搜档网
当前位置:搜档网 › 液化石油气储罐防火间距

液化石油气储罐防火间距

液化石油气储罐防火间距

表4.4.1 液化石油气储罐或罐区与建筑物、储罐、堆场、铁路、道路的防火间距(m)

注:1 容积大于1 000m3的液化石油气单罐或总储量大于5000m3的罐区,与明火或散发火花地点的防火间距不应小于120.0m,与民用建筑的防火间距不应小于100.0m,与其他建筑的防火间距应按本表的规定增加25%;

2 防火间距应按本表总容积或单罐容积较大者确定;

3 直埋地下液化石油气储罐的防火间距可按本表减少50%,但单罐容积不应大于50m3,总容积不应大于400m3;

4 与本表以外的其他建、构筑物的防火间距,可按现行国家标准《城镇燃气设计规范》GB50028的有关规定执行。

4.4.2液化石油气气化站、混气站、瓶组站,其储罐与工业建筑、重要公共建筑和其他民用建筑、道路等之间的防火间距,可按现行国家标准《城镇燃气设计规范》GB50028的有关规定执行。

总容积不大于10m3的工业企业内的液化石油气气化站、混气站的储罐,当设置在专用的独立建筑物内时,其外墙与相邻厂房及其附属设备之间的防火间距,可按甲类厂房有关防火间距的规定执行。当设置在露天时,与建筑物、储罐、堆场的防火间距应按本规范第4.4.1条的规定执行。

4.4.3液化石油气储罐之间的防火间距,不应小于相邻较大罐的直径。

数个储罐的总容积大于3000m3时,应分组布置。组内储罐宜采用单排布置。组与组之间相邻储罐的防火间距,不应小于20.0m。

4.4.4液化石油气储罐与所属泵房的距离不应小于1

5.0m。当泵房面向储罐一侧的外墙采用无门窗洞口的防火墙时,其防火间距可减少至

6.0m。液化石油气泵露天设置时,泵与储罐之间的距离不限,但不宜布置在防火堤内。

4.4.5液化石油气瓶装供应站的瓶库,其四周宜设置不燃烧体的实体围墙,但面向出入口一侧可设置不燃烧体非实体围墙。液化石油气瓶装供应站的瓶库与站外建、构筑物之间的防火间距,不应小于表4.4.5的规定。当总容积大于30m3时,其防火间距应符合本规范第4.4.1条的规定。

表4.4.5 瓶库与站外建、构筑物之间的防火间距(m)

注:总存瓶容积应按实瓶个数与单瓶几何容积的乘积计算。

20立方米石油液化气储罐

设计摘要 储罐是石油液化气储存的重要设备之一,石油液化气主要成分:乙烯、乙烷、丙烷、丙烯、丁烷、丁烯等;这些化学成分都对工艺设备腐蚀,在生产过程中设备盛装的介质还具有高温、高压、高真空、易燃易爆的特性,甚至是有毒的气体或液体。根据以上的特点,确定其设备结构、工艺参数、零部件。在设备生产过程中,没有连续运转的安全可靠性,在一定的操作条件下(如温度、压力等)有足够的机械强度;具有优良的耐腐蚀性能;具有良好的密封性能;高效率、低耗能。 关键词:储罐设备结构工艺参数机械强度耐腐蚀强度密封性能

前言 在与普通机械设备相比,对于处理如气体、液体等流体材料为主的化工设备,其所处的工艺条件和过程都比较复杂。尤其在化学工业、石油化工部门使用的设备,多数情况下是在高温、低温、高压、高真空、强腐蚀、易燃易爆、有毒的苛刻条件下操作,加之生产过程具有连续性和自动化程度高的特点,这就需要要求在役设备既要安全可靠地运行,又要满足工艺过程的要求,同时还应具有较高的经济技术指标以及易于操作和维护的特点。 生产过程苛刻的操作条件决定了设备必须可靠运行,为了保证其安全运行,防止事故发生,化工设备应该具有足够的能力来承受使用寿命内可能遇到的各种外来载荷。就是要求所使用的设备具有足够强度、韧性和刚度,以及良好的密封性和耐腐蚀性。 化工设备是由不同的材料制造而成的,其安全性与材料的强度密度切相关。在相同的设计条件下,提高材料强度无疑可以保证设备具有较高的安全性。 由于材料、焊接和使用等方面的原因,化工设备不可避免地会出现各种各样的缺陷;在选材时充分考虑材料在破坏前吸收变形能量的能力水平,并注意材料强度和韧性的合理搭配。设备的设计应该确保具有足够的强度抵抗变形能力。 在相同工艺条件下,为了获得较好的效果,设备可以使用不同的结构内件、附件等。并充分利用材料性能,使用简单和易于保证质量的制造方法,减少加工量,降低制造成本。化工设备除了要满足工艺条件和考虑经济性能,使设备操作简单,便于维护和控制;在结构设计上就应该考虑易损零部件的可维护性和可修理性。 对于化工设备提出的基本要求比较多,全部满足显然是比较困难的,但是主要还是化工设备的安全性、工艺性和经济性,且核心是安全性要求。由此,可以针对化工设备的具体使用情况,优先考虑主要要求,再适当兼顾次要要求。

液化石油气槽车的装卸详细流程

一、准备工作 1、引导罐车对准装卸台位置停车,待司机拉上制动手闸,关闭汽车发动机后,给车轮垫上防滑块。 2、检查液化石油气检验单,检查罐车和接收贮罐的液位、压力和温度,检查装卸阀和法兰连接处有无泄漏。 3、接好静电接地线,拆卸快装接头盖,将装卸台气、液相软管分别与罐车的气、液相管接合牢固后,开启放散阀,用站内液化石油气排尽软管中空气,关闭放散阀。 4、使用手动油压泵打开罐车紧急切断阀,听到开启响声后,缓慢开启球阀。 二、正常装卸车程序 1、液化石油气压缩机卸车作业 ①气相系统:开通接收储罐的气相出口管至压缩机进口管路的阀门;开通压缩机出口管至罐车的气相管阀门。 ②液相系统:开通罐车液相管至接收储罐的进液管阀门。 ③通知运行工启动压缩机。 ④待罐车气相压力高于接收储罐0.2MPa~0.3MPa后,液体由罐车流向接收储罐。当罐车液位接近零位时,及时通知压缩机运行工停车,关闭罐车液相管至接收储罐的进液管阀门,关闭接收储罐气相出口管至压缩机进口管路的阀门,关闭压缩机出口管至罐车的气相管阀门。 ⑤将罐车气相出口管至压缩机进口管路的阀门接通,将压缩机出口至接收储罐气相进口管路的阀门接通,通知运行工启动压缩机回收罐车内气体,回收至罐车压力为~0.2MPa停车,并关闭上述有关阀门。 ⑥关闭罐车紧急切断阀。泄压后拆卸软管和静电接地线,盖上快装接头盖,取出防滑块。开走罐车,卸车作业结束。 ⑦按规定填好操作记录表。 2、液化石油气压缩机装车作业 ①气相系统:开通罐车气相管至压缩机入口管路的阀门;开通压缩机出口管至出液储罐气相入口管路的阀门。 ②液相系统:开通罐车液相管至出液储罐的出液管路的阀门。 ③通知运行工启动压缩机。 ④待出液储罐气相压力高于罐车0.2MPa~0.3MPa后,液体由出液储罐流向罐车。当罐车液位达到最高允许充装液位时,及时通知压缩机运行工停车,关闭罐车液相阀门和出液储罐的出液管阀门。 ⑤关闭罐车气相管至压缩机入口管阀门,关闭压缩机出口管至出液储罐气相入口管路的阀门。关闭罐车紧急切断阀。泄压后拆卸软管和静电接地线,盖上快装接头盖,取出防滑块。开走罐车,装车作业结束。 ⑥按规定填好操作记录表。 3、液化石油气泵卸车作业 ①气相系统:开通罐车气相阀至接收储罐气相管路的阀门。 ②液相系统:开通罐车液相阀至泵进口管路的阀门;开通泵出口至接收储罐进液管路的阀门。 ③通知运行工启动液化石油气泵。

液氮储罐操作规程

液氮储罐使用操作规程 一、液氮使用程序: 1、将输出使用管线通液体排放接口连接在一起。 2、明确出液位显示液相阀和液位显示气相阀外所有阀都被关闭。 3、开启液体排放阀,增压器输入阀和增压器输出阀。此时,装置会自动输送液 体,一直到为止,或直到所设定的压力。 4、一旦达到所需输送物质的数量(或者将贮罐关闭另外使用一段时间),关闭液 体排放阀,停止整个流程,本装置的运行完全是自动完成的,阀门只有在充装和进行维修保养时才被开启和关闭。 5、贮罐阀门的正常操作状态如下:关闭顶部充装阀,底部充装阀,气体排放阀, 溢流阀,均衡阀,开启液体输出阀,增压器输入阀,增压器输出阀,液位显示液相阀,液位显示气相阀。 二、提高液氮储罐压力程序: 1、记录现有贮罐压力 2、按顺时针方向旋转调节按钮,调节调压阀 注:顺时针旋转1/2周相当于约0.15Mpa的压力或压力上升。 3、待贮罐压力上升30分钟后,确定新的压力设定值。 4、根据情况重复步骤2和3,确定达到规定压力。 三、降低液氮储罐压力程序: 1、打开气体排放阀,将贮罐压力排放至低于新设定压力,达到较低的压力后, 关闭气体排放阀。 2、按逆时针方向旋转调节按钮,调节调压阀。 注:逆时针旋转1/2周,将使压力下降0.15Mpa。 3、待贮罐压力平衡30分钟后,确定新的压力设定值。 4、根据情况重复步骤2和3 ,直到达到规定压力。 四、液氮储罐充装程序: 1、明确输送装置内所盛物质即为实际需要输送的物质。 2、明确顶部和底部充装阀均被关闭。 3、明确贮罐处于最低规定操作压力。 4、明确所有其他阀门军处于正常使用状态。 注:如贮罐不处于使用状态,增压器输入阀,增压器输出阀,液体输出阀均关闭。 5、将输送装置输送软管通贮罐充装接头连接起来。 注:在充装之前,打开充装管排放阀和输送装置泄压阀约3分钟,或者待软管开始结霜,使输送管冷却并对其吹扫。关闭充装管排放阀。 6、彻底打开顶部充装阀。 7、如使用压力传输器输送,使液体输送装置内的压力升高,直至压力比贮罐压 力高至少0.35Mpa为止。打开输送装置上的充装阀,或者如使用泵传输输送,对泵做必要的连接,慢慢打开传输装置输送充装阀,保持泵充装压力比贮罐压力高0.35-0.7Mpa。 8、观察压力表显示的贮罐内压力,如压力下降至接近最低操作压力,开始打开 底部充装阀,并调节顶部充装阀,直至压力未定为止。 9、观察液位表,当表显示约3/4液位时,打开溢流阀。

10立方米液化石油气储罐设计_课程设计

10立方米液化石油气储罐设计 目录 目录 (1) 前言 (3) 课程设计任务书 (4) 第一章工艺设计 (6) 1.1液化石油气参数的确定 (6) 1.2设计温度 (6) 1.3设计压力 (6) 1.4设计储量 (7) 第二章机械设计 (8) 2.1筒体和封头的设计: (8) 2.1.1筒体设计 (8) 2.1.2封头设计 (8) 第三章结构设计 (10) 3.1液柱静压力 (10) 3.2圆筒厚度的设计 (10) 3.3椭圆封头厚度的设计 (11) 3.4开孔和选取法兰分析 (11) 3.5安全阀设计 (13) 3.6液面计设计 (16) 3.7接管,法兰,垫片和螺栓的选择 (17) 3.7.1接管和法兰 (17) 3.7.2垫片的选择 (18) 3.7.3螺栓(螺柱)的选择 (19) 3.8人孔的设计 (20) 3.8.1人孔的选取 (20) 3.8.2人孔补强圈设计 (21) 3.9鞍座选型和结构设计 (24) 3.9.1鞍座选型 (24) 3.9.2鞍座位置的确定 (25) 3.10焊接接头的设计 (26) 3.10.1筒体和封头的焊接 (26) 3.10.2接管与筒体的焊接 (26)

第四章强度校核 (28) 结束语 (43) 参考文献 (44)

前言 液化石油气贮罐是盛装液化石油气的常用设备, 由于该气体具有易燃易爆的特点, 因此在设计这种贮罐时, 要注意与一般气体贮罐的不同点, 尤其是安全与防火, 还要注意在制造、安装等方面的特点。目前我国普遍采用常温压力贮罐, 常温贮罐一般有两种形式: 球形贮罐和圆筒形贮罐。球形贮罐和圆筒形贮罐相比: 前者具有投资少, 金属耗量少, 占地面积少等优点, 但加工制造及安装复杂, 焊接工作量大, 故安装费用较高。一般贮存总量大于500m 3或单罐容积大于200m 3时选用球形贮罐比较经济; 而圆筒形贮罐具有加工制造安装简单, 安装费用少等优点, 但金属耗量大占地面积大, 所以在总贮量小于500m 3, 单罐容积小于100m 3时选用卧式贮罐比较经济。圆筒形贮罐按安装方式可分为卧式和立式两种。在一般中、小型液化石油气站内大多选用卧式圆筒形贮罐, 只有某些特殊情况下(站内地方受限制等) 才选用立式。本文主要讨论卧式圆筒形液化石油气贮罐的设计。液化石油气呈液态时的特点。(1) 容积膨胀系数比汽油、煤油以及水等都大, 约为水的16倍, 因此, 往槽车、贮罐以及钢瓶充灌时要严格控制灌装量, 以确保安全;(2) 容重约为水的一半。因为液化石油气是由多种碳氢化合物组成的, 所以液化石油气的液态比重即为各组成成份的平均比重, 如在常温20℃时, 液态丙烷的比重为0. 50, 液态丁烷的比重为0. 56 0. 58, 因此, 液化石油气的液态比重大体可认为在0. 51左右, 即为水的一半。卧式液化石油气贮罐设计的特点。卧式液化石油气贮罐也是一个储存压力容器, 也应按GB150《钢制压力容器》进行制造、试验和验收; 并接受劳动部颁发《压力容器安全技术监察规程》(简称容规) 的监督。液化石油气贮罐, 不论是卧式还是球罐都属第三类压力容器。贮罐主要有筒体、封头、人孔、支座以及各种接管组成。贮罐上设有液相管、液相回液管、气相管、排污管以及安全阀、压力表、温度计、液面计等

石油液化气储罐的设计

石油液化气储罐的设计 摘要 卧式储罐设计是以应力分析为主要途径,以材料力学为基础,对容器的各个主要受压部分进行设计。其设计的目的主要是确定合理、经济的结构形式,并满足制造、检验、装配、运输和维修等方面要求,设计中主要从强度和刚度两方面进行设计,保证强度不失效,即材料不发生强度破坏;刚度满足要求,即材料的形变量控制在一定范围内,保证容器不因过渡变形而发生泄露失效,最终达到安全可靠的工作性能的要求。 关键词:卧式储罐、应力、刚度、强度、设计

目录 第1章 前言 (1) 第2章 卧式储罐一般结构 (2) 第3章 选材要求 (4) 3.1 材料各种机械性能参数 (4) 3.1.1 R的含义 (4) 3.1.2 Q235系列的含义 (4) 3.2 机械性能指标及符号 (5) 3.2.1 强度 (5) 3.2.2 塑性 (6) 3.2.3 冲击韧性 (7) 3.2.4 硬度 (7) 3.2.5 冷弯 (8) 3.2.6 断裂韧性 (8) 3.3 压力容器常见的失效形式 (8) 3.3.1 强度失效 (8) 3.3.2 刚度失效 (8) 3.3.3 稳定性失效 (9) 3.3.4 腐蚀失效 (9) 3.4 主要部件的选材 (10) 3.4.1 筒体、封头 (10) 3.4.2 接管 (10) 3.4.3 法兰 (10)

第4章 焊接 (12) 4.1 焊接结构的特点和常用的焊接方法 (12) 4.2 焊缝类型及施焊方法 (12) 4.3 对接焊缝构造 (13) 4.3.1 对接焊缝施工要求 (13) 4.3.2 对接焊缝的构造处理 (13) 4.3.3 对接焊缝的强度 (13) 4.4 对接焊缝连接的计算 (14) 4.5 焊条的选用 (14) 第5章 液压试验 (15) 5.1 试验目的和作用 (15) 5.2 试验要求 (15) 5.3 试验方法步骤 (16) 第6章 卧式储罐校核 (17) 6.1 剪力弯矩载荷计算 (17) 6.2 内力分析 (19) 6.2.1 弯矩计算 (19) 6.2.2 剪力计算 (20) 6.2.3 圆筒应力计算和强度校核 (21) 参考文献 (26) 致谢 (27) 附录 (28)

液化石油气的装卸操作

编订:__________________ 单位:__________________ 时间:__________________ 液化石油气的装卸操作 Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-4593-64 液化石油气的装卸操作 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 液化石油气的装卸,根据其输送方式的不同,装卸的方法也不同。 由炼油厂通过管路直接输送到储配站的液化石油气,可利用管道的压力压入储罐。 用罐车运输液化石油气时,可根据具体情况,采用不同的装卸方法进行。常用的装卸方法有:压缩机装卸法、烃泵装卸法、加热装卸法、静压差装卸法和气体加压装卸法等。 一、压缩机装卸法 1.原理 利用压缩机抽吸和加压输出气体的性能,将需要灌装的储罐(或罐车)中的气相液化石油气通入压缩机

的入口,经压缩升压后输送到准备卸液的罐车(或储罐)中,从而降低灌装罐(或罐车)的压力,提高卸液罐车(或储罐)中的压力,使二者之间形成装卸所需的压差(0.2~0.3MPa),液态液化石油气便在压力差的作用下流进灌装的储罐(或罐车),以达到装卸液化石油气的目的。 2.工艺流程 压缩机装卸、倒罐的工艺流程如图1-5-4所示。由图可以看出,当要将罐车中的液化石油气灌注到储罐中去时,打开阀门9和13,关闭阀门10和12,按压缩机的操作程序开启压缩机,把储罐中的气态液化石油气抽出,经压缩后进入罐车,使罐车内气相压力升高,罐车中的液态液化石油气在此压力作用下经液相管进入储罐。气、液态液化石油气的流动方向如图1-5-4所示。 图1-5-4压缩机装卸、倒罐工艺流程

液氮储罐安全操作规程通用版

操作规程编号:YTO-FS-PD395 液氮储罐安全操作规程通用版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

液氮储罐安全操作规程通用版 使用提示:本操作规程文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 目的:建立低温液氮贮罐标准操作维护保养规程 范围:所有低温液氮贮罐 职责:操作人员、维修人员、技术人员、车间管理人员对本规程实施负责 规程: 1.设备流程图 2操作步骤的组成 首次充灌、补充充灌、供气、低温泵系统、低温液体喷淋系统、小容器充装、槽车充灌、增压调节阀设定、液面计的操作。 2.1首次充灌的操作方法 2.1.1确认供液装置里的液体就是所要充灌的液体。 2.1.2确认除液面计上下阀(V-9、V-11)都已打开,其余阀门处于关闭状态。 2.1.3将供液装置输液软管与贮槽充装口C-1相连接。

2.1.4全开放空阀V-13,进行常压充灌。 2.1.5打开管道长液排空法V-3,微开供液装置的排液阀,使输液软管子冷却,同时吹除贮槽充装C-1口处的杂质及空气。 2.1.6关闭管道残液排放阀v-3,慢慢打开顶部液体进口阀v-2,进行顶部喷淋充灌。 2.1.7在充灌液体期间,应注意贮槽压力表P-1。若贮槽内容器压力上升至超过供液压力或接近贮槽的正常工作压力,应打开内容器放空阀V-13,使贮槽放气泄压。 2.1.8使用V-2进行顶部充灌。 2.1.9打开管道残液放阀V-3,排出输液金属软管和上进液管的残留液体后关闭底部液体进口阀V-2和管道残液排放阀V-3。关闭内容器放空阀V-13。 2.1.10松开输液软管与贮槽充装口C-1的联接接头,对软管表面除霜,待软管恢复柔性后拆下输液软管。 2.2补充充操作方法。 2.2.1确认供液装置内的液体就是所要充灌的液体。 2.2.2确认除液面计上下阀(V-9、V-11)都已打开,其余阀门庆处于关闭位置。 2.2.3打开内容器放空阀V-13,内容器放空泄压。再将供液装置输液软管与贮槽安装口C-1相连接。 2.2.4打开管道残液排放阀V-3微开供液装置的排液

液化石油气储罐设计

油气储运课程设计说明书 1、设计题目:卧式液化石油气储罐设计 2、设计条件: (1)操作温度:15℃ (2)设计温度:20℃ (3)操作压力:0.72MPa (4)设计压力:0.79MPa (5)介质:液化石油气 (6)公称直径:3200mm (7)公称容积:100m3 (8)圆筒长度:11300mm (9)L2=9800mm (10)A=750mm (11)设备及附件材料自选 3、设计任务: 设计参数的确定;结构分析;材料选择;强度计算及校核;焊接结构设计;标准零部件的选型;制造工艺及制造过程中的检验;设计体会;参考书目等。 4、设计要求: 由于设计参数是每个人各不相同,所以,基本上能够保证学生独立完成任务能力的锻炼,并可在碰到确实需要讨论的个别难题时仍然可以相互讨论,从而培养学生合作解决问题的能力。课程设计是在课程学习阶段结束后,学生们独立进行的工程设计工作,是总结性的、重要的教学实践环节,其目的是培养学生综合运用所学知识,理论联系实践,分析解决工程实践问题的能力。本设计学生必须完成一张A1装配图、一张A3鞍式支座图、一张A3零件图和编制技术性设计说明书一份。

摘要: 通过本次设计,锻炼了查找文献的能力,提高了计算机水平,并且对卧式储罐等大型储罐有了进一步的了解,加深了对本专业课程的认识,在设计的同时,也锻炼了学习的逻辑思维能力和实际动手能力,为今后的工作奠定了良好的基础。从液化石油气的特点,探讨有关卧式圆筒形液化石油气储罐的设计主要对其设计参数、材料选择、结构设计、安全附件及制造与检验等几个方面进行分析和计算。 关键字: 液化石油气卧式储罐设计强度

立方液化石油气储罐设计方案

25立方液化石油气储罐 一.设计背景 该储罐由菏泽锅炉厂有限公司设计,是用来盛装生产用的液化石油气的容器。设计压力为,温度在-19~52摄氏度范围内,设备空重约为5900Kg,体积为25立方米,属于中压容器。石油液化气为易燃易爆介质,且有毒,因此选材基本采用Q345R。此液化石油气卧式储罐是典型的重要焊接结构,焊接接头是其最重要的连接结构,焊接接头的性能会直接影响储存液化石油气的质量和安全。 二.总的技术特性: 三.储气罐基本构成 储气罐是一个承受内压的钢制焊接压力容器。在规定的使用温度和对应的工作压力下,应保证安全可靠,罐体的基本结构部件应包括人孔、封头、筒体、法兰、支座。

图1储气罐的结构简图 筒体 本产品的简体是用钢板卷焊成筒节后组焊而成,这时的简体有纵环焊缝。 封头 按几何形状不同,有椭圆形封头,球形封头,蝶形封头,锥形封头和平盖等各种形式。封头和简体组合在一起构成一台容器壳体的主要部分,也是最主要的受压元件之一。此储气罐选择的是椭圆形封头。 从制造方法分,封头有整体成形和分片成形后组焊成一体的两种。当封头直径较大,超出生产能力时,多采用分片成形方法制造,分片成形控制难度大,易出现不合格产品。对整体成形的封头尺寸、形状,虽然易控制但一般需要有大型冲压模具的压力机或大型旋压设备,工艺设备庞大,制造成本高。 从封头成形方式讲,有冷压成形、热压成形和旋压成形。对于壁厚较薄的封头,一般采用冷压成形。 采用调质钢板制造的封头或封头瓣片,为不破坏钢板调质状态的力学性能,节省模具制造费用,往往采用多点冷压成形法制造。 当封头厚度较大时,均采用热压成形法,即将封头坯料加热至900℃~1000℃。钢板在高温下冲压产生塑性变形而成形,此时对于有些材料(如正火态钢板),由于改变了原始状态的力学性能,为恢复和改善其力学性能,封头冲压成形后还要做正火、正火+回火或淬火+回火等相应的热处理。对于直径大且厚度薄的封头,采用旋压成形法制造是最经济最合理的选择。

液化石油气站的安全技术和事故预防措施(标准版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 液化石油气站的安全技术和事故 预防措施(标准版)

液化石油气站的安全技术和事故预防措施 (标准版) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 1引言 在城市内建设的液化石油气站(如小区气化站、混气站和加气站等)应安全使用。保证安全有二种途径,一是主要通过比较大的安全间距来减少事故的危害,二是主要通过技术措施保证运行的安全。为减少事故而需设置的安全间距是很大的。为了防止较大事故(如发生连续液体泄漏,泄漏时间30min)的安全距离:静风为36m,风速≤1.0m/s 时下风向为80m;为防止重大事故(如爆发性液体泄漏)的安全距离:静风为65m,风速≤1.0m/s时下风向为150m.这对一般液化石油气储罐难以实现。城市用地十分紧张,很难找到一片空地专用于液化石油气站建设。这就要求液化石油气站的建设应以安全技术为主,即应采用先进成熟的技术和可靠的防止燃气泄漏措施,满足液化石油气站的建设的发展的需要。 2主要安全技术措施

液氮罐使用 维护保养标准操作规程

1目的:建立一个液氮罐的使用、维护保养标准操作程序,使操作过程标准化。 2适用范围:本标准适用于液氮罐的使用、维护和保养与清洁。 3职责:操作人员执行本程序,在线QA负责监督检查。 4内容 4.1 容器只能充装液氮。不可装入其它低温介质。特别不能充装液氧,以免与容器自身结构上的可燃性物质发生作用而引起爆炸。 4.2 容器应放在阴凉、干燥处,室内应有良好通风以免空气中氮气过浓而引起窒息。不要靠近热源也不要在容器上面搁放东西。 4.3 抽空嘴采用可重复抽气结构请用户勿启动以免影响保冷性能。 4.4 液氮温度为-196℃,操作时应有防护措施。如戴皮、棉手套等。双手勿裸露。严防液氮飞溅、碰到皮肤或眼睛引起冻伤。 4.5 只能使用配套瓶塞,不可用其它不合格品代替。否则,会影响容器性能,甚至因液氮持续蒸发形成压缩气压,导致容器的损坏。 4.6 液氮的充装:容器首次充装液氮以及长期停用后重新充装液氮时,因内胆是常温,充装切勿过快,应先少量注入,使内胆逐渐冷却,液氮沸腾现象减弱后再加快充注速度。否则液氮会沸腾向外飞溅,引起冻伤。液氮不宜充装过满,切勿使液面高到与玻璃钢颈管接触。不要将液氮冲在颈管上,应将充注管头插入容器底部后,充装液氮。在使用漏斗加注时,应使漏斗和颈口之间留有间隙,使氮气能自由排出。 4.7 液面高度检查:用一木尺插入容器底部中心,约10~15秒钟后取出,其结霜长度即为液面高度。切勿用空心管检查,以防液氮从管内喷出伤人。液面最低不能低于冷藏物体最高面,要保证液氮将冷藏物淹没。当液氮蒸损至冷藏物将要露出液面时,应及时补充液氮。

4.8 冷藏物品取放:取放冷藏物品时,均应细心谨慎操作。首先垂直地轻轻取下盖塞,再垂直地提起提筒,轻轻移到容器中间,最好在容器颈管内取放物品,如必须将提筒提出容器再取放物品时,待高于提筒侧面孔口的液氮排完后,再将提筒提出外面,切勿匆忙提出,以免液氮从侧孔逸出伤人。取放完毕后,立即将提筒与盖塞轻轻复位。要注意尽量缩短瓶口开放时间,更不可把提筒同时全部取出,以免容器吸入空气中的水份,增大液氮的蒸损和影响冷冻物品的贮存效果。颈管上附着的冷块,不要用硬物剥落,以免损坏颈管。提筒通过颈管时,注意不要撞击颈管,以免造成容器损坏。要严防腐蚀性药物和其它异物掉入容器内,以免损坏容器和污染容器。 4.9 如发现蒸损量突然异常增多,或外壳上部的金属表面突然结霜,说明容器已损坏,应立即停止使用。 4.10 凡用户新购置的容器,应首先测定该容器的蒸发损失。

液氮储罐安全操作规程全解-共8页

液氮储罐安全操作规程 目的:建立低温液氮贮罐标准操作维护保养规程 范围:所有低温液氮贮罐 职责:操作人员、维修人员、技术人员、车间管理人员对本规程实施负责 规程: 1.设备流程图

2操作步骤的组成 首次充灌、补充充灌、供气、低温泵系统、低温液体喷淋系统、小容器充装、槽车充灌、增压调节阀设定、液面计的操作。 2.1首次充灌的操作方法 2.1.1确认供液装置里的液体就是所要充灌的液体。 2.1.2确认除液面计上下阀(V-9、V-11)都已打开,其余阀门处于关闭状态。 2.1.3将供液装置输液软管与贮槽充装口C-1相连接。 2.1.4全开放空阀V-13,进行常压充灌。 2.1.5打开管道长液排空法V-3,微开供液装置的排液阀,使输液软管子冷却,同时吹除贮槽充装C-1口处的杂质及空气。 2.1.6关闭管道残液排放阀v-3,慢慢打开顶部液体进口阀v-2,进行顶部喷淋充灌。 2.1.7在充灌液体期间,应注意贮槽压力表P-1。若贮槽内容器压力上升至超过供液压力或接近贮槽的正常工作压力,应打开内容器放空阀V-13,使贮槽放气泄压。 2.1.8使用V-2进行顶部充灌。

残留液体后关闭底部液体进口阀V-2和管道残液排放阀V-3。关闭内容器放空阀V-13。 2.1.10松开输液软管与贮槽充装口C-1的联接接头,对软管表面除霜,待软管恢复柔性后拆下输液软管。 2.2补充充操作方法。 2.2.1确认供液装置内的液体就是所要充灌的液体。 2.2.2确认除液面计上下阀(V-9、V-11)都已打开,其余阀门庆处于关闭位置。 2.2.3打开内容器放空阀V-13,内容器放空泄压。再将供液装置输液软管与贮槽安装口C-1相连接。 2.2.4打开管道残液排放阀V-3微开供液装置的排液阀,使输液软管冷却,同时吹除贮槽充装口C-1处的杂质及空气。 2.2.5关闭管道残液排放阀V-3,慢慢打开顶部液体进口阀V-2到全开位置。 2.2.6慢慢打开底部液体进出口阀V-1,进行顶部底部同时充灌。 2.2.7在充灌时,应注意贮槽压力表P-1。

液氮储罐使用操作管理规定

江西赣亮医药原料有限公司 液氮储罐使用操作管理规定 1、目的 为加强液氮储罐的使用管理,做到正确使用,保证安全生产,特制定本规定。2、使用范围 本规定使用于江西赣亮医药原料有限公司涉及液氮储罐管理和使用的车间、部门。 3、职责 ⑴.仓库是液氮储罐日常管理和维护责任部门,必须经常对液氮储罐进行检查和维护,对存在安全隐患及时提出整改并报生产部 ⑵.涉及液氮使用的车间在使用过程中必须按操作规程操作,确保安全使用。 ⑶.生产部门是液氮储罐管理、维护、使用的监管部门,对仓库和车间放映的问题及时解决。 ⑷.物流负责液氮储罐对外(供应商)联系及协调 4、操作 ⑴.充液,仓库要经常检查液氮的库存量,在生产期间当库存量低于安全库存时,要及时要求物流采购,以避免储罐内筒恢复常温,使用充液时造成过多液体的损耗,液氮到货后协助供货商做好液氮的充罐并核实数量。 ⑵.使用,打开液氮到汽化器的阀门,向汽化器供液,调节稳压阀到要求的压力,向外输送氮气。 ⑶.增压,当液氮储罐压力过低,不能满足生产需要时,可通过储罐自增压装置进行增压,操作步骤:缓慢打开增压阀,使液氮进入增压器汽化,当氮气用量较大时可开打增压阀,直到达到生产需要的压力时关闭增压阀。 ⑷.贮存,停产期间,由于自然挥发的氮气留在槽内,内筒压力会逐渐升高,当内筒压力达到0.8Mpa时,应适当打开放空阀泄压。 ⑸.任何时间必须保证安全阀处于正常工作状态。 5、维护 ⑴.液氮储罐外壳属压力容器,严禁敲打和碰撞。 ⑵.经常检查阀门是否处于正确的启闭位置,压力表、液面计的测量是否准确可

靠,管道、阀门有无泄漏、堵塞现象。 ⑶.要求供应商按规定定期效验压力表和安全阀,当安全阀处于故障时,应立即 要求供应商效验安全阀。 ⑷.当储罐处于停止使用时期,不要将液氮安全用完,应保证内筒0.02Mpa的压 力。

液化石油气储罐设计

第一章 工艺设计 参数的确定 液化石油气的主要组成部分由于石油产地的不同,各地石油气组成成分也不同。取其大致比例如下: 表一 组成成分 异辛烷 乙烷 丙烷 异丁烷 正丁烷 异戊烷 正戊烷 乙炔 各成分百分比 0.01 2.25 49.3 23.48 21.96 3.79 1.19 0.02 对于设计温度下各成分的饱和蒸气压力如下: 表二,各温度下各组分的饱和蒸气压力 温度,℃ 饱和蒸汽压力,MPa 异辛烷 乙烷 丙烷 异丁烷 正丁烷 异戊烷 正戊烷 乙炔 -25 0 1.3 0.2 0.06 0.04 0.025 0.007 0 -20 0 1.38 0.27 0.075 0.048 0.03 0.009 0 0 0 2.355 0.466 0.153 0.102 0.034 0.024 0 20 0 3.721 0.833 0.294 0.205 0.076 0.058 0 50 7 1.744 0.67 0.5 0.2 0.16 0.0011 1、设计温度 根据本设计工艺要求,使用地点为太原市的室外,用途为液化石油气储配站工作温度为-20—48℃,介质为易燃易爆的气体。 从表中我们可以明显看出,温度从50℃降到-25℃时,各种成分的饱和蒸气压力下降的很厉害,可以推断,在低温状态下,由饱和蒸气压力引起的应力水平不会很高。 由上述条件选择危险温度为设计温度。为保证正常工作,对设计温度留一定的富裕量。所以,取最高设计温度t=50℃,最低设计温度t=﹣25℃。根据储罐所处环境,最高温度为危险温度,所以选t=50℃为设计温度。 1、设计压力 该储罐用于液化石油气储配供气站,因此属于常温压力储存。工作压力为相应温度下的饱和蒸气压。因此,不需要设保温层。 根据道尔顿分压定律,我们不难计算出各种温度下液化石油气中各种成分的饱和蒸气分压,如表三: 表三,各种成分在相应温度下的饱和蒸气分压 温度, ℃ 饱和蒸气分压, MPa 异辛烷 乙烷 丙烷 异丁烷 正丁烷 异戍烷 正戍烷 乙烯 -25 0 0.029 0.0946 0.014 0.0088 0.00095 0.000083 0 -20 0 0.031 0.127 0.0176 0.0105 0.00114 0.000109 0 0 0 0.053 0.2204 0.0359 0.0224 0.00129 0.000256 0 20 0 0.084 0.394 0.069 0.045 0.00288 0.00063 0 50 0 0.158 0.0825 0.1573 0.1098 0.00758 0.0019 0 有上述分压可计算再设计温度t=50℃时,总的高和蒸汽压力 P= i n i i p y ∑8 1 ===0.01%×0+2.25%×7+47.3%×1.744+23.48%×0.67+21.96%×0.5+3.79%×

30m3液化石油气储罐设计

课程设计任务书 题目:303m 液化石油气储罐设计 设计条件表 序号 项目 数值 单位 备注 1 最高工作压力 1.893 MPa 由介质温度确定 2 工作温度 -20~48 ℃ 3 公称容积(s V ) 30 3 m 4 装量系数(V ) 0.9 5 工作介质 液化石油气 6 使用地点 太原市,室内 管口条件: 液相进口管 DN50;液相出口管DN50;安全阀接口DN80;压力表接口DN25;气相管DN50;放气管DN50;排污管DN50。 液位计接口和人孔按需设置。

设计计算说明书 1. 储存物料性质 1.1物料的物理及化学特性 1.2 物料储存方式 常温常压保存,不加保温层。 2. 压力容器类别的确定 储存物料液氯为高度危害液体,工作压力为 1.303MPa ,储罐属低压容器。PV ≧0.2MPa.3m ,根据《压力容器安全技术监察规程》][2,所以设计储罐为第三类容器。 3.1储罐筒体公称直径和筒体长度的确定 公称容积g V =303m ,则 4 πi D L =30。 L D i = 3 1计算,得 i D =2.335m ,L =7.006.。 取D=2.3m,此时11] [查表 ,得封头容积1V =2×1.7588=3.517 3 m ,直边段长度为40mm 。计 算筒体容积2V =4824 .267588.1230=?-3 m , 4824 .264 12 =L D ,解得 mm L 3772.61=。取筒体长度为6.4m 。 10.307588.124.63.24 V 2 =?+?=)(真π 此时5%.3%0100%)/303010.30(/)(≤=?-=-V V V 真,所以合适,画图发现比例也合适。 最后确定公称直径为2300mm ,筒体长度为6400mm 。 3.2封头结构型式尺寸的确定

液化石油气站操作规程

操作规程汇编

目录 槽罐车卸车操作规程错误!未定义书签。 压缩机操作规程错误!未定义书签。 烃泵操作规程错误!未定义书签。 气瓶抽真空操作规程错误!未定义书签。 气瓶倒残操作规程错误!未定义书签。 气瓶充装供液操作规程错误!未定义书签。 气瓶充装操作规程错误!未定义书签。 倒罐操作规程错误!未定义书签。 液化石油气排放操作规程错误!未定义书签。消防泵操作规程错误!未定义书签。 事故应急救援操作规程错误!未定义书签。 配电房安全操作规程错误!未定义书签。

槽罐车卸车操作规程 卸车前准备 槽车按指定位置停好后,关闭发动机,拉紧手动制动器。 连接槽车与卸车台的静电接地线。 将气、液相软管与槽车气,液相接头连接,打开放气阀, 放出连接处管中的空气,然后关闭放气阀。 操作顺序 确定卸液罐,打开卸液罐的进液阀,气相阀。 打开压缩机房气相阀门组卸液罐的下排阀门。 打开气相阀门组卸车柱的上排阀门。 打开压缩机的进气阀门。 打开压缩机分离器的进出口阀门。 打开压缩机的出气阀门。 打开卸车柱气液相阀门。 打开槽车紧急切断阀,气液相软管上的球阀。 开启压缩机进行卸车。 当槽车内液相卸完后,关闭压缩机,关闭液相管路阀门。 关闭气相阀门组卸液罐的下排阀门,打开上排阀门;关闭气相阀门组装卸柱的上排阀门,打开下排阀门;或不改变阀门组阀的开、关状态,将压缩机四通阀的方向改变,将槽车内的气相抽至储罐内,直至槽车内的压力小于,但不低于。 关闭压缩机。 关闭槽车紧急切断阀。 关闭气相系统管路上的阀门,打开气液相软管末端放气阀,放出连接管处的液化气,卸下气液相软管,卸车结束。 注意事项 作业现场,严禁烟火,严禁使用易产生火花的工具和用品。 卸车人员必须穿戴防静电的工作服、防护手套。 卸车时卸车人员必须严密监视储罐的液位、压力、温度,发现异常立即停止卸气。卸车结束后,应检查阀门关闭情况。 填写《罐车卸车操作记录》并签字。

液氮储罐操作规程

液氮储罐操作规程 液氮储罐使用操作规程 一、液氮使用程序: 1、将输出使用管线通液体排放接口连接在一起。 2、明确出液位显示液相阀和液位显示气相阀外所有阀都被关闭。 3、开启液体排放阀,增压器输入阀和增压器输出阀。此时,装置会自动输送液体,一直到为止,或直到所设定的压力。 4、一旦达到所需输送物质的数量(或者将贮罐关闭另外使用一段时间),关闭液 体排放阀,停止整个流程,本装置的运行完全是自动完成的,阀门只有在充装和进行维修保养时才被开启和关闭。 5、贮罐阀门的正常操作状态如下:关闭顶部充装阀,底部充装阀,气体排放阀, 溢流阀,均衡阀,开启液体输出阀,增压器输入阀,增压器输出阀,液位显示液相阀,液位显示气相阀。 二、提高液氮储罐压力程序: 1、记录现有贮罐压力 2、按顺时针方向旋转调节按钮,调节调压阀 注:顺时针旋转1/2周相当于约0.15Mpa的压力或压力上升。 3、待贮罐压力上升30分钟后,确定新的压力设定值。 4、根据情况重复步骤2和3,确定达到规定压力。 三、降低液氮储罐压力程序:

1、打开气体排放阀,将贮罐压力排放至低于新设定压力,达到较低的压力后, 关闭气体排放阀。 2、按逆时针方向旋转调节按钮,调节调压阀。 注:逆时针旋转1/2周,将使压力下降0.15Mpa。 3、待贮罐压力平衡30分钟后,确定新的压力设定值。 4、根据情况重复步骤2和3 ,直到达到规定压力。 四、液氮储罐充装程序: 1、明确输送装置内所盛物质即为实际需要输送的物质。 2、明确顶部和底部充装阀均被关闭。 3、明确贮罐处于最低规定操作压力。 4、明确所有其他阀门军处于正常使用状态。 注:如贮罐不处于使用状态,增压器输入阀,增压器输出阀,液体输出阀均关闭。 5、将输送装置输送软管通贮罐充装接头连接起来。 注:在充装之前,打开充装管排放阀和输送装置泄压阀约3分钟,或者待软管开始结霜,使输送管冷却并对其吹扫。关闭充装管排放阀。 6、彻底打开顶部充装阀。 7、如使用压力传输器输送,使液体输送装置内的压力升高,直至压力比贮罐压 力高至少0.35Mpa为止。打开输送装置上的充装阀,或者如使用泵传输输送,对泵做必要的连接,慢慢打开传输装置输送充装阀,保持泵充装压力比贮罐压力高0.35-0.7Mpa。

液化石油气储罐防火间距

表4.4.1 液化石油气储罐或罐区与建筑物、储罐、堆场、铁路、道路的防火间距(m) 注:1 容积大于1 000m3的液化石油气单罐或总储量大于5000m3的罐区,与明火或散发火花地点的防火间距不应小于120.0m,与民用建筑的防火间距不应小于100.0m,与其他建筑的防火间距应按本表的规定增加25%; 2 防火间距应按本表总容积或单罐容积较大者确定; 3 直埋地下液化石油气储罐的防火间距可按本表减少50%,但单罐容积不应大于50m3,总容积不应大于400m3; 4 与本表以外的其他建、构筑物的防火间距,可按现行国家标准《城镇燃气设计规范》GB50028的有关规定执行。 4.4.2液化石油气气化站、混气站、瓶组站,其储罐与工业建筑、重要公共建筑和其他民用建筑、道路等之间的防火间距,可按现行国家标准《城镇燃气设计规范》GB50028的有关规定执行。 总容积不大于10m3的工业企业内的液化石油气气化站、混气站的储罐,当设置在专用的独立建筑物内时,其外墙与相邻厂房及其附属设备之间的防火间距,可按甲类厂房有关防火间距的规定执行。当设置在露天时,与建筑物、储罐、堆场的防火间距应按本规范第4.4.1条的规定执行。 4.4.3液化石油气储罐之间的防火间距,不应小于相邻较大罐的直径。 数个储罐的总容积大于3000m3时,应分组布置。组内储罐宜采用单排布置。组与组之间相邻储罐的防火间距,不应小于20.0m。 4.4.4液化石油气储罐与所属泵房的距离不应小于1 5.0m。当泵房面向储罐一侧的外墙采用无门窗洞口的防火墙时,其防火间距可减少至 6.0m。液化石油气泵露天设置时,泵与储罐之间的距离不限,但不宜布置在防火堤内。 4.4.5液化石油气瓶装供应站的瓶库,其四周宜设置不燃烧体的实体围墙,但面向出入口一侧可设置不燃烧体非实体围墙。液化石油气瓶装供应站的瓶库与站外建、构筑物之间的防火间距,不应小于表4.4.5的规定。当总容积大于30m3时,其防火间距应符合本规范第4.4.1条的规定。 表4.4.5 瓶库与站外建、构筑物之间的防火间距(m) 注:总存瓶容积应按实瓶个数与单瓶几何容积的乘积计算。

液化石油气储罐设计毕业论文

四川理工学院毕业设计(论文)500m3液化石油气储罐设计 学生: 学号:0901******* 专业:过程装备与控制工程 班级:2009.2 指导教师:林海波 四川理工学院机械工程学院 二O一三年六月 四川理工学院

毕业设计任务书 设计题目:500m3液化石油气储罐设计 学院:机械工程专业:过程装备与控制工程班级:2009级2班学号:0901******* 学生:指导教师:林海波接受任务时间2013年3月1日 系主任(签名)院长(签名) 1.毕业设计(论文)的主要内容及基本要求 设计题目:500m3液化石油气储罐设计 介质:液化石油气容积:500m3 放置地点:四川自贡,进行选型论证和结构设计。 完成:0#总装配图一张,零部件图0#图总量1张,设计说明书一份。 2.指定查阅的主要参考文献及说明 NB/T 47001-2009 .钢制液化石油气卧式储罐型式与基本参数 GB150—2011.钢制压力容器 卧式储罐焊接工程技术 我是储罐和大型储罐 3.进度安排 设计(论文)各阶段名称起止日期 1 资料收集,阅读文献,完成开题报告3月 1 日至3月24日 2 完成所有结构设计和设计计算工作3月25日至4月21日 3 完成所有图纸的绘制、完成设计说明书的撰写4月22日至5月22日 4 完成图纸和说明书的修改、答辩的准备和毕业 答辩5月23日至6月7日 5 毕业设计修改与设计资料整理6月 8 日至6月14日

摘要 用于储存或盛装气体、液体、液化气体等介质的储罐,在化工、石油、能源、轻工、环保、制药及食品等行业得到广泛应用。本设计运用常规设计的方法,对卧式液化石油气储罐的筒体、封头进行厚度设计计算,对水压试验进行校核,并对所开人孔进行补强设计。按照相关标准选择密封装置、人孔、支座、接口管以及部分安全附件。根据设计时的需要附上一些储罐零件图与储罐装配简图。完成了一个相对比较完整的卧式液化石油气储罐的设计。 关键字:储罐;压力容器;设计;计算

相关主题