安全和因特网上的侵权问题成为一个急需解决的问题。数字水印作为一项很有潜力的解决手段,正是在这种情况下应运而生。 数字水印(技术是将一些代表性的标识信息,一般需要经过某种适合的变换,变换后的秘密信息(即数字水印),通过某种方式嵌入数字载体(包括文档、音频、软件等)当中,但不影响原载体的使用价值,也不容易被人的知觉系统(如视觉或听觉系统)觉察或注意到。通过这些隐藏在载体中的信息,可以达到确认内容创建者、购买者、传送隐秘信息或者判断载体是否被篡改等目的。在发生产权和内容纠纷时,通过相应的算法可以提取该早已潜入的数字水印,从而验证版权的归属和内容的真伪。 二.算法原理 2.1、灰度图像水印 2.1.1基本原理 处理灰度图像数字水印,采用了LSB(最低有效位)、DCT变换域、DWT变换域三种算法来处理数字水印。在此过程中,处理水印首先将其预处理转化为二值图像,简化算法。 (1)LSB算法原理:最低有效位算法(Least Sig nificant Bit , LSB)是很常见的空间域信息隐藏算法, 该算法就是通过改变图像像素最不重要位来达到嵌入隐秘信息的效果, 该方法隐藏的信息在人的肉眼不能发现的情况下, 其嵌入方法简单、隐藏信息量大、提取方法简单等而获得广泛应用。LSB 信息嵌入过程如下: S′=S+f S ,M 其中,S 和S′分别代表载体信息和嵌入秘密信息后的载密信息;M为待嵌入的秘密信息, 而隐写分析则是从S′中检测出M以至提取M 。 (2)DCT算法原理:DCT 变换在图像压缩中有很多应用,它是JPEG,MPEG 等数据

计算机视觉理论学习总结

第一部分:深度学习 1、神经网络基础问题 (1)Backpropagation 后向传播是在求解损失函数L对参数w求导时候用到的方法,目的是通过链式法则对参数进行一层一层的求导。这里重点强调:要将参数进行随机初始化而不是全部置0,否则所有隐层的数值都会与输入相关,这称为对称失效。 大致过程是: ●首先前向传导计算出所有节点的激活值和输出值, ●计算整体损失函数: ●然后针对第L层的每个节点计算出残差(本质就是整体损失函数对每一层激活值Z的 导数),所以要对W求导只要再乘上激活函数对W的导数即可 (2)梯度消失、梯度爆炸 梯度消失:这本质上是由于激活函数的选择导致的,最简单的sigmoid函数为例,在函数的两端梯度求导结果非常小(饱和区),导致后向传播过程中由于多次用到激活函数的导数值使得整体的乘积梯度结果变得越来越小,也就出现了梯度消失的现象。 梯度爆炸:同理,出现在激活函数处在激活区,而且权重W过大的情况下。但是梯度爆炸不如梯度消失出现的机会多。 dropout, regularization, batch normalizatin,但是要注意dropout只在训练的

时候用,让一部分神经元随机失活。 Batch normalization是为了让输出都是单位高斯激活,方法是在连接和激活函数之间加入BatchNorm层,计算每个特征的均值和方差进行规则化。 2、CNN问题 (1)思想 改变全连接为局部连接,这是由于图片的特殊性造成的(图像的一部分的统计特性与其他部分是一样的),通过局部连接和参数共享大范围的减少参数值。可以通过使用多个filter来提取图片的不同特征(多卷积核)。 (2)filter尺寸的选择 通常尺寸多为奇数(1,3,5,7) (3)输出尺寸计算公式 输出尺寸=(N - F +padding*2)/stride + 1 步长可以自由选择通过补零的方式来实现连接。 (4)pooling池化的作用 虽然通过卷积的方式可以大范围的减少输出尺寸(特征数),但是依然很难计算而且很容易过拟合,所以依然利用图片的静态特性通过池化的方式进一步减少尺寸。 (5)常用的几个模型,这个最好能记住模型大致的尺寸参数。 1、RNN原理: 在普通的全连接网络或CNN中,每层神经元的信号只能向上一层传播,样本的处理在各个时刻独立,因此又被成为前向神经网络(Feed-forward+Neural+Networks)。而在RNN中,神经元的输出可以在下一个时间戳直接作用到自身,即第i层神经元在m时刻的输入,除了(i-1)层神经元在该时刻的输出外,还包括其自身在(m-1)时刻的输出。所以叫循环神经网络 2、RNN、LSTM、GRU区别 ●RNN引入了循环的概念,但是在实际过程中却出现了初始信息随时间消失的问题,即 长期依赖(Long-Term Dependencies)问题,所以引入了LSTM。 ●LSTM:因为LSTM有进有出且当前的cell informaton是通过input gate控制之后 叠加的,RNN是叠乘,因此LSTM可以防止梯度消失或者爆炸。推导forget gate,input gate,cell state, hidden information等因为LSTM有进有出且当前的cell informaton是通过input gate控制之后叠加的,RNN是叠乘,因此LSTM可以防止梯度消失或者爆炸的变化是关键,下图非常明确适合记忆:

机器人视觉大作业

机器人视觉论文 论文题目:基于opencv的手势识别院系:信息科学与工程学院 专业:信号与信息处理 姓名:孙竟豪 学号:21160211123

摘要 文中介绍了一种易于实现的快速实时手势识别算法。研究借助计算机视觉库OpenCV和微软Visual Studio 2008 搭建开发平台,通过视频方式实时提取人的手势信息,进而经二值化、膨胀腐蚀、轮廓提取、区域分割等图像处理流程甄别出当前手势中张开的手指,识别手势特征,提取出人手所包含的特定信息,并最终将手势信息作为控制仪器设备的操作指令,控制相关设备仪器。 0、引言 随着现代科技的高速发展及生活方式的转变,人们越发追求生活、工作中的智能化,希望享有简便、高效、人性化的智能操作控制方式。而伴随计算机的微型化,人机交互需求越来越高,人机友好交互也日益成为研发的热点。目前,人们已不仅仅满足按键式的操作控制,其目光已转向利用人体动作、表情变化等更加方便、友好、直观地应用智能化交互控制体系方面。近年来,国内外科学家在手势识别领域有了突破性进展。1993 年B.Thamas等人最先提出借助数据手套或在人手粘贴特殊颜色的辅助标记来进行手势动作的识别,由此开启了人们对手势识别领域的探索。随后,手势识别研究成果和各种方式的识别方法也纷然出现。从基于方向直方图的手势识别到复杂背景手势目标的捕获与识别,再到基于立体视觉的自然手势识别,每次探索都是手势识别领域内的重大突破。 1 手势识别流程及关键技术 本文将介绍一种基于 OpenCV 的实时手势识别算法,该算法是在现有手势识别技术基础上通过解决手心追踪定位问题来实现手势识别的实时性和高效性。 基于 OpenCV 的手势识别流程如图 1 所示。首先通过视频流采集实时手势图像,而后进行包括图像增强、图像锐化在内的图像预处理,目的是提高图像清晰度并明晰轮廓边缘。根据肤色在 YCrCb 色彩空间中的自适应阈值对图像进行二值化处理,提取图像中所有的肤色以及类肤色像素点,而后经过膨胀、腐蚀、图像平滑处理后,祛除小块的类肤色区域干扰,得到若干块面积较大的肤色区域; 此时根据各个肤色区域的轮廓特征进行甄选,获取目标手势区域,而后根据目标区域的特征进行识别,确定当前手势,获取手势信息。

研学方案

“研学旅行”实施方案 一、项目实施背景 从2013年发布《国民休闲旅游纲要》到2016年的《关于推进中小学生研学旅行的意见》,国家教育部等多部门发文要求大力推进研学旅行。研学旅行有利于促进学生培育和践行社会主义核心价值观,激发学生对党、对国家、对人民的热爱之情;有利于推动全面实施素质教育,创新人才培养模式,引导学生主动适应社会,促进书本知识和生活经验的深度融合;有利于加快提高人民生活质量,满足学生日益增长的旅游需求,从小培养学生文明旅游意识,养成文明旅游行为习惯。近年来,各地积极探索开展研学旅行,部分试点地区取得显著成效,在促进学生健康成长和全面发展等方面发挥了重要作用。二、定位与宗旨 目前大多数研学旅行还处在研究开发状态,良莠不齐,市场认可度不够,家长热度不高(尤其省内)。这是我们的机遇,也是挑战,我们的定位是要打造出一个学校认可、家长认可、学生认可的研学品牌,让学生在研学中学到东西。 三、具体实施 (一)方案A:纯旅游研学 本方案以若干旅游景点为研学地点,前期采取跟旅行社合作的方式(合作方式有待探讨),研学的核心(课件+“内容”)内容采取跟大学历史系或者旅游系的老师合作。 该方案的优点:该方案采用跟旅行社合作,研学路线可以借用

旅行社的优势,资源充分整合,老师和家长的路线选择多,可以极大丰富学生的课外知识,并且可以开展夏令营和冬令营活动。缺点是要综合考虑各个年龄段的学生,路线过多,会导致前期工作准备不够充足。 方案细节初步安排如下: 1、前期工作(3月20日-3月30日): (1)与某个旅行社达成合作关系(目前有合作意向的有康辉旅行社); (2)与某个大学的历史或者旅游系老师达成合作关系,负责研学核心内容的开发,包括路线的选择和内容的开发 (3)完成计划的策划和确定具体实施细节。 2、中期工作(4月1日-5月30日) (1)4月1日-4月15日与旅行社和老师确定最终的研学路线; (2)4月15日-5月30日一个半月的时间根据最终具体的研学路线,来做具体的研学课件和研学内容,研究出研学到底应该让学生学到什么,怎么保证学生能学到这些; (3)同时根据最终确定的研学方案做好定价方案,在这个过程中要充分进行调研,进学校、访家长,做到收费合理; (4)根据做好的方案做好线上推广,把做好的资料全部上传到线上,可以参考北京世纪明德。

人工神经网络大作业

X X X X大学 研究生考查课 作业 课程名称:智能控制理论与技术 研究生姓名:学号: 作业成绩: 任课教师(签名) 交作业日时间:2010年12月22日

人工神经网络(artificial neural network,简称ANN)是在对大脑的生理研究的基础上,用模拟生物神经元的某些基本功能元件(即人工神经元),按各种不同的联结方式组成的一个网络。模拟大脑的某些机制,实现某个方面的功能,可以用在模仿视觉、函数逼近、模式识别、分类和数据压缩等领域,是近年来人工智能计算的一个重要学科分支。 人工神经网络用相互联结的计算单元网络来描述体系。输人与输出的关系由联结权重和计算单元来反映,每个计算单元综合加权输人,通过激活函数作用产生输出,主要的激活函数是Sigmoid函数。ANN有中间单元的多层前向和反馈网络。从一系列给定数据得到模型化结果是ANN的一个重要特点,而模型化是选择网络权重实现的,因此选用合适的学习训练样本、优化网络结构、采用适当的学习训练方法就能得到包含学习训练样本范围的输人和输出的关系。如果用于学习训练的样本不能充分反映体系的特性,用ANN也不能很好描述与预测体系。显然,选用合适的学习训练样本、优化网络结构、采用适当的学习训练方法是ANN的重要研究内容之一,而寻求应用合适的激活函数也是ANN研究发展的重要内容。由于人工神经网络具有很强的非线性多变量数据的能力,已经在多组分非线性标定与预报中展现出诱人的前景。人工神经网络在工程领域中的应用前景越来越宽广。 1人工神经网络基本理论[1] 1.1神经生物学基础 可以简略地认为生物神经系统是以神经元为信号处理单元,通过广泛的突触联系形成的信息处理集团,其物质结构基础和功能单元是脑神经细胞即神经元(neu ron)。(1)神经元具有信号的输入、整合、输出三种主要功能作用行为。突触是整个神经系统各单元间信号传递驿站,它构成各神经元之间广泛的联接。(3)大脑皮质的神经元联接模式是生物体的遗传性与突触联接强度可塑性相互作用的产物,其变化是先天遗传信息确定的总框架下有限的自组织过程。 1.2建模方法 神经元的数量早在胎儿时期就已固定,后天的脑生长主要是指树突和轴突从神经细胞体中长出并形成突触联系,这就是一般人工神经网络建模方法的生物学依据。人脑建模一般可有两种方法:①神经生物学模型方法,即根据微观神经生物学知识的积累,把脑神经系统的结构及机理逐步解释清楚,在此基础上建立脑功能模型。②神经计算模型方法,即首先建立粗略近似的数学模型并研究该模型的动力学特性,然后再与真实对象作比较(仿真处理方法)。 1.3概念 人工神经网络用物理可实现系统来模仿人脑神经系统的结构和功能,是一门新兴的前沿交叉学科,其概念以T.Kohonen.Pr的论述最具代表性:人工神经网络就是由简单的处理单元(通常为适应性)组成的并行互联网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。 1.4应用领域 人工神经网络在复杂类模式识别、运动控制、感知觉模拟方面有着不可替代的作用。概括地说人工神经网络主要应用于解决下述几类问题:模式信息处理和模式识别、最优化问题、信息的智能化处理、复杂控制、信号处理、数学逼近映射、感知觉模拟、概率密度函数估计、化学谱图分析、联想记忆及数据恢复等。 1.5理论局限性 (1)受限于脑科学的已有研究成果由于生理试验的困难性,目前对于人脑思维与记忆机制的认识尚很肤浅,对脑神经网的运行和神经细胞的内部处理机制还没有太多的认识。 (2)尚未建立起完整成熟的理论体系目前已提出的众多人工神经网络模型,归纳起来一般都是一个由节点及其互连构成的有向拓扑网,节点间互连强度构成的矩阵可通过某种学

江南营江南深度研学之旅1

江南营-江南深度研学之旅(1)

————————————————————————————————作者:————————————————————————————————日期:

诗梦江南,入画寻踪 ——长清区实验小学江南深度研学实践 之旅 【课程简介】 一道水,一架桥,一支橹声,隽秀婉约的杭州绍兴聚合了太多的历史文化。此次研学活动旨在让同学们了解祖国江南,同时感受一场从远古传说,到春秋的吴越文化,到南北朝的文人风骨,再到明清以及近代的大儒伟人的历史盛宴。活动中,同学们将一起寻访王羲之、蔡元培、鲁迅、周恩来等名人伟人故里,穿越历史,陶冶爱国之志,体悟文化魅力;一起走进沈园,欣赏宋代江南私家园林的秀美景观,探寻园林蕴含的文化内涵;一起游历西湖,领略“淡妆浓抹总相宜”的如画美景;一起走进综合性人文科学博物馆浙江博物馆、中国黄酒博物馆,全面了解浙江历史文化。 【课程特色】 ●文化名镇江南风采 ●穿越时空触摸历史 【行程简表】 时间课程安排课程主题课程链接 第一天上午乘坐高铁前往杭州:车次G63 济南-杭州东 07:23-11:53辅导员接站读万卷书行万里路下午参观钱塘江、六和塔看天下第一潮登镇潮六和塔追寻江畔的历史故事 晚上研学课程指导分组讨论课程,研学收获分享 实践-辅导员指导学生完成课程手 册 第二天上午 游历杭州西湖置身如画美景感受西湖柔情参观苏堤、孤山、曲院风荷 浙江博物馆参观历史展品考察浙江文化感受历史文化的沉淀 下午灵隐寺、飞来峰登山览胜景寺宇悟佛心登山参观庙宇,了解佛教文化 晚上研学课程指导分组讨论课程,研学收获分享实践-辅导员指导学生完成课程手册 第三天上午探访鲁迅故里探寻书中世界亲访三味书屋追寻鲁迅先生的足迹 下午 游览沈园漫步江南园林,探寻文化内涵 人文-体味江南风情/建筑-江南园林建 筑风格 参观黄酒博物馆参观历史文物体悟江南魅力历史-绍兴历史文化 晚上 大善塔 仓桥直街 漫步古城小道欣赏绍兴夜色实践-实地感受,见景抒情 第四天上午书圣故里历史街区历游文人旧地感受文化魅力人文-文人旧所、大家荟萃

计算机视觉复习题

《计算机视觉》复习题 1、利用MFC及OpenCV 库函数编写对话框程序,添加按钮实现图像读入、图像阈值分割、边缘提取等功能(至少实现三个以上功能)。(考前做好并用A4纸打印,考试当天带来) 为旋转不变算子,即当图像()v,u f旋转后,计算值在对应点保持不变。 2、证明Laplace算子 理论 3、计算机视觉研究的目的是什么?它和图像处理及计算机图形学的区别和联系是什么? 从20世纪50年代末开始,计算机开始被作为实现人类智能和人类感知的工具,借助计算机人类第一次可以象借助机械实现对体力的延伸一样实现对脑力和感知能力的延伸。对人类视觉感知能力的计算机模拟导致了计算机视觉的产生。计算机视觉就是用各种成像系统代替视觉器官作为输入敏感手段,由计算机来替代大脑完成处理和解释。计算机视觉使用的理论方法主要是基于几何、概率和运动学计算与三维重构的视觉计算理论。 具体地讲,计算机视觉要达到的基本目的有以下几个: 根据一幅或者多幅二维图像计算出观测点到目标物体的距离; 根据一幅或者多幅二维图像计算出观测点到目标物体的运动参数; 根据一幅或者多幅二维图像计算出观测点到目标物体的表面物理特征; 根据多幅二维投影图像恢复出更大空间区域的投影图像。 简单来说,计算机视觉要达到的最终目的是实现利用计算机对三维景物世界的理解,即实现人的视觉系统的某些功能。从本质上来讲,计算机视觉研究就是利用二维投影图像来重构三维物体的可视部分。 计算机视觉和图像处理及计算机图形学的区别和联系: 区别: 图像处理(image processing)通常是把一幅图像变换为另外一幅图像。它输入的是图像,输出的也是图像。Photoshop中对一幅图像应用滤镜就是典型的一种图像处理。常见操作有模糊、灰度化、增强对比度。 计算机图形学(Computer Graphics)是借助计算机来研究图形表达、处理图像、显示生成的学科。,主要通过几何基元,如线、圆和自由曲面等,来生成图像,属于图像综合。输入的是对虚拟场景的描述,通常为多边形数组,输出的是图像,即二维像素数组。

深度学习与传统计算机视觉到底是怎么样的关系

深度学习与传统计算机视觉到底是怎么样的关系 如今,深度学习在众多领域都有一席之地,尤其是在计算机视觉领域。尽管许多人都为之深深着迷,然而,深网就相当于一个黑盒子,我们大多数人,甚至是该领域接受过培训的科学家,都不知道它们究竟是如何运作的。 某种程度上,深度学习最大的优势就是自动创建没有人会想到的特性能力。 大量有关深度学习的成功或失败事例给我们上了宝贵的一课,教会我们正确处理数据。在这篇文章中,我们将深入剖析深度学习的潜力,深度学习与经典计算机视觉的关系,以及深度学习用于关键应用程序的潜在危险。 视觉问题的简单与复杂 首先,我们需要就视觉/计算机视觉问题提出一些看法。原则上它可以这样理解,人们给定一幅由摄像机拍摄的图像,并允许计算机回答关于与该图像内容的相关问题。 问题的范围可以从“图像中是否存在三角形”,“图像中是否有人脸”等简单问题到更为复杂的问题,例如“图像中是否有狗在追逐猫”。尽管这类的问题看起来很相似,对于人类来说甚至有点微不足道,但事实证明,这些问题所隐藏的复杂性存在巨大差异。 虽然回答诸如“图像中是否有红圈”或“图像中有多少亮点”之类的问题相对容易,但其他看似简单的问题如“图像中是否有一只猫”,则要复杂得多。“简单”视觉问题和“复杂”视觉问题之间的区别难以界限。 这一点值得注意,因为对于人类这种高度视觉化的动物来说,上述所有问题都是不足以成为难题,即便是对孩子们来说,回答上述视觉问题也并不困难。然而,处在变革时期的深度学习却无法回答这些问题。 传统计算机视觉V.S.深度学习 传统计算机视觉是广泛算法的集合,允许计算机从图像中提取信息(通常表示为像素值数组)。目前,传统计算机视觉已有多种用途,例如对不同的对象进行去噪,增强和检测。一些用途旨在寻找简单的几何原语,如边缘检测,形态分析,霍夫变换,斑点检测,角点

人工神经网络大作业

X X X X 大学 研究生考查课 作业 课程名称:智能控制理论与技术 研究生姓名:学号: 作业成绩: 任课教师(签名) 交作业日时间:2010 年12 月22 日

人工神经网络(artificial neural network,简称ANN)是在对大脑的生理研究的基础上,用模拟生物神经元的某些基本功能元件(即人工神经元),按各种不同的联结方式组成的一个网络。模拟大脑的某些机制,实现某个方面的功能,可以用在模仿视觉、函数逼近、模式识别、分类和数据压缩等领域,是近年来人工智能计算的一个重要学科分支。 人工神经网络用相互联结的计算单元网络来描述体系。输人与输出的关系由联结权重和计算单元来反映,每个计算单元综合加权输人,通过激活函数作用产生输出,主要的激活函数是Sigmoid函数。ANN有中间单元的多层前向和反馈网络。从一系列给定数据得到模型化结果是ANN的一个重要特点,而模型化是选择网络权重实现的,因此选用合适的学习训练样本、优化网络结构、采用适当的学习训练方法就能得到包含学习训练样本范围的输人和输出的关系。如果用于学习训练的样本不能充分反映体系的特性,用ANN也不能很好描述与预测体系。显然,选用合适的学习训练样本、优化网络结构、采用适当的学习训练方法是ANN的重要研究内容之一,而寻求应用合适的激活函数也是ANN研究发展的重要内容。由于人工神经网络具有很强的非线性多变量数据的能力,已经在多组分非线性标定与预报中展现出诱人的前景。人工神经网络在工程领域中的应用前景越来越宽广。 1人工神经网络基本理论[1] 1. 1神经生物学基础 可以简略地认为生物神经系统是以神经元为信号处理单元, 通过广泛的突触联系形成的信息处理集团, 其物质结构基础和功能单元是脑神经细胞即神经元(neu ron)。(1) 神经元具有信号的输入、整合、输出三种主要功能作用行为。突触是整个神经系统各单元间信号传递驿站, 它构成各神经元之间广泛的联接。(3) 大脑皮质的神经元联接模式是生物体的遗传性与突触联接强度可塑性相互作用的产物, 其变化是先天遗传信息确定的总框架下有限的自组织过程。 1. 2建模方法 神经元的数量早在胎儿时期就已固定,后天的脑生长主要是指树突和轴突从神经细胞体中长出并形成突触联系, 这就是一般人工神经网络建模方法的生物学依据。人脑建模一般可有两种方法: ①神经生物学模型方法, 即根据微观神经生物学知识的积累, 把脑神经系统的结构及机理逐步解释清楚, 在此基础上建立脑功能模型。②神经计算模型方法, 即首先建立粗略近似的数学模型并研究该模型的动力学特性, 然后再与真实对象作比较(仿真处理方法)。 1. 3概念 人工神经网络用物理可实现系统来模仿人脑神经系统的结构和功能, 是一门新兴的前沿交叉学科, 其概念以T.Kohonen. Pr 的论述最具代表性: 人工神经网络就是由简单的处理单元(通常为适应性) 组成的并行互联网络, 它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。 1. 4应用领域 人工神经网络在复杂类模式识别、运动控制、感知觉模拟方面有着不可替代的作用。概括地说人工神经网络主要应用于解决下述几类问题: 模式信息处理和模式识别、最优化问题、信息的智能化处理、复杂控制、信号处理、数学逼近映射、感知觉模拟、概率密度函数估计、化学谱图分析、联想记忆及数据恢复等。 1. 5理论局限性 (1) 受限于脑科学的已有研究成果由于生理试验的困难性, 目前对于人脑思维与记忆机制的认识尚很肤浅, 对脑神经网的运行和神经细胞的内部处理机制还没有太多的认识。 (2) 尚未建立起完整成熟的理论体系目前已提出的众多人工神经网络模型,归纳起来一般都是一个由节点及其互连构成的有向拓扑网, 节点间互连强度构成的矩阵可通过某种学

研学

第一单元 课题人与自我?我自信,会成功 学习目标正确认识自我,能够说出自己的优点和不足;增强自我调控、承受挫折、适应环境的能力;了解树立自信心的方法,培养健全的人格和良好的心理素质;提高心理健康水平,增强自我教育能力,形成健康、自信的人生观。参考主题(1)我自信,会成功;(2)克服考试焦虑;(3)消除孤独感。 实践方式心理测试;收集资料;手工制作。 方法引导发表意见的技巧;如何对调查结果进行统计与分析。 学科整合与心理健康教育、品德与社会、语文等学科整合。关注心理健康,形成健康的生活态度;善于发现其他同学身上的优点并虚心学习;学习名人名言,领悟其深刻含义,并激励自己;进行小制作设计。 课时安排5课时 教学流程 第一课时 研究准备 我们一天天地长大,从妈妈怀里的婴儿,长成了少年。想想自己在成长过程中有哪些烦恼?你是怎么解决的? 同学们根据自己的兴趣自主确定设计研究方案,其方法一般是: 1、我的烦恼及解决的办法 2、我自信,会成功 3、消除孤独感 以上方案进行研究、讨论、尝试初步建立印象。 第二课时 我自信,会成功 一、研究实施 自信对我们走向成功非常重要。今天,就我们一起通过探究活动来寻找自信,增强自信! 二、方法与引导: 发表意见的技巧 1、态度诚恳、谦逊。多采用“我个人认为”、“我目前的想法是”等表达方式; 2、不能只发表否定性意见,对好的方面要充分肯定; 3、对事不对人,只针对事情发表意见; 4、通过举例等方式,引导他人发现存在的问题; 5、避免个人垄断话题,邀请不善于发表意见的组员参与讨论。 三、“我自信,会成功”研究方案 主题名称研究时间 研究目的1、正确认识自己,发现自己的优点与不足 2、

计算机辅助几何设计大作业

Bezier曲线和B样条曲线的研究 高晶英 (内蒙古民族大学数学学院,内蒙古通辽028000) 摘要:本文简单的介绍了计算机辅助几何设计的历史背景以及计算机辅助几何中的Bezier 曲线和B样条曲线的概念. 关键词:计算机辅助几何设计;Bezier曲线;B样条曲线 THE RESEARCH OF BEZIER CURVE AND B-SPLINE CURVE Gao Jingying (Inner Mongolia University for the Nationalities College of Mathematics, Inner Mongolia Tongliao 028000 ) Abstract: This paper briefly describes the historic background of computer-aided geometric design and concept of Bezier curve and B-spine curve. Key words: Computer-aided geometric design; Bezier curve; B-spine curve 1 引言 计算机辅助几何设计(CAGD)主要研究以复杂方式自由变化的曲线曲面,即所谓的自由型曲线曲面,其中参数曲线曲面造型与形状调整是CAGD的一个重要内容。它起源于汽车制造、飞机、船舶的数学放样和外形设计,随着计算机的出现二产生并迅速发展起来的一门独立的新兴交叉学科。它与近代数学的许多分支学科,如应用数值分析、逼近论、微分几何、应用计算方法、代数几何学、高等代数、拓扑学、微分方程与偏微分方程、分形学、小波分析等,并与一些应用性较强的现代科技知识相互渗透,如计算几何、实体造型、图形图像学、数据结构、计算机程序语言、机械设计和加工制造等学科,是计算机辅助设计、计算机辅助制造等应用系统设计开发的理论基础。CAGD主要解决在计算机图像系统的环境下对几何外形信息的计算机表示、逼近以及用计算机控制、分析有关形状信息等问题。随着计算机技术的飞速发展,计算机辅助几何设计在近三十年来也得到了飞速发展。其研究工作开始于二十世纪六十年代,在几代学者的共同努力下,曲线曲面的表示和造型已形成了较为完备的几何理论体系。CAGD的造型方法和相关的理论已广泛地应用于其他技术领域,如游戏动画制作、计算机视觉、工业造型、建筑设计等。 曲线曲面造型理论是CAGD和CG(Computer Graphics:计算机图形)的重要的内容之一,即研究用计算机来表示、分析、显示和设计关于曲线曲面的相关问题自上世纪六十年代由Coon、Bezier等大师奠定其理论基础以来,已经取得了长足的发展。 工业产品的外形一般可分为两大类:一类是如平面、圆、圆锥面、柱面、球面、等解析曲面组成的外形,许多的机械零件都是归属于这一类,通过利用画法几何和机械制图就可以清楚地表示、传递它内存的形状信息。第二类通常是不能借助初等解析式来表示的曲面构成,而是以较为复杂的方式自由变化的曲线曲面,也就是通常意义下的自由形状的曲线、曲面构成,例如轮船、汽车、飞机等零部件外形。CAGD的主要研究对性是自由形状的曲线、曲面,CAGD的首要任务是建立曲线或曲面的数学模型,即利用直观有效的曲线曲面造型设计技术来对曲线曲面进行恰当的表示、清晰的显示和快速的处理。自由曲线曲面通常用参数方程来表示,相应的曲线或曲面被称为参数曲线或参数曲面。 2 Bezier曲线的研究 Bezier曲线是以“逼近”为基础, 先勾画折线多边形、然后用光滑的参数曲线去逼近这

研学课程质量管理方案

XXXX中小学研学旅行课程质量管理 一、指导思想 全面贯彻党的教育方针,以《国家中长期教育改革和发展规划纲要》《基础教育课程改革纲要》《国民旅游休闲纲要》为指导,认真落实立德树人的育人目标,以培养学生的综合实践能力和创新能力为核心,以学生发展为本,全面提升学生综合素质。 二、课程设计原则与课程内容 (一)课程设计原则 1.开放性原则:充分利用校内外资源体现目标的多元性,内容的广泛性,时间空间的广域性,展示的多样性和评价的灵活性。 2.整合性原则:以研学旅行资源及教学内容、方法和师资情况为基础,结合学生认知能力和社会实际整合开发课程,保证课程的时效性,实现课程的生成性。 3.体验性原则:尊重学生主体地位,以人为本,以学生活动为主,突出体验实践,培养学生创新精神和实践能力,变知识性的课堂教学为发展性的体验教学。 4.生活性原则:着眼于生活实际的观察视角,把学生从最简单熟悉的生活层面引领到更加广阔的社会生活舞台,加强教育的生活性,突出生活的教育化程度。 (二)课程内容

1.了解社会状况。通过研学旅行活动,了解当前社会实践活动中迫切需要解决的现实问题,如交通、卫生、网络、饮食、环境、动植物保护以及人口老龄化、就业压力、就医入学等现实状况。 2.探究学科问题。包括物理、化学、生物、地理、数学、语文、英语、政治、历史、通用技术、信息技术、体育、音乐、美术以及学科交叉知识的探究,发现一些值得研究的新问题。 3.前沿科技应用。在研学活动中,学习和研究前沿科学技术在生活、生产实践和科学实践领域的应用。如3D打印、AR/VR、无人机、无人驾驶等。 三、课程实施 (1)课程开发要立足教育性。 要使研学旅行做到立意高远、目标明确、活动生动、学习有效,避免出现“只旅不学”或“只学不旅”的现象,就必须把教育性原则放在首位,寻找适切的研学主题和课程教育目标,深度促进研学旅行活动课程与学校课程的有机融合。作为中小学教育教学实践的重要组成部分,研学旅行的活动课程既要结合学生身心特点、接受能力和实际需要,又要注重知识性、科学性和趣味性。 在课程目标的制订上,要与学校的综合实践活动课程统筹考虑,活动中的知识性目标、能力性目标、情感、态度、价值观领域的目标和核心素养的目标等等,都应该是落实课标的核心要点。 (2)研学旅行课程突出实践性 正是我国推动全面实施素质教育的一种重要创新。研学旅行的课

计算机视觉前沿与深度学习

视觉研究中投入巨大,在IEEE 模式分析与机器智能汇刊(IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE TPAMI)、计算机视觉国际期刊(International Journal of Computer Vision, IJCV)、IEEE图像处理汇刊(IEEE Transactions on Image Processing, IEEE TIP)、IEEE国际计算机视觉大会(IEEE Inter-national Conference on Computer Vision, IEEE ICCV)和IEEE国际计算机视觉与模式识别会议(IEEE Conference on Computer Vi-sion and Pattern Recognition, IEEE CVPR)等顶级国际期刊和会议上发表了许多重要学术论文,产生了许多国际一流的研究成果。其中最受到关注的研究是深度学习,而深度学习领域发表的论文70%以上是关于视觉图像识别方面的。 为了更好地开展学术交流,推动国内计算机视觉学科发展,进一步提升我国计算机视觉研究在国际领域的影响力,中国计算机学会成立了“计算机视觉专业组”。在本期专题中,计算机视觉专业组特别邀请了多位著名的视觉专家从不同角度撰文,介绍计算机视觉前沿与深度学习研究方面的最新进展。 香港中文大学助理教授王晓刚、博士孙祎、教授汤晓鸥共同撰写的《从统一子空间分析到联合深度学习:人脸识别的十年历程》文章,回顾了人脸识别近十年的发展历程。他们的团队使用深度学习开发了DeepID2+系统,在人脸识别最受关注的LFW(labeled faces in the wild)1数据集上取得了人脸确认任务的世界第一,识别率99.47%。深度学习在人脸识别上的巨大成功,并非只是利用复杂模型拟合数据集。DeepID2+系统的神经元响应有很多重要的性质,比如它是中度稀疏的,对人物身份和人脸属性有很强的选择性,对局部遮挡具有良好的鲁棒性。这些性 计算机视觉通常是指用摄像机和计算机代替人眼对目标进行识别、跟踪/测量来实现对客观三维世界的理解。计算机视觉既是科学领域中富有挑战性的理论研究,也是工程领域中的重要应用,在图像检索、安全监控、人机交互、医疗诊断和机器人等领域具有广阔的应用前景。美国和欧洲等先进国家将计算机视觉列为对经济和科学有广泛影响的重大基本问题,计算机视觉也是“谷歌大脑”、“百度大脑”等研究计划中的核心项目。 计算机视觉作为一门学科始于20世纪60年代。随着个人计算机的普及,计算机视觉在80年代取得了重要进展。最近10年,随着计算机性能的大幅提升和互联网的快速发展,新的视觉特征、大数据、稀疏低秩、深度学习等技术的不断涌现,使计算机视觉又迎来了一次突飞猛进的发展,开辟出许多新的研究领域。国内高校与科研单位在计算机特邀编辑:王 涛1 查红彬2 1爱奇艺公司 2北京大学 计算机视觉前沿与深度学习关键词:计算机视觉 深度学习 1 标注过的户外脸部测试数据集。

《计算机视觉与图象处理》.

视觉检测技术基础》课程教学大纲 一、课程基本信息 1、课程代码:MI420 2 、课程名称(中/ 英文):视觉检测技术基础/ Foundation of visual measurement technique 3、学时/ 学分:27/1.5 4、先修课程:高等数学,大学物理 5、面向对象:电子信息类专业本科生 6、开课院(系)、教研室:电子信息与电气工程学院仪器系自动检测技术研究所 7、教材、教学参考书:自编讲义 《机器视觉》,贾云得著,科学出版社,2000 《计算机视 觉》,马颂德著,科学出版社,1997 《图像工程》,章毓晋 著,清华大学出版社,2002 二、本课程的性质和任务 《视觉检测基础》是电子信息学院仪器系四年级本科生的选修课,通过本课程的学习,使学生初步了解视觉检测系统的构成及基本原理,每个组成部分如何选择设计,掌握相应的图像处理方法,增加学生的专业知识。通过上机实践提高学生的实际编程能力,增强感性认识,为以后科研、工作中遇到的相关问题提供一个解决的思想,并能实际运用。 三、本课程教学内容和基本要求

1. 基本要求 《视觉检测基础》作为本科生的选修课,应当主要立足于对学生知识的普及,主要讲述计算机视觉系统的组成、设计、处理等方面的基本知识,以课堂讲述为主,讲述中应结合日常生活实际,提高学生的学习兴趣,让学生掌握基本的处理过程及算法,并辅以实验手段进一步增强学生对视觉检测技术的了解,增加感性认识, 2. 教学内容 (1) 课堂教学部分 第一讲计算机视觉概述 一、什么是计算机视觉 二、计算机视觉的应用 三、计算机视觉的研究内容 1 、主要研究内容 2 、与其它学科的关系 第二讲成像原理与系统 一、成像几何基础 1、透视投影 2、正交投影 二、输入设备 1 、镜头 2 、摄像机

人工智能计算机视觉发展分析

人工智能计算机视觉发展分析 计算机视觉是用电脑去识别物体的一种新技术。作为视觉来讲,必须要有眼睛与大脑两部分。计算机视觉的主要组成部分不是“眼睛”,而是“大脑”。 2011年,计算机视觉迎来了最伟大的突破。当年,谷歌人工智能实验室的杰夫·迪恩与斯坦福大学计算机系教授吴恩达合作,他们动用上万台电脑的计算资源,让计算机用深度学习算法在YouTube上观看了一千万段关于猫的视频,最后计算机终于完成了“猫脸识别”。这个项目是谷歌大脑在计算机视觉领域取得的巨大成功。 到了2014年,计算机视觉领域的ImageNet比赛第一次超越了人类肉眼识别图片的准确率——这标志着计算机视觉已经比人眼更加精准,因此具有极大地应用价值。 ImageNet国际挑战赛是计算机视觉领域最著名的比赛,被誉为国际计算机视觉领域的“奥林匹克”。它是2010年由美国斯坦福大学人工智能实验室的李飞飞教授主导推出的。早在2009年,ImageNet对1500万张图片进行了标注,涉及22000个类别的物体,李飞飞她们建立了一个规模空前的数据库。而且,她们公开了整个数据库,免费提供给全世界的人工智能研究团队。有了这个培育计算机大脑的数据库,科研工作者教会了计算机识别物体。 计算机视觉的基本原理

想要实现计算机视觉,首先需要有一个摄像头,然后把拍摄的照片成像在CCD上形成电子照片。这些电子照片是以像素为单位存储在计算机上的。每一个像素都可以看成是三个矩阵元,这些矩阵元给出了像素的RGB数值(每个数值都是整数,取值在0到255之间)。其中,R表示红色,是red的首字母; G表示绿色,是green的首字母;B表示蓝色,是blue的首字母。有了这三种基本颜色,就可以按照不同的权重叠加出千变万化的色彩。 计算机视觉所处理的主要对象就是这个RGB数值,因为每一张照片的像素很多,因此整张照片可以被看成是三个大的矩阵。 计算机视觉的本质,其实就是处理这三个矩阵,然后从这三个矩阵中提取出“特征信息”,比如对于动物的图片,可以提取的特征是“有没有尾巴?”以及“有没有毛?”等。通过对特征信息的提取与判断,可以实现“猫脸识别”或者“人脸识别”。人工智能是通过机器学习的方法,提取不同物体的特征,然后用分类器对各种事物进行分类识别。 计算机视觉的头部公司之一商汤科技与华东师范大学合作,编写了中国第一本人工智能教材《人工智能基础(高中版)》,在书中详细介绍了计算机视觉的算法实现及其基本原理。 计算机视觉有哪些相关企业与落地应用? 计算机视觉领域的应用非常广泛,其主要的落地应用有以下几个大类。

相关主题