搜档网
当前位置:搜档网 › 【理科附加】专题03 不等式选讲-2019年高考数学母题题源系列(江苏专版)(原卷版)

【理科附加】专题03 不等式选讲-2019年高考数学母题题源系列(江苏专版)(原卷版)

【理科附加】专题03 不等式选讲-2019年高考数学母题题源系列(江苏专版)(原卷版)
【理科附加】专题03 不等式选讲-2019年高考数学母题题源系列(江苏专版)(原卷版)

【理科附加】专题03 不等式选讲

【母题来源一】【2019年高考江苏卷数学】设x ∈R ,解不等式||+|2 1|>2x x -.

【答案】1{|1}3

x x x <->或.

【解析】当x <0时,原不等式可化为122x x -+->,解得x <13

-

; 当0≤x ≤

1

2

时,原不等式可化为x +1–2x >2,即x <–1,无解; 当x >

1

2

时,原不等式可化为x +2x –1>2,解得x >1. 综上,原不等式的解集为1{|1}3

x x x <->或.

【名师点睛】本题主要考查解不等式等基础知识,考查运算求解和推理论证能力.

【母题来源二】【2018年高考江苏卷数学】若x ,y ,z 为实数,且x +2y +2z =6,求2

2

2

x y z ++的最小值. 【答案】2

2

2

x y z ++的最小值为4.

【解析】由柯西不等式,得2

2

2

2

2

2

2

()(122)(22)x y z x y z ++++≥++. 因为22=6x y z ++,所以2

2

2

4x y z ++≥, 当且仅当

122x y z ==时,不等式取等号,此时244333

x y z ===,,, 所以2

2

2

x y z ++的最小值为4.

【母题来源三】【2017年高考江苏卷数学】已知,,,a b c d 为实数,且22224,16,a b c d +=+=证明:8.ac bd +≤ 【答案】见解析

【解析】由柯西不等式可得22222

()()()ac bd a b c d +≤++, 因为22224,16a b c d +=+=,所以2

()64ac bd +≤, 因此8ac bd +≤.

【名师点睛】柯西不等式的一般形式:设a 1,a 2,…,a n ,b 1,b 2,…,b n 为实数,则(22

212n a a a +++)

(22212n b b b ++

+)≥(a 1b 1+a 2b 2+…+a n b n )2

,当且仅当b i =0或存在一个数k ,使a i =kb i (i =1,

2,…,n )时,等号成立.本题中,由柯西不等式可得22222()()()ac bd a b c d +≤++,代入即得结论.

【命题意图】

1.理解绝对值的几何意义,并能求解以下类型的不等式: ; ; ax b c ax b c x a x b c +≤+≥-+-≥. 2.了解下列柯西不等式的几种不同形式,并会应用: (1)22222

()(+)()a b c d ac bd +≥+.

(2)一般形式:设a 1,a 2,…,a n ,b 1,b 2,…,b n 为实数,则(

22

2

12n

a a a ++

+)(

22

2

12n

b b b +++)

≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0或存在一个数k ,使a i =kb i (i =1,2,…,n )时,等号成立..

3.主要考查逻辑推理能力、运算求解能力,考查分类讨论、数形结合思想方法,考查逻辑推理、数学运算等核心素养. 【命题规律】

从近三年高考情况来看,此类知识点以解答题的形式出现,主要考查绝对值不等式的解法、不等式的证明、求最值问题等. 【方法总结】

(一)解绝对值不等式的常用方法有:

(1)公式法:对于形如|f (x )|>g (x )或|f (x )|0)和|x|>a ?x>a 或x0)直接求解不等式;

(2)平方法:对于形如|f (x )|≥|g (x )|,利用不等式两边平方的技巧,去掉绝对值,需保证不等式两边同

正或同负,即|f (x )|≥|g (x )|?f (x )2≥g 2

(x );

(3)零点分段法:对于形如|f (x )|±

|g (x )|≥a ,|f (x )|±|g (x )|≤a ,利用零点分区间法脱去绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解;

(4)几何法:对于形如|x±

a|±|x±b|≤c ,|x±a|±|x±b|≥c ,利用绝对值三角不等式的性质求解,即 ①定理1:如果a ,b 是实数,则|a+b|≤|a|+|b|,当且仅当ab ≥0时,等号成立.

②定理2:如果a ,b ,c 是实数,那么|a ?c|≤|a ?b|+|b ?c|,当且仅当(a ?b )(b ?c )≥0时,等号成立. ③推论1:||a|?|b||≤|a+b|. ④推论2:||a|?|b||≤|a ?b|.

(5)图象法:对于形如|f (x )|+|g (x )|≥a 可构造y=|f (x )|+|g (x )|?a 或y=|f (x )|+|g (x )|与y=a ,在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解或通过移项构造一个函数. (二)含绝对值不等式的恒成立问题的常见类型及其解法:

(1)分享参数法

运用“max min ()(),()()f x a f x a f x a f x a ≤?≤≥?≥”可解决恒成立中的参数范围问题.

求最值的思路:利用基本不等式和不等式的相关性质解决;将函数解析式用分段函数形式表示,作出函数图象,求得最值;利用性质“||||||||||||a b a b a b -≤±≤+”求最值. (2)更换主元法

不少含参不等式恒成立问题,若直接从主元入手非常困难或不可能解决时,可转换思维角度,将主元与参数互换,常可得到简捷的解法. (3)数形结合法

在研究曲线交点的恒成立问题时,若能数形结合,揭示问题所蕴含的几何背景,发挥形象思维和抽象思维各自的优势,可直接解决问题. (三)不等式的证明

(1)比较法证明不等式最常用的是差值比较法,其基本步骤是:作差—变形—判断差的符号—下结论.其中“变形”是证明的关键,一般通过因式分解或配方将差式变形为几个因式的积或配成几个代数式平方和的形式,当差式是二次三项式时,有时也可用判别式来判断差值的符号.个别题目也可用柯西不等式来证明.

(2)基本不等式:如果a ,b>0,那么

2

a b

+≥,当且仅当a=b 时,等号成立.用语言可以表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数.

(3)算术平均—几何平均定理(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均数

不小于它们的几何平均数,即12n

a a a n

++

+≥,当且仅当a 1=a 2=…=a n 时,等号成

立.

(4)柯西不等式

①二维形式的柯西不等式:若a ,b ,c ,d 都是实数,则(a 2+b 2)(c 2+d 2)≥(ac+bd )2,当且仅当ad=bc 时,等号成立.

②柯西不等式的向量形式:设α,β是两个向量,则|α·β|≤|α||β|,当且仅当α是零向量或β是零向量或存在实数k 使α=k β时,等号成立.

③二维形式的三角不等式:设x 1,y 1,x 2,y 2∈R .

④一般形式的柯西不等式:设a 1,a 2,…,a n ,b 1,b 2,…,b n 是实数,则( +…+

)( +…+ )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当a i =0或b i =0(i=1,2,…,n )或存在一个数k 使得a i =kb i (i=1,

2,…,n )时,等号成立.

1.【江苏省徐州市2018-2019学年高三考前模拟检测数学试题】设正数,,a b c 满足1a b c ++=,求证:

3

2

a b c b c c a a b ++≥+++.

2.【江苏省南通市2019届高三模拟练习卷(四模)数学试题】已知实数,,x y z 满足222

491212x y z ++=.证

明:22222

111

323x y y z z

++≥++.

3.【江苏省镇江市2019届高三考前模拟(三模)数学试题】已知,0x y >,且1x y +=,求证:

4.【江苏省南通市2019届高三适应性考试数学试题】已知关于x 的不等式20x mx n -+<的解集为

{|12}x x <<,其中,m n ∈R .求证:((m n --≤.

5.【江苏省苏州市2019届高三高考模拟最后一卷数学试题】已知函数()2f x x =-,()1g x x x =+-.若存在实数x ,使不等式()()()m g x f x x m -≥+∈R 成立,求实数m 的最小值.

6.【江苏省七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第三次调研考试数学试题】已知a ∈R ,若关于x 的方程2

410x x a a ++-+=有实根,求a 的取值范围.

7.【江苏省苏锡常镇四市2019届高三教学情况调查(二)数学试题】已知正数a ,b ,c 满足a +b +c =2,

求证:222

1a b c b c c a a b

++≥+++.

8.【江苏省南通市2019届高三下学期4月阶段测试数学试题】已知,,a b c 均为正数,且243a b c ++=,求111

111

a b c +++++的最小值,并指出取得最小值时,,a b c 的值.

9.【江苏省苏州市2019届高三下学期阶段测试数学试题】已知,,a b c 为正数,且满足22cos sin a b c θθ+<,

22θθ+<

10.【江苏省南通、扬州、泰州、苏北四市七市2019届高三第一次(2月)模拟数学试题】已知实数,,

a b c 满足2221a b c ++≤,求证:222

1119

1114

a b c ++≥+++.

11.【江苏省七市2019届(南通、泰州、扬州、徐州、淮安、宿迁、连云港)高三第二次调研考试数学试题】

已知x ,y ,z 均是正实数,且222

416x y z ,++=求证:6x y z ++≤.

【理科附加】专题03 不等式选讲-2019年高考数学母题题源系列(江苏专版)(原卷版)

【理科附加】专题03 不等式选讲 【母题来源一】【2019年高考江苏卷数学】设x ∈R ,解不等式||+|2 1|>2x x -. 【答案】1{|1}3 x x x <->或. 【解析】当x <0时,原不等式可化为122x x -+->,解得x <13 - ; 当0≤x ≤ 1 2 时,原不等式可化为x +1–2x >2,即x <–1,无解; 当x > 1 2 时,原不等式可化为x +2x –1>2,解得x >1. 综上,原不等式的解集为1{|1}3 x x x <->或. 【名师点睛】本题主要考查解不等式等基础知识,考查运算求解和推理论证能力. 【母题来源二】【2018年高考江苏卷数学】若x ,y ,z 为实数,且x +2y +2z =6,求2 2 2 x y z ++的最小值. 【答案】2 2 2 x y z ++的最小值为4. 【解析】由柯西不等式,得2 2 2 2 2 2 2 ()(122)(22)x y z x y z ++++≥++. 因为22=6x y z ++,所以2 2 2 4x y z ++≥, 当且仅当 122x y z ==时,不等式取等号,此时244333 x y z ===,,, 所以2 2 2 x y z ++的最小值为4. 【母题来源三】【2017年高考江苏卷数学】已知,,,a b c d 为实数,且22224,16,a b c d +=+=证明:8.ac bd +≤ 【答案】见解析

【解析】由柯西不等式可得22222 ()()()ac bd a b c d +≤++, 因为22224,16a b c d +=+=,所以2 ()64ac bd +≤, 因此8ac bd +≤. 【名师点睛】柯西不等式的一般形式:设a 1,a 2,…,a n ,b 1,b 2,…,b n 为实数,则(22 212n a a a +++) (22212n b b b ++ +)≥(a 1b 1+a 2b 2+…+a n b n )2 ,当且仅当b i =0或存在一个数k ,使a i =kb i (i =1, 2,…,n )时,等号成立.本题中,由柯西不等式可得22222()()()ac bd a b c d +≤++,代入即得结论. 【命题意图】 1.理解绝对值的几何意义,并能求解以下类型的不等式: ; ; ax b c ax b c x a x b c +≤+≥-+-≥. 2.了解下列柯西不等式的几种不同形式,并会应用: (1)22222 ()(+)()a b c d ac bd +≥+. (2)一般形式:设a 1,a 2,…,a n ,b 1,b 2,…,b n 为实数,则( 22 2 12n a a a ++ +)( 22 2 12n b b b +++) ≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0或存在一个数k ,使a i =kb i (i =1,2,…,n )时,等号成立.. 3.主要考查逻辑推理能力、运算求解能力,考查分类讨论、数形结合思想方法,考查逻辑推理、数学运算等核心素养. 【命题规律】 从近三年高考情况来看,此类知识点以解答题的形式出现,主要考查绝对值不等式的解法、不等式的证明、求最值问题等. 【方法总结】 (一)解绝对值不等式的常用方法有: (1)公式法:对于形如|f (x )|>g (x )或|f (x )|0)和|x|>a ?x>a 或x0)直接求解不等式; (2)平方法:对于形如|f (x )|≥|g (x )|,利用不等式两边平方的技巧,去掉绝对值,需保证不等式两边同 正或同负,即|f (x )|≥|g (x )|?f (x )2≥g 2 (x );

高考数学真题分类汇编专题不等式理科及答案

专题七 不等式 1.【2015高考四川,理9】如果函数()()()()21 281002 f x m x n x m n = -+-+≥≥, 在区间122?????? ,上单调递减,则mn 的最大值为( ) (A )16 (B )18 (C )25 (D )812 【答案】B 【解析】 2m ≠时,抛物线的对称轴为82n x m -=--.据题意,当2m >时,8 22 n m --≥-即212m n +≤ .26,182 m n mn +≤ ≤∴≤Q .由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,81 22 n m -- ≤-即218m n +≤ .281 9,22 n m mn +≤ ≤∴≤Q .由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以 (182)(1828)816mn n n =-<-??=,所以最大值为18.选B.. 【考点定位】函数与不等式的综合应用. 【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现. 2.【2015高考北京,理2】若x ,y 满足010x y x y x -?? +??? ≤, ≤,≥,则2z x y =+的最大值为( ) A .0 B .1 C . 3 2 D .2 【答案】D 【解析】如图,先画出可行域,由于2z x y = +,则11 22 y x z =- +,令0Z =,作直线1 2 y x =- ,在可行域中作平行线,得最优解(0,1),此时直线的截距最大,Z 取

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

高考数学真题分类汇编专题不等式理科及答案

高考数学真题分类汇编专题不等式理科及答案 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

专题七 不等式 1.【2015高考四川,理9】如果函数()()()()21 281002 f x m x n x m n = -+-+≥≥, 在区间122?? ???? ,上单调递减,则mn 的最大值为( ) (A )16 (B )18 (C )25 (D )812 【答案】B 【解析】 2m ≠时,抛物线的对称轴为82n x m -=- -.据题意,当2m >时,8 22 n m --≥-即212m n +≤.226,182 m n m n mn +?≤ ≤∴≤.由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,81 22 n m -- ≤-即218m n +≤.281 29,22 n m n m mn +?≤ ≤∴≤.由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以 (182)(1828)816mn n n =-<-??=,所以最大值为18.选B.. 【考点定位】函数与不等式的综合应用. 【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现. 2.【2015高考北京,理2】若x ,y 满足010x y x y x -?? +??? ≤, ≤,≥,则2z x y =+的最大值为 ( ) A .0 B .1 C .32 D .2 【答案】D

2020年高考数学复习题:基本不等式及其应用

基本不等式及其应用 [基础训练] 1.下列结论中正确的个数是( ) ①若a >0,则a 2 +1 a 的最小值是2a ; ②函数f (x )=sin 2x 3+cos 2x 的最大值是2; ③函数f (x )=x +1 x 的值域是[2,+∞); ④对任意的实数a ,b 均有a 2+b 2≥-2ab ,其中等号成立的条件是a =-b . A .0 B .1 C .2 D .3 : 答案:B 解析:①错误:设f (a )=a 2 +1 a ,其中a 是自变量,2a 也是变化的,不能说2a 是f (a )的最小值; ②错误:f (x )=sin 2x 3+cos 2 x ≤sin 2x +3+cos 2x 2 =2, 当且仅当sin 2x =3+cos 2x 时等号成立,此方程无解, ∴等号取不到,2不是f (x )的最大值; ③错误:当x >0时,x +1 x ≥2 x ·1x =2, 当且仅当x =1 x ,即x =1时等号成立; 当x <0时,-x >0,x +1 x =-? ?? ??-x +1-x ≤-2 -x ·1 -x =-2, ¥ 当且仅当-x =-1 x ,即x =-1时等号成立. ∴f (x )=x +1 x 的值域是(-∞,-2]∪[2,+∞); ④正确:利用作差法进行判断.

∵a 2+b 2+2ab =(a +b )2≥0,∴a 2+b 2≥-2ab , 其中等号成立的条件是a +b =0,即a =-b . 2.[2019河北张家口模拟]已知a +2b =2,且a >1,b >0,则 2 a -1+1 b 的最小值为( ) A .4 B .5 C .6 D .8 答案:D 解析:因为a >1,b >0,且a +2b =2, \ 所以a -1>0,(a -1)+2b =1, 所以2a -1+1b =? ????2 a -1+1 b ·[(a -1)+2b ] =4+4b a -1 +a -1b ≥4+2 4b a -1·a -1 b =8, 当且仅当4b a -1=a -1 b 时等号成立, 所以2a -1 +1b 的最小值是8,故选D. 3.若2x +2y =1,则x +y 的取值范围是( ) A .[0,2] B .[-2,0] C .[-2,+∞) D .(-∞,-2] ! 答案:D 解析:∵2x +2y ≥22x ·2y =22x +y (当且仅当2x =2y 时等号成立), ∴2 x +y ≤12,∴2x +y ≤14, 得x +y ≤-2.故选D. 4.已知x >0,y >0,且4xy -x -2y =4,则xy 的最小值为( ) B .2 2 D .2 答案:D 解析:∵x >0,y >0,x +2y ≥22xy , ∴4xy -(x +2y )≤4xy -22xy , ∴4≤4xy -22xy ,

(江苏专版)201X年高考数学 母题题源系列 专题12 直线与圆位置关系 理

专题12 直线与圆位置关系 【母题原题1】【2018江苏,理12】在平面直角坐标系中,A 为直线 上在第一象限内的点, , 以AB 为直径的圆C 与直线l 交于另一点D .若,则点A 的横坐标为________. 【答案】3 点睛:以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法. 【母题原题2】【2017江苏,理13】在平面直角坐标系xOy 中,(12,0),(0,6),A B -点P 在圆2250O x y +=:上, 若20,PA PB ?≤则点P 的横坐标的取值范围是 ▲ . 【答案】[52,1]- 【考点】直线与圆,线性规划 【名师点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求横坐标或纵坐标、直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.

【母题原题3】【2016江苏,理18】如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆 M :22 1214600x y x y +--+=及其上一点A (2,4). (1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC=OA ,求直线l 的方程; (3)设点T (t ,0)满足:存在圆M 上的两点P 和Q ,使得,TA TP TQ +=,求实数t 的取值范围. 【答案】(1)22(6)(1)1x y -+-=(2):25215l y x y x =+=-或(3)22212221t -≤+【解析】

高考数学不等式专题

基本不等式专题 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若*,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 5、常用结论 (1)若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) (4)若R b a ∈,,则2 )2(222b a b a ab +≤ +≤ (5)若*,R b a ∈,则22111 22b a b a ab b a +≤+≤≤+ (6),、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; (7))(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时, “ =”号成立. (1)若,,,a b c d R ∈,则22222()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 22222221231123112233()()()a a a b b b a b a b a b ++++≥++

2017-18全国卷高考真题 数学 不等式选修专题

2017-2018全国卷I -Ⅲ高考真题 数学 不等式选修专题 1.(2017全国卷I,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集; (2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围. 【答案解析】 解:(1)当1a =时,()24f x x x =-++,是开口向下,对称轴12 x = 的二次函数. ()211121121x x g x x x x x >??=++-=-??-<-?,,≤x ≤,, 当(1,)x ∈+∞时,令242x x x -++= ,解得x =()g x 在()1+∞, 上单调递增,()f x 在()1+∞,上单调递减 ∴此时()()f x g x ≥ 解集为1? ?? . 当[]11x ∈-, 时,()2g x =,()()12f x f -=≥. 当()1x ∈-∞-, 时,()g x 单调递减,()f x 单调递增,且()()112g f -=-=. 综上所述,()()f x g x ≥ 解集1?-??? . (2)依题意得:242x ax -++≥在[]11-, 恒成立. 即220x ax --≤在[]11-, 恒成立. 则只须()()2211201120 a a ?-?-??----??≤≤,解出:11a -≤≤. 故a 取值范围是[]11-, .

2.(2017全国卷Ⅱ,文/理.23)(10分) [选修4-5:不等式选讲](10分) 已知0a >,222ba b +==2.证明: (1)()22()4a b a b ++≥; (2)2a b +≤. 【答案解析】 3.(2017全国卷Ⅱ,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=│x +1│–│x –2│. (1)求不等式f (x )≥1的解集; (2)若不等式f (x )≥x 2–x +m 的解集非空,求m 的取值范围. 【答案解析】 解:(1)()|1||2|f x x x =+--可等价为()3,121,123,2--??=--<

2019高考数学不等式:基本不等式

基本不等式 【考点梳理】 1.基本不等式ab ≤ a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 2.几个重要的不等式 (1)a 2 +b 2 ≥2ab (a ,b ∈R ); (2)b a +a b ≥2(a ,b 同号且不为零); (3)ab ≤? ?? ??a +b 22(a ,b ∈R ); (4)? ?? ??a +b 22≤a 2 +b 2 2(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为 a +b 2 ,几何平均数为ab ,基本不等式可叙述为: 两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 2 4(简记:和定积最大). 【考点突破】 考点一、配凑法求最值 【例1】(1)若x < 54,则f (x )=4x -2+145 x -的最大值为________. (2)函数y = x -1 x +3+x -1 的最大值为________. [答案] (1) 1 (2) 1 5 [解析] (1)因为x <5 4 ,所以5-4x >0,

=-2+3=1. 当且仅当5-4x =1 5-4x ,即x =1时,等号成立. 故f (x )=4x -2+1 4x -5的最大值为1. (2)令t =x -1≥0,则x =t 2 +1, 所以y = t t 2 +1+3+t = t t 2 +t +4 . 当t =0,即x =1时,y =0; 当t >0,即x >1时,y = 1 t +4t +1 , 因为t +4 t ≥24=4(当且仅当t =2时取等号), 所以y = 1t +4t +1 ≤1 5, 即y 的最大值为1 5(当t =2,即x =5时y 取得最大值). 【类题通法】 1.应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件. 2.在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式. 【对点训练】 1.若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a 等于( ) A .1+2 B .1+3 C .3 D .4 [答案] C [解析] 当x >2时,x -2>0,f (x )=(x -2)+ 1 x -2 +2≥2(x -2)× 1 x -2 +2=4,当

高考数学母题题源系列专题12证明面面垂直与计算异面直线所成角理(含解析)

证明面面垂直与计算异面直线所成角 【母题来源】2015新课标1理-18 【母题原题】如图,,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC. (Ⅰ)证明:平面AEC⊥平面AFC (Ⅱ)求直线AE与直线CF所成角的余弦值 【答案】(Ⅰ)见解析(Ⅱ) 3 3 【考点定位】本题考查空间垂直判定与性质、异面直线所成角的计算、空间想象能力、推理论证能力,是基础题.

【命题意图】本题考查线面垂直的判定、面面垂直的判定、异面直线所成角的计算,考查空间想象能力、推理论证能力及利用空间向量处理立体几何问题的运算求解能力. 【方法、技巧、规律】对空间面面垂直问题的证明有两种思路,思路1:几何法,先由线线垂直证明线面垂直,再由线面垂直证明面面垂直;思路2:利用向量法,通过计算两个平面的法向量,证明其法向量垂直,从而证明面面垂直;对异面直线所成角问题,也有两种思路,思路1:几何法,步骤为一找二作三证四解,一找就是先在图形中找有没有异面直线所成角,若没有,则通常做平行线或中位线作出异面直线所成角,再证明该角是异面直线所成角,利用解三角形解出该角;思路2:向量法,计算出两条异面直线的方向向量的夹角的余弦值,异面直线所成角的余弦值就是向量夹角余弦值的绝对值. 【探源、变式、扩展】高考对立体几何平行与垂直的考查是高考的热点和重点,可以考查线面垂直的判定

与性质、面面垂直的判定与性质,也可以考查线面平行的判定与性质、面面平行的判定与性质,解题思路有几何法和向量法两种.对空间角的考查重点考查异面直线所成角、线面角、二面角,思路也有两种,几何法与坐标法,几何法运算量小,但辅助线不易做,坐标法思路明晰,但运算量大,容易出错. 【变式】【2015届浙江省东阳市5月模拟】如图,已知AB ⊥平面,//,BEC AB CD 4AB BC ==,BEC ?为等边三角形. (1)若平面ABE ⊥平面ADE ,求CD 长度; (2)求直线AB 与平面ADE 所成角的取值范围. 【答案】(1)2;(2)0, 4π?? ??? .

高考数学专题练习:不等式与线性规划

高考数学专题练习:不等式与线性规划 1。若不等式(-2)n a -3n -1-(-2)n <0对任意正整数n 恒成立,则实数a 的取值范围是( ) A 。? ? ???1,43 B 。? ???? 12,43 C 。? ? ???1,74 D 。? ?? ??12,74 答案 D 解析 当n 为奇数时,要满足2n (1-a )<3n -1恒成立, 即1-a <13× ? ????32n 恒成立,只需1-a <13×? ????321,解得a >1 2; 当n 为偶数时,要满足2n (a -1)<3n -1恒成立, 即a -1<13× ? ????32n 恒成立,只需a -1<13×? ????322,解得a <7 4。 综上,12<a <7 4,故选D 。 2。已知a >0,b >0,且a ≠1,b ≠1,若log a b >1,则( ) A 。(a -1)(b -1)<0 B 。(a -1)(a -b )>0 C 。(b -1)(b -a )<0 D 。(b -1)(b -a )>0 答案 D 解析 取a =2,b =4,则(a -1)(b -1)=3>0,排除A ;则(a -1)(a -b )=-2<0,排除B ;(b -1)(b -a )=6>0,排除C,故选D 。 3。设函数f (x )=??? x 2-4x +6,x ≥0, x +6,x <0,则不等式f (x )>f (1)的解集是( ) A 。(-3,1)∪(3,+∞) B 。(-3,1)∪(2,+∞) C 。(-1,1)∪(3,+∞) D 。(-∞,-3)∪(1,3) 答案 A 解析 f (1)=3。由题意得??? x ≥0,x 2-4x +6>3或??? x <0, x +6>3, 解得-33。 4。 若a ,b ,c 为实数,则下列命题为真命题的是( ) A 。若a >b ,则ac 2>bc 2 B 。若a <b <0,则a 2>ab >b 2

高考数学之基本不等式

基本不等式 基础梳理 1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ); (2)b a +a b ≥2(a ,b 同号); (3)ab ≤????a +b 22(a ,b ∈R ); (4)a 2+b 22≥????a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为 a + b 2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大) 一个技巧 22 ab ≤????a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形 (1)a 2+b 22≥????a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); a +b 这两个不等式链用处很大,注意掌握它们.

三个注意 (1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. (3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 双基自测 1.(人教A 版教材习题改编)函数y =x +1x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 解析 ∵x >0,∴y =x +1x ≥2, 当且仅当x =1时取等号. 答案 C 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1x 2+1≥1,其中正确的个数是( ). A .0 B .1 C .2 D .3 解析 ①②不正确,③正确,x 2+1x 2+1=(x 2+1)+1x 2+1 -1≥2-1=1. 答案 B 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.12 B .1 C .2 D .4 解析 ∵a >0,b >0,a +2b =2, ∴a +2b =2≥22ab ,即ab ≤12 . 答案 A 4.(2011·重庆)若函数f (x )=x +1x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2 +2≥2 (x -2)×1x -2+2=4,当且仅当x -2=1x -2 (x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3. 答案 C 5.已知t >0,则函数y =t 2-4t +1t 的最小值为________. 解析 ∵t >0,∴y =t 2-4t +1t =t +1t -4≥2-4=-2,当且仅当t =1时取等号. 答案 -2

专题01 导数的应用-高考数学(理)母题题源系列(江苏专版)

高考数学2017年全揭秘《高考母题题源》系列 【母题原题1】【2017江苏,理20】已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数()f x '的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值) (1)求关于 的函数关系式,并写出定义域; (2)证明:23b a >; (3)若()f x ,()f x '这两个函数的所有极值之和不小于7 2 -,求的取值范围. 【答案】(1)3a >(2)见解析(3)36a <≤ 试题解析:解:(1)由3 2 ()1f x x ax bx =+++,得22 2()323()33 a a f x x ax b x b '=++=++-. 当3 a x =-时,()f x '有极小值23a b -. 因为()f x '的极值点是()f x 的零点. 所以33()1032793a a a ab f -=- +-+=,又0a >,故223 9a b a =+. 因为()f x 有极值,故()=0f x '有实根,从而231 (27a )039a b a - =-≤,即3a ≥. 3a =时,()>0(1)f x x '≠-,故()f x 在R 上是增函数,()f x 没有极值; 3a >时,()=0f x '有两个相异的实根213= 3a a b x ---,223=3 a a b x -+-

列表如下 x 1(,)x -∞ 1x 12(,)x x 2x 2(,)x +∞ ()f x ' + 0 – 0 + ()f x 极大值 极小值 故()f x 的极值点是12,x x . 从而3a >, 因此223 9a b a =+,定义域为(3,)+∞. (3)由(1)知,()f x 的极值点是12,x x ,且1223 x x a +=-,222 12469a b x x -+=. 从而3232 12111222()()11f x f x x ax bx x ax bx +=+++++++ 2222 121122121212(32)(32)()()23333 x x x ax b x ax b a x x b x x = ++++++++++ 346420279 a a b ab -=-+= 记()f x ,()f x '所有极值之和为()h a ,

2018年高考数学—不等式专题

不等式 (必修5P80A3改编)若关于x 的一元二次方程x 2-(m +1)x -m =0有两个不相等的实数根,则m 的取值范围是________. 解析 由题意知Δ=[(m +1)]2+4m >0.即m 2+6m +1>0, 解得m >-3+22或m <-3-2 2. 答案 (-∞,-3-22)∪(-3+22,+∞) (2016·全国Ⅱ卷)若x ,y 满足约束条件???x -y +1≥0, x +y -3≥0,x -3≤0, 则 z =x -2y 的最小值为 ________. 解析 画出可行域,数形结合可知目标函数的最小值在直线x =3与直线x -y +1=0的交点(3,4)处取得,代入目标函数z =x -2y 得到-5. 答案 -5 (2016·全国Ⅲ卷)设x ,y 满足约束条件???2x -y +1≥0, x -2y -1≤0,x ≤1, 则z =2x +3y -5的最小值为_____. 解析 画出不等式组表示的平面区域如图中阴影部分所示.由题意可知, 当直线y =-23x +53+z 3过点A (-1,-1)时,z 取得最小值,即z min =2×(-1)+3×(-1)-5=-10.

(2017·西安检测)已知变量x ,y 满足???2x -y ≤0, x -2y +3≥0,x ≥0, 则z =(2)2x +y 的最大值为________. 解析 作出不等式组所表示的平面区域,如图阴影部分所示.令m =2x +y ,由图象可知当直线y =-2x +m 经过点A 时,直线y =-2x +m 的纵截距最大,此时m 最大,故z 最大.由?????2x -y =0,x -2y +3=0,解得?????x =1,y =2, 即A (1,2).代入目标函数z =(2)2x +y 得,z =(2)2×1+2=4. 答案 4 (2016·北京卷)若x ,y 满足???2x -y ≤0,x +y ≤3,x ≥0, 则2x +y 的最大值为( ) A.0 B.3 C.4 D.5 解析 画出可行域,如图中阴影部分所示, 令z =2x +y ,则y =-2x +z ,当直线y =-2x +z 过点A (1,2)时,z 最大,z max =4. 答案 C (2016·山东卷)若变量x ,y 满足???x +y ≤2, 2x -3y ≤9,x ≥0, 则x 2+y 2的最大值是( )

2018年高考英语母题题源系列08 阅读理解(调查报告)

2018年高考英语母题题源系列08 阅读理解(调查报告)SYS201805310701 一、阅读理解 详细信息 1. 难度:中等 【四川省凉山州高中毕业班第二次诊断】 B We’ve reached a strange–some would say unusual–point. While fighting world hunger continues to be the matter of vital importance according to a recent report from the World Health Organization, more people now die from being overweight, or say, from being extremely fat, than from being underweight. It’s the good life that’s more likely to kill us these days. Worse still, nearly 18 million children under the age of five around the world are estimated to be overweight. What’s going on? We really don’t have many excuses for our weight problems. The dangers of the problem have been drilled into us by public–health campaigns since 2001 and the message is getting through-up to a point. In the 1970s, Finland, for example, had the highest rate of heart disease in the world and being overweight was its main cause. Not any more. A public–health campaign has greatly reduced the number of heart disease deaths by 80 percent over the past three decades. Maybe that explains why the percentage of people in Finland taking diet pills doubled between 2001 and 2005, and doctors even offer surgery of removing fat inside and change the shape of the body. That has become a sort of fashion. No wonder it ranks as the world’s most body –conscious country. We know what we should be doing to lose weight—but actually doing it is another matter. By far the most popular excuse is not taking enough exercise. More than half of us admit we lack willpower. Others blame good food. They say: it’s just too inviting and it makes them overeat. Still others lay the blame on the Americans, complaining that pounds have piled on thanks to eating too much American–style fast food. Some also blame their parents—their genes. But unfortunately, the parents are wronged because they’re normal in shape, or rather slim. It’s a similar story around the world, although people are relatively unlikely to have tried to lose weight. Parents are eager to see their kids shape up. Do as I say—not as I do. 1.What’s the “strange” point mentioned in the first sentence? A. The good life is a greater risk than the bad life.

不等式-高考数学解题方法归纳总结专题训练

专题20 不等式训练 【训练目标】 1、掌握不等式的性质,能利用不等式的性质,特殊值法等判断不等式的正误; 2、熟练的解一元二次不等式,分式不等式,绝对值不等式,对数不等式,指数不等式,含根式的不等式; 3、掌握分类讨论的思想解含参数的不等式; 4、掌握恒成立问题,存在性问题; 5、掌握利用基本不等式求最值的方法; 6、掌握线性规划解决最优化问题; 7、掌握利用线性规划,基本不等式解决实际问题。 【温馨小提示】 在高考中,不等式无处不在,不论是不等式解法还是线性规划,基本不等式,一般单独出现的是线性规划或基本不等式,而不等式的解法则与集合、函数、数列相结合。 【名校试题荟萃】 1、若实数且,则下列不等式恒成立的是() A. B. C. D. 【答案】C 【解析】根据函数的图象与不等式的性质可知:当时,为正确选项,故选C. 2、已知,,则() A. B. C. D. 【答案】A 3、,设,则下列判断中正确的是() A. B. C. D. 【答案】B 【解析】令,则,故选B

4、若,且,则下列不等式成立的是() A. B. C. D. 【答案】B 【解析】 . 5、袋子里有大小、形状相同的红球个,黑球个().从中任取个球是红球的概率记为.若将红球、黑球个数各增加个,此时从中任取个球是红球的概率记为;若将红球、黑球个数各减少个,此时从中任取个球是红球的概率记为,则() A. B. C. D. 【答案】D 6、若,,则下列不等式错误的是() A. B. C. D. 【答案】C 【解析】 因为,,所以,,故A、B正确;由已知得, ,所以,所以C错误;由,得,,所以 成立,所以D正确.故选C.

高中数学高考题详解-基本不等式

考点29 基本不等式 一、选择题 1.(2013·重庆高考理科·T3 )63)a -≤≤的最大值为 ( ) A.9 B.2 9 C.3 D. 2 2 3 【解题指南】直接利用基本不等式求解. 【解析】选B. 当6-=a 或3=a 时, 0)6)(3(=+-a a ,当36<<-a 时, 2 9263)6)(3(=++-≤ +-a a a a ,当且仅当,63+=-a a 即23 =a 时取等号. 2. (2013·山东高考理科·T12)设正实数x,y,z 满足x 2-3xy+4y 2-z =0.则当 xy z 取得最大值时,212x y z +-的最大值为( ) A.0 B.1 C. 94 D.3 【解题指南】此题可先利用已知条件用x,y 来表示z ,再经过变形,转化为基本不等式的问题,取等号的条件可直接代入212x y z +-,进而再利用基本不等式求出2 12x y z +-的最值. 【解析】选B. 由22340x xy y z -+-=,得2234z x xy y =-+. 所以 22 14343xy xy x y z x xy y y x ==-++ -1≤=,当且仅当4x y y x =,即2x y =时取等号此时22y z =, 1)(max =z xy . xy y y z y x 2122212-+=-+)211(2)11(2y y x y -=-=2 11122412y y ??+- ? ?≤= ? ??? . 3. (2013·山东高考文科·T12)设正实数z y x ,,满足04322=-+-z y xy x ,

则当 z xy 取得最大值时,2x y z +-的最大值为( ) A.0 B.9 8 C.2 D.94 【解题指南】此题可先利用已知条件用x,y 来表示z ,再经过变形,转化为基本不等式的问题,取等号的条件可直接代入2x y z +-,进而再利用基本不等式求出2x y z +-的最值. 【解析】 选C. 由22340x xy y z -+-=,得2234z x xy y =-+. 所以1342344322=-?≥-+=+-=x y y x x y y x xy y xy x xy z ,当且仅当4x y y x = , 即2x y =时取等号此时22y z =, 所以()2222222422222 22=?? ? ??-+≤-=-=-+=-+y y y y y y y y y z y x , 当且仅当y=2-y 时取等号. 4.(2013·福建高考文科·T7)若2x +2y =1,则x+y 的取值范围是 ( ) A .[]0,2 B .[]2,0- C .[)2,-+∞ D .(],2-∞- 【解题指南】“一正二定三相等”,当题目出现正数,出现两变量,一般而言,这种题就是在考查基本不等式. 【解析】选D. ≤2x +2y =1,所以2x+y ≤14 ,即2x+y ≤2-2,所以x+y ≤-2. 二、填空题 5. (2013·四川高考文科·T13)已知函数()4(0,0)a f x x x a x =+>>在3x =时取得最小值,则a =____________。 【解题指南】本题考查的是基本不等式的等号成立的条件,在求解时需要找到等号成立的条件,将3x =代入即可. 【解析】由题()4(0,0)a f x x x a x =+>>,根据基本不等式4a x x +≥

相关主题