搜档网
当前位置:搜档网 › 判别一元二次方程根的情况

判别一元二次方程根的情况

判别一元二次方程根的情况
判别一元二次方程根的情况

一元二次方程根的判别式知识点

一元二次方程根的判别 式知识点 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

一元二次方程根的判别式知识点及应用 1、一元二次方程ax2+bx+c=0(a≠0)的根的判别式定理:在一元二次方程 ax2+bx+c=0(a≠0)中,Δ=b24ac 若△>0则方程有两个不相等的实数根 若△=0则方程有两个相等的实数根 若△<0则方程没有实数根 2、这个定理的逆命题也成立,即有如下的逆定理: 在一元二次方程ax2+bx+c=0(a≠0)中,Δ=b24ac 若方程有两个不相等的实数根,则△>0 若方程有两个相等的实数根,则△=0 若方程没有实数根,则△<0 特别提示:(1)注意根的判别式定理与逆定理的使用区别:一般当已知△值的符号时,使用定理;当已知方程根的情况时,使用逆定理。 一、不解方程,判断一元二次方程根的情况。 二、例1、判断下列方程根的情况 三、2x2+x━1=0;x2—2x—3=0;x2—6x+9=0;2x2+x+1=0 二、?已知一元二次方程根的情况,求方程中字母系数所满足的条件。 例2、当m为何值时关于x的方程(m—4)x2—(2m—1)x+m=0有两个实数根? 三、?证明方程根的性质。 例3、求证:无论m为任何实数,关于x的方程x2+(m2+3)x+0.5(m2+2)=0恒有两个不相等的实数根。 四、?判断二次三项式能否在实数范围内因式分解。 例4、当m为何值时,关于x的二次三项式mx2-2(m+2)x+(m+5)能在实数范围 内因式分解。 五、?判定二次三项式为完全平方式。 例5、若x2-2(k+1)x+k2+5是完全平方式,求k的值。 例6、当m为何值时,代数式(5m-1)x2-(5m+2)x+3m—2是

一元二次方程及根的定义

一元二次方程及根的定 义 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

一元二次方程及根的定义 1.已知关于的方程的一个根为2,求另一个根及 的值. 思路点拨:从一元二次方程的解的概念入手,将根代入原方程解的值,再代回原方程,解方程求出另一个根即可. 解:将代入原方程,得 即 解方程,得 当时,原方程都可化为 解方程,得. 所以方程的另一个根为4,或-1. 总结升华:以方程的根为载点.综合考查解方程的问题是一个常考问题,解这类问题关键是要抓住“根”的概念,并以此为突破口. 举一反三: 【变式1】已知一元二次方程的一个根是,求代数式 的值. 思路点拨:抓住为方程的一个根这一关键,运用根的概念解题. 解:因为是方程的一个根, 所以, 故, , 所以.

. 总结升华:“方程”即是一个“等式”,在“等式”中,根据题目的需要,合理地变形,是一种对代数运算综合要求较高的能力,在这一方面注意丰富自己的经验. 类型二、一元二次方程的解法 2.用直接开平方法解下列方程: (1)3-27x2=0; (2)4(1-x)2-9=0. 解:(1)27x2=3 . (2)4(1-x)2=9 3.用配方法解下列方程: (1);(2). 解:(1)由, 得, ,

, 所以, 故. (2)由, 得, , , 所以 故 4.用公式法解下列方程: (1);(2);(3). 解:(1)这里 并且 所以, 所以,. (2)将原方程变形为, 则 , 所以,

所以. (3)将原方程展开并整理得, 这里, 并且, 所以. 所以. 总结升华:公式法解一元二次方程是解一元二次方程的一个重点,要求熟练掌握,它对我们的运算能力有较高要求,也是提高我们运算能力训练的好素材. 5.用因式分解法解下列方程: (1);(2); (3). 解:(1)将原方程变形为, 提取公因式,得, 因为,所以 所以或, 故 (2)直接提取公因式,得 所以或,(即 故. (3)直接用平方差公式因式分解得

一元二次方程根的情况试题练习题

一元二次方程根的情况练习题(含答案) 一.选择题 1.一元二次方程2x2﹣5x﹣2=0的根的情况是() A.有两个相等的实数根B.有两个不相等的实数根 C.只有一个实数根D.没有实数根 2.一元二次方程3x2﹣4x+1=0的根的情况为() A.没有实数根 B.只有一个实数根 C.两个相等的实数根D.两个不相等的实数根 3.一元二次方程x2﹣7x﹣2=0的实数根的情况是() A.有两个不相等的实数根B.有两个相等的实数根 C.没有实数根 D.不能确定 4.一元二次方程x2﹣4x+4=0的根的情况是() A.有两个不相等的实数根B.有两个相等的实数根 C.无实数根D.无法确定 5.a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是() A.有两个相等的实数根B.有两个不相等的实数根 C.无实数根D.有一根为0 6.一元二次方程2x2﹣3x+1=0的根的情况是() A.有两个相等的实数根B.有两个不相等的实数根 C.只有一个实数根D.没有实数根 7.一元二次方程2x2﹣3x+1=0根的情况是()

C.只有一个实数根D.没有实数根 8.y=x+1是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为() A.没有实数根 B.有一个实数根 C.有两个不相等的实数根D.有两个相等的实数根 9.一元二次方程x2+2x+1=0的根的情况() A.有一个实数根B.有两个相等的实数根 C.有两个不相等的实数根D.没有实数根 10.一元二次方程x2﹣x﹣1=0的根的情况为() A.有两个不相等的实数根B.有两个相等的实数根 C.只有一个实数根D.没有实数根 11.一元二次方程x2﹣2x﹣1=0的根的情况为() A.有两个相等的实数根B.有两个不相等的实数根 C.只有一个实数根D.没有实数根 12.一元二次方程4x2+1=4x的根的情况是() A.没有实数根 B.只有一个实数根 C.有两个相等的实数根D.有两个不相等的实数根 13.方程x2﹣2x+3=0的根的情况是() A.有两个相等的实数根B.只有一个实数根 C.没有实数根 D.有两个不相等的实数根 14.已知一元二次方程2x2﹣5x+3=0,则该方程根的情况是()

一元二次方程根的分布情况归纳总结

一元二次方程02 =++c bx ax 根的分布情况 设方程()2 00ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) 分 布情况 两个负根即两根都小于0 ()120,0x x << 两个正根即两根都大于0 ()120,0x x >> 一正根一负根即一个根小于0,一个大于0()120x x << 大致图象( >a ) 得出的结论 ()00200b a f ?>??? -?? ()0 0200 b a f ?>??? ->??>?? ()00??? -??? ->??f 综 合结论(不讨论 a ) ()00200b a a f ?>???-?? ()0 0200 b a a f ?>???->???>?? ()00

分 布情况 两根都小于k 即 k x k x <<21, 两根都大于k 即 k x k x >>21, 一个根小于k ,一个大于k 即 21x k x << 大致图象( >a ) 得出的结论 ()020b k a f k ?>??? -?? ()0 20 b k a f k ?>??? ->??>?? ()0??? -??? ->??k f 综 合结论(不讨论 a ) ()020b k a a f k ?>??? - ?? ()0 20 b k a a f k ?>??? - >???>?? ()0

一元二次方程的根的判别式(一)_0

一元二次方程的根的判别式(一) 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢 1。知识结构: 2。重点、难点分析 (1)本节的重点是会用判别式判定根的情况。一元二次方程的根的判别式是比较重要的,用它可以判断一元二次方程根的情况,有助于我们顺利地解一元二次方程,也可以利用它进一步学习函数的有关内容,所以,它是本节课的重点。 (2)本节的难点是一元二次方程根的三种情况的推导。教科书首先将一元二次方程用配方法变形为。因为,所以方程右边的符号就由来确定,而方程左边的不可能是一个负数,因此,把分三种情况来讨论方程根的情况。推导过程当中利用了分类的思想方法,对于分

类讨论学生感觉到较难,老师应该讲明分类的基本思想。 3。教法建议: (1)引入要自然、合理 新课引入前,作一个铺垫:前面我们讲了一元二次方程的解法,我们掌握了开平方法、公式法和因式分解法后,就可以解任何一个一元二次方程,但是,存在这样一个问题,并不是所有的一元二次方程都有解,我们可以通过把解求出来,来解方程,也可以通过判定方程无解,来解方程,这样我们就面临着一个问题,什么时候方程有解?什么时候方程无解?我们不解方程能不能判定根的情况?那就是我们本节所要研究的问题。让学生首先感觉到所要学习的知识并不突然,也显露了本节课的重点。 (2)利用多媒体进行教学 本节是根的判别式结论的推导,比较抽象,为了便于学生理解,使用所提供的动画,有助于学生对所讲内容的理解,调动学生主动思维的积极性,活跃

课堂气氛,提高学习效率。 (3)本节在推导根的判别式的结论时,利用了分类的思想,对于学生这是一个难点,一定给学生讲清楚分类的依据,分类的基本思想,使学生对所得结论深信不疑。 一、教学目标 1。理解一元二次方程的根的判别式,并能用判别式判定根的情况; 2。通过根的判别式的学习,培养学生从具体到抽象的观察、分析、归纳的能力; 3.通过根的情况的研究过程,让学生深刻体会转化和分类的思想方法。 二、重点·难点及解决办法 1.教学重点:会用判别式判定根的情况。 2.教学难点:一元二次方程根的三种情况的推导。 3.解决办法:(1)求判别式时,应先将方程化为一般形式,确定a、b、c。(2)利用判别式可以判定一元二次方程

一元二次方程根的分布教学设计

一元二次方程根的分布教学设计 大庆一中高中部孙庆夺 一、教学分析 (一)教学内容分析 本节课所讲的内容是高中数学必修一第三章第一节《函数与方程》之后的一个专题内容,是中学数学的重要内容之一。这段内容与一元二次不等式,二次函数等内容有着紧密的联系。它是在前面学习了函数与方程,二次方程,二次不等式基础上对函数与方程内容的深化和拓展,通过根的分布的不同情况,充分体现了由简单到复杂、特殊到一般的化归的数学思想。从而提升学生对数学知识的应用能力。通过学习一元二次方程根的分布,有助于学生进一步理解二次方程,二次函数,加深函数与方程思想,数形结合思想在数学学习中的应用的认识,同时也为以后数学的学习打下扎实的基础。 (二)教学对象分析 高中一年级的学生已经有了一定的观察识图能力及分析判断能力,有利用已有知识解决新问题的愿望。学生学习了函数与方程,二次方程,二次函数的知识, 已经具有用数学知识解决实际问题的能力。学生抽象逻辑思维很大程度上还属于经验型,需要感性经验的直接支持。通过学习,抽象逻辑思维逐步成熟,能够用理论作为指导来分析、综合各种事实材料,从而不断扩大自己的知识领域。 (三)教学环境分析 由于本节课涉及到根的分布情况较多,对老师的的作图提出了很高的要求。采用传统的板式教学,根本就无法向学生演示动态过程,很难满足学生的求知欲,达不到教学的最佳效果。多媒体网络教学,是现代高中数学教学全新的教育技术,

使传统的教学方式得到补充。在计算机的帮助下,利用制作好的几何画板课件,操作演示,感受根的分布的不同情况,加深学生的认识和理解,同时也符合学生认识事物从感性认识到理想认识的认知过程。 (四)教学手段 采用多媒体网络教学。《普通高中数学课程标准》指出:“现代信息技术的广泛应用真正对数学教学、数学学习方面产生深刻的影响,数学课程的设计应重视运用现代信息技术,大力开发并向学生提供更为丰富的学习资源,提倡实现信息技术与课程内容的有机结合。”本节课涉及到的图象信息较多,利用多媒体网络教学可以实现最大容量地向学生提供图象信息,并让学生整理归纳信息,增强学生的动手能力、思考能力和自主学习能力,也能实现数学课堂中学生的高参与度,从而实现资源、时间、效率的最优化。 (五)教学方式 自主式探究,学案式导学。自主探究,学案导学的教学方式,能够激发学生的学习兴趣、突出学生的主题地位,培养学生的数学应用意识、合作精神,这与《新课标》的要求是吻合的。 二、教学目标 1.知识与能力 加深对一元二次方程,二次函数图象与性质的认识;会利用函数知识,方法重新审视一元二次方程. 2.过程与方法 体验“观察-猜想-验证”探究问题的方法,领会由简单到复杂,由特殊到一般的化归思想,加深对函数与方程,数形结合思想的理解。

一元二次方程的根的判别式练习题

一元二次方程的根的判别式 1、方程2x 2+3x -k=0根的判别式是 ;当k 时,方程有实根。 2、关于x 的方程kx 2+(2k+1)x -k+1=0的实根的情况是 。 3、方程x 2+2x+m=0有两个相等实数根,则m= 。 4、关于x 的方程(k 2+1)x 2-2kx+(k 2+4)=0的根的情况是 。 5、当m 时,关于x 的方程3x 2-2(3m+1)x+3m 2-1=0有两个不相等的实数根。 6、如果关于x 的一元二次方程2x(ax -4)-x 2+6=0没有实数根,那么a 的最小整数值是 。 7、关于x 的一元二次方程mx 2+(2m -1)x -2=0的根的判别式的值等于4,则m= 。 8、设方程(x -a)(x -b)-cx=0的两根是α、β,试求方程(x -α)(x -β)+cx=0的根。 9、不解方程,判断下列关于x 的方程根的情况: (1)(a+1)x 2-2a 2x+a 3=0(a>0) (2)(k 2+1)x 2-2kx+(k 2+4)=0 10、m 、n 为何值时,方程x 2+2(m+1)x+3m 2+4mn+4n 2+2=0有实根? 11、求证:关于x 的方程(m 2+1)x 2-2mx+(m 2+4)=0没有实数根。 12、已知关于x 的方程(m 2-1)x 2+2(m+1)x+1=0,试问:m 为何实数值时,方程有实数根? 13、 已知关于x 的方程x 2-2x -m=0无实根(m 为实数),证明关于x 的方程x 2+2mx+1+2(m 2-1)(x 2+1)=0 也无实根。 14、已知:a>0,b>a+c,判断关于x 的方程ax 2+bx+c=0根的情况。 15、m 为何值时,方程2(m+1)x 2+4mx+2m -1=0。 (1)有两个不相等的实数根; (2)有两个实数根; (3)有两个相等的实数根; (4)无实数根。 16、当一元二次方程(2k -1)x 2-4x -6=0无实根时,k 应取何值? 17、已知:关于x 的方程x 2+bx+4b=0有两个相等实根,y 1、y 2是关于y 的方程y 2+(2-b)y+4=0的两实根,求以1y 、2y 为根的一元二次方程。 18、若x 1、x 2是方程x 2+ p x+q=0的两个实根,且23x x x x 222121=++,25x 1x 12221=+求p 和q 的值。 19、设x 1、x 2是关于x 的方程x 2+px+q=0(q ≠0)的两个根,且x 2 1+3x 1x 2+x 2 2=1, 0)x 1(x )x 1(x 2211=+++,求p 和q 的值。 20、已知x 1、x 2是关于x 的方程4x 2-(3m -5)x -6m 2=0的两个实数根,且23x x 21=,求常数m 的值。 21、已知α、β是关于x 的方程x 2+px+q=0的两个不相等的实数根,且α3-α2β-αβ2+ β3=0,求证:p=0,q<0 22、已知方程(x -1)(x -2)=m 2(m 为已知实数,且m ≠0),不解方程证明: (1)这个方程有两个不相等的实数根;

一元二次方程判别式及韦达定理

一元二次方程判别式及韦达定理 一、选择题 1.(2013湖北黄冈)已知一元二次方程x 2-6x +c =0有一个根为2,则另一根为( ) A .2 B .3 C .4 D .8 2.(2013四川泸州)若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则实数k 的取值范围是( ) A .1k >- B .1k <且0k ≠ C . 1k ≥-且0k ≠ D . 1k >-且0k ≠ 3. (2013四川泸州,)设12,x x 是方程2330x x +-=的两个实数根,则 2112 x x x x +的值为( ) A .5 B .-5 C .1 D .-1 4. (2013福建福州,)下列一元二次方程有两个相等实数根的是( ) A .x 2+3=0 B .x 2+2x =0 C .(x +1)2=0 D .(x +3)(x -1)=0 5.(2013山东滨州,)对于任意实数k ,关于x 的方程程x 2-2(k +1)x -k 2+2k -1=0的根的情况为 A .有两个相等的实数根 B .没有实数根 C .有两个不相等的实数根 D .无法确定 6.(2013广东广州)若0205<+k ,则关于x 的一元二次方程042=-+k x x 的根的情况是( ) A .没有实数根 B .有两个相等的实数根 C .有两个不相等的实数根 D .无法判断 7.(2013山东日照)已知一元二次方程032=--x x 的较小根为1x ,则下面对1x 的估计准确的是 A .121-<<-x B .231-<<-x C .321<

一元二次方程求根公式

一元二次方程求解 一、一周知识概述 1、一元二次方程的求根公式 将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为 . 该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法. 说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0); (2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的; (3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式. 2、一元二次方程的根的判别式 (1)当b2-4ac>0时,方程有两个不相等的实数根; (2)当b2-4ac=0时,方程有两个相等的实数根; (3)当b2-4ac<0时,方程没有实数根. 二、重难点知识 1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。 (1) “开平方法”一般解形如“”类型的题目,如果用“公式

法”就显得多余的了。 (2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。 (3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。 (4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方 程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。 2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点: (1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac; (2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c; (3)根的判别式是指b2-4ac,而不是 三、典型例题讲解 例1、解下列方程: (1); (2); (3). 分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,

一元二次方程根的判别式专题训练

一元二次方程根的判别式专题训练 1. (2010 广西钦州市) 已知关于x 的一元二次方程x 2 +kx +1 =0有两个相等的实数根,则k = . 2. (2010 湖北省荆门市) 如果方程2210ax x ++=有两个不等实根,则实数a 的取值范围是____________. 3. (2010 江苏省苏州市) 若一元二次方程()2 220x a x a -++=的两个实数根分别是3b 、,则a b +=_________. 4. (2010 江苏省苏州市) 下列四个说法中,正确的是( ) A .一元二次方程22 452 x x ++=有实数根; B. 一元二次方程23 452 x x ++=有实数根; C. 一元二次方程25 453x x ++= 有实数根; D. 一元二次方程()2451x x a a ++=≥有实数根. 5. (2010 湖南省益阳市) 一元二次方程 )0(02≠=++a c bx ax 有两个不相等的实数根,则ac b 42 -满足的条件是 A.ac b 42 -=0 B.ac b 42->0 C.ac b 42-<0 D.ac b 42-≥0 6. (2010 山东省烟台市) 方程x2-2x-1=0的两个实数根分别为x1,x2,则(x1-1)(x2-1)= . 7. (2010 北京市) 已知关于 x 的一元二次方程 2410x x m -+-= 有两个相等的实数根, 求m 的值及方程的根. 8. 当k 是什么整数时, 方程(k2–1)x2–6(3k –1)x+72=0有两个不相等的正整数根? 9. 关于x 的一元二次方程()011222=-+--m x m x 与0544422=--+-m m mx x 的根都是整数,求m 的整数值, 并求出两方程的整数根. 10. (2010 重庆市江津区) 在等腰△ABC 中,三边分别为a 、b 、c ,其中5a =,若关于x

一元二次方程根的差别式

典型例题一 例 求证:如果关于x 的方程922+=+m x x 没有实数根,那么,关于y 的方程0522=+-+m my y 一定有两个不相等的实数根. 分析:由已知,可根据一元二次方程的根的判别式证之. 证明 设方程922+=+m x x 即0922=--+m x x 的根的判别式为1?,方程 0522=+-+m my y 的根的判别式为2?,则 . 36)4( 208)25(4. 440)9(42222221-+=-+=--=?+=++=?m m m m m m m ∵方程922+=+m x x 无实数根, 01+∴m ,即036)4(2>-+m . 故方程0522=+-+m my y 有两个不相等的实数根. 说明:上述证明中,判定02>?用到了01

分析:运用根的判别式判定根的情况时,要首先把方程变形为一元二次方程的一般形式,然后从求出的判别式的值来判定根的判别式的符号,尤其是当方程系数中含有字母时,一般利用配方法将“?”化成完全平方式或完全平方式加上(或减去)一个常数,再根据完全平方式的非负性判断“?”的符号,从而判定方程的根的情况,有时还需要对字母进行讨论.这是不解方程判别根的情况的关键. 解:(1)),1(4,2,1-=-==k c k b a )1(414)2(422-??--=-=?∴k k ac b )2(4)44(416 16422 2≥-=+-=+-=k k k k k ∴方程有两个实数根. (2)0≠a , ∴方程02=+bx ax 是一元二次方程,此方程是缺少常数项的不完全的一元二次方程,将常数项,将常数项看作零. ∴2204b a b =?-=?. ∴不论b 取任何实数,2b 均为非负数, 02≥=?b 恒成立. ∴方程有两个实数根. (3)0≠a , ∴方程02=+c ax 是缺少一次项的不完全的一元二次方程,它的一次项系数0=b . ac a 40402-=?-=?, ∴需要讨论a 、c 的符号,才能确定?的符号. 当0=c 时,0=?,方程有两个相等的实数根; 当a 、c 异号时,0>?,方程有两个不相等的实数根; 当a 、c 同号时,0

解一元二次方程(根的判别式)

第四课时 解一元二次方程(根的判别式) 学习目标: 1、熟练使用公式法解一元二次方程。 2、会用ac b 42 -的值来判断一元二次方程。 授课内容: 1、用公式法法解下列方程: (1)0222=--x x (2)0122=+-x x (3)0222=+-x x . 2、观察上述方程的根,方程(1)两个实数根________,方程(2)两实数根________, 方程(3)_______________。那么方程根出现不同情况是由什么来判断的呢? 3,结论:一元二次方程)0(02 ≠=++a c bx ax 的根的情况可由ac b 42-来判定: 当__________时,方程有两个不相等的实数根; 当__________时,方程有两个相等的实数根; 当__________时,,方程没有实数根。 我们把ac b 42-叫做一元二次方程)0(02 ≠=++a c bx ax 的根的判别式 说明:(1)可以不解方程求ac b 42 -的值来判别方程的根的情况。 (2)上述结论反过来也成立。 例题讲解 例1、不解方程,判别方程根的情况: (1)0132=-+x x (2)0962 =+-x x (3)04322=+-y y (4)x x 5252=+ 变式:求证:不论x 取何值时,关于x 的一元二次方程012 =--kx x 总有两个不相等的实 数根。

例2、k 取什么值时,关于x 的方程022)2(22=-++-k x k x 有两个相等的实数根?有 两个不等的实数根?无实数根? 变式1:已知关于0232 =-+-k x x 有实数根,求k 的取值范围。 例3、已知关于x 的方程220kx +-=有两个不相等的实数根.........,求k 的取值范围。 变式:关于x 的方程..2 (2)2(1)10k x k x k ---++=有实数根,求k 的取值范围。 课堂练习: 1,已知关于x 的方程222(41)210x k x k -++-=,K 取什么值时 ○ 1、方程有两个不相等的实数根; ○ 2、方程有两个相等的实数根; ○ 3、方程无实数根; 2,试说明关于x 的方程222(1)2(4)0m x mx m +-++=无实数根。

一元二次方程根的分布情况归纳(完整版)

二次方程根的分布与二次函数在闭区间上的最值归纳 1、一元二次方程02 =++c bx ax 根的分布情况 设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) a

根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧 12,x m x n <>,(图形分别如下)需满足的条件是 (1)0a >时,()()00f m f n ???>?? 对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况: 若()0f m =或()0f n =,则此时()()0f m f n

一元二次方程的根的判别式

【学习课题】 九上 补充内容 一元二次方程的根的判别式 【学习目标】 1、经历探索一元二次方程的根的判别式的过程,进一步理解根的判别式; 2、能利用判别式判定根的情况以及在已知根的情况时,能求出未知系数的 值。 【学习重点】 能准确地使用判别式解决相关问题。 【学习难点】已知根的情况时,能求出未知系数的值。 【学习过程】 学习准备: 复习:(1)一元二次方程ax 2+bx+c=0(a ≠0)的求解方法有①_________法②________法, ③_________法,④_________法。 (2) 一元二次方程ax 2+bx+c=0(a ≠0)的求根公式为____________( ) (3) 用配方法解下列方程:① x 2+6x+8=0 ② 3x 2-1=6x 解读教材: 方程ax 2+bx+c=0(a ≠0)经配方可变形为:(x+ )2=2244a ac b -,因为a ≠0,所以, 4a 2>0,于是有: (1) 当b 2-4ac >0时,方程右边是一个___数,则:x 1=________;x 2=_______ 即方程有两个不相等的实数根。 (2) 当b 2-4ac=0时,方程右边是_____,则有:x 1= x 2=_________;即方程有两个相等 的实数根。 (3) 当b 2-4ac <0时,方程右边是一个___数,而方程左边的(x+ )2 ___0 不可能是___数。所以,方程没有实数根。 由上可知:一元二次方程ax 2+bx+c=0(a ≠0)的根的情况可由b 2-4ac 来判定。所以,把b 2-4ac 叫做一元二次方程ax 2+bx+c=0的根的判别式。用符号“△”来表示。(“△”是希腊字母,读作delta ) 特别地:a 、c 异号时方程一定有两个不相等的实数根。想一想:为什么? 挖掘教材: 1、 不解方程,判别方程根的情况: 例1:不解方程,判别下列方程根的情况: (1)2x 2+3x-4=0 (2) 16y 2+9=24y (3) 5(x 2+1)-7x=0 分析:根据△的大小,利用一元二次方程根的判别式作出判断。 解:(1)∵△=32-4×2×(-4)=__________( )0 ∴原方程__________________ (2)∵△=_______________=_____________( ) 0 ∴原方程__________________ (3) ∵△=________________=______________( ) 0 ∴原方程__________________ 即时练习:不解方程,判别下列方程根的情况: (1)2y 2+5=6y (2) 4p(p-1)-3=0 (3) x 2+5=25x

一元二次方程根与系数关系附答案

一元二次方程根与系数的关系(附答案) 评卷人得分 一.选择题(共6小题) 1.已知关于x的一元二次方程3x2+4x﹣5=0,下列说确的是() A.方程有两个相等的实数根B.方程有两个不相等的实数根 C.没有实数根 D.无法确定 2.关于x的一元二次方程x2+2x﹣m=0有实数根,则m的取值围是()A.m≥﹣1 B.m>﹣1 C.m≤﹣1 D.m<﹣1 3.关于x的一元二次方程x2+3x﹣1=0的根的情况是() A.有两个不相等的实数根B.有两个相等的实数根 C.没有实数根 D.不能确定 4.设x1、x2是一元二次方程2x2﹣4x﹣1=0的两实数根,则x12+x22的值是()A.2 B.4 C.5 D.6 5.若α、β是一元二次方程x2﹣5x﹣2=0的两个实数根,则α+β的值为()A.﹣5 B.5 C.﹣2 D. 6.已知关于x的方程x2﹣4x+c+1=0有两个相等的实数根,则常数c的值为() A.﹣1 B.0 C.1 D.3 评卷人得分

二.填空题(共1小题) 7.若关于x的一元二次方程x2﹣3x+a=0(a≠0)的两个不等实数根分别为p,q,且p2﹣pq+q2=18,则的值为. 评卷人得分 三.解答题(共8小题) 8.已知关于x的方程x2﹣(2k+1)x+k2+1=0. (1)若方程有两个不相等的实数根,求k的取值围; (2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L 的长. 9.已知关于x的方程x2+ax+a﹣2=0. (1)若该方程的一个根为1,求a的值; (2)求证:不论a取何实数,该方程都有两个不相等的实数根. 10.已知关于x的一元二次方程(x﹣m)2﹣2(x﹣m)=0(m为常数).(1)求证:不论m为何值,该方程总有两个不相等的实数根; (2)若该方程一个根为3,求m的值. 11.已知关于x的一元二次方程x2﹣x+a﹣1=0. (1)当a=﹣11时,解这个方程; (2)若这个方程有两个实数根x1,x2,求a的取值围; (3)若方程两个实数根x1,x2满足[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,求a的值. 12.已知x1,x2是关于x的一元二次方程4kx2﹣4kx+k+1=0的两个实数根.

一元二次方程根的两个特性及简单运用

一元二次方程根的两个特性及简单运用 我们知道方程的解是由方程的系数(包括常数项)决定的。因此,一元二次方程的根与其系数有着密切的联系。教材中我们探索了一元二次方程的二次项系数为1的情况下的两根之和、两根之积与系数的关系。现在我们接着来探索一般形式下的一元二次方程20(0) ax bx c a ++=≠的两根之和、两根之积与系数的关系。 例1、先阅读,再填空解题: (1)方程:x2-4x-12=0 的根是:x 1=6, x 2 =-2,则x 1 +x 2 =4,x 1 ·x 2 =-12; (2)方程2x2-7x+3=0的根是:x 1= 1 2 , x 2 =3,则x 1 +x 2 = 7 2 ,x 1 ·x 2 = 3 2 ; (3)方程3x2+6x-2=0的根是:x 1= , x 2 = .则x 1 +x 2 = , x 1·x 2 = ; 根据以上(1)(2)(3)你能否猜出:如果关于x的一元二次方程ax2+bx+c=0 (a≠0且a、b、c为常数)的两根为x 1、x 2 ,那么x 1 +x 2 、x 1 x 2 与系数a、b、c有 什么关系?请写出来你的猜想并说明理由。 解析:方程3x2+5x-2=0的根是:x 1= 1 3 x 2 =-2。则x 1 +x 2 = 5 3 -,x1·x2= 2 3 -。 能猜出:如果关于x的一元二次方程ax2+bx+c=0(a≠0且a、b、c为常数) 的两根为x 1、x 2 ,那么x 1 +x 2 a b - =、x1x2 a c =。理由如下: 根据求根公式可知,关于x的一元二次方程ax2+bx+c=0(a≠0且a、b、c 为常数)的两根为: a ac b b x 2 4 2 1 - + - =, a ac b b x 2 4 2 2 - - - = 所以x 1+x 2 = a ac b b 2 4 2- + - + a ac b b 2 4 2- - - a b - = x 1x 2 = a ac b b 2 4 2- + - · a ac b b 2 4 2- - - a c = 也就是说,对于任何一个有实数根的一元二次方程,这个方程的两个根与系数的关系是:两根之和,等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积,等于常数项除以二次项系数所得的商.

专题:一元二次方程根的判别式(含答案)(20201101103145)

一元二次方程根的判别式姓名 ?课前预习 1. _________________________________________________________________________________ 一元二次方程ax2+bx+c=0 (0)的根的情况可用b2—4ac?来判定,?b2—4ac?叫做______________________ ,通常用符号“△”为表示. (1) b2—4ac>0 方程__________ ; (2) b2—4ac=0 方程 _________ ; (3) b2—4ac<0 方程 _________ . 2?使用根的判别式之前应先把方程化为一元二次方程的____________ 形式. ?互动课堂 【例1】不解方程,判别下列方程根的情况: (1) x2—5x+3=0 ; (2) X2+2..2X+2=0 ; (3) 3x2+2=4x ; (4) mx2+ ( m+n) x+n=0 ( m 工0, m 工n). 【例2】若关于x的方程(m2—1) x2— 2 (m+2) x+1=0有实数根,求m的取值范围. 【例3】已知关于x的一元二次方程x2—( 2k+1 ) x+4 ( k—丄)=0. (1)求证:无论k取什么实数 2 值,这个方程总有实数根;(2)如果等腰厶ABC有一边长a=4,另两条边长b, c恰好是这个方程的两个实数根,求△ ABC的周长. 【例4】已知关于x的方程x — 2 (m+1) x+m2=0. (1)当m取何值时,方程有两个实数根? (2)为m选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根. ?跟进课堂 1 .方程2x2+3x —4=0的根的判别式△ = _______ . 2. _______________________________________________________________________ 已知关于x的一元二次方程mx2—10x+5=0有实数根,则m的取值范围是____________________________ . 3. 如果方程x2—2x —m+3=0有两个相等的实数根, 则m的值为_________ ,此时方程的根为_________ . 4 .若关于x的一元二次方程kx2+2x —仁0没有实数根,则k的取值范围是___________ . 5 .若关于x的一元二次方程mx2—2 ( 3m—1) x+9m —1=0有两个实数根,则实数m?的取值范围是 6 .下列一元二次方程中,没有实数根的是( ). A . x2+2x —仁0 B. X2+2T3X+3=0 C . x2+T2x+ 仁0 D. —x2+x+2=0 7.如果方程2x( kx —4) —x2—6=0有实数根,则k的最小整数是().A. — 1 B . 0 C . 1 D . 2 &下列一元二次方程中,有实数根的方程是( ). A . x2—x+仁0 B . x2—2x+3=0 C . x2+x —仁0 D . x2+4=0 9. 如果关于x的一元二次方程kx2—6x+9=0有两个不相等的实数根,那么k的取值范围是( ). A . k<1 B . k z 0 C . k<1 且k 工0 D . k>1 10 .关于x的方程x2+ (3m —1) x+2m2—m=0的根的情况是( ). A .有两个实数根B.有两个相等的实数根C.有两个不相等的实数根 D .没有实数根 ?课外作业 1. 在下列方程中,有实数根的是( ) (A) X2+3X+仁0 ( B) 4x—1=-1 (C) X2+2X+3=0( D) 上=丄 x 1 x 1 2. 关于x的一元二次方程x2+ kx—仁0的根的情况是 A、有两个不相等的同号实数根 B、有两个不相等的异号实数根

一元二次方程的根

初中数学竞赛专题选讲(初三.1) 一元二次方程的根 一 、内容提要 1. 一元二次方程ax 2+bx+c=0(a ≠0)的实数根,是由它的系数a, b, c 的值确定的. 根公式是:x=a ac b b 242-±-. (b 2-4ac ≥0) 2. 根的判别式 ① 实系数方程ax 2+bx+c=0(a ≠0)有实数根的充分必要条件是: b 2-4a c ≥0. ② 有理系数方程ax 2+bx+c=0(a ≠0)有有理数根的判定是: b 2-4a c 是完全平方式?方程有有理数根. ③整系数方程x 2+px+q=0有两个整数根?p 2-4q 是整数的平方数. 3. 设x 1, x 2 是ax 2+bx+c=0的两个实数根,那么 ① ax 12+bx 1+c=0 (a ≠0,b 2-4ac ≥0), ax 22+bx 2+c=0 (a ≠0, b 2-4ac ≥0); ② x 1=a ac b b 242-+-, x 2=a ac b b 242--- (a ≠0, b 2-4ac ≥0); ③ 韦达定理:x 1+x 2= a b -, x 1x 2=a c (a ≠0, b 2-4ac ≥0). 4. 方程整数根的其他条件 整系数方程ax 2+bx+c=0 (a ≠0)有一个整数根x 1的必要条件是:x 1是c 的因数. 特殊的例子有: C=0?x 1=0 , a+b+c=0?x 1=1 , a -b+c=0?x 1=-1. 二、例题 例1. 已知:a, b, c 是实数,且a=b+c+1. 求证:两个方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根. (1990年泉州市初二数学双基赛题) 证明 (用反证法) 设 两个方程都没有两个不相等的实数根, 那么△1≤0和△2≤0. 即?? ???++=≤-≤ ③ ② ①-1040412c b a c a b 由①得b ≥ 41,b+1 ≥4 5代入③,得 a -c=b+1≥45, 4c ≤4a -5 ④ ②+④:a 2-4a+5≤0, 即(a -2)2+1≤0,这是不能成立的. 既然△1≤0和△2≤0不能成立的,那么必有一个是大于0.

相关主题