搜档网
当前位置:搜档网 › 一道导数综合题的三种解法

一道导数综合题的三种解法

一道导数综合题的三种解法
一道导数综合题的三种解法

一道导数综合题的三种解法

本文以2010年全国卷二压轴题为例着重研究连续求导法在证明函数的单调性中的应用.为了让同学们更好地理解这个复杂的例题,我们先看下面的简单引例.

一、引例:证明函数3211()32f x x x =-在(1,)+∞上增函数.

一般证法:

当1x >时,2()(1)0f x x x x x '=-=->,∴3211()32f x x x =-在(1,)+∞上增函数.

假如我们不能把2()f x x x '=-分解因式,从而判断2()f x x x '=-的符号,那么还有什么更一般的方法呢?下面介绍一种连续求导的办法.

证明: 首先连续求导:2(),f x x x '=-()21,x x f =-''()2,x f ='''

(说明:()x f ''表示()x f '的导数,在高等数学里也叫做()f x 的二阶导数,()x f '''表示()x f ''的导数,也叫做()f x 的三阶导数)

于是有下面的推理:∵()20,x f =>'''∴()21x x f =-''是增函数,

∵1x >∴()(1)10x f f >=>'''',∴2()f x x x '=-在(1,)+∞是增函数, ∴()(1)0x f f >='',∴3211()32f x x x =-在(1,)+∞上增函数.

在复杂的题目中,连续求导的次数要根据情况决定,当然要及时判断导函数的符号,而且为了减少求导的计算量,还可能重新构造函数(下面的高考题就用到重新构造函数),例如引例可以只求导两次,即有以下证明:

证明: 首先连续求导:2(),f x x x '=-()21,x x f =-''

于是有下面的推理:显然,()21x x f =-''是增函数,

∴当1x >时,()(1)10x f f >=>'''',∴2()f x x x '=-在(1,)+∞是增函数, ∴()(1)0x f f >='',∴3211()32f x x x =-在(1,)+∞上增函数.

二、2010年全国卷二压轴题:设函数()1.x f x e -=-

(Ⅰ)证明:当1x >-时,();1x f x x ≥

+ (Ⅱ)设当0x ≥时,(),1

x f x ax ≤+求a 的取值范围. (Ⅰ)证明:当1x >-时,要证(),1

x f x x ≥+ 即证(1)(1),x e x x --+≥即证1x x x xe e x --+--≥,

即证10,x e x --≥令()1,x g x e x =--则()1,x g x e '=- 当0x >时,()0,g x '>()g x 为增函数,

当10x -<<时,()0,g x '<()g x 为减函数,

∴()(0)0,g x g ≥=即10,x e x --≥

∴当1x >-时,().1x

f x x ≥+

(Ⅱ)解法一:连续求导法,求导过程较为复杂

当0x ≥时,由(Ⅰ)知()0,1x

f x x ≥≥+

(1)当0a <时,由10ax +<得1

x a >-, 即当1

x a >-时,10ax +<,从而0,1x

ax <+ ∴()1x

f x ax ≤+不成立,0a <不合题意.

(2)当0a ≥时,10ax +> ,()1x

f x ax ≤+等价于()()0,axf x f x x +-≤

令()()(),h x axf x f x x =+-又()1,x f x e -=-

∴()(1)1,x x h x ax e e x --=-+--

则()(1)1x x x h x a e axe e ---'=-++-,()(21)x h x e ax a -''=-+-, 当2100a a -≤??≥?即1

02a ≤≤时, ()0h x ''≤,∴()h x '为减函数, ∴当0x ≥时,()(0)0h x h ''≤=,∴()h x 为减函数,

∴当0x ≥时,()(0)0h x h ≤=,即()()0,axf x f x x +-≤即(),

1x

f x ax ≤+ ∴1

02a ≤≤符合题意.

当2100a a ->??≥?即

1

2a >时, 由210ax a -+->得: 21

a x a -<, ∴当21

0a x a -<<时, ()0h x ''>,∴()h x '为增函数, ∴当21

0a x a -<<时,()(0)0h x h ''>=,∴()h x 为增函数,

导数压轴处理套路与大招(上)

导数压轴题处理套路 专题一双变量同构式(含拉格朗日中值定理)..................................................... - 2 -专题二分离参数与分类讨论处理恒成立(含洛必达法则).................................... - 4 -专题三导数与零点问题(如何取点) .................................................................. - 7 -专题四隐零点问题整体代换.............................................................................. - 13 -专题五极值点偏移 ........................................................................................... - 18 -专题六导数处理数列求和不等式....................................................................... - 25 - 微信公众号:中学数学研讨部落 说明:题目全来自网络和QQ群友分享,在此一并谢过

专题一 双变量同构式(含拉格朗日中值定理) 例1. 已知 (1)讨论的单调性 (2)设,求证: 例2. 已知函数,。 (1)讨论函数的单调性;w.w.w.k.s.5.u.c.o.m (2)证明:若,则对任意x ,x ,x x ,有。 例3. 设函数 . (1)当(为自然对数的底数)时,求的最小值; (2)讨论函数零点的个数; (3)若对任意恒成立,求的取值范围. ()()21ln 1f x a x ax =+++()f x 2a ≤-()()()121212,0,,4x x f x f x x x ?∈+∞-≥-()2 1(1)ln 2 f x x ax a x = -+-1a >()f x 5a <12∈(0,)+∞1≠21212 ()() 1f x f x x x ->--()ln ,m f x x m R x =+ ∈m e =e ()f x ()'()3 x g x f x = -()() 0, 1f b f a b a b a ->><-m

导数压轴题处理专题讲解

导数压轴题处理专题讲解(上) 专题一双变量同构式(含拉格朗日中值定理)..................................................... - 2 -专题二分离参数与分类讨论处理恒成立(含洛必达法则).................................... - 4 -专题三导数与零点问题(如何取点) .................................................................. - 7 -专题四隐零点问题整体代换.............................................................................. - 13 -专题五极值点偏移 ........................................................................................... - 18 -专题六导数处理数列求和不等式....................................................................... - 25 -

专题一 双变量同构式(含拉格朗日中值定理) 例1. 已知(1)讨论的单调性 (2)设,求证:例2. 已知函数,。(1)讨论函数的单调性;w.w.w.k.s.5.u.c.o.m (2)证明:若,则对任意x ,x ,x x ,有 。 例3. 设函数. (1)当(为自然对数的底数)时,求的最小值; (2)讨论函数零点的个数; (3)若对任意恒成立,求的取值范围. ()()21ln 1f x a x ax =+++()f x 2a ≤-()()()121212 ,0,,4x x f x f x x x ?∈+∞-≥-()2 1(1)ln 2 f x x ax a x = -+-1a >()f x 5a <12∈(0,)+∞1≠21212 ()() 1f x f x x x ->--()ln ,m f x x m R x =+ ∈m e =e ()f x ()'()3 x g x f x = -()() 0, 1f b f a b a b a ->><-m

函数导数压轴题隐零点的处理技巧

函数导数压轴题隐零点的处理技巧 些年高考压轴题中,用导数研究函数的单调性、极值、最值及不等式问题成为命题趋势。用导数解决函数综合问题,最终都会归结于函数的单调性的判断,而函数的单调性又与导函数的零点有着密切的联系,可以说函数的零点的求解或估算是函数综合问题的核心。函数的零点是高中数学中的一个极其重要的概念,经常借助于方程、函数的图象等加以解决。根据函数的零点在数值上是否可以准确求出,我们把它分为两类:一类是在数值上可以准确求出的,不妨称之为显性零点;另一类是依据有关理论(如函数零点的存在性定理)或函数的图象,能够判断出零点确实存在,但是无法直接求出,不妨称之为隐性零点。 本专题通过几个具体的例题来体会隐性零点的处理步骤和思想方法。 一、隐性零点问题示例及简要分析: 1.求参数的最值或取值范围 例1(2012年全国I卷)设函数f(x)=e x﹣ax﹣2. (1)求f(x)的单调区间; (2)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值. 解析:(1)(略解)若a≤0,则f′(x)>0,f(x)在R上单调递增; 若a>0,则f(x)的单调减区间是(﹣∞,ln a),增区间是(ln a,+∞). (2)由于a=1,所以(x﹣k)f′(x)+x+1=(x﹣k)(e x﹣1)+x+1. 故当x>0时,(x﹣k)f′(x)+x+1>0等价于k< 1 1 x x e + - +x(x>0)(*), 令g(x)= 1 1 x x e + - +x,则g′(x)= 2 (2) (1) x x x e e x e -- - , 而函数f(x)=e x﹣x﹣2在(0,+∞)上单调递增,①f(1)<0,f(2)>0, 所以f(x)在(0,+∞)存在唯一的零点.故g′(x)在(0,+∞)存在唯一的零点. 设此零点为a,则a∈(1,2).当x∈(0,a)时,g′(x)<0;当x∈(a,+∞)时,g′(x)>0.所以g(x)在(0,+∞)的最小值为g(a). ③所以g(a)=a+1∈(2,3).由于(*)式等价于k<g(a),故整数k的最大值为2. 点评:从第2问解答过程可以看出,处理函数隐性零点三个步骤: ①确定零点的存在范围(本题是由零点的存在性定理及单调性确定); ②根据零点的意义进行代数式的替换; ③结合前两步,确定目标式的范围。

函数与导数压轴题方法归纳与总结

函数与导数压轴题方法归纳与总结 题型与方法 题型一 切线问题 例1 (二轮复习资料p6例2) 归纳总结: 题型二 利用导数研究函数的单调性 例2 已知函数f (x )=ln x -a x . (1)求f (x )的单调区间; (2)若f (x )在[1,e]上的最小值为3 2,求a 的值; (3)若f (x )

归纳总结: 题型三 已知函数的单调性求参数的围 例 3.已知函数()1 ln sin g x x x θ=+?在[)1,+∞上为增函数, 且()0,θπ∈, ()1 ln ,m f x mx x m R x -=--∈ (1)求θ的值. (2)若[)()()1,f x g x -+∞在上为单调函数,求m 的取值围. 归纳总结:

题型四 已知不等式成立求参数的围 例4..设f (x )=a x +x ln x ,g (x )=x 3-x 2-3. (1)当a =2时,求曲线y =f (x )在x =1处的切线方程; (2)如果存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M ; (3)如果对任意的s ,t ∈????12,2都有f (s )≥g (t )成立,数a 的取值围. 归纳总结: 跟踪1.已知()ln 1 m f x n x x =++(m,n 为常数)在x=1处的切线为x+y -2=0(10月重点高中联考第22题) (1) 求y=f(x)的单调区间;

(2) 若任意实数x ∈1,1e ?? ???? ,使得对任意的t ∈[1,2]上恒有32()2f x t t at ≥--成立,数a 的取值围。 跟踪2. 设f (x )=-13x 3+12 x 2+2ax .(加强版练习题) (1)若f (x )在(23,+∞)上存在单调递增区间,求a 的取值围; (2)当0

高三数学导数压轴题

导数压轴 一.解答题(共20小题) 1.已知函数f(x)=e x(1+alnx),设f'(x)为f(x)的导函数. (1)设g(x)=e﹣x f(x)+x2﹣x在区间[1,2]上单调递增,求a的取值范围; (2)若a>2时,函数f(x)的零点为x0,函f′(x)的极小值点为x1,求证:x0>x1. 2.设. (1)求证:当x≥1时,f(x)≥0恒成立; (2)讨论关于x的方程根的个数. 3.已知函数f(x)=﹣x2+ax+a﹣e﹣x+1(a∈R).

(1)当a=1时,判断g(x)=e x f(x)的单调性; (2)若函数f(x)无零点,求a的取值范围. 4.已知函数. (1)求函数f(x)的单调区间; (2)若存在成立,求整数a的最小值.5.已知函数f(x)=e x﹣lnx+ax(a∈R).

(Ⅰ)当a=﹣e+1时,求函数f(x)的单调区间; (Ⅱ)当a≥﹣1时,求证:f(x)>0. 6.已知函数f(x)=e x﹣x2﹣ax﹣1. (Ⅰ)若f(x)在定义域内单调递增,求实数a的范围; (Ⅱ)设函数g(x)=xf(x)﹣e x+x3+x,若g(x)至多有一个极值点,求a的取值集合.7.已知函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R).

(2)若对?x∈(0,+∞),f(x)≥0,求实数a的取值范围. 8.设f′(x)是函数f(x)的导函数,我们把使f′(x)=x的实数x叫做函数y=f(x)的好点.已知函数f(x)=. (Ⅰ)若0是函数f(x)的好点,求a; (Ⅱ)若函数f(x)不存在好点,求a的取值范围. 9.已知函数f(x)=lnx+ax2+(a+2)x+2(a为常数).

导数压轴题的几种处理方法

等号两边无法求导的导数恒成立求参数范围几种处理方法常见导数恒成立求参数范围问题有以下常见处理方法: 1、求导之后,将参数分离出来,构造新函数,计算 1+ ln x 例:已知函数 f (x ) = . (Ⅰ)若函数在区间 (a , a + 12) (其中 a > 0 )上存在极值,求实数 a 的取值范围; (Ⅱ)如果当 x ≥ 1 时,不等式 f (x ) ≥ k 恒成立,求实数 k 的取值范围; x +1 解:(Ⅰ)因为 f (x ) = 1+ ln x , x > 0 ,则 ' = - ln x , … 1 分 x f (x ) x 当 0 < x < 1 时, ' > 0 ;当 x > 1 时, ' . 所以 f (x ) 在(0,1)上单调递 f (x ) f (x ) < 0 增 ; 在 (1, +∞) 上 单 调 递 减 , 所 以 函 数 f (x ) 在 x = 1 处 取 得 极 大 值 . … 2 分 因为函数 f (x ) 在区间 (a , a + 1 ) (其中 a > 0 )上存在极值, 2 ?a < 1 1 所以 ?? 1 , 解得 < a < 1. … 4 分 ?a + > 1 2 2 ? (Ⅱ)不等式 f (x ) ≥ k ,即为 (x +1)(1+ ln x ) ≥ k , 记 g (x ) = (x +1)(1+ ln x ) , x +1 x x 所以 ' ' x - ln x … 6 分 [(x +1)(1+ ln x )] x - (x +1)(1+ ln x ) g (x ) = x 2 = x 2 , 令 h (x ) = x - ln x , 则 h '(x ) = 1 - 1x , x ≥ 1,∴ h '(x ) ≥ 0. ∴ h (x ) 在 [1, +∞) 上单调递增,∴[h (x )]min = h (1) = 1 > 0 ,从而 g '(x ) > 0 故 g (x ) 在 [1, +∞) 上也单调递增,∴[g (x )]min = g (1) = 2 ,所以 k ≤ 2 …8 分 2、直接求导后对参数展开讨论,然后求出含参最值,从而确定参数范围

(完整word版)一类高考导数压轴题的统一解法

一类高考导数压轴题的统一解法 163316 黑龙江省大庆实验中学 姜本超 导数常作为高考的压轴题,对考生的能力要求非常高,它不仅要求考生牢固掌握基础知识、基本技能,还要求考生具有较强的分析能力和计算能力.作为压轴题,主要是涉及利用导数求最值解决恒成立问题,利用导数证明不等式等,常伴随对参数的讨论,这也是难点之所在. 2011年全国新课标卷理科数学21题就是一道典型的以导数为背景,通过求最值分类讨论解决恒成立问题。学生在思考的过程中会产生两种常见的想法,但并不是每一种方法都能达到预期的效果,下面我们就来探讨一下解决这类问题的统一方法。 原题:(2011年高考试题全国新课标卷理科数学21题) 已知函数ln ()1a x b f x x x =++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (I )求,a b 的值; (II )如果当0x >且1x ≠时,ln ()1x k f x x x >+-,求k 的取值范围. 解:(I )略(II )由(Ⅰ)知22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x ---+=+--. 考虑函数()2ln h x x =+2(1)(1)k x x --(0)x >,则22(1)(1)2'()k x x h x x -++=. (i)设0k ≤,由22 2(1)(1)'()k x x h x x +--=知,当1x ≠时,'()0h x <.而(1)0h =, 故当(0,1)x ∈时,()0h x >,可得2 1()01h x x >-;当(1,)x ∈+∞时,()0,h x < 21()01h x x >-可得从而当0,x >且1x ≠时,ln ()1x k f x x x >+-恒成立 (ii )设01k <<时由于当21(1,)(1)(1)20,1x k x x k ∈-++>-时,故'()0,h x > 而1(1)0,(1,)1h x k =∈-故当时,()0,h x >2 1()01h x x <-与题设矛盾 (iii )设1,'()0,(1)0,k h x h ≥>=此时而故当(1,)()0,x h x ∈+∞>时,可得出矛盾 综合可得k 的取值范围是(,0]-∞ 评析:该题在解决的过程中是通过构造一个新的函数,通过讨论该函数的单调性和零点,找

2020年高考数学导数压轴题每日一题 (1)

第 1 页 共 1 页 2020年高考数学导数压轴题每日一题 例1已知函数f(x)=e x -ln(x +m).(新课标Ⅱ卷) (1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0. 例1 (1)解 f (x )=e x -ln(x +m )?f ′(x )=e x -1x +m ?f ′(0)=e 0-10+m =0?m =1, 定义域为{x |x >-1}, f ′(x )=e x -1x +m =e x (x +1)-1x +1, 显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增. (2)证明 g (x )=e x -ln(x +2), 则g ′(x )=e x -1x +2 (x >-2). h (x )=g ′(x )=e x -1x +2(x >-2)?h ′(x )=e x +1(x +2)2 >0, 所以h (x )是增函数,h (x )=0至多只有一个实数根, 又g ′(-12)=1e -132 <0,g ′(0)=1-12>0, 所以h (x )=g ′(x )=0的唯一实根在区间??? ?-12,0内, 设g ′(x )=0的根为t ,则有g ′(t )=e t -1t +2=0????-12g ′(t )=0,g (x )单调递增; 所以g (x )min =g (t )=e t -ln(t +2)=1t +2+t =(1+t )2t +2>0, 当m ≤2时,有ln(x +m )≤ln(x +2), 所以f (x )=e x -ln(x +m )≥e x -ln(x +2)=g (x )≥g (x )min >0.

一个导数压轴题的解法探究与命制背景的分析

一个导数压轴题的解法探究与命制背景的分析 张嘉钦 福建省惠安荷山中学 362141 发表于《福建中学数学》2015 1.试题再现 【2014年高考陕西卷理科第21题】设函数()ln(1),()'(),0f x x g x xf x x =+=≥,其中'()f x 是()f x 的导函数. (1)11()(),()(()),n n g x g x g x g g x n N ++==∈,求()n g x 的表达式; (2)若()()f x ag x ≥恒成立,求实数a 的取值范围; (3)设n N +∈,比较(1)(2)()g g g n +++与()n f n -的大小,并加以证明. 2.解法探究: (1)由题设可知1()n g x +与()n g x 有一定的递推关系,可否运用数列的递推公式进行求解呢? 解:由题设可得:11()()(),()(())11() n n n n g x x g x g x g x g g x x g x +====++, 因此有:11()111()()()n n n n g x g x g x g x ++==+,所以,数列1()n g x ??????是以11()1x g x x =+为首项, 公差为1的等差数列,因此有 11(1)1()1n x nx n g x x x +=+-?=+,故有()(0)1n x g x x nx =≥+ 评析:注意到1()n g x +与()n g x 的递推关系,巧妙地运用数列的递推公式,结合数列的知识进行求解,另辟蹊径,令人拍案叫绝. (2)考虑到恒成立问题的两种处理方法,可采用直接构造函数法和分离参数法进行求解. 解法一:令()()()ln(1)(0)1ax h x f x ag x x x x =-=+-≥+,() 2(1)'()1x a h x x --=+(0)x ≥, 令'()0h x =得:1x a =-. 当1a ≤时,'()0h x ≥,()h x 在[0,)+∞单调递增;当1a >时,若(0,1)x a ∈-,'()0h x <,()h x 在(0,1)a -单调递减,且(0)0h =,所以,当1a >时存在0(0,1)x a ∈-使得0()0h x <,不合题意. 综上可得,a 的到值范围内是(,1]-∞. 解法二:由题设得: ln(1)1ax x x +≥+在[0,)+∞恒成立.

重庆市中山外国语学校导数压轴题的几种处理方法 (1)

等号两边无法求导的导数恒成立求参数范围几种处理方法 常见导数恒成立求参数范围问题有以下常见处理方法: 1、求导之后,将参数分离出来,构造新函数,计算 例:已知函数1ln ()x f x x += . (Ⅰ)若函数在区间1 (,)2 a a +(其中0a >)上存在极值,求实数a 的取值范围; (Ⅱ)如果当1x ≥时,不等式()1k f x x ≥+恒成立,求实数k 的取值范围; 解:(Ⅰ)因为1ln ()x f x x += ,0x > ,则ln ()x f x x '=-, … 1分 当01x <<时,()0f x '>;当1x >时,()0f x '<. 所以()f x 在(0,1)上单调递 增;在(1,)+∞上单调递减, 所以函数()f x 在1x =处取得极大值. … 2分 因为函数()f x 在区间1 (,)2 a a +(其中0a >)上存在极值, 所以1 ,112 a a ?? 解得1 1.2a << … 4分 (Ⅱ)不等式()1k f x x ≥+,即为(1)(1ln ),x x k x ++≥ 记(1)(1ln )(),x x g x x ++= 所以22 [(1)(1ln )](1)(1ln )ln (),x x x x x x x g x x x '++-++-'= = … 6分 令()ln ,h x x x =-则1 ()1h x x '=-,1,()0.x h x '≥∴≥ ()h x ∴在[1,)+∞上单调递增,min [()](1)10h x h ∴==>,从而()0g x '> 故()g x 在[1,)+∞上也单调递增,min [()](1)2g x g ∴==,所以2k ≤ …8分 2、直接求导后对参数展开讨论,然后求出含参最值,从而确定参数范围 例题:设 ,其中 . (1)若有极值,求的取值范围; (2)若当 , 恒成立,求的取值范围.

(完整版)高中数学导数压轴题专题训练

高中数学导数尖子生辅导(填选压轴) 一.选择题(共30小题) 1.(2013?文昌模拟)如图是f(x)=x3+bx2+cx+d的图象,则x12+x22的值是() A.B.C.D. 考点:利用导数研究函数的极值;函数的图象与图象变化. 专题:计算题;压轴题;数形结合. 分析:先利用图象得:f(x)=x(x+1)(x﹣2)=x3﹣x2﹣2x,求出其导函数,利用x1,x2是原函数的极值点,求出x1+x2=,,即可求得结论. 解答:解:由图得:f(x)=x(x+1)(x﹣2)=x3﹣x2﹣2x, ∴f'(x)=3x2﹣2x﹣2 ∵x1,x2是原函数的极值点 所以有x1+x2=,, 故x12+x22=(x1+x2)2﹣2x1x2==. 故选D. 点评:本题主要考查利用函数图象找到对应结论以及利用导数研究函数的极值,是对基础知识的考查,属于基础题. 2.(2013?乐山二模)定义方程f(x)=f′(x)的实数根x0叫做函数f(x)的“新驻点”,若函数g(x)=x,h(x)=ln(x+1),φ(x)=x3﹣1的“新驻点”分别为α,β,γ,则α,β,γ的大小关系为() A.α>β>γB.β>α>γC.γ>α>βD.β>γ>α 考点:导数的运算. 专题:压轴题;新定义. 分析:分别对g(x),h(x),φ(x)求导,令g′(x)=g(x),h′(x)=h(x),φ′(x)=φ(x),则它们的根分别为α,β,γ,即α=1,ln(β+1)=,γ3﹣1=3γ2,然后分别讨论β、γ的取值范围即可. 解答: 解:∵g′(x)=1,h′(x)=,φ′(x)=3x2, 由题意得: α=1,ln(β+1)=,γ3﹣1=3γ2, ①∵ln(β+1)=, ∴(β+1)β+1=e, 当β≥1时,β+1≥2, ∴β+1≤<2, ∴β<1,这与β≥1矛盾, ∴0<β<1; ②∵γ3﹣1=3γ2,且γ=0时等式不成立,

导数压轴题训练

导数 压轴题训练 1.(2014 ). 22.(2014 )..已知常数0a >,函数()()2ln 12 x f x ax x =+- +. (1)讨论()f x 在区间()0,+∞上的单调性; (2)若 ()f x 存在两个极值点12,x x ,且()()120f x f x +>,求a 的取值围. 【答案】(1)详见解析 【解析】解:(1)对函数 ()f x 求导可得 ()()24 '12a f x ax x =-++()()()()2 224112a x ax ax x +-+=++()()() 22 4112ax a ax x --=++,因为 ()() 2 120ax x ++>,所以当10a -≤时,即1a ≥时,()'0f x ≥恒成立,则函数()f x 在()0,+∞单调递增,当1a ≤时, ()()21'0a a f x x -=?=± ,则函数 ()f x 在区间()210, a a ?? - ? ?? 单调递减,在()21a a ?? - ?+∞??? 单调递增的. (2) 解:(1)对函数()f x 求导可得 ()()2 4 '12a f x ax x =-++()()()()2 224112a x ax ax x +-+=++()()() 224112ax a ax x --=++,因为 ()() 2 120ax x ++>,所以当10a -≤时,即1a ≥时,()'0f x ≥恒成立,则函数()f x 在()0,+∞单调递增,当1a <时, ()()21'0a a f x x a -=?=± ,则函数 ()f x 在区间()210, a a a ?? - ? ??? 单调递减,在()21a a ? -?+∞??? 单调递增的.

导数压轴题题型(学生版)

导数压轴题题型 引例 【2016高考山东理数】(本小题满分13分) 已知. (I )讨论的单调性; (II )当时,证明对于任意的成立. 1. 高考命题回顾 例1.已知函数)f x =(a e 2x +(a ﹣2) e x ﹣x . (1)讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围. ()2 21 ()ln ,R x f x a x x a x -=-+ ∈()f x 1a =()3 ()'2 f x f x +>[]1,2x ∈

例2.(21)(本小题满分12分)已知函数()()()2 21x f x x e a x =-+-有两个零点. (I)求a 的取值范围; (II)设x 1,x 2是()f x 的两个零点,证明:122x x +<.

例3.(本小题满分12分) 已知函数f (x )=31 ,()ln 4 x ax g x x ++ =- (Ⅰ)当a 为何值时,x 轴为曲线()y f x = 的切线; (Ⅱ)用min {},m n 表示m,n 中的最小值,设函数}{ ()min (),()(0)h x f x g x x => , 讨论h (x )零点的个数 例4.(本小题满分13分) 已知常数,函数 (Ⅰ)讨论在区间 上的单调性; (Ⅱ)若存在两个极值点且 求的取值范围.

例5已知函数f(x)=e x-ln(x+m). (1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0.

例6已知函数)(x f 满足21 2 1)0()1(')(x x f e f x f x + -=- (1)求)(x f 的解析式及单调区间; (2)若b ax x x f ++≥2 2 1)(,求b a )1(+的最大值。 例7已知函数,曲线在点处的切线方程为。 (Ⅰ)求、的值; (Ⅱ)如果当,且时,,求的取值范围。 ln ()1a x b f x x x = ++()y f x =(1,(1))f 230x y +-=a b 0x >1x ≠ln ()1x k f x x x >+-k

2020高考文科复习:导数压轴题(含解析)

2020高考文科复习:导数压轴题 1.(2019?新课标Ⅱ)已知函数()(1)1f x x lnx x =---.证明: (1)()f x 存在唯一的极值点; (2)()0f x =有且仅有两个实根,且两个实根互为倒数. 2.(2019?天津)设函数()(1)x f x lnx a x e =--,其中a R ∈. (Ⅰ)若0a …,讨论()f x 的单调性; (Ⅱ)若10a e <<, ()i 证明()f x 恰有两个零点; ()ii 设0x 为()f x 的极值点,1x 为()f x 的零点,且10x x >,证明0132x x ->.

3.(2019?新课标Ⅰ)已知函数()2sin cos f x x x x x =--,()f x '为()f x 的导数. (1)证明:()f x '在区间(0,)π存在唯一零点; (2)若[0x ∈,]π时,()f x ax …,求a 的取值范围. 4.(2019?北京)已知函数321()4 f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2x ∈-,4]时,求证:6()x f x x -剟; (Ⅲ)设()|()()|()F x f x x a a R =-+∈,记()F x 在区间[2-,4]上的最大值为M (a ).当M (a )最小时,求a 的值.

5.(2018?北京)设函数2()[(41)43]x f x ax a x a e =-+++. (Ⅰ)若曲线()y f x =在点(1,f (1))处的切线与x 轴平行,求a ; (Ⅱ)若()f x 在2x =处取得极小值,求a 的取值范围. 6.(2018?北京)设函数2()[(31)32]x f x ax a x a e =-+++. (Ⅰ)若曲线()y f x =在点(2,f (2))处的切线斜率为0,求a ; (Ⅱ)若()f x 在1x =处取得极小值,求a 的取值范围.

导数系列:一类以自然指数对数为背景的导数压轴题解法教师版

导数系列:一类以自然指数对数为背景的导数压轴题解法教师版

————————————————————————————————作者:————————————————————————————————日期: ?

一类以自然指数和对数为背景的压轴题解法 注: 本文以目前数学成绩在一本线上下的学子的数学水准,进行展开讲解。 根据“遗传学规律”明年全国乙卷再次考到的可能性极大,打出来给学生将保准学生横扫此类压轴题! 源于课本:1-1课本99页B 组1题或课本2-2第32页B 组1题的习题:利用函数的单调性,证明下列不等式,并通过函数图像直观验证:x e x +≥1; 【探究拓展】 探究1:证明不等式x e x +≥1* 变式1:设a x e x f x --=)(,其中,R a ∈若对于任意R x ∈,0)(>x f 恒成立,则参数a 的取值范围是_________ 1-+ 变形3:)1()1ln(->≤+x x x 变形4:)0(1ln >-≤x x x * 变形5:)0(11 ln >+-≥x x x 变形6:)0(11 ln >+-≥x x x 归一:我们只要通过画图并记住x e x +≥1*,)0(1ln >-≤x x x *即可,考试出现了其它变形换元转化为这2个不等式即可。

历年导数压轴经典题目

历年导数压轴经典题目 证题中常用的不等式: ① ln 1(0)x x x ≤-> ②≤ln +1(1)x x x ≤>-() ③ 1x e x ≥+ ④ 1x e x -≥- ⑤ ln 1(1)12x x x x -<>+ ⑥ 22ln 11(0)22x x x x <-> ⑦ 1≥e^x (1-x ) 1.已知函数 321 ()3 f x x ax bx =++,且'(1)0f -= (1) 试用含a 的代数式表示b,并求()f x 的单调区间; (2)令1a =-,设函数()f x 在1212,()x x x x <处取得极值,记点M (1x , 1()f x ),N(2x ,2()f x ), P(, ()m f m ), 12x m x <<,请仔细观察曲线()f x 在点P 处的切线与线段MP 的位置变化趋势, 并解释以下问题: (I )若对任意的m ∈(t, x 2),线段MP 与曲线f(x)均有异于M,P 的公共点,试确定t 的最小值,并证明你 的结论; (II )若存在点Q(n ,f(n)), x ≤n< m ,使得线段PQ 与曲线f(x)有异于P 、Q 的公共点,请直接写出m 的取值 范围(不必给出求解过程) 2. 本小题满分14分)已知函数 ,,且 是函数 的极值点。 (Ⅰ)求实数的值; (Ⅱ)若方程有两个不相等的实数根,求实数 的取值范围; (Ⅲ)若直线是函数 的图象在点处的切线,且直线与函数 的图象相切于点,,求实数的取值范围。 1 x x +

3. 已知函数()() ()()201,10.x f x ax bx c e f f =++==且 (I )若()f x 在区间[]0,1上单调递减,求实数a 的取值范围; (II )当a=0时,是否存在实数m 使不等式()224141x f x xe mx x x +≥+≥-++对任意 x R ∈恒成立?若存在,求出m 的值,若不存在,请说明理由 4. 已知:二次函数()g x 是偶函数,且(1)0g =,对,()1x R g x x ?∈≥-有恒成立,令 1 ()()ln ,()2 f x g x m x m R =++∈ (I )求()g x 的表达式; (II )当0m 0,使f(x)0成立,求m 的最大值; (III )设12,()()(1),m H x f x m x <<=-+证明:对12,[1,]x x m ?∈,恒有 12|()()| 1.H x H x -< 5. 已知函数()(a x ax x f ln -=>)().2 8,0+=x x x g (I )求证();ln 1a x f +≥ (II )若对任意的??????∈32,211x ,总存在唯一的?? ????∈e e x ,1 22(e 为自然对数的底数),使得 ()()21x f x g =,求实数a 的取值范围. 6. 已知函数2 ()8,()6ln .f x x x g x x m =-+=+ (I )求()f x 在区间[],1t t +上的最大值();h t (II )是否存在实数,m 使得()y f x =的图象与()y g x =的图象有且只有三个不同的交 点?若存在,求出m 的取值范围;若不存在,说明理由。 7. 已知函数()x f x e kx =-,x ∈R

高考导数压轴题的解法

高考导数压轴题的解法 导数常作为高考的压轴题,对考生的能力要求非常高,它不仅要求考生牢固掌握基础知识、基本技能,还要求考生具有较强的分析能力和计算能力.作为压轴题,主要是涉及利用导数求最值解决恒成立问题,利用导数证明不等式等,常伴随对参数的讨论,这也是难点之所在. 2011年全国新课标卷理科数学21题就是一道典型的以导数为背景,通过求最值分类讨论解决恒成立问题。学生在思考的过程中会产生两种常见的想法,但并不是每一种方法都能达到预期的效果,下面我们就来探讨一下解决这类问题的统一方法。 原题:(2011年高考试题全国新课标卷理科数学21题) 已知函数ln ()1a x b f x x x =++,曲线()y f x =在点(1,(1)f 处的切线方程为230x y +-=. (I )求,a b 的值; (II )如果当0x >且1x ≠时,ln ()1x k f x x x >+-,求k 的取值范围. 解:(I )略(II )由(Ⅰ)知22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x ---+=+--. 考虑函数()2ln h x x =+2(1)(1)k x x --(0)x >,则22(1)(1)2'()k x x h x x -++=. (i)设0k ≤,由22 2 (1)(1)'()k x x h x x +--=知,当1x ≠时,'()0h x <.而(1)0h =, 故当(0,1)x ∈时,()0h x >,可得2 1()01h x x >-;当(1,)x ∈+∞时,()0,h x < 21()01h x x >-可得从而当0,x >且1x ≠时,ln ()1x k f x x x >+-恒成立 (ii )设01k <<时由于当21(1,)(1)(1)20,1x k x x k ∈-++>-时,故'()0,h x > 而1(1)0,(1,)1h x k =∈-故当时,()0,h x >2 1()01h x x <-与题设矛盾 (iii )设1,'()0,(1)0,k h x h ≥>=此时而故当(1,)()0,x h x ∈+∞>时,可得出矛盾 综合可得k 的取值范围是(,0]-∞ 评析:该题在解决的过程中是通过构造一个新的函数,通过讨论该函数的单调性和零点,找出恒成立的范围,再举出反例将其它范围舍去。在解决该类问题时还有一个常见的办法,就

函数导数压轴小题题

函数导数压轴小题 一、单选题 1.已知数列中,,若对于任意的,不等式 恒成立,则实数的取值范围为() A.B. C.D. 2.已知实数,满足,则的值为() A.B.C.D. 3.定义在上的函数,单调递增,,若对任意,存在,使得成立,则称是在上的“追逐函数”.若,则下列四个命题:①是在上的“追逐函数”;②若是在上的“追逐函数”, 则;③是在上的“追逐函数”;④当时,存在,使得 是在上的“追逐函数”.其中正确命题的个数为() A.①③B.②④C.①④D.②③ 4.若,恒成立,则的最大值为() A.B.C.D. 5.设,,若三个数,,能组成一个三角形的三条边长,则实数m 的取值范围是 A.B.C.D. 6.已知定义域为的函数的图象是连续不断的曲线,且,当时,,则下列判断正确的是() A.B.C.D. 7.不等式对任意恒成立,则实数的取值范围()

A.B.C.D. 8.若函数的图象与曲线C:存在公共切线,则实数的取值范围为() A.B.C.D. 9.设函数(,e为自然对数的底数).定义在R上的函数满足, 且当时,.若存在,且为函数的一个零点,则实数a的取值范围为( ) A.B.C.D. 10.已知函数在上可导,其导函数为,若满足:当时,>0,,则下列判断一定正确的是( ) A.B.C.D. 11.已知函数有两个零点,则的取值范围为() A.B.C.D. 12.已知函数,方程有四个不同的根,记最大的根的所有取值为集合,若函数有零点,则的取值范围是() A.B.C.D. 13.设函数的定义域为D,若满足条件:存在,使在上的值域为,则称为“倍缩函数”.若函数为“倍缩函数”,则实数t的取值范围是( ) A.B. C.D.

导数压轴题精选

导数压轴题精选 三、解答题: 10.已知函数2 1()22 f x x x = -、()log a g x x =(0a >,且1a ≠) ,其中a 为常数. 如果函数()()()h x f x g x =+是(0,)+∞上的增函数,且函数()h x '存在零点 (函数()h x '为函数()h x 的导函数). ⑴求实数a 的值; ⑵设11(,)A x y 、2212(,)()B x y x x <是函数()y g x =的图象上两点, 又21 021 ()y y g x x x -'=-(()g x '为()g x 的导函数),证明:102x x x <<.

10.已知函数()2ln b f x ax x x =- -,且(1)0f =. ⑴若函数()f x 在其定义域内为单调函数,求a 的取值范围; ⑵若函数()f x 的图象在1x =处的切线的斜率为0, 且211 ( )11 n n a f n a n +'=-+-+,又已知14a =,求证:22n a n ≥+; ⑶在⑵的条件下,试比较12111111n a a a ++++++与25 的大小, 并说明你的理由.

10.定义:对于函数()()f x x M R ∈?,若()()f x f x '<对于定义域M 内的任意x 恒成立,则称函数()f x 为M 上的?函数. ⑴判断函数()ln x f x e x =是否为其定义域上的?函数,并证明你的结论; ⑵若函数()F x 为R 上的?函数,试比较()F a 与(0)()a e F a R ∈的大小; ⑶若函数()F x 为R 上的?函数,求证:对于定义域内的任意正数1x 、2x 、、n x , 均有1212[ln()](ln )(ln )(ln )n n F x x x F x F x F x +++>+++成立.

导数压轴题训练

导数 压轴题训练 1.(2014 湖南). 22.(2014 湖南)..已知常数0a >,函数()()2ln 12 x f x ax x =+- +. (1)讨论()f x 在区间()0,+∞上的单调性; (2)若 ()f x 存在两个极值点12,x x ,且()()120f x f x +>,求a 的取值范围. 【答案】(1)详见解析 【解析】解:(1)对函数 ()f x 求导可得 ()()24 '12a f x ax x =-++()()()() 2 2 24112a x ax ax x +-+=++()()()224112ax a ax x --=++,因为 ()() 2 120ax x ++>,所以当10a -≤时,即1a ≥时,()'0f x ≥恒成立,则函数()f x 在()0,+∞单调 递增,当1a ≤时, () '0f x x =?=则函数 ()f x 在区间? ?? 单调递减,在 ? ?+∞??? 单调递增的. (2) 解:(1)对函数()f x 求导可得 ()()24 '12a f x ax x =-++()()()() 2 2 24112a x ax ax x +-+=++()()()224112ax a ax x --=++,因为 ()() 2 120ax x ++>,所以当10a -≤时,即1a ≥时,()'0f x ≥恒成立,则函数()f x 在()0,+∞单调 递增,当1a <时, ( )'0f x x =?=则函数 ()f x 在区间? ?? 单调递减, 在? ?∞??? 单调递增的.

2.(20)(2014江苏)(本小题满分14分)已知函数 ()x f x x ae =-()a R ?,x R ?.已知函数 ()y f x =有两个零点12,x x ,且12x x <. (Ⅰ)求a 的取值范围; (Ⅱ)证明 21 x x 随着a 的减小而增大; (Ⅲ)证明 12x x +随着a 的减小而增大. (2014四川卷)21(2014四川卷).已知函数 2()1x f x e ax bx =---,其中,a b R ∈, 2.71828 e =为自然对数的底数。 (1)设()g x 是函数()f x 的导函数,求函数()g x 在区间[0,1]上的最小值; (2)若 (1)0f =,函数()f x 在区间(0,1)内有零点,求a 的取值范围

相关主题