搜档网
当前位置:搜档网 › 稠油和高凝油开发技术

稠油和高凝油开发技术

稠油和高凝油开发技术
稠油和高凝油开发技术

稠油和高凝油开发技术

发布:石油博客 | 发布时间: 2007年12月1日

《加入石油杂志》

1 常规地质评价技术

通过精细油藏描述研究,建立了稠油、高凝油油藏的地质模型。首先建立了地层模型、构造模型、沉积模型和储层模型,然后采用储层及其属性参数三维预测技术、油藏建模技术和数值模拟技术,以静态模型为基础,建立了预测模型。该模型不仅利用了资料控制点的实测数据,而且保障控制点间的内插外推值的精确度,在一定范围内对无资料点具有预测能力。针对高凝油主要在潜山储层富集的特点,对潜山储层油藏进行了精细描述,利用地层研究技术、构造及断裂系统研究技术、井点储层描述技术、储集岩空间分布预测技术、构造裂缝空间分布预测技术和裂缝性油藏储层建模技术等对潜山储层进行了研究,利用确定性建模或随机模拟的方法,根据实际的区域地质背景、构造发育特征、岩心资料、野外露头资料、测井及动态测试等资料建立了裂缝型储层三维属性模型。

2 蒸汽吞吐注汽参数优化技术

根据地质特点,应用产量特征趋势分析法及数值模拟研究方法,对影响吞吐效果的注汽强度、注汽压力、注汽速度及焖井时间等参数进行了优化。尤其是对高轮次吞吐注汽参数的优化,解决了吞吐进入高周

期后油汽比低的问题。对吞吐8 周期以上的近800 井次实施优化,平均单井周期可以节约注汽量200 m3 ,周期油汽比提高0105 。

3 蒸汽驱开发技术

经过多年的研究与试验,基本上形成了适合辽河油区中深层稠油油藏的蒸汽驱技术,并通过曙12725块和齐40 块的蒸汽驱试验的应用而得到进一步的发展和完善。

4 分层和选层注汽技术

针对多油组互层状油藏吸汽不均、油层纵向动用差的问题,广泛采用了分层注汽及调剖工艺技术,包括:(1) 封隔器分层、选层注汽技术用封隔器封堵高吸汽层,动用吸汽差层或不吸汽的油层。相继又开发出滑套式分层、选层注汽技术,一次可实现两层分注或多层选注,有效地提高了油层动用程度。(2) 机械投球选注技术堵塞高吸汽层射孔孔眼,实现选择性注汽。(3) 化学解堵技术采用油溶性化学物质,在注汽过程中堵塞注汽地层通道,并自行解堵,实现选层注汽。随着吞吐周期的延长,油层动用不均衡的现象越来越突出。为了解决井间汽窜、压力降低,低渗透层剩余油量高、储量动用差等问题。经过多年研究和现场试验验证,推广了3 项技术: ①同注同采技术:对于比较集中的且发生汽窜较为频繁的多口井,通过优化注汽参数和实施程序,在相同时间内同时注汽、同时生产,既避免了汽窜的发生及发挥热能的降粘作用,又充分补充了地层能量。在杜84 块实施该技术后,平均单井周期生产时间延长了

25 d , 周期产油量提高近20 % ,油汽比提高0108 。②一注多采技术:对一口井“大剂量”地注汽,在周围井采油。超出普通吞吐注汽量的2 倍或更多,促使地层能量恢复,使产能增加。③间歇注汽技术:实施间歇注汽工艺,改变了同一层段内的低渗透段的温度场和流动方向,从而使其得到动

用。在齐40 块实施了1 个井组,周期生产时间延长60 d ,周期产油量较上周期提高近15 % ,油汽比提高0106 。

5 水平井开采技术

近几年,在超稠油油藏的开发中,水平井应用的规模逐渐扩大。水平井吞吐效果较好,如杜842平45井和杜842平46 井的吞吐周期产量是周围直井的5~6 倍。

6 井筒降粘工艺及集输技术

1996 年以后,利用电热杆、越泵加热、一体管式泵和添加化学剂等技术,井筒降粘在超稠油开采中获得突破。尤其是越泵加热的技术使吞吐周期延长了近20 d ,大大降低了开采成本。同时利用化学处理方法的管输技术,解决了输油难的问题,为超稠油大规模生产创造了条件。

7 钻井和完井技术

稠油开采需要注高温蒸汽,常规完井不仅会造成生产事故、增大热损失,而且会使井下套管损坏。为此,开发了预应力完井技术,研制出

了WA2 Ⅰ卡互式和空心式套管地锚。采用SC21 低密度水泥和添加剂固井,解决了套管热膨胀及伸长问题。

8 稠油井防砂技术

稠油蒸汽吞吐生产方式是一种强化采油方式,油井防砂是稠油热采的关键技术之一[ 11213 ] 。除了广泛采用先期防砂完井外,还研制出多种简单实用的防砂技术,包括金属棉筛管TBS 筛管、高温化学防砂和高温固砂剂技术等。

9 室内试验技术及油藏数模技术

热采物理模拟技术包括热物性参数测试、蒸汽驱低压比例物理模型、长岩心驱替试验以及高温相对渗透率测试,可以满足不同油藏类型和不同转换方式研究的需要。采用油藏数值模拟技术可以确定稠油蒸汽吞吐以及蒸汽驱的主要经济技术开采界限参数,为提

高热采效果。由于高凝油对温度非常敏感,要确定合理的开发参数,应测定高压下的粘温曲线及析蜡、熔蜡温度曲线及进行原油流变性、不同温度下的水驱油试验和相对渗透率曲线测定实验。开发初期,为了有效解决井筒温度问题,主要采用热动力液开式水力活塞泵和同心管闭式热液循环抽油方式开采。随着油井含水率逐渐上升,由水力活塞泵转为抽油生产,在潜山油藏改为下电泵生产。并专门研制应用了高扬程水力泵深抽技术,使泵挂深度由1 900 m增加到2 400 m。针对沈842安12 块河道砂体层间、层内及平面非

均质性严重的问题,深入开展了储层沉积微相研究,实施了以多级分注

为核心的注水结构调整技术,完成三级4 层以上的多级分注,有效地改

善了储层吸水和水驱状况,提高了水驱储量动用程度。在油藏开发过程中,相继研究并应用了油井双管测试技术、水力活塞泵井测压取样技术、闭式热水循环测压技术、注水井机械浮子分层测试技术及井下电磁流量分层测试技术。另外,还开发了抽油井双管及偏心测试找水技术、硼中

子寿命找水技术和机械找水、堵水技术,各项技术的综合运用,达到优势互补。高凝油集输系统实现了密闭输送,实现了低消耗高效益。

稠油和高凝油的勘探开

发研究方向

辽河油区历经30 多年的勘探开发,稠油和高凝油的产能有了较

大的提高。但在稠油、高凝油的勘探、开发过程中,还存在一些技术难

点有待于进一步研究。其研究方向主要有: ①高凝油开采配套工艺技术;

②稠油剩余油研究技术; ③热采稠油储层变化规律; ④裂缝性稠油高

凝油开发模式及裂缝预测技术; ⑤不同类型稠油油藏多元化转换开采

方式。对这些问题的研究,将极大地促进辽河油田稠油和高凝油勘探开

发水平的提高。

稠油和高凝油开发技术

稠油和高凝油开发技术 发布:石油博客 | 发布时间: 2007年12月1日 《加入石油杂志》 1 常规地质评价技术 通过精细油藏描述研究,建立了稠油、高凝油油藏的地质模型。首先建立了地层模型、构造模型、沉积模型和储层模型,然后采用储层及其属性参数三维预测技术、油藏建模技术和数值模拟技术,以静态模型为基础,建立了预测模型。该模型不仅利用了资料控制点的实测数据,而且保障控制点间的内插外推值的精确度,在一定范围内对无资料点具有预测能力。针对高凝油主要在潜山储层富集的特点,对潜山储层油藏进行了精细描述,利用地层研究技术、构造及断裂系统研究技术、井点储层描述技术、储集岩空间分布预测技术、构造裂缝空间分布预测技术和裂缝性油藏储层建模技术等对潜山储层进行了研究,利用确定性建模或随机模拟的方法,根据实际的区域地质背景、构造发育特征、岩心资料、野外露头资料、测井及动态测试等资料建立了裂缝型储层三维属性模型。 2 蒸汽吞吐注汽参数优化技术 根据地质特点,应用产量特征趋势分析法及数值模拟研究方法,对影响吞吐效果的注汽强度、注汽压力、注汽速度及焖井时间等参数进行了优化。尤其是对高轮次吞吐注汽参数的优化,解决了吞吐进入高周

期后油汽比低的问题。对吞吐8 周期以上的近800 井次实施优化,平均单井周期可以节约注汽量200 m3 ,周期油汽比提高0105 。 3 蒸汽驱开发技术 经过多年的研究与试验,基本上形成了适合辽河油区中深层稠油油藏的蒸汽驱技术,并通过曙12725块和齐40 块的蒸汽驱试验的应用而得到进一步的发展和完善。 4 分层和选层注汽技术 针对多油组互层状油藏吸汽不均、油层纵向动用差的问题,广泛采用了分层注汽及调剖工艺技术,包括:(1) 封隔器分层、选层注汽技术用封隔器封堵高吸汽层,动用吸汽差层或不吸汽的油层。相继又开发出滑套式分层、选层注汽技术,一次可实现两层分注或多层选注,有效地提高了油层动用程度。(2) 机械投球选注技术堵塞高吸汽层射孔孔眼,实现选择性注汽。(3) 化学解堵技术采用油溶性化学物质,在注汽过程中堵塞注汽地层通道,并自行解堵,实现选层注汽。随着吞吐周期的延长,油层动用不均衡的现象越来越突出。为了解决井间汽窜、压力降低,低渗透层剩余油量高、储量动用差等问题。经过多年研究和现场试验验证,推广了3 项技术: ①同注同采技术:对于比较集中的且发生汽窜较为频繁的多口井,通过优化注汽参数和实施程序,在相同时间内同时注汽、同时生产,既避免了汽窜的发生及发挥热能的降粘作用,又充分补充了地层能量。在杜84 块实施该技术后,平均单井周期生产时间延长了

我国稠油资源分布

我国稠油资源分布文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

我国有丰富的稠油资源,探明和控制储量已达16×108t,是继美国、加拿大和委内瑞拉之后的世界第四大稠油生产国。重点分布在胜利、辽河、河南、新疆等油田。我国陆上稠油资源约占石油总资源量的20%以上,探明与控制储量约为40亿吨,目前在12个盆地发现了70多个稠油油田。胜利油田地质储量约15000万吨,中原油田约为3200万吨,克拉玛依油田约6660万吨,国内每年稠油产量约占原油总产量的10%。中国尚未动用的超稠油探明地质储量为×108t。 辽河油田 辽河油田公司2007年重新计算确定探明储量中的难动用和未动用储量为4亿吨,目前原油年开采能力1000万吨以上,天然气年开采能力17亿立方米。辽河油区稠油油藏,油层埋藏深度变化较大:最浅小于600m,最深达1700m,一般在700~1300m之间。按埋藏深度统计,超过1300m的深层稠油油藏,其储量占探明储量的42.92%,900--1300m的中深层油藏,储量占41.39%,600--900m的中浅层占15.69%。由上述统计不难看出辽河84.3%储量油藏埋藏深度在900m以上。 塔河油田 塔河油田累计探明油气地质储量亿吨,塔河油田是我国发现的第一个超深超稠碳酸盐岩油藏 ,埋深 5 350~6 600m, 80%的储量为特超稠油 ,稠油产量占总产量 57% 。 随着国家西部大开发的实施,作为我国石油战略接替区的塔里木盆地的油气产量正逐年上升,2002年该地区两大油田生产原油约751万t,发展势头较猛。同时,沿塔里木河一带的稠油探明储量为3.35亿t,可采储量为4500万t。2002年产出稠油约270万t,占塔里木原油产量的36%。比例相当可观.这部分资源开发对今后塔里木石油的发展起着重要作用。然而,该稠油性质极差(目前中国最差),属于高硫、高残碳、高金

油田开发中油藏工程技术方法的应用及其发展

油田开发中油藏工程技术方法的应用及其发展

油田开发中油藏工程技术方法的应用及其发展 摘要:油藏工程技术是实现油气田开发方案的重要手段,是决定油田产量高低、采油速度快慢、最终采收率大小、经济效益的优劣等重要问题的关键技术。分析了我国采油工程技术发展的5个阶段和各自的工艺技术状况,介绍了与我国油藏相适应的5套油藏工程技术方法,指出了采油工程技术今后发展的必然趋势。 关键词:油藏工程技术应用发展 油藏工程技术发展阶段 一、探索、试验阶段(50年代到60年代初) 1949年9月25日玉门油田获得解放,当时共有生产井48口,年产原油6. 9×104t,再加上延长15口井和独山子11口油井,全国年产原油总计7. 7×104t。1950年进入第一个五年计划时期,玉门油田被列为全国156项重点建设工程项目。一开始油井都靠天然能量开采,压力下降,油井停喷, 1953年在前苏联专家帮助下编制了老君庙第一个顶部注气、边部注水的开发方案。为砂岩油藏配套开采上述技术打下了一定的基础,成为全国采油工程技术发展的良好开端。 二、分层开采工艺配套技术发展阶段(60年代到70年代) 陆相砂岩油藏含油层系多、彼此差异大、互相干扰严重,针对这些特点,玉门局和克拉玛依油田对分层注水、分层多管开采进行了探索。60年代大庆油田根据砂岩油藏多层同时开采的特点,研究开发了一整套以分层注水为中心的采油工艺技术。 1、分层注水

大庆采用早期内部切割注水保持地层压力开采,采用笼统注水时因注入水沿高渗透层带突进,含水上升快,开采效果差,为此开展了同井分层注水技术。 2、分层采油 发挥低渗透层的潜力进行自喷井分采,可分单管封隔器、双管分采和油套管分采三种形式。 3、分层测试 研究发展了对自喷采油井产出剖面和注水井注入剖面进行分层测试、对有杆泵抽油井进行环空测试、油水界面测试及有杆泵井下诊断、无杆泵流压测试等技术。 4、分层改造 压裂酸化工艺是油田增产的重要措施。 二、发展多种油藏类型采油工艺技术(70年代到80年代) 1、复杂断块油藏采油工艺技术 根据复杂断块油藏大小不一、形态各异、断层上下盘互相分隔构成独立的开发单元等特点,采用滚动勘探开发方法,注水及油层改造因地制宜,达到少井多产,稀井高产,形成了复杂断块配套的工艺技术。 2、碳酸盐岩潜山油藏开采技术 潜山油藏以任丘油田为代表,与砂岩油藏完全不同,油气储存在孔隙、裂缝和溶洞中,下部由地层水衬托,成为底水块状油藏。以任丘奥陶系、震旦系油藏为主,初产高、递减快,油田开采中形成了碳酸盐

我国稠油资源分布

我国有丰富的稠油资源,探明和控制储量已达16×108t,是继美国、加拿大和委内瑞拉之后的世界第四大稠油生产国。重点分布在胜利、辽河、河南、新疆等油田。我国陆上稠油资源约占石油总资源量的20%以上,探明与控制储量约为40亿吨,目前在12个盆地发现了70多个稠油油田。胜利油田地质储量约15000万吨,中原油田约为3200万吨,克拉玛依油田约6660万吨,国内每年稠油产量约占原油总产量的10%。中国尚未动用的超稠油探明地质储量为7.01×108t。 辽河油田 辽河油田公司2007年重新计算确定探明储量中的难动用和未动用储量为4亿吨,目前原油年开采能力1000万吨以上,天然气年开采能力17亿立方米。辽河油区稠油油藏,油层埋藏深度变化较大:最浅小于600m,最深达1700m,一般在700~1300m之间。按埋藏深度统计,超过1300m的深层稠油油藏,其储量占探明储量的42.92%,900--1300m的中深层油藏,储量占41.39%,600--900m的中浅层占15.69%。由上述统计不难看出辽河84.3%储量油藏埋藏深度在900m以上。 塔河油田

塔河油田累计探明油气地质储量7.8亿吨,塔河油田是我国发现的第一个超深超稠碳酸盐岩油藏 ,埋深 5 350~6 600m, 80%的储量为特超稠油 ,稠油产量占总产量 57% 。 随着国家西部大开发的实施,作为我国石油战略接替区的塔里木盆地的油气产量正逐年上升,2002年该地区两大油田生产原油约751万t,发展势头较猛。同时,沿塔里木河一带的稠油探明储量为3.35亿t,可采储量为4500万t。2002年产出稠油约270万t,占塔里木原油产量的36%。比例相当可观.这部分资源开发对今后塔里木石油的发展起着重要作用。然而,该稠油性质极差(目前中国最差),属于高硫、高残碳、高金属、高密度、高黏度、高沥青质含量的”六高”原油,运输困难,一般的已有的炼油工艺很难对其进行加工处理,因此必须采用一种新的工艺对其进行轻质化加工处理。 塔里木油田 塔里木盆地可探明油气资源总量为160亿吨,其中石油80亿吨、天然气10万亿立方米。在寒武系顶部4 573.5~4 577 m获得少量稠油,粘度 2 698 mPa·s。 河南油田

稠油资源分布

稠油资源分布 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

我国有丰富的稠油资源,探明和控制储量已达16×108t,是继美国、加拿大和委内瑞拉之后的世界第四大稠油生产国。重点分布在胜利、辽河、河南、新疆等油田。我国陆上稠油资源约占石油总资源量的20%以上,探明与控制储量约为40亿吨,目前在12个盆地发现了70多个稠油油田。胜利油田地质储量约15000万吨,中原油田约为3200万吨,克拉玛依油田约6660万吨,国内每年稠油产量约占原油总产量的10%。中国尚未动用的超稠油探明地质储量为×108t。 辽河油田 辽河油田公司2007年重新计算确定探明储量中的难动用和未动用储量为4亿吨,目前原油年开采能力1000万吨以上,天然气年开采能力17亿立方米。辽河油区稠油油藏,油层埋藏深度变化较大:最浅小于600m,最深达1700m,一般在700~1300m之间。按埋藏深度统计,超过1300m 的深层稠油油藏,其储量占探明储量的42.92%,900--1300m的中深层油藏,储量占41.39%,600--900m的中浅层占15.69%。由上述统计不难看出辽河84.3%储量油藏埋藏深度在900m以上。 塔河油田 塔河油田累计探明油气地质储量亿吨,塔河油田是我国发现的第一个超深超稠碳酸盐岩油藏 ,埋深 5 350~6 600m, 80%的储量为特超稠油 ,稠油产量占总产量 57% 。 随着国家西部大开发的实施,作为我国石油战略接替区的塔里木盆地的油气产量正逐年上升,2002年该地区两大油田生产原油约751万t,发展势头较猛。同时,沿塔里木河一带的稠油探明储量为3.35亿t,可采储量为4500万t。2002年产出稠油约270万t,占塔里木原油产量的36%。比例相当可观.这部分资源开发对今后塔里木石油的发展起着重要作用。然而,该稠油性质极差(目前中国最差),属于高硫、高残碳、高金属、高密度、高黏度、高沥青质含量的”六高”原油,运输困难,一般的已有的炼油工艺很难对其进行加工处理,因此必须采用一种新的工艺对其进行轻质化加工处理。 塔里木油田 塔里木盆地可探明油气资源总量为160亿吨,其中石油80亿吨、天然气10万亿立方米。在寒武系顶部4 573.5~4 577 m获得少量稠油,粘度2 698 mPa·s。 河南油田 已累计找到14个油田,探明石油亿吨及平方公里。

辽河油田稠油开发技术特色

辽河油田稠油开发特色技术 辽河油田位于美丽的渤海之滨、素有“湿地之都”之称的辽宁盘锦。这里有瑰丽似火的红海滩,高贵轻盈的丹顶鹤,苇浪连天的大苇田,玲珑剔透的盘锦大米,自然环境独特,四季分明,风景如画。作为一个油田的孩子,从小在父辈的耳濡目染之下,对石油有着深厚的感情,一直梦想着将来有一天也能像父辈们一样,为了祖国的石油事业奉献自己的青春,所以紧张的学习之余,对辽河油田的勘探开发知识进行了一些学习和认识。 1955年,辽河盆地开始进行地质普查,1964年钻成第一口探井,1966年钻探的辽6井获工业油气流,1967年3月大庆派来一支队伍进行勘探开发,称“大庆六七三厂”,正式拉开了辽河油田勘探开发的大幕。今年是辽河油田开发建设45周年,辽河油田45年的历史,是一部石油勘探开发史,也是一部石油科技的进步史。经过45年的勘探开发历程,辽河油田逐渐形成了具有辽河特色的勘探开发技术。 辽河盆地是一个开发对象十分复杂的复式油气区,堪称地质大观园。其地质特征用一句话概括可为“五多一深”,即含油层系多、断块断裂多、储层类型多、油藏类型多、油品类型多、油层埋藏深。从太古界到新生界共发育14套含油层系;仅盆地陆上就发育2-4级断层300余条,四级断块450多个;储层岩性较多,碎屑岩、碳酸盐岩、火成岩、变质岩均有出现;稀油、高凝油、普通稠油、特稠油及超稠油具有发育。 辽河油田1986年原油产量达到千万吨,截至2014年底已经在千万吨以上稳产29年。辽河油田是国内最大的稠油生产基地,探明稠油地质储量与稠油年产量所占比重较大。全国22.9亿吨的稠油探明储量,辽河油田占了10.86亿吨,占到了47.5%。平面上主要分布在辽河断馅西部凹陷西斜坡、东部陡坡带和中央隆起南部倾末带。 稠油是指在油层条件下原油粘度大于50mPa.s、相对密度大于0.92的原油,国外称之为“重油(heavy oil)”。我国稠油沥青质含量低,胶质含量高,粘度偏高,相对密度较低。根据我国稠油的特征,将稠油分为三类。在稠油分类时,以原油粘度为第一指标,相对密度作为辅助指标。

高凝油

高凝油油藏物性特征 例如, 某高凝油油藏埋藏深度较浅, 低孔、低渗, 孔隙度10. 99- 16. 19%, 渗透率5. 96- 9. 36? 10- 3?m2.原油密度0. 9736 g/cm3( 20 ? ), 胶质/沥青质含量37. 45%, 含蜡24. 27%, 凝固点52 ? , 原油粘度780mPa? S. 总而言之, 高凝油油藏的储层物性表现差, 且为低渗透; 同时原油的凝固点也高, 地层温度与原油析蜡温度相差很小(一般约为5- 10 ? ), 注冷水开发时极易造成冷伤害, 且会增加开采工作的复杂性和难度等。 高凝油是烷烃、蜡和渣油含量高, 硫和沥青含量低的原油。国外把凝固点高于40 ? 、含蜡量大于35%的原油称作高凝油。 高凝油即高含蜡、高凝固点原油,在我国辽河沈阳油田、河南魏岗油田、大港枣园油田等地都有分布。而沈阳油田具有丰富的高凝油储量,是我国目前最大的高凝油生产基地,在探明的含油面积103.7km2、地质储量2.9 ×108t 中,高凝油约占80%。高凝油主要分布在辽河断陷盆地大民屯凹陷油藏中,其凝固点最高为67℃,含蜡量40%以上,均为世界所罕见。攻关不畏难的石油科技工作者和生产一线的石油工人,经过不断地探索和实践,并借鉴国外类似油田的开采经验,于1986年底投入全面开发,三年就形成了300×104t产能。同时,与之配套的先进的集输工艺等地面工程、丛式井组采油等先进的开采工艺,使沈阳油田的整体开发达到世界先进水平。 温度对高凝油油藏开发效果的影响 高凝油对温度极为敏感。当原油温度高于析蜡温度时, 呈液态单相体系, 粘度随温度变化, 具有牛顿流体的性质。若温度降低, 处于析蜡温度和临界温度区间时, 仍具有牛顿流体特性, 但粘度已明显增加。当原油温度在临界温度以下时, 呈非牛顿流体的特性, 只有在外剪切力的作用下才能流动。 当油温高于析蜡点温度以上时, 高凝油中所含蜡处于溶解状态, 成单相体系, 原油的流动性与普通原油无甚差别, 只是因重烃含量高而粘度稍大, 具有牛顿流体的流变特征, 粘度随油温变化。随着温度降低, 蜡在原油中的溶解度下降, 当油温降到析蜡点温度时, 石蜡分子整齐排列, 在范德华力的作用下, 许多较小的分子聚集形成较大的分子群, 进一步更多的分子群形成并增大、聚集, 开始有蜡晶析出, 原油由单一液态逐渐变成悬浮液, 形成双相体系, 但原油仍为连续相, 蜡晶仍高度分散在原油中, 这时原油基本上还可以近似认为是牛顿流体。若油温继续下降, 下降至反常点后, 由于析出的蜡晶增多并缔结, 原油中开始出现海绵状凝胶体, 呈现出非牛顿流体的流变特征, 具有剪切稀释性, 可认为是假塑性流体。当油温进一步下降到凝固点以后, 发生转相, 蜡晶相互连接形成空间网络结构, 成为连续相, 液态烃则被隔开而成为分散相, 失去其流动性, 即发生所谓凝固。 高凝油油藏温度对渗流的影响 高凝油在不同温度条件下的渗流特征也明显的不同, 其注水开发的效果也随温度的不同 而有显著的差异。提高注水温度后, 由于原油粘度的降低和相渗透率的变化, 水驱油效率大幅度提高, 可以极大改善注水开发效果, 提高水驱采收率。 油层温度一旦下降, 渗流特征显著变差, 对于注水开发的油田来讲, 必然导致油井见水早, 含水上升速度快, 水驱油效率低, 注水开发效果差。特别是油层温度与析蜡温度差值小的油田, 当油层温度一旦低于析蜡温度, 由于析蜡造成油层孔隙堵塞, 流动阻力增大, 将影响注水开发工作的正常进行, 使油田生产陷于被动。 提高注水压力, 增大驱替压力梯度, 即提高驱动剪切力, 有利于改善高凝油油藏注水开发效果。另外, 注入的水进入地层并运移一段距离后, 水的温度接近地层原始温度, 即向地层注冷水或热水到一定时间后, 水的温度影响作用就很小了。若注入的是热水, 热水已把注水

稠油及高凝油开采技术

第四节稠油及高凝油开采技术 一、教学目的 了解稠油及高凝油的特点,热处理油层采油技术,井筒降粘技术。 二、教学重点、难点 1、稠油的基本特点

(1)粘度高、密度大、流动性差 (2)稠油的粘度对温度敏感 (3)稠油中轻质组分含量低,而胶质、沥青质含量高 2、高凝油的基本特点 高凝油是指蜡含量高、凝固点高的原油。 凝固点:在一定条件下原油失去流动性时的最高温度。 (二)热处理油层采油技术 热处理油层采油技术是通过向油层提供热能,提高油层岩石和流体的温度,从而增大油藏驱油动力,降低油层流体的粘度,防止油层中的结蜡现象,减小油层渗流阻力,达到更好地开采稠油及高凝油油藏的目的工艺方法。 注蒸汽处理油层采油方法(蒸汽吞吐和蒸汽驱): 通过蒸汽将热能提供给油层岩石和流体,使油层原油粘度大大降低,增加原油的流度;原油受热后发生体积膨胀,可减少最终的残余油饱和度。 火烧油层采油方法: 通过适当的井网将空气或氧气自井中注入油层,并点燃油层中原油,使其燃烧产生热量。不断注入空气或氧气维持油层燃烧,燃烧前缘的高温不断加热油藏岩石和流体,且使原油蒸馏、裂解,并被驱向生产井的采油方式。 (三)井筒降粘技术 井筒降粘技术是指通过热力、化学、稀释等措施使得井筒中的流

体保持低粘度,从而达到改善井筒流体的流动条件,缓解抽油设备的不适应性,提高稠油及高凝油的开发效果等目的的采油工艺技术。 目前常用的井筒降粘技术: 化学降粘 掺轻烃或水稀释 热力降粘技术 五、教学后记 通过这节课的学习,同学们基本上了解了稠油及高凝油的特点,热处理油层采油技术,井筒降粘技术。 六、教学参考书 1、王鸿勋,张琪. 采油工艺原理. 石油工业出版社 2、赵福麟. 采油化学. 石油大学出版社 3、万仁溥等. 采油技术手册(修订本),第七、八、十分册. 石油工业出版社 4、胡博仲. 波场采油. 石油工业出版社 5、胡博仲. 磁技术在采油生产中的应用. 石油工业出版社 6、凌建军. 实用稠油热采工程. 石油工业出版社 7、陈德春等. 特种有杆抽油方式的设计与综合评价. 石油 大学学报 8、任瑛等. 井筒热流体循环采油方法研究. 石油大学稠油 研究论文集. 石油大学出版社 9、刘介人. 工频集肤电热开采高凝稠油的理论研究与实践.

稠油资源分布

稠油资源分布 Prepared on 22 November 2020

我国有丰富的稠油资源,探明和控制储量已达16×108t,是继美国、加拿大和委内瑞拉之后的世界第四大稠油生产国。重点分布在胜利、辽河、河南、新疆等油田。我国陆上稠油资源约占石油总资源量的20%以上,探明与控制储量约为40亿吨,目前在12个盆地发现了70多个稠油油田。胜利油田地质储量约15000万吨,中原油田约为3200万吨,克拉玛依油田约6660万吨,国内每年稠油产量约占原油总产量的10%。中国尚未动用的超稠油探明地质储量为×108t。 辽河油田 辽河油田公司2007年重新计算确定探明储量中的难动用和未动用储量为4亿吨,目前原油年开采能力1000万吨以上,天然气年开采能力17亿立方米。辽河油区稠油油藏,油层埋藏深度变化较大:最浅小于600m,最深达1700m,一般在700~1300m之间。按埋藏深度统计,超过1300m的深层稠油油藏,其储量占探明储量的42.92%,900--1300m的中深层油藏,储量占41.39%,600--900m的中浅层占15.69%。由上述统计不难看出辽河84.3%储量油藏埋藏深度在900m以上。 塔河油田 塔河油田累计探明油气地质储量亿吨,塔河油田是我国发现的第一个超深超稠碳酸盐岩油藏 ,埋深 5 350~6 600m, 80%的储量为特超稠油 ,稠油产量占总产量 57% 。 随着国家西部大开发的实施,作为我国石油战略接替区的塔里木盆地的油气产量正逐年上升,2002年该地区两大油田生产原油约751万t,发展势头较猛。同时,沿塔里木河一带的稠油探明储量为3.35亿t,可采储量为4500万t。2002年产出稠油约270万t,占塔里木原油产量的36%。比例相当可观.这部分资源开发对今后塔里木石油的发展起着重要作用。然而,该稠油性质极差(目前中国最差),属于高硫、高残碳、高金属、高密度、高黏度、高沥青质含量的”六高”原油,运输困难,一般的已有的炼油工艺很难对其进行加工处理,因此必须采用一种新的工艺对其进行轻质化加工处理。

稠油开采中抽油杆柱的优化配比设计应用

第11卷第2期2004年4月 特种油气藏 SD∞越“l8【ldCas Re8洲irsV出.1lNo2 ADr2004 文章编号:l。06—6535(2004)02一∞43一04 稠油开采中抽油杆柱的优化配比设计应用 茅惠忠,王加富,王丘,杨立龙 (中油jI河油田分公司,辽宁盘锦1240lO) 摘簧:牛心坨油田是一个高凝稠油油田。在开发初期,抽油杆柱均采用D毁杆,一25、∥22、∥19 mm三级抽油杆配比为O.3:0.3:O4。从1998年开始,随着潜山油藏的开发,抽油泵下深速到2 000m,将抽油杆进步更换为H镀高强度抽油杆.但抽油杆柱配比未作调整。造成抽油井负荷增 大.断脱增多,能耗增太。为此作业医组织技术人员进行抽油杆柱优化设计,降低抽油机悬.最 最大栽荷,减少抽油轩断脱问题.实现了节能降耗。 关键词:高凝油田;稠油油田;抽油杆柱优化;设计;应用;牛心坨油田 中图分类号:Ⅱ355,5文献标识码:A 1油田概况 牛心坨油田位子辽河断陷盆地西部凹陷西斜坡北端,是牛心坨断裂背斜构造带南部的一个断块,主要开发层系为新生界下第三系沙河街组四段牛心坨油层及太古界花岗岩古潜山油层。至2002年12月底动用含油面积5.8km2,石油地质储量230l×104t,其中,牛心坨油层含油面积5.4ko,石油地质储量1328×104t。 牛心坨油层埋深1500—2200m,油层物性差,非均质严重。储层具有孔隙、裂缝双重介质特征,孔隙结构以低一特低渗、细一微细喉不均匀型为主。油层原油密度为O.89—0.92异,cm3,粘度(50℃)为470.36~48298.23lnPa?s,凝固点为35—41℃,含蜡量为10_8%一15.5%,胶质和沥青质含量为31.5%一49.6%,平均渗透率26.7×1矿“m2,平均孔隙度¨.3%。裂缝的线密度8.2条,m。 牛心坨古潜山油藏埋深为1800—2600m,储层岩性为混合花岗岩。储集空间以裂缝,溶洞为主,是一具有双重介质特征的裂缝型块状底水油藏(油水界面在2480m左右)。古潜山油层原油物性及储层物性较差,是一高凝、低渗裂缝型稠油油藏,古潜山油层原油密度为0.8745。0.972I异,cm3,粘度(50℃)为470.36—48298.23rI肌?8。凝固点为32—50℃,含蜡量为8.72%~18.47%,胶质和沥青质含量为33.59%~79.61%,平均渗透率o,00l“m2,平均孔隙度4.7%,裂缝的线密度为87.8条,m“1。 2采油工艺方式及存在问题 2.1采油工艺方式 牛心坨油田开发初期,采用的是电缆加热开采技术,后来又先后采用了电杆、变频和闭式热水循环加热技术,到2001年时由于部分油井含水过高,地层流体粘度有所下降,采用新的开采方式——干抽冷采技术在几口油井上进行了试验。 2.2存在问题 到2002年底,作业区形成了以闭式热水循环加热为主的开采方式。目前作业区平均下泵深度达到1950m,抽油杆进行了更新换代(由D级更新为H级),而抽油杆柱配比未作调整,因此出现耶0一136、耶7一更131等38口油井的最大载荷在100kN以上的现象,这些井占总开井数(128口)的29.6%,最大载荷在90—100kN之间的油井有42口,占总井数的32.8%,小于90kN的油井有49口,占总井数的37.6%,负荷超过100kN的油井的基本参数见表l。 收糟日期:2∞3一02—09;改回日期:2003一lI一28 作者筒介:茅枣忠(1965-),男.高级工程师,1988年毕业于石油大学(华东)开发幕果油工程专业,现儿事汕口生产皆理工作。电话:133042∞106。  万方数据

稠油开采技术进展

2010年第1期 总第181期 26 王学忠 (中国石化股份有限公司胜利油田分公司新疆勘探开发中心,山东东营 257000) 稠油开采技术进展 摘 要:分析了制约稠油开采的主要问题,综述了稠油开采的主要技术,建议开展地下稠油 变稀油技术攻关, 将稠油开采难题转化为稀油开采问题,大幅提高稠油产能和最终采收率。 关键词:稠油开采 冷采 注水采油 热采 水热裂解 收稿日期:2009-09-22。 作者简介:王学忠,高级工程师,1993年毕业于石油大学(华东)油藏工程专业,2006年获中国石油大学(华东)油气田开发专业硕士学位,长期从事油田开发研究。 如何降低成本,最大限度地把稠油、超稠油开采出来,是世界石油界面临的共同课题。稠油由于粘度高,给开采、集输和加工带来很大困难,国内外学者做了大量研究工作来降低稠油的粘度。我国稠油开采90%以上依靠蒸汽吞吐或蒸汽驱,采收率能达到30%左右[1]。深化热采稠油油藏井网优化调整和水平井整体开发的技术经济研究,配套全过程油层保护技术、水平井均匀注汽、热化学辅助吞吐、高效井筒降粘举升等工艺技术驱动,保障了热采稠油产量的持续增长。1 制约稠油开发的主要问题 特稠油油藏温度下脱气油粘度为10 000~50 000 mPa·s, 超稠油(天然沥青) 油藏温度下脱气油粘度一般大于50 000 mPa·s。稠油的特点一是胶质和沥青质含量高,如单家寺油田单6块稠油族组分中沥青质占11%,塔河油田稠油族组分中沥青质含量高达23%;二是粘温关系敏感, 如陈375井脱水脱气油40℃对应粘度133 300 mPa·s,80℃对应粘度2 646 mPa·s,100℃对应粘度754 mPa·s。特稠油因含有胶质、沥青质、石蜡等高分子化合物,易形成空间网状结构,具有非牛顿流体的性质,其结构随剪切应力的增大而破坏,且破坏程度与流动速度有关[2] ,即当原油流速慢时结构破坏小,粘度相对较大;流速快时则破坏大,粘度相对较小。共用同一渠道的多相流体在流动时会相互干扰,流度比越大,干扰越严重,低流度的水相更易侵入油相,使 油相变为孤立的油滴,油滴一旦被滞留下来,要起动它必须克服更大的附加毛管阻力。 特超稠油油藏开发难点在于:注汽压力高于18 MPa,常规锅炉不适应;吸汽能力差,小于1 t/(MPa·h);加热动用半径小于50 m;转变为牛顿流体温度高(高于100℃)。对于远离油田基地的中小规模特稠油油藏,或许其面临的主要开发瓶颈不是来自钻井技术、热采技术或冷采技术,而是来自地面集输技术,如地面稠油的输送加热、降粘、脱水工艺[3-4]。 胜利稠油的粘温关系曲线特点是,稠油的粘度对温度敏感性强,在低温范围内随温度增加稠油粘度急剧下降,普通稠油在温度50~80℃范围内每升高10℃,稠油粘度降低约一半,特超稠油在温度70~100℃范围内每升高10℃,稠油粘度降低约一半。普通稠油在温度大于80℃和特超稠油在温度大于100℃后,随温度增加,稠油粘度下降缓慢[5]。 2 稠油开采的主要技术 目前提高稠油油藏产量的思路主要是降低稠

稠油开采技术与发展前景

稠油开采技术与发展前景 摘要: 稠油在全球能源市场上占有很重要的地位。目前,提高采收率最成功的开采方法分两大类:一是注入流体热采或驱替型方法,如热水驱、蒸汽吞吐、蒸汽驱、火驱等;另一类是增产型开采方式,包括水平井、复合分支井、水力压裂、电加热、化学降黏等,这两类技术的结合使用,已成为当今稠油开发的主要手段。 关键词: 稠油,热采,油储量,蒸汽吞吐,试验。 序言 目前,制约国内油田持续稳定发展的主要因素有两个,一个是大多数油田已进入开发后期,老油田平均综合含水达90%以上,自然递减率达到20%,综合递减率达11%,原油产量递减加快;另一个是后备储量接替严重不足,已探明储量的丰度和品位明显下降,且大部分为稠油、出砂严重的难动用区块,按常规开采工艺开发其经济效益很差或根本无效。为稳定国内油田原油产量,除继续加大勘探力度外,借鉴国外先进超稠油油藏的开发经验,探索经济有效的开发方式和钻采新工艺及相关配套措施,提高超稠油开

发项目的经济效益,是国内油田目前乃至今后一段时间的紧迫任务。 一目前世界及国内稠油的开采情况 稠油在全球能源市场上占有很重要的地位。提高采收率的方法,如蒸汽吞吐、SAGD、冷采和水平井技术提高了开发效果。随着稠油开采技术的发展和油藏管理技术的改进稠油的开采成本在持续降低。目前国际市场的高油价提供了加速稠油开采和利用。 由于稠油的黏度高,难流动,故不能用常规的方法开采,但稠油的黏度对温度十分敏感,只要温度升高到8℃-10℃时,其黏度就降低1倍,故以高压饱和蒸汽注入油层,先吞后吐进行热采,就能达到良好效果,其采收率可达到40%-60%的水平。 我国上世纪80年代就着眼对稠油的研究和开发,按稠油油藏的特点,其开采方式也各有所异,但总是沿着降黏和使分子变小、变轻的方向发展努力着。目前,提高采收率最成功的开采方法分两大类:一是注入流体热采或驱替型方法,如热水驱、蒸汽吞吐、蒸汽驱、火驱等;另一类是增产型开采方式,包括水平井、复合分支井、水力压裂、电加热、化学降黏等,这两类技术的结合使用,已成为当今稠油开发的主要手段。其中,胜利油田采用热采、注蒸汽、电加温、化学降黏(注聚合物驱)等技术;辽河油田的中深层热采稠油技术;大港油田的化学辅助吞吐技术;新疆油田的浅层稠油面积驱技术;河南油田的稠油热采技术等,均处于国内领先水平。尤其是河南油田原油的黏度特高(普通稠油为10000mPa?s,特稠油为10000-50000mPa?s超稠油为50000mPa?s以上),热采需要的参数很大,需要注气压力7.5MPa,注气速度为100t/d,蒸汽干度为75%,蒸汽温

解析稠油掺稀油开发技术

龙源期刊网 https://www.sodocs.net/doc/299623681.html, 解析稠油掺稀油开发技术 作者:王世卿 来源:《科学与财富》2020年第02期 摘要:稠油掺稀油开发技术应用效果的高低,直接影响到整体油田开采项目的质量。基于此,本文结合是,在论述稠油油藏特点的同时,对稠油掺稀油开发技术实践要点进行探寻,希望通过分析后,可以给此类工程提供帮助。 关键词:稠油掺稀油;开发技术;分析 0前言 作为稠油开发的主要措施,掺稀油降黏需要做好技术上面的控制。由于稀油和稠油之间的配伍性较好,容易控制稀油的数量和相应的实际,控制好稠油的黏度,从地面开采过程中实现顺利的突破。在稠油的开发中,掺杂一定的稀油有助于开发,选择合适的空心抽杆技术,在泵上进行掺和,这样可以保证现实的泵效,提升最终的稠油开发效率。 1 稠油油藏的特点 由于稠油的黏度很高,所以在流动的过程中存在很大的阻力,导致稠油在流动的过程中速度随之减慢。在对抽油机进行应用的过程中,减少抽油泵的充满系数有助于提升产油的质量。由于稠油的胶质和沥青质的含量远远大于一般的稀油,所以在稠油油藏的开发中,需要借助热力采油的方式,借助提升温度的形式,降低石油的年度,从而提升采油的效率。 1.1掺油与吞吐周期的关系 随着吞吐的周期变化,在一个油层中间,出油的情况也随之不同,因此需要做好掺油方面的工作。在周期较低的井里,由于压力过高,出油的情况表现得不尽人意,出现液量较低,含水量较高的现象。从洼38块吞吐周期的类型,一般从低周期、中周期和高周期三个阶段開展。 (1)低周期油井,处于该阶段的油井,由于地层的吸气量较少,注气效果表现出非常不好的效果。特鄙视在1-2周期内,这个阶段的油井表现出不一样的内容,尤其是在油井排水的过程中周期较短,见油非常快,但是最终得到的油黏度非常大,而且文读很高。基于以上的问题,在开采之后需要掺进一些稀油,按照液量的变化内容做好掺油阶段的各个时间段的工作。

稠油井筒降粘技术综述

摘要 稠油是天然石油的重要组成部分,它不仅是动力燃料,而且是化工行业、建筑行业的重要原料。世界稠油和沥青资源极为丰富,地质储量约为61800亿桶。 稠油的流动性差,粘度大,开采的关键问题是降粘、改善其流动性。井筒降粘技术是指通过热力、化学、稀释等措施使得井筒中的流体保持低粘度,从而达到改善井筒流体的流动条件,缓解抽油设备的不适应性,提高稠油及高凝油的开发效果等目的的采油工艺技术。该技术主要应用于原油粘度不很高或油层温度较高,所开采的原油能够流入井底,只需保持井筒流体有较低的粘度和较好的流动性,采用常规开采方式就能进行开采的稠油油藏。 常见的井筒降粘方法有:应用抽稠泵、井筒热力降粘技术、稀释降粘技术化学降粘技术等。每种技术都有自己的优缺点,并在不同时期在各个油田得到广泛应用。 关键词:稠油,储量,粘度,流动性,降粘技术

目录 第1章前言 (1) 第2章稠油开采设备及应用 (2) 2.1抽稠泵原理 (2) 2.2抽稠泵的应用 (2) 第3章井筒热力降粘技术及应用 (4) 3.1电加热降粘技术 (4) 3.1.1 电加热降粘技术原理 (4) 3.1.2 电加热降粘技术应用 (5) 3.2热流体循环加热降粘技术 (6) 3.2.1 热流体循环加热降粘技术原理 (6) 3.2.2 热流体循环加热降粘技术应用 (9) 第4章井筒稀释降粘技术及应用 (11) 4.1井筒稀释降粘技术原理 (11) 4.2井筒稀释降粘技术应用 (13) 第5章化学降粘法及应用 (14) 5.1化学降粘法原理 (14) 5.2化学降粘法应用 (14) 第6章其他井筒降粘方法 (16) 第7章结论 (17) 参考文献 (18) 致谢 (20)

稠油开采方法

世界上稠油资源极为丰富,据统计,世界上证实的常规原油地质储量大约为4200×108m3,而稠油(包括高凝油)油藏地质储量却高达15500×108m3;在我国,目前已在松辽盆地、渤海湾盆地、准葛尔盆地、二连盆地等15个大中型含油盆地和地区发现了数量众多的稠油油藏,预测我国稠油(包括高凝油)油藏地质储量却高达80×108m3以上。因此,稠油分布广,储量大,开采潜力大。但是,由于原油粘度高,油层渗流阻力过大,使得原油不能从地层流入井筒;即使原油能够流到井底,在从井底向井口流动过程中,由于降压脱气和散热降温而使原油粘度进一步增加,都严重地影响原油的正常进行,使得稠油流动性差,开采难度大。 我国稠油开采技术近二十年来发展迅速,已形成了胜利﹑辽河﹑新疆﹑河南﹑大港等稠油生产基地,其产油量逐年提高,我国已成为目前世界稠油生产的主要国家之一。 第一章稠油的性质 一、稠油的定义和标准 稠油是指粘度大的原油,重油是指密度大的原油,粘度越高的原油一般密度就越大。联合国训练署于1979年6月在加拿大召开了关于重油和沥青砂的标准: (1)重油是指在油藏原始温度下,脱气原油粘度为100~10000mPa·s或在15.6℃(60℉)及0.101MPa 条件下密度为934~1000kg/m3。 (2)沥青砂是指在原始油藏温度下,脱气油粘度大于10000mPa·s或在15.6℃(60℉) 及0.101MPa条件下密度大于1000kg/m3。 根据国际稠油分类标准,我国石油工作在考虑我国稠油特性的同时,按开发的现实及今后的潜在生产能力,提出了中国稠油分类标准,即将粘度为1×102~1×104mPa·s,且相对密度大于0.92的原油称为普通稠油;将粘度为1×104~5×104mPa·s ,且相对密度大于0.95的原油称为特稠油;将粘度大于5×104 5000mPa·s,且相对密度大于0.98的原油称为超稠油(或天然沥青)。 这里必须弄清稠油与高凝油的区别,高凝油是指原油的凝固点比较高,在开发过程主要由于当原油处于凝固点以下温度状态时,原油中的某些重质组分(如石蜡)凝固析出,并沉积到油层岩石颗粒、抽油设备或管线上,造成油层渗流阻力过高,或抽油设备正常工作困难。到目前为止,高凝油尚无统一的划分标准,我国某些油田有自己的地区性划分方法,例如有的油田将凝固点大于40℃,含蜡量超过35%的原油定为高凝油。 二、稠油的一般性质 我国发现的稠油油藏分布很广,类型很多,埋藏深度变化很大,一般在10~2000m之间,主要储层为砂岩。中国稠油特性与世界各国的稠油特性大体相似,主要有以下特点。 (1)稠油中轻质馏分很少,而胶质沥青含量很多,而且随着胶质沥青含量增加,原油的相对密度及同温度下的粘度随之增高。 常规油(即稀油)中沥青质含量一般不超过5%,但稠油中沥青质含量可达10%~30%,个别特超稠油可达50%或更高。 (2)稠油随着密度增加其粘度增高,但线性关系较差。 众所周知,原油密度的大小与其含金属元素的多少有关,而原油粘度的高低主要取决于其含胶质量的多少。我国稠油油藏属于陆相沉积,原油中金属元素含量较少,而沥青、胶质含量变化大,与其他国家相比,沥青质含量较低,一般不超过10%,而胶质含量较高,一般超过20%。因此,原油密度较小,但原油粘度较高。 (3)稠油中烃类组分低。稠油与稀油的重要区别是其烃类组分上的差异,我国陆相稀油中,烃的组成(饱和烃+芳香烃)一般大于60%,最高可达95%,而稠油中烃的组成一般小于60%,最少者在20%以下,稠油中随着非烃和沥青含量的增加,其密度呈规律性大。 (4)稠油中含硫量低,在我国已发现的大量稠油油藏中,稠油中的含硫量都比较低,一般小于8%。河南油田稠油中含硫量仅为0.8%~0.38%,远低于国外含硫量(见表1)。

相关主题