搜档网
当前位置:搜档网 › 函数的连续性 教案示例

函数的连续性 教案示例

函数的连续性 教案示例
函数的连续性 教案示例

函数的连续性·教案示例

目的要求

了解函数在一点处连续的定义,知道已学过的基本初等函数及由它们经过有限次四则运算所产生的函数在定义区间内每一点都连续,会从几何直观上理解闭区间上的连续函数有最大值和最小值.

内容分析

1.在微积分中我们所研究的函数主要是连续函数,而连续概念是建立在极限概念的基础上的.本节课介绍函数f(x)在点x =x 0处连续的概念

时,除借助图形直观描述外,主要以函数值、极限值都存→f(x )lim f(x)0x x 0

在且两者相等为定义方式,这种定义与极限关系密切,所以将连续作为本章的最后部分既是承上启下的,又是顺理成章的.

2.人们对事物的认识是不断加深的,研究也是由浅入深的.对函数的定义域、值域、单调性、奇偶性、周期性等进行了研究,本课再用学过的极限概念对函数的连续性加以研究,使我们对函数的了解认识更进一步,更完善.

3.本课时的重点是函数在x =x 0处连续的定义.定义包含三层意思:

(1)f(x)在点x =x 0处及其附近有定义;

(2)lim f(x)(3)lim f(x)f(x )x x x x 0

00→→存在;=

可结合图形说明,只要缺其中的任意一个条件,就说f(x)在点x 0处不连续.难点是对连续的理解,由于连续较抽象,故要对照图形讲解.

4.函数在区间连续是建立在函数在一点连续的基础上的.如果函数f(x)在开区间(a ,b)内每一点都连续,就说函数f(x)在开区间(a ,b)内连

续;如果在开区间,内连续,在=处有=,在=处有=,就说在闭区间,上连续.这种环环相扣、

→→f(x)(a b)x a lim f(x)f(a)x b lim f(x)f(b)f(x)[a b]x a

x b +-

层层推进的定义方式能很好地培养学生严谨的逻辑思维.

5.指出已学过的基本初等函数及由它们经过有限次四则运算所产生的函数在其定义区间里每一点都是连续的.

6.从几何直观上讲解函数的连续性和连续函数的性质.

7.从连续函数的定义可知,所谓函数y =f(x)在它的定义域内某点x 0处连续,意思是说,当自变量x 无限接近x 0时,相应的函数值f(x)也就无限地接近函数值f(x 0).也可用“增量”(改变量)来说明函数的连续性:设自变量x 的增量为Δx =x -x 0,则函数值的改变量为Δy =f(x +x 0)-f(x 0).所谓f(x)在点x 0处连续,就是指当Δx →0时,相应的增量Δy

也趋向零,即Δ=.通过这些不同的说法,加深对极限概念的Δ→lim y 0x 0

认识. 教学过程

1.实例引入概念,图形直观说明

(1)水银柱高度随温度的改变而连续变化;

(2)邮费随邮件重量的增加而作阶梯式的增加.

函数值是否会因为自变量的细小变化而“大起大落”,这就是要研究的问题.引出课题: 函数的连续性

从下列图形中分析:

问:(1)函数f(x)在点x =x 0是否有定义?

(2)lim f(x)(3)lim f(x)f(x )x x x x 0

00→→是否存在?是否与相等?

答:图(1)满足3条;图(2)不满足(1);图(3)不满足条件(2);图(4)不满足条件(3). 由此概括出函数在一点处连续的定义.

2.函数在一点处连续的定义:

如果函数=在点=处及其附近有定义,而且=→y f(x)x x lim f(x)0x x 0

f(x 0),就说函数f(x)在点x 0处连续.

指出=包含两层意思:存在;极限值与函数值相等.→→→lim f(x)f(x )(1)lim f(x)(2)lim f(x)f(x )00x x x x x x 0

00

提问:连续函数在图形上有何特点?

3.举例应用

例 讨论下列函数在给定点处的连续性:

(1)f(x)x 0=,点=;1x

(2)g(x)=sinx ,点x =0.

解:画图.

(1)f(x)x 0x 0函数=在=处没有定义,因而它在点=处不连续.1x

(2)lim sinx 0sin0g(x)sinx x 0因为==,因此=在点=处是连续的.→x 0

课堂练习:教科书第97页练习第1、2题(不连续的指出不满足定义中的哪一条),第98页习题2.6第2、4题.

4.函数在区间里连续

(1)在开区间连续:如果函数在某一开区间(a ,b)内每一点处都连续,就说函数在开区间(a ,b)内连续,或说函数是开区间内的连续函数.

(2)在闭区间连续:如果函数f(x)在开区间(a ,b)内连续,在左端点x

=处有=,在右端点处有=,就说函数在闭→→a lim f(x)f(a)lim f(x)f(b)f(x)x a x b

+- 区间[a ,b]上连续.

5.闭区间上连续函数的性质

性质(最大值最小值定理):如果f(x)是闭区间[a ,b]上的连续函数,那么f(x)在闭区间[a ,b]上有最大值和最小值.

6.归纳小结

(1)函数在一点处连续的定义.

(2)判定函数在一点处是否连续:

方法1:由定义说明,方法2:由图象直观说明.

(3)闭区间上连续函数的性质.

想一想:函数在某一点的极限与连续有何关系?

布置作业 教科书第98页习题2.6第1、3题

函数的可导性与连续性的关系教学方案

函数的可导性与连续性的关系教案 教学目的 1.使学生理解函数连续是函数可导的必要条件,但不是充分条件. 2.使学生了解左导数和右导数的概念. 教学重点和难点 掌握函数的可导性与连续性的关系. 教学过程 一、复习提问 1.导数的定义是什么? 处连续的定义是什么? 2.函数在点x 处连续必须具备以在学生回答定义基础上,教师进一步强调函数f(x)在点x=x

∴f(x)在点x 处连续. 综合(1)(2)原命题得证. 在复习以上三个问题基础上,直接提出本节课题.先由学生回答函数的可导性与连续性的关系. 二、新课 1.如果函数f(x)在点x 0处可导,那么f(x)在点x 处连续.

处连续. ∴f(x)在点x 提问:一个函数f(x)在某一点处连续,那么f(x)在点x 处一定可导吗?为什么?若 不可导,举例说明. 处连续,那么f(x)在该点不一定可导. 如果函数f(x)在点x 例如:函数y=|x|在点x=0处连续,但在点x=0处不可导.从图2-3看出,曲线y=f(x)在点O(0,0)处没有切线. 证明:(1)∵Δy=f(0+Δx)-f(0)=|0+Δx|-|0|=|Δx|, 处是连续的. ∴函数y=|x|在点x

2.左导数与右导数的概念. (2)左、右导数存在且相等是导数存在的充要条件(利用左右极限存在且相等是极限存在的充要条件,可以加以证明,本节不证明). (3)函数在一个闭区间上可导的定义. 如果函数y=f(x)在开区间(a,b)可导,在左端点x=a处存在右导数,在右端点x =b处存在左导数,我们就说函数f(x)在闭区间[a,b]上可导. 三、小结 1.函数f(x)在x 0处有定义是f(x)在x 处连续的必要而不充分条件. 2.函数f(x)在x 0处连续是f(x)在x 处有极限的充分而不必要条件. 3.函数f(x)在x 0处连续是f(x)在x 处可导的必要而不充分的条件. 四、布置作业

高等数学函数的极限与连续习题及答案

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴ ()12 ++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与() x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1) 1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2 x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点. 11、函数()x f x 1 =必在闭区间[]b a ,内取得最大值、最小值.

函数的连续性 教案示例

函数的连续性·教案示例 目的要求 了解函数在一点处连续的定义,知道已学过的基本初等函数及由它们经过有限次四则运算所产生的函数在定义区间内每一点都连续,会从几何直观上理解闭区间上的连续函数有最大值和最小值. 内容分析 1.在微积分中我们所研究的函数主要是连续函数,而连续概念是建立在极限概念的基础上的.本节课介绍函数f(x)在点x =x 0处连续的概念 时,除借助图形直观描述外,主要以函数值、极限值都存→f(x )lim f(x)0x x 0 在且两者相等为定义方式,这种定义与极限关系密切,所以将连续作为本章的最后部分既是承上启下的,又是顺理成章的. 2.人们对事物的认识是不断加深的,研究也是由浅入深的.对函数的定义域、值域、单调性、奇偶性、周期性等进行了研究,本课再用学过的极限概念对函数的连续性加以研究,使我们对函数的了解认识更进一步,更完善. 3.本课时的重点是函数在x =x 0处连续的定义.定义包含三层意思: (1)f(x)在点x =x 0处及其附近有定义; (2)lim f(x)(3)lim f(x)f(x )x x x x 0 00→→存在;= 可结合图形说明,只要缺其中的任意一个条件,就说f(x)在点x 0处不连续.难点是对连续的理解,由于连续较抽象,故要对照图形讲解. 4.函数在区间连续是建立在函数在一点连续的基础上的.如果函数f(x)在开区间(a ,b)内每一点都连续,就说函数f(x)在开区间(a ,b)内连 续;如果在开区间,内连续,在=处有=,在=处有=,就说在闭区间,上连续.这种环环相扣、 →→f(x)(a b)x a lim f(x)f(a)x b lim f(x)f(b)f(x)[a b]x a x b +- 层层推进的定义方式能很好地培养学生严谨的逻辑思维. 5.指出已学过的基本初等函数及由它们经过有限次四则运算所产生的函数在其定义区间里每一点都是连续的. 6.从几何直观上讲解函数的连续性和连续函数的性质. 7.从连续函数的定义可知,所谓函数y =f(x)在它的定义域内某点x 0处连续,意思是说,当自变量x 无限接近x 0时,相应的函数值f(x)也就无限地接近函数值f(x 0).也可用“增量”(改变量)来说明函数的连续性:设自变量x 的增量为Δx =x -x 0,则函数值的改变量为Δy =f(x +x 0)-f(x 0).所谓f(x)在点x 0处连续,就是指当Δx →0时,相应的增量Δy

高三数学Word版教案第78课时 函数的极限和连续性

高三数学Word版教案第课时函数的极限和连续性 课题:函数的极限和连续性 教学目标:了解函数极限的概念;掌握极限的四则运算法则;会求某些数列与函数的极限;了解函数连续的意义;理解闭区间上连续函数有最大值和最小值的性质 (一)主要知识及主要方法: 函数极限的定义: 当自变量取正值并且无限增大时,如果函数无限趋近于一个常数,就说当趋向于正无穷大时,函数的极限是,记作:,或者当时,;当自变量取负值并且绝对值无限增大时,如果函数无限趋近于一个常数,就说当趋向于负无穷大时,函数的极限是. 记作或者当当时, 如果且,那么就说当趋向于无穷大时,函数的极限是,记作:或者当时,. 常数函数: (),有. 存在,表示和都存在,且两者相等所以中的既有,又有的意义,而数列极限中的仅有的意义. 趋向于定值的函数极限概念:当自变量无限趋近于()时,如果函数无限趋近于一个常数,就说当趋向时,函数的极限是,记作.特别地,;. . 其中表示当从左侧趋近于时的左极限,

表示当从右侧趋近于时的右极限. 对于函数极限有如下的运算法则: 如果,,那么, , . 当是常数,是正整数时:, 这些法则对于的情况仍然适用. 函数在一点连续的定义: 如果函数在点处有定义,存在, 且,那么函数在点处连续. 函数在内连续的定义:如果函数在某一开区间内每一点处连续,就说函数在开区间内连续,或是开区间内的连续函数. 函数在上连续的定义:如果在开区间内连续,在左端点处有,在右端点处有就说函数在闭区间上连续,或是闭区间上的连续函数. 最大值:是闭区间上的连续函数,如果对于任意,≥,那么在点处有最大值. 最小值:是闭区间上的连续函数,如果对于任意,≤,那么在点处有最小值. 最大值最小值定理 如果是闭区间上的连续函数,那么在闭区间上有最大值和最小值. 极限问题的基本类型:分式型,主要看分子和分母的首项系数; 指数型(和型),通过变形使得各式有极限; 根式型(型),通过有理化变形使得各式有极限; 根的存在定理:若①函数在上连续,②,则方程至少有一根在区

大学高等数学函数极限和连续

第一章 函数、极限和连续 §1.1 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ?? ?∈∈=21)()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1(y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1)=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2),

则称f(x)在D 内严格单调增加( ); 若f(x 1)>f(x 2), 则称f(x)在D 内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数 4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数 1.常数函数: y=c , (c 为常数) 2.幂函数: y=x n , (n 为实数) 3.指数函数: y=a x , (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数 1.复合函数: y=f(u) , u=φ(x) y=f[φ(x)] , x ∈X 2.初等函数:

高等数学第一章函数极限与连续教案

教学内§1.1 函数 教学目的】 理解并掌握函数的概念与性质 教学重点】 函数的概念与性质 教学难点】 函数概念的理解 教学时数】 4 学时 一、组织教学,引入新课 极限是微积分学中最基本、最重要的概念之一,极限的思想与理论,是整个高等数 学的基础,连续、微分、积分等重要概念都归结于极限 . 因此掌握极限的思想与方法是 学好高等数学的前提条件 . 本章将在初等数学的基础上,介绍极限与连续的概念 、讲授新课 (一)、实数概述 1、实数与数轴 1)实数系表 2)实数与数轴关系 x,x 0 1)绝对值的定义: x x,x 0 x,x 0 2)绝对值的几何意义 3)绝对值的性质 练习:解下列绝对值不等式:① x 5 3 ,② x 1 2 3、区间 (1)区间的定义:区间是实数集的子集 (2)区间的分类:有限区间、无限区间 ① 有限区间:长度有限的区间 设 a 与 b 均为实数,且 a b ,则 (3)实数的性质: 封闭性 有序性 稠密性 连续性

数集{ x a x b }为以 a 、 b 为端点的半开半闭区间,记作 [a ,b ) 数集{ x a x b }为以a 、 b 为端点的半开半闭区间,记作( a ,b ] 区间长度: b a ② 无限区间 数集{ xa x }记作[a , ), 数集{xa x }记作( a , ) 数集{ x x a }记作( ,a], 数集{ x x a }记作( ,a ) 实数集 R 记作( , ) 3)邻域 ① 邻域:设 a 与 均为实数,且 0 ,则开区间( a , a )为点 a 的 邻域 记作U(a, ) ,其中点 a 为邻域的中心, 为邻域的半径 ② 去心邻域:在的 邻域中去掉点 a 后,称为点 a 的去心邻域,记作 U (a, ) (二) 、函数的概念 1、函数的定义 : 设有一非空实数集 D ,如果存在一个对应法则 f ,使得对于每一个 x D ,都有一个 惟一的实数 y 与之对应,则称对应法则 f 是定义在 D 上的一个函数. 记作 y f(x), 其中 x 为自变量, y 为因变量,习惯上 y 称是的函数。 定义域: 使函数 y f ( x )有意义的自变量的全体,即自变量 x 的取值范围 D 函数值:当自变量 x 取定义域 D 内的某一定值 x 0时,按对应法则 f 所得的对应 值 y 0 称 为函数 y f(x)在 x x 0时的函数值,记作 y 0 f(x 0)。 值 域:当自变量 x 取遍 D 中的一切数时,所对应的函数值 y 构成的集合,记 数集{ x a x b }为以 a 、 b 为端点的闭区间,记作 [a ,b ] 数集{ x a x b }为以 a 、 b 为端点的开区间,记作 ( a ,b )

高考数学难点-函数的连续及其应用

难点33函数的连续及其应用 函数的连续性是新教材新增加的内容之一.它把高中的极限知识与大学知识紧密联在一起.在高考中,必将这一块内容溶入到函数内容中去,因而一定成为高考的又一个热点.本节内容重点阐述这一块知识的知识结构体系. ●难点磁场 (★★★★)已知函数f (x )=?????≤<-≤≤-+-<)51( )1(log )11( )1()1( 32 x x x x x x (1)讨论f (x )在点x =-1,0,1处的连续性; (2)求f (x )的连续区间. ●案例探究 [例1]已知函数f (x )=242+-x x ,(1)求f (x )的定义域,并作出函数的图象; (2)求f (x )的不连续点x 0; (3)对f (x )补充定义,使其是R 上的连续函数. 命题意图:函数的连续性,尤其是在某定点处的连续性在函数图象上有最直观的反映.因而画函数图象去直观反映题目中的连续性问题也就成为一种最重要的方法. 知识依托:本题是分式函数,所以解答本题的闪光点是能准确画 出它的图象. 错解分析:第(3)问是本题的难点,考生通过自己对所学连续函数 定义的了解.应明确知道第(3)问是求的分数函数解析式. 技巧与方法:对分式化简变形,注意等价性,观察图象进行解答. 解:(1)当x +2≠0时,有x ≠-2 因此,函数的定义域是(-∞,-2)∪(-2,+∞) 当x ≠-2时,f (x )=2 42+-x x =x -2,其图象如上图 (2)由定义域知,函数f (x )的不连续点是x 0=-2. (3)因为当x ≠-2时,f (x )=x -2,所以)2(lim )(lim 2 2-=-→-→x x f x x =-4.因此,将f (x )的表达式改写为f (x )=?? ???-=--≠+-2)( 4)2( 242x x x x 则函数f (x )在R 上是连续函数. [例2]求证:方程x =a sin x +b (a >0,b >0)至少有一个正根,且它不大于a +b . 命题意图:要判定方程f (x )=0是否有实根.即判定对应的连续函数y =f (x )的图象是否与x 轴有交点,因此根据连续函数的性质,只要找到图象上的两点,满足一点在x 轴上方,另一点在x 轴下方即可.本题主要考查这种解题方法. 知识依托:解答本题的闪光点要找到合适的两点,使函数值其一为负,另一为正. 错解分析:因为本题为超越方程,因而考生最易想到画图象观察,而忽视连续性的性质在解这类题目中的简便作用 .

12-6.多元函数的连续性PPT

多元函数的连续性

二元函数的连续性 定义1()(,)D f P f x y =设二元函数的定义域为, 00000,)D ,)D P x y P x y ∈(是的聚点,且( ,如果0000,)(,) lim (,)(,)x y x y f x y f x y →=(00(,)(,)f x y P x y 则称函数在点处连续。 (,)D (,)D (,)D (,)C() f x y f x y f x y f x y D ∈如果在的每一点处都连续,则称函数在上连续,或称是上的连续函数,记作

例1讨论函数222,(,)(0,0)(,)0,(,)(0,0)x y x y f x y x y x y ?≠?=+??=? 在(0,0)处的连续性. 解2 22x y x y +x 2 1≤,00??→?→x 222 00 lim 0(0,0)x y x y f x y →→∴==+故函数在(0,0)处连续.

例2讨论函数 ?? ?? ?=+≠++=0,00,),(222222y x y x y x xy y x f 在(0,0)的连续性. 解取kx y =2222 0lim x k x kx kx y x +==→21k k +=其值随k 的不同而变化,极限不存在.故函数在(0,0)处不连续.

闭区域上连续函数的性质 (1)最大值和最小值定理 有界闭区域D上的多元连续函数一定有最大值和最小值. (2)介值定理 在有界闭区域D上的多元连续函数必取得介于最大值和最小值之间的一切值.

多元初等函数:由多元多项式及基本初等函数经过有限次的四则运算和复合步骤所构成的可用一个式子所表示的多元函数叫多元初等函数一切多元初等函数在其定义区域内是连续的. 定义区域是指包含在定义域内的区域或闭区域.

(整理)函数的连续性及其应用

函数的连续性及其应用 函数的连续性是新教材新增加的内容之一.它把高中的极限知识与大学知识紧密联在一起.在高考中,必将这一块内容溶入到函数内容中去,因而一定成为高考的又一个热点.本节内容重点阐述这一块知识的知识结构体系. ●难点磁场 (★★★★)已知函数f (x )=?????≤<-≤≤-+-<)51( )1(log )11( )1()1( 32 x x x x x x (1)讨论f (x )在点x =-1,0,1处的连续性; (2)求f (x )的连续区间. ●案例探究 [例1]已知函数f (x )=2 42+-x x , (1)求f (x )的定义域,并作出函数的图象; (2)求f (x )的不连续点x 0; (3)对f (x )补充定义,使其是R 上的连续函数. 命题意图:函数的连续性,尤其是在某定点处的连续性在函数图象上有最直观的反映.因而画函数图象去直观反映题目中的连续性问题也就成为一种最重要的方法. 知识依托:本题是分式函数,所以解答本题的闪光点是 能准确画出它的图象. 错解分析:第(3)问是本题的难点,考生通过自己对所学 连续函数定义的了解.应明确知道第(3)问是求的分数函数解析式. 技巧与方法:对分式化简变形,注意等价性,观察图象 进行解答. 解:(1)当x +2≠0时,有x ≠-2 因此,函数的定义域是(-∞,-2)∪(-2,+∞) 当x ≠-2时,f (x )=242+-x x =x -2, 其图象如上图 (2)由定义域知,函数f (x )的不连续点是x 0=-2. (3)因为当x ≠-2时,f (x )=x -2,所以)2(lim )(lim 2 2-=-→-→x x f x x =- 4.

函数连续性教学设计

函数的连续性教学设计 ———凌亚丽内容分析: 函数的连续性是在学生学习了函数概念、函数极限的概念以及极限计算的基础上,对函数的性质进一步进行的讨论。高等数学研究的主要对象是初等函数,而连续性是初等函数的重要性质。因此,这一节内容是高等数学课程的基础性知识,十分重要。 学情分析: 《高等数学》是我院所有专业学生必学的一门公共基础课,也是学生学习专业知识的基础,是学生专升本必学必考的一门课程。但据多数学生反映及本人教学发现,高等数学确实是一门比较难的课程,对于我们学校的学生而言学习更为困难。之所以更难,有两个主要原因。其一,高等数学这门课程难,它是初等数学以外的一门数学,它有其固有的特点,这就是高度的抽象性、严密的逻辑性和广泛的应用性。其二,高职学生的知识基础差,学习兴趣低.教学中发现学生对这门课程表现出不知所措,无奈,无所谓的态度,这是一种令人担忧的现象,尤其是在讲函数的连续性这块,问题更是很多:无趣,无用,无耐等.教学目标: 1. 理解函数连续的概念,会利用定义判断函数在某一点的连续性; 2. 了解闭区间上连续函数的性质; 3.培养学生利用函数连续与间断的思想思考、分析、判断工程问题中变量变化规律的能力。 能力训练: 任务一会讨论函数在某一点的连续性; 任务二会用初等函数的连续性求极限。 教学重点:函数连续的概念,初等函数的连续性。 教学难点:函数连续的定义。

教学过程设计:

教学反思: 通过多用日常生活、经济问题、工程问题的例子,引起学生的学习兴趣,提高学生的学习动力,最后再用所学的数学知识解决实际问题,体现数学的实用性。

教学过程中,也采用的图象的形式,给予了学生直观的感觉,有利于学生理解概念,消化知识。 当然,还有不足,还需不断学习,不断提高自己。

函数的连续性在高等代数中的应用

函数的连续性在高等代数中的应用 摘要:数学分析和高等代数是大学数学专业非常重要的基础课程,这两门课程的一些问题如果只是从学科内部出发很难解决,而运用另一门学科的知识解决,问题就变得简单易行. 关键词:连续函数;行列式;矩阵;二次型 Applications of Continuity of Function in Advanced Algebra Zhou Yuxia (College of Mathematics and the Information Science, Northwest Normal University, Lanzhou 730000) Abstract: The mathematical analysis and advanced algebra are very important foundation courses of university mathematics special ?eld,some of the problems of both courses within the discipline, if only from the start are dif-?cult to resolve but used of the knowledge of other disciplines to solve, the problem becomes very easy. Key words: continuous function; matrix; determinant; quadratic form 本文记号说明:const: 常数;A T : 矩阵A的转置;A*:矩阵A的伴随矩阵; f(x) C(a,b):f(x)在(a,b)上连续.

高等数学课件:函数的连续性

高等数学课件:函数的连续性 1.7函数的连续性 教学目的:理解函数连续性的概念,会判断函数的连续性。掌握连续函数的四则运算,知道反函数及复合函数的连续性,掌握初等函数的连续性, 知道间断点的概念及分类,会判断其类型。 教学重点:函数连续性的概念, 连续函数的四则运算,知道反函数及复合函数的连续性. 教学内容: 1.6.1函数的连续性 1 函数在一点的连续性 xUx()xx定义1 设函数在点的某个邻域内有定义,自变量在点处有增量 yfx,()000 ,相应地函数值的增量 ,x ,,,,,yfxxfx()() 00 xx如果,就称函数fx()在点处连续,称为函数fx()的连续点。 lim0,,y00,,x0 x函数fx()在点处连续还可以描述如下。 0 xUx()设函数yfx,()在点的某个邻域内有定义,如果,就称函数 lim()()fxfx,000xx,0 xfx()在点处连续。 0 左连续及右连续的概念。 xlim()()fxfx,lim()()fxfx,如果,称函数fx()在点处左连续;如果,称函000,,xx,xx,00

x数fx()lim()lim()fxfx,在点处右连续。由于lim()fx存在的充要条件是,因此,根0,,xx,xxxx,,000 xx据函数连续的定义有下述结论:若函数yfx,()在点的某个邻域内有定义,则它在点处00 x连续的充分必要条件是在点处左连续且右连续。 0 2 区间上的连续函数 如果函数在开区间上每一点都连续,我们称函数在开区间内连续,如果函数开区间内连续,在区间的左端点右连续,右端点左连续,就称函数在闭区间上连续。 yx,sin(,),,,,例1 证明在内连续。 x,,,,,,x(,)证明,当有增量时,对应的函数值的增量,x ,,xx,,,,,,,,,yxxxxsin()sin2sincos ,,22,, ,,xx,x,,sin,由于, cos1x,,,,222,, ,,,xxx,,所以 02sincos2,,,,,,,yxx,,222,, 45 xx当时,由夹逼准则得,因此在点处连续,由于的任 ,,y0yx,sin,,x0 意性,在内连续。 yx,sin(,),,,, xya,例2 证明()在内连续。 (,),,,,a,0a,1 x证明,当有增量时,对应的函数值的增量,,,,,,x(,),x xxxxx,,,,,,,,yaaaa(1) x由于时,,因此 axa,1lnx,0 xxx, limlim(1)lim(ln)0,,,,,,yaaaxa000,,,,,,xxx xxya,ya,xx因此,在点处连续,由于的任意性,在内连续。 (,),,,, 1.6.2 函数的间断点

高中数学教案——函数的连续性

课题:2.5函数的连续性 教学目的: 1.理解掌握函数在一点连续须满足的三个条件的基础上,会判断函数在一点是否连续. 2.要会说明函数在一点不连续的理由. 3.要了解并掌握函数在开区间或闭区间连续的定义. 4.要了解闭区间上连续函数的性质,即最大值最小值定理 教学重点:函数在一点连续必须满足三个条件. 教学难点:借助几何图象得出最大值最小值定理. 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 内容分析: 本节教学知识点有函数在一点连续满足的三个条件,函数在一点连续概念,函数在开区间和闭区间连续的定义,函数在闭区间上有最大、最小值的定义,

最大最小值定理 函数的连续性是建立在极限概念基础上的,又为以后微积分的学习做铺垫,它是承上启下的.函数在一点连续必须满足三个条件,这是要学生重点掌握的内容.函数在区间连续的定义也是建立在一点连续的基础上的.借助函数的几何图象得到闭区间上连续函数的一个性质,即最大值最小值定理. 函数在一点连续必须满足三个条件,缺一不可.如何得出这三个条件,可以借助函数图象,让学生观察、总结出来.同样借助几何图象得出最大值最小值定理. 在学生已掌握极限概念的基础上,并通过分析函数图象,让学生主动地总结出函数在一点连续的三个条件及概念.以及通过区间是由点组成的,进行概念的顺应,得出函数在区间上连续的概念.让学生主动地学习. 教学过程: 一、复习引入: 1.000 lim ()lim ()lim ()x x x x x x f x a f x f x a -+→→→=?== 其中0lim ()x x f x a -→=表示当x 从左侧趋近于0x 时的左极限,0 lim ()x x f x a +→=表示当x 从右侧趋近于0x 时的右极限 2. 我们前面学习了数列极限和函数极限、数列可以看成是一种特殊的函数,不同的是函数的定义域往往是连续的.而数列的定义域是自然数集,是一个一个离散的点.而在我们日常生活中,也会碰到这种情况.比如温度计的水银柱高度会随着温度的改变而连续地上升或下降,这是一种连续变化的情况;再比如邮寄信件的邮费,随邮件质量的增加而作阶梯式的增加(打个比方:20克以内是8毛钱邮票,21克~30克是1元,31克~40克是1.2元)等等.这就要求我们去研究函数的连续与不连续问题 二、讲解新课: 1.观察图像 如果我们给出一个函数的图象,从直观上看,一个函数在一点x =x 0处连续,就是说图象在点x =x 0处是不中断的.下面我们一起来看一下几张函数图象,并观察一下,它们在x =x 0处的连续情况,以及极限情况. 分析图,第一,看函数在x 0是否连续.第二,在x 0是否有极限,若有与f (x 0)的值关系如何: 图(1),函数在x 0连续,在x 0处有极限,并且极限就等于f (x 0).

数列的极限、函数的极限与连续性教案

看比例,点击右上角的关闭按钮可返回目录。 考点42 数列的极限、函数的极限与连续性 一、选择题 1、(2011·重庆高考理科·T3)已知x 2ax 1lim 2x 13x →∞-??+= ?-? ?,则=a ( ) (A) -6 (B) 2 (C) 3 (D)6 【思路点拨】对小括号内的表达式进行通分化简利用极限的相关性质求出a 的值. 【精讲精析】选D. x x 2x 16x (ax 1)(x 1)lim lim x 13x 3x(x 1)→∞→∞??-+--??+= ???--???? 22x ax (5a)x 1a lim 2,3x 3x 3 →∞??+-+===??-??所以.6=a 2、(2011·四川高考理科·T11)已知定义在[0,+∞?)上的函数()f x 满足()f x =3(2)f x +, 当[0,2)x ∈时,()f x =22x x -+,设()f x 在[22,2)n n -上的最大值为*([0,)n a n N ∈且 {}n a 的前n 项和为S n ,则lim n n S →∞=( ). (A )3 (B )52 (C) 2 (D )32 【思路点拨】 首先需要确定数列{}n a .先由1n =求出1a ,当2n =时,由()3(2) f x f x =+可推得 1()(2)3 f x f x =-,先求出(2)f x -的最大值,在求()f x 的最大值,即求得2a , 3,4,...n =依次求 解. 【精讲精析】选D , [)[)[)22122,20,2,0,2()2(1)1n n n x f x x x x =-=∈=-+=--+时,时,, ()=(1)1f x f =最大值,1 1.a ∴= [)[)[)[)222,22,4,2,420,2n n n x x =-=∈-∈时,若,则, 2(2)22(2)f x x x -=--+-()

函数的连续性的例题与习题集

函数的连续性的例题与习题 函数连续性这个内容所涉及到的练习与考试题目,大致有3大类。第一类是计算或证明连续性;第二类是对间断点(或区间)的判断,包括间断点的类型;第三类是利用闭区间上的连续函数的几个性质(最值性质,零点存在性质),进行理论分析。 下面就这三大类问题,提供若干例题和习题。还是那句老话:看到题目不要看解答,而是先思考先试着做!这是与看文学小说的最大区别。 要提醒的是,例题里有不少是《函数连续性(一)(二)》中没有给出解答的例题,你事先独立做了吗?如果没有做,是不会做好是根本不想做,还是没有时间? 一.函数的连续 例1.1(例1.20(一),这个序号值的是《函数连续性(一)中的例题号,请对照) 设()f x 满足()()()f x y f x f y +=+,且()f x 在0x =连续。证明:()f x 在任意点x 处连续。 分析:证明题是我们很多同学的软肋,不知道从何下手。其实,如果你的基本概念比较清晰,证明题要比计算题号做,因为它有明确的方向,不像计算题,不知道正确的答案是什么 在本题里,要证的是“()f x 在任意点x 处连续”,那么我们就先固定一个点x ,用函数连续的定义来证明在x 处连续。你可能要问:函数连续的定义有好几个,用哪一个? 这要看已知条件,哪个容易用,就用那一个。在本题中,提供了条件()()()f x y f x f y +=+,也就是()()()f x y f x f y +-=,你的脑海里就要想到,如果设y x =?,那么就有 ()()()y f x x f x f x ?=+?-=?;这个时候,你应该立即“闪过”,要用题目给的第二个条件了:()f x 在0x =连续!它意味着:0 lim (0)(0)x f x f ?→+?=。 证明的思路就此产生! 证明:因为 ()()()f x y f x f y +=+,取0y =,则有 ()()(0)f x f x f =+,所以(0)0f =。 (#) 对于固定的x (任意的!),若取y x =?,有 ()()()y f x x f x f x ?=+?-=?, (+) 在(+)式两边取0x ?→的极限,那么

高等数学(上册)教案05 函数的连续性与间断点

第1章 函数、极限与连续 函数的连续性与间断点 【教学目的】: 1. 理解函数在一点连续的概念; 2. 会求简单函数的间断点; 【教学重点】: 1. 函数连续、间断的概念; 2. 函数在一点处连续的判定方法; 3. 函数间断点的分类; 【教学难点】: 1. 函数在一点处连续的判定方法; 2. 分段函数分段点处的连续性判断; 3. 函数间断点的分类。 【教学时数】:2学时 【教学过程】: 1.4.1函数的连续性的概念 1、函数的增量 2、函数的连续性 定义 1 设函数)(x f y =在点0x 及其附近有定义,且0lim 0 =?→?y x ,则称函数)(x f 在点0x 连续,0x 称为函数)(x f y =的连续点. 连续的另一等价定义是: 定义2 设函数()x f y =在点0x 及其附近有定义,如果函数()x f 当0x x →时的极限存在,且等于它在点0x 处的函数值()0x f ,即()()00 lim x f x f x x =→,那么就称函数()x f y =在点0x 连续. 注意:由定义知函数)(x f 在0x 处连续要()()00lim x f x f x x =→成立,则必须同时满足以下三个条件 (1) 函数)(x f 在0x 处有定义; (2) 极限)(lim 0 x f x x →存在; (3) 极限值等于函数值,即)()(lim 00 x f x f x x =→. 定义3 如果函数)(x f y =在0x 处及其左邻域内有定义,且)(lim 0 x f x x -→=)(0x f ,则称函数)(x f y =在0x 处左连续.如果函数)(x f y =在0x 处及其右邻域内有定义,且)()(lim 00 x f x f x x =+→,则称函数)(x f y =在0x 处右连续. )(x f y =在0x 处连续 ? )(x f y =在0x 处既左连续且右连续.

二元函数的连续、偏导数、可微之间的关系

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1二元函数连续、偏导数、可微三个概念的定义 (1) 2二元函数连续、偏导数、可微三个概念之间的关系 (2) 2.1二元函数连续与偏导数存在之间的关系 (2) 2.2二元函数连续与可微之间的关系 (3) 2.3二元函数可微与偏导数存在之间的关系 (3) 2.4二元函数可微与偏导数连续之间的关系 (4) 二元函数连续、偏导数、可微的关系图 (6) 参考文献 (7) 致谢 (8)

本科生毕业论文 2 二元函数的连续、偏导数、可微之间的关系 摘要 一元函数可微与可导等价,可导必连续.但二元函数并非如此,以下文章给出了二元函数连续、偏导数、可微之间的关系,并给出了简单的证明,且用实例说明了它们之间的无关性和在一定条件下所具有的共性. 关键词 二元函数 连续 偏导数 可微 The Relationship among Continuation, Partial Derivatives and Differentiability in Binary Function Abstract Unary function differentiable with derivative equivalent, will be continuously differentiable. But the dual function is not the case, the following article gives a continuous function of two variables, partial derivatives, can be said the relationship between them, and gives a simple show, and illustrated with examples related between them and under certain conditions have in common.. Key words binary function continuation partial derivatives differentiability 引言 二元函数的偏导数存在、函数连续、可微是二元函数微分学的三个重要概念.对于学习数学分析的人来说,必须弄清三者之间的关系,才能学好、掌握与之相关的理论知识.本文详细讨论这三者之间的关系. 1 二元函数连续、偏导数、可微三个概念的定义 定义1 设f 为定义在点集2D R ?上的二元函数,0D P ∈(0P 或者是D 的聚点,或者是D 的孤立点),对于任给的正数ε,总存在相应的正数δ,只要0,)(D P U P δ?∈, 就有0)||()(f P f P ε<-,则称f 关于集合 D 在点0P 连续. 定义2 设函数(,),(,)z f x y x y D =∈,若00,)(y D x ∈且0,)(y f x 在0x 的某一邻域内 有定义,则当极限00000000(,))(,) (,lim lim x x x f x y f x y f x x y x x ?→?→+-=????存在时,则称这个极限 为函数f 在点00,)(y x 关于x 的偏导数,记作0 (,) |x y f x ??. 定义3 设函数(,)z f x y =在点000,)(y P x 某邻域0()U P 内有定义, 对于0()U P 中的点00,)(,)(y P x y x x y ++=??,若函数f 在点0P 处的全增量可表示为

函数的连续性优质课教案

函数的连续性优质课教 案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2 课 题:2.5函数的连续性 教学目的: 1.理解掌握函数在一点连续须满足的三个条件的基础上,会判断函数在一点是否连续. 2.要会说明函数在一点不连续的理由. 3.要了解并掌握函数在开区间或闭区间连续的定义. 4.要了解闭区间上连续函数的性质,即最大值最小值定理 教学重点:函数在一点连续必须满足三个条件. 教学难点: 借助几何图象得出最大值最小值定理. 授课类型:新授课 课时安排:1课时 教学过程: 一、复习引入: 1.000 lim ()lim ()lim ()x x x x x x f x a f x f x a -+→→→=?== 其中 0lim ()x x f x a -→=表示当x 从左侧趋近于0x 时的左极限,0lim ()x x f x a +→=表示当x 从右侧趋近于0x 时的右极限 2. 我们前面学习了数列极限和函数极限、数列可以看成是一种特殊的函数,不同的是函数的定义域往往是连续的.而数列的定义域是自然数集,是一个一个离散的点.而在我们日常生活中,也会碰到这种情况.比如温度计的水银柱高度会随着温度的改变而连续地上升或下降,这是一种连续变化的情况;再比如邮寄信件的邮费,随邮件质量的增加而作阶梯式的增加(打个比方:20克以内是8毛钱邮票,21克~30克是1元,31克~40克是1.2元)等等.这就要求我们去研究函数的连续与不连续问题 二、讲解新课:

1.观察图像如果我们给出一个函数的图象,从直观上看,一个函数在一点x=x0处连续,就是说图象在点x=x0处是不中断的.下面我们一起来看一下几张函数图象,并观察一下,它们在x=x0处的连续情况,以及极限情况 . 分析图,第一,看函数在x0是否连续.第二,在x0是否有极限,若有与f(x0)的值关系如何: 图(1),函数在x0连续,在x0处有极限,并且极限就等于f(x0). 图(2),函数在x0不连续,在x0处有极限,但极限不等于f(x0),因为函数在x0处没有定义. 图(3),函数在x0不连续,在x0处没有极限. 图(4),函数在x0处不连续,在x0处有极限,但极限不等于f(x0)的值. 函数在点x=x0处要有定义,是根据图(2)得到的,根据图(3),函数在x=x0处要有极限,根据图(4),函数在x=x0处的极限要等于函数在x=x0处的函数值即f(x0).函数在一点连续必须满足刚才的三个条件. .函数f(x)在点x=x0处连续必须满足下面三个条件. (1)函数f(x)在点x=x0处有定义;(2)0 lim x x→f(x)存在; (3)0 lim x x→f(x)=f(x0),即函数f(x)在点x0处的极限值等于这一点的函数值. 3

关于高等数学函数的极限与连续习题及答案

关于高等数学函数的极 限与连续习题及答案 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴()12 ++=x x x f 与()11 3--=x x x g 函数关系相同,但定义域不同,所 以()x f 与()x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1)1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x

相关主题