搜档网
当前位置:搜档网 › MSC MARC2011单机多核并行计算示例

MSC MARC2011单机多核并行计算示例

MSC MARC2011单机多核并行计算示例
MSC MARC2011单机多核并行计算示例

MSC MARC2011单机多核并行计算示例

并行计算可以有效利用本地或者网络计算机计算资源,提高计算效率,特别是针对一些计算规模相对较大的问题。本文作为MARC单机多核并行计算的一个示例。

测试平台:WIN7 64Bit MARC2011

1、基本配置

(1)在MARC安装目录下的intelmpi\win64\bin目录(32Bit计算机选择win32文件夹),运行wmpiregister.exe.

(2)输入用户名(登陆windows的账户名,通常为administrator)及密码(若密码为空,需要重新设置一个密码),点击register按钮,下面的对话框中会出现“Password encrypted into the Registry”信息。

(3)运行ismpd.exe,或者到dos提示符下,进入该目录,运行ismpd -install。

假如提示都正常的话,到此即完成进行并行计算的前提条件了。

2、分配单元

单机多核计算提高效率的途径在于几个核心同时进行计算,因此对一个模型完成所有的建模后需要为参与计算的多核分配计算任务(软件自动分配或者用户手动分配),也就是单元,最后在提交任务前提示软件进行并行计算。

(1)打开一个已经调试无误的待计算文件

(2)为多核分配单元

测试电脑为双核4线程,这里设置2核计算。①Jobs—>User Domains调出面板,②Generate!按钮设置参与计算的CPU内核数,③输入分配的内核数2,回车确定,④软件自动为两个内核分配单元,并输出单元数信息,⑤勾选Identify,显示单元分配情况,最终

如图所示。

也可以用户手动分配单元,①选择Manul Decomposition,出现手动分配单元的一些命令按钮,②Delete All删除之前自动分配情况,③Add Elements分别为内核分配不同的单元,④

手动分配情况如图所示。

3、提交计算

完成上述步骤后,勾选Parallelization选项即可进行并行计算。

①Job—>Show Menu进入Job面板,②Run命令进入Run Job面板,③点击Parallelization 进入相应面板,④勾选 Use DDM选项,假如使用用户分配的单元,选择 Decomposition In Mentat,⑤点击OK回到Run Job面板,⑥点击Submit即可提交任

务进行并行计算。

运行情况如图所示。

大数据与并行计算

西安科技大学 计算机科学与技术学院 实习报告 课程:大数据和并行计算 班级:网络工程 姓名: 学号:

前言 大数据技术(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。 特点具体有: 大数据分析相比于传统的数据仓库应用,具有数据量大、查询分析复杂等特点。《计算机学报》刊登的“架构大数据:挑战、现状与展望”一文列举了大数据分析平台需要具备的几个重要特性,对当前的主流实现平台——并行数据库、MapReduce及基于两者的混合架构进行了分析归纳,指出了各自的优势及不足,同时也对各个方向的研究现状及作者在大数据分析方面的努力进行了介绍,对未来研究做了展望。 大数据的4个“V”,或者说特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。前文提到的网络日志、视频、图片、地理位置信息等等。第三,处理速度快,1秒定律,可从各种类型的数据中快速获得高价值的信息,这一点也是和传统的数据挖掘技术有着本质的不同。第四,只要合理利用数据并对其进行正确、准确的分析,将会带来很高的价值回报。业界将其归纳为4个“V”——Volume(数据体量大)、Variety(数据类型繁多)、Velocity(处理速度快)、Value(价值密度低)。 从某种程度上说,大数据是数据分析的前沿技术。简言之,从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。明白这一点至关重要,也正是这一点促使该技术具备走向众多企业的潜力。 1.大数据概念及分析 毫无疑问,世界上所有关注开发技术的人都意识到“大数据”对企业商务所蕴含的潜在价值,其目的都在于解决在企业发展过程中各种业务数据增长所带来的痛苦。 现实是,许多问题阻碍了大数据技术的发展和实际应用。 因为一种成功的技术,需要一些衡量的标准。现在我们可以通过几个基本要素来衡量一下大数据技术,这就是——流处理、并行性、摘要索引和可视化。 大数据技术涵盖哪些内容? 1.1流处理 伴随着业务发展的步调,以及业务流程的复杂化,我们的注意力越来越集中在“数据流”而非“数据集”上面。 决策者感兴趣的是紧扣其组织机构的命脉,并获取实时的结果。他们需要的是能够处理随时发生的数据流的架构,当前的数据库技术并不适合数据流处理。 1.2并行化 大数据的定义有许多种,以下这种相对有用。“小数据”的情形类似于桌面环境,磁盘存储能力在1GB到10GB之间,“中数据”的数据量在100GB到1TB之间,“大数据”分布式的存储在多台机器上,包含1TB到多个PB的数据。 如果你在分布式数据环境中工作,并且想在很短的时间内处理数据,这就需要分布式处理。 1.3摘要索引 摘要索引是一个对数据创建预计算摘要,以加速查询运行的过程。摘要索引的问题是,你必须为要执行的查询做好计划,因此它有所限制。 数据增长飞速,对摘要索引的要求远不会停止,不论是长期考虑还是短期,供应商必须对摘要索引的制定有一个确定的策略。 1.4数据可视化 可视化工具有两大类。

MSC_MARC单机多核并行计算示例教学文案

M S C_M A R C单机多核并行计算示例

MSC MARC2011单机多核并行计算示例 并行计算可以有效利用本地或者网络计算机计算资源,提高计算效率,特别是针对一些计算规模相对较大的问题。本文作为MARC单机多核并行计算的一个示例。 测试平台:WIN7 64Bit MARC2011 0、提前设置 将电脑名字最好改为administrator,或者通过修改电脑名称,会使user和display后面的名子保持一致。 改电脑名字: 计算机右键—属性—更改设置—更改—计算机名

1、启动多核运算 打开dos界面输入 (1)D:按enter回车键(d为marc所在盘)

(2)cd+空格+ D:\MSC.Software\Marc\2010\marc2010\intelmpi\win64\bin按 enter回车键 (3)ismpd+空格+ –install 按enter回车键 (4)出现上图中的 关闭窗口。 2、基本配置 (1)在MARC安装目录下的intelmpi\win64\bin目录(32Bit计算机选择 win32文件夹),运行wmpiregister.exe. (2)输入用户名(登陆windows的账户名,通常为administrator)及密码(若密码为空,需要重新设置一个密码),点击register按钮,下面的对话框中会出现“Password encrypted into the Registry”信息。

(3)运行ismpd.exe,或者到dos提示符下,进入该目录,运行ismpd -install。 假如提示都正常的话,到此即完成进行并行计算的前提条件了。 3、测试 (1)在MARC安装目录下的intelmpi\win64\bin目录(32Bit计算机选择win32文件夹),运行wmpiconfig.exe (2)依次点击下面1和2.

并行计算1

并行计算 实 验 报 告 学院名称计算机科学与技术学院专业计算机科学与技术 学生姓名 学号 年班级 2016年5 月20 日

一、实验内容 本次试验的主要内容为采用多线程的方法计算pi的值,熟悉linux下pthread 形式的多线程编程,对实验结果进行统计并分析以及加速比曲线分析,从而对并行计算有初步了解。 二、实验原理 本次实验利用中值积分定理计算pi的值 图1 中值定理计算pi 其中公式可以变换如下: 图2 积分计算pi公式的变形 当N足够大时,可以足够逼近pi,多线程的计算方法主要通过将for循环的计算过程分到几个线程中去,每次计算都要更新sum的值,为避免一个线程更新sum 值后,另一个线程仍读到旧的值,所以每个线程计算自己的部分,最后相加。三、程序流程图 程序主体部分流程图如下:

多线程执行函数流程图如下: 四、实验结果及分析

令线程数分别为1、2、5、10、20、30、40、50和100,并且对于每次实验重复十次求平均值。结果如下: 图5 时间随线程的变化 实验加速比曲线的计算公式类似于 结果如下: 图5 加速比曲线 实验结果与预期类似,当线程总数较少时,线程数的增多会对程序计算速度带来明显的提升,当线程总数增大到足够大时,由于物理节点的核心数是有限的,因此会给cpu带来较多的调度,线程的切换和最后结果的汇总带来的时间开销较大,所以线程数较大时,增加线程数不会带来明显的速度提升,甚至可能下降。 五、实验总结

本次试验的主要内容是多线程计算pi的实现,通过这次实验,我对并行计算有了进一步的理解。上学期的操作系统课程中,已经做过相似的题目,因此程序主体部分相似。不同的地方在于,首先本程序按照老师要求应在命令行提供参数,而非将数值写定在程序里,其次是程序不是在自己的电脑上运行,而是通过ssh和批处理脚本等登录到远程服务器提交任务执行。 在运行方面,因为对批处理任务不够熟悉,出现了提交任务无结果的情况,原因在于windows系统要采用换行的方式来表明结束。在实验过程中也遇到了其他问题,大多还是来自于经验的缺乏。 在分析实验结果方面,因为自己是第一次分析多线程程序的加速比,因此比较生疏,参考网上资料和ppt后分析得出结果。 从自己遇到的问题来看,自己对批处理的理解和认识还比较有限,经过本次实验,我对并行计算的理解有了进一步的提高,也意识到了自己存在的一些问题。 六、程序代码及部署 程序源代码见cpp文件 部署说明: 使用gcc编译即可,编译时加上-pthread参数,运行时任务提交到服务器上。 编译命令如下: gcc -pthread PI_3013216011.cpp -o pi pbs脚本(runPI.pbs)如下: #!/bin/bash #PBS -N pi #PBS -l nodes=1:ppn=8 #PBS -q AM016_queue #PBS -j oe cd $PBS_O_WORKDIR for ((i=1;i<=10;i++)) do ./pi num_threads N >> runPI.log

多核编程与并行计算实验报告 (1)

多核编程与并行计算实验报告 姓名: 日期:2014年 4月20日 实验一 // exa1.cpp : Defines the entry point for the console application.

// #include"stdafx.h" #include #include #include #include using namespace std; void ThreadFunc1(PVOID param) { while(1) { Sleep(1000); cout<<"This is ThreadFunc1"<

实验二 // exa2.cpp : Defines the entry point for the console application. // #include"stdafx.h" #include #include using namespace std; DWORD WINAPI FunOne(LPVOID param){ while(true) { Sleep(1000); cout<<"hello! "; } return 0; } DWORD WINAPI FunTwo(LPVOID param){ while(true) { Sleep(1000); cout<<"world! ";

并行计算第一次实验报告

并行计算上机实验报告题目:多线程计算Pi值 学生姓名 学院名称计算机学院 专业计算机科学与技术时间

一. 实验目的 1、掌握集群任务提交方式; 2、掌握多线程编程。 二.实验内容 1、通过下图中的近似公式,使用多线程编程实现pi的计算; 2、通过控制变量N的数值以及线程的数量,观察程序的执行效率。 三.实现方法 1. 下载配置SSH客户端 2. 用多线程编写pi代码 3. 通过文件传输界面,将文件上传到集群上 4.将命令行目录切换至data,对.c文件进行编译 5.编写PBS脚本,提交作业 6.实验代码如下: #include

#include #include #include #include #include static double PI=0; static int N=0; static int numOfThread=0; static int length=0; static int timeUsed=0; static int numOfThreadArray[]={1,2,4,6,8,10,12,14,16,20,24,30}; static int threadArraySize=12; static int nTime=4; static int repeatTime=30; static double totalTime=0; struct timeval tvpre, tvafter; pthread_mutex_t mut; clockid_t startTime,endTime;

大数据与云计算的区别与关系

大数据与云计算的区别与关系 胡经国 一、大数据与云计算的区别 大数据与云计算是两个有着本质区别的科学概念和范畴。它们主要在其定义和特点(特性或特征)以及体系架构、理论技术、服务模式和应用领域等方面都具有本质的区别。对此,本文作者已经或将要作专文论述,在此仅例举一二。 1、定义区别 根据著名的麦肯锡全球研究所给出的定义,大数据是指一种规模大到在获取、存储、管理、分析方面大大超出传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低4大特征。 而云计算则是指一种基于互联网的计算模式;通过这种模式,共享的软硬件资源和信息,可以按需求提供给计算机和其他设备。 2、定义范围区别 从二者的定义范围来看,大数据要比云计算更加广泛。大数据这一概念从2011年诞生以来,已历经8个年头。中国从积极推动两化融合到深度融合,也有14年之久。再者,从各地纷纷建设大数据产业园可以看出,中国极其看重大数据的发展契机。 3、作用区别 云计算改变了IT,而大数据则改变了业务。当然,大数据必须有“云”作为基础架构,才能得以顺畅运营。 4、目标受众区别 云计算是CIO(Chief Information Officer,首席信息官——一种新型的信息管理者)等所关注的技术层;而大数据则是CEO(Chief Executive Officer,首席执行官)所关注的业务层产品。 二、大数据与云计算的关系 1、大数据与云计算的关系概述 通常,人们把大数据与云计算的关系比着一个硬币的两面。云计算是大数据的IT基础,而大数据则是云计算的一个杀手级应用。云计算是大数据成长的驱动力;而另一方面,由于数据越来越多、越来越复杂、越来越实时,因而就更加需要云计算去加以处理。所以,二者之间的关系是相辅相成的。

22进程、线程与并行计算(windows 编程技术)

第22章 进程、线程与并行计算 进程是正在运行的程序,线程是轻量级的进程。多任务的并发执行会用到多线程(multithreading ),而CPU 的多核(mult-core )化又将原来只在巨型机和计算机集群中才使用的并行计算带入普通PC 应用的多核程序设计中。 本章先介绍进程与线程的概念和编程,再给出并行计算的基本概念和内容。下一章讨论基于多核CPU 的并行计算的若干具体编程接口和方法。 22.1 进程与线程 进程(process )是执行中的程序,线程(thread )是一种轻量级的进程。 22.1.1 进程与多任务 现代的操作系统都是多任务(multitask )的,即可同时运行多个程序。进程(process )是位于内存中正被CPU 运行的可执行程序实例,参见图22-1。 图22-1 程序与进程 目前的主流计算机采用的都是冯·诺依曼(John von Neumann )体系结构——存储程序计算模型。程序(program )是在内存中顺序存储并以线性模式在CPU 中串行执行的指令序列。对于传统的单核CPU 计算机,多任务操作系统的实现是通过CPU 分时(time-sharing )和程序并发(concurrency )完成的。即在一个时间段内,操作系统将CPU 分配给不同的程序,虽然每一时刻只有一个程序在CPU 中运行,但是由于CPU 的速度非常快,在很短的时间段中可在多个进程间进行多次切换,所以用户的感觉就像多个程序在同时执行,我们称之为多任务的并发。 22.1.2 进程与线程 程序一般包括代码段、数据段和堆栈,对具有GUI (Graphical User Interfaces ,图形用户界面)的程序还包含资源段。进程(process )是应用程序的执行实例,即正在被执行的程进程(内存中) 可执行文件(盘上) 运行

并行计算环境搭建

并行计算环境搭建 一.搭建并调试并行计算环境MPI的详细过程。 1.首先,我们选择在Windows XP平台下安装MPICH。第一步确保Windows平台下安装上了.net框架。 2.在并行环境的每台机子上创建相同的用户名和密码,并使该平台下的各台主机在相同的工作组中。 3.登陆到新创建的帐号下,安装MPICH软件,在选择安装路径时,每台机子的安装路径要确保一致。安装过程中,需要输入一致的passphrase,也即本机的用户名。 4.安装好软件后,要对并行环境进行配置(分为两步): 第一步:注册。在每台机器上运行wmpiregister,按照提示输入帐号和密码,即 本机的登录用户名和密码。 第二步:配置主机。在并行环境下,我们只有一台主机,其他机子作为端结点。 运行主机上的wmpiconfig,在界面左侧栏目中选择TNP工作组,点击“select”按 钮,此时主机会在网络中搜索配置好并行环境的其他机子。配置好并行环境的其他 机子会出现绿色状态,点击“apply”按钮,最后点击“OK”按钮。 5.在并行环境下运行的必须是.exe文件,所以我们必须要对并行程序进行编译并生成.exe文件。为此我们选择Visual C++6.0编译器对我们的C语言程序进行编译, 在编译过程中,主要要配置编译器环境: (1)在编译器环境下选择“工程”,在“link”选项卡的“object/library modules” 中输入mpi.lib,然后点击“OK”按钮。 (2)选择“选项”,点击“路径”选项卡,在“show directories for”下选择“Include files”,在“Directories”中输入MPICH软件中“Include”文件夹的路径; 在“show directories for”下选择“Library files”,在“Directories”中输入 MPICH软件中Library文件夹的路径,点击“OK”。 (3)对并行程序进行编译、链接,并生成.exe文件。 6.将生成的.exe文件拷贝到并行环境下的各台机子上,并确保每台机子的存放路径要相同。 7.在主机上运行“wmpiexec”,在Application中选择生成的.exe文件;输入要执行此程序的进程数,选中“more options”选项卡,在“host”栏中输入主机和各个端结 点的计算机名,点击“execute”执行程序。 二.搭建并调试并行计算环境MPI的详细过程。 1.以管理员身份登录每台计算机,在所有连接的计算机上建立一个同样的工作组,命名为Mshome,并在该工作组下建立相同的帐户,名为GM,密码为GM。 2.安装文件Microsoft NET Framwork1.1,将.NET框架安装到每台计算机上,再安装MPI到每台主机。在安装MPI的过程中,必须输入相同的passphrase,在此输 入之前已建好的帐户名GM。 3.安装好MPI后,再对每台计算机进行注册和配置,其中注册必须每台计算机都要进行,配置只在主控计算机进行: (1)注册:将先前在每台计算机上申请的帐号和密码注册到MPI中去,这样

拥抱多核时代-GIS并行计算

告别免费午餐拥抱多核时代 —SuperMap空间分析并行计算实践Written by:Objects 2013-3-12 11:20:00 SuperMap空间分析并行计算实践 信息技术(InformationTechnologies,简称IT)领域,绝大多数定律都会随着技术的进步被人们淡忘,但有一些却可以经受住时间的考验,对信息技术发展带来持久而深远的影响,“摩尔定律”便是其中典型代表。“摩尔定律”支配下的信息技术,64位系统和多核计算日益普及,如何充分利用64位系统和多核环境下的计算资源成为系统设计和开发人员必 须面对的问题。地理信息系统(Geographic InformationSystem,简称GIS)中的空间分析服务具有算法逻辑复杂、数据规模庞大的特点,属于一种计算密集型服务。针对该特点,我们将并行计算技术引入传统空间分析计算过程,充分利用64位大内存和多核计算资源,大幅提升空间分析 计算性能。 一、摩尔定律下的免费午餐 摩尔定律是由英特尔创始人之一戈登·摩尔(Gordon Moore)提出。其内容为:当价格不变时,集成电路上可容纳的电子元件数目,约每隔24个月(现在普遍流行的说法是每隔18个月)便会增加一倍,性能也将提升一倍。换言之,相同性能的芯片产品,每隔18个月价钱就会降 低一半。该定律自1965年提出以来,始终较好的预测了半导体产业的

发展趋势,又由于半导体产业的巨大影响力,该定律辐射到包括微处理器、移动电话、个人电脑、互联网等在内的众多IT领域。几十年来,包括处理器速度、内存容量、网络传播速度等关键IT指标的发展大都符合摩尔定律的描述。我们有理由认为,摩尔定律在一定程度上揭示与展现了信息技术令人惊讶的进步速度。诞生于1946年的世界上第一台电子计算机,其计算速度是每秒5000次加减法运算,而今天个人电脑的计算速度是每秒500亿次浮点运算。三十五年前的英特尔8086处理器仅有三万个晶体管,而今天一个基于Nehalem架构的英特尔酷睿i7处理器集成了7.74亿个晶体管。

MSC-MARC单机多核并行计算示例

MSC MARC2011单机多核并行计算示例 并行计算可以有效利用本地或者网络计算机计算资源,提高计算效率,特别是针对一些计算规模相对较大的问题。本文作为MARC单机多核并行计算的一个示例。 测试平台:WIN7 64Bit MARC2011 0、提前设置 将电脑名字最好改为administrator,或者通过修改电脑名称,会使user和display后面的名子保持一致。 改电脑名字: 计算机右键—属性—更改设置—更改—计算机名

1、启动多核运算 打开dos界面输入 (1)D:按enter回车键(d为marc所在盘) (2)cd+空格+ D:\MSC.Software\Marc\2010\marc2010\intelmpi\win64\bin按enter回车键 (3)ismpd+空格+ –install 按enter回车键 (4)出现上图中的

关闭窗口。 2、基本配置 (1)在MARC安装目录下的intelmpi\win64\bin目录(32Bit计算机选择win32文件夹),运行wmpiregister.exe. (2)输入用户名(登陆windows的账户名,通常为administrator)及密码(若密码为空,需要重新设置一个密码),点击register按钮,下面的对话框中会出现“Password encrypted into the Registry”信息。 (3)运行ismpd.exe,或者到dos提示符下,进入该目录,运行ismpd -install。 假如提示都正常的话,到此即完成进行并行计算的前提条件了。 3、测试 (1)在MARC安装目录下的intelmpi\win64\bin目录(32Bit计算机选择win32文件夹),运行wmpiconfig.exe (2)依次点击下面1和2.

浅谈多核CPU、多线程与并行计算

0.前言 最近发觉自己博客转帖的太多,于是决定自己写一个原创的。笔者用过MPI 和C#线程池,参加过比赛,有所感受,将近一年来,对多线程编程兴趣一直不减,一直有所关注,决定写篇文章,算是对知识的总结吧。有说的不对的地方,欢迎各位大哥们指正:) 1.CPU发展趋势 核心数目依旧会越来越多,依据摩尔定律,由于单个核心性能提升有着严重的瓶颈问题,普通的桌面PC有望在2017年末2018年初达到24核心(或者16核32线程),我们如何来面对这突如其来的核心数目的增加?编程也要与时俱进。笔者斗胆预测,CPU各个核心之间的片内总线将会采用4路组相连:),因为全相连太过复杂,单总线又不够给力。而且应该是非对称多核处理器,可能其中会混杂几个DSP处理器或流处理器。 2.多线程与并行计算的区别 (1)多线程的作用不只是用作并行计算,他还有很多很有益的作用。 还在单核时代,多线程就有很广泛的应用,这时候多线程大多用于降低阻塞(意思是类似于 while(1) { if(flag==1) break;

sleep(1); } 这样的代码)带来的CPU资源闲置,注意这里没有浪费CPU资源,去掉sleep(1)就是纯浪费了。 阻塞在什么时候发生呢?一般是等待IO操作(磁盘,数据库,网络等等)。此时如果单线程,CPU会干转不干实事(与本程序无关的事情都算不干实事,因为执行其他程序对我来说没意义),效率低下(针对这个程序而言),例如一个IO操作要耗时10毫秒,CPU就会被阻塞接近10毫秒,这是何等的浪费啊!要知道CPU是数着纳秒过日子的。 所以这种耗时的IO操作就用一个线程Thread去代为执行,创建这个线程的函数(代码)部分不会被IO操作阻塞,继续干这个程序中其他的事情,而不是干等待(或者去执行其他程序)。 同样在这个单核时代,多线程的这个消除阻塞的作用还可以叫做“并发”,这和并行是有着本质的不同的。并发是“伪并行”,看似并行,而实际上还是一个CPU在执行一切事物,只是切换的太快,我们没法察觉罢了。例如基于UI 的程序(俗话说就是图形界面),如果你点一个按钮触发的事件需要执行10秒钟,那么这个程序就会假死,因为程序在忙着执行,没空搭理用户的其他操作;而如果你把这个按钮触发的函数赋给一个线程,然后启动线程去执行,那么程序就不会假死,继续响应用户的其他操作。但是,随之而来的就是线程的互斥和同步、死锁等问题,详细见有关文献。 现在是多核时代了,这种线程的互斥和同步问题是更加严峻的,单核时代大都算并发,多核时代真的就大为不同,为什么呢?具体细节请参考有关文献。我

传统并行计算框架与MR的区别

现在MapReduce/Hadoop以及相关的数据处理技术非常热,因此我想在这里将MapReduce的优势汇总一下,将MapReduce与传统基于HPC集群的并行计算模型做一个简要比较,也算是对前一阵子所学的MapReduce知识做一个总结和梳理。 随着互联网数据量的不断增长,对处理数据能力的要求也变得越来越高。当计算量超出单机的处理能力极限时,采取并行计算是一种自然而然的解决之道。在MapReduce出现之前,已经有像MPI这样非常成熟的并行计算框架了,那么为什么Google还需要MapReduce,MapReduce相较于传统的并行计算框架有什么优势,这是本文关注的问题。 文章之初先给出一个传统并行计算框架与MapReduce的对比表格,然后一项项对其进行剖析。 MapReduce和HPC集群并行计算优劣对比 ▲ 在传统的并行计算中,计算资源通常展示为一台逻辑上统一的计算机。对于一个由多个刀片、SAN构成的HPC集群来说,展现给程序员的仍旧是一台计算机,只不过这台计算拥有为数众多的CPU,以及容量巨大的主存与磁盘。在物理上,计算资源与存储资源是两个相对分离的部分,数据从数据节点通过数据总线或者高速网络传输到达计算节点。对于数据量较小的计算密集型处理,这并不是问题。而对于数据密集型处理,计算节点与存储节点之间的I/O将成为整个系统的性能瓶颈。共享式架构造成数据集中放置,从而造成I/O传输瓶颈。此外,由于集群组件间耦合、依赖较紧密,集群容错性较差。 而实际上,当数据规模大的时候,数据会体现出一定的局部性特征,因此将数据统一存放、统一读出的做法并不是最佳的。 MapReduce致力于解决大规模数据处理的问题,因此在设计之初就考虑了数据的局部性原理,利用局部性原理将整个问题分而治之。MapReduce集群由普通PC机构成,为无共享式架构。在处理之前,将数据集分布至各个节点。处理时,每个节点就近读取本地存储的数据处理(map),将处理后的数据进行合并(combine)、排序(shuffle and sort)后再分发(至reduce节点),避免了大量数据的传输,提高了处理效率。无共享式架构的另一个好处是配合复制(replication)策略,集群可以具有良好的容错性,一部分节点的down机对集群的正常工作不会造成影响。 硬件/价格/扩展性 传统的HPC集群由高级硬件构成,十分昂贵,若想提高HPC集群的性能,通常采取纵向扩展的方式:即换用更快的CPU、增加刀片、增加内存、扩展磁盘等。但这种扩展方式不能支撑长期的计算扩展(很容易就到顶了)且升级费用昂贵。因此相对于MapReduce集群,HPC集群的扩展性较差。 MapReduce集群由普通PC机构成,普通PC机拥有更高的性价比,因此同等计算能力的集群,MapReduce集群的价格要低得多。不仅如此,MapReduce集群

Pyhton 如何实现多线程并行计算

Pyhton 如何实现多线程并行计算 一、串行计算 先看一段简单的代码: import time t0=time.time() for k in range(30): values=k*k print(values) time.sleep(1) t1=time.time() print('运行时间为:',int(t1-t0)) 上面的例子中,我们用一个for循环计算自然数的平方。这里我们一个自然数计算完才能接着计算另外一个数。这种计算方式我们称为“串行计算”。早期为什么采用这种串行计算呢?因为以前个人电脑CPU是单核的,硬件的条件决定了程序的处理方式。 能不能几个数同时计算?好比如在银行的营业厅排队,如果只开一个窗口办理业务,你需要等前面一个人办完,才轮到你,如果能开多个窗口,显然会快很多。这种开多个窗口处理业务的想法,在计算机中的应用就是“并行计算”。多个窗口对应的就是计算机有多个核。(理解了“并行计算”,就容易进一步理解分布式计算。) 二、多核与线程 个人电脑的处理器最早是单核的。 多内核(multicore chips)是指在一枚处理器(chip)中集成两个或多个完整的计算引擎(内核)。 2005年4月,英特尔仓促推出简单封装双核的奔腾D和奔腾四至尊版840。 但真正的“双核元年”,则被认为是2006年。这一年的7月23日,英特尔基于酷睿(Core)架构的处理器正式发布。2006年11月,又推出面向服务器、工作站和高端个人电脑的至强(Xeon)5300和酷睿双核和四核至尊版系列处理器。 进入2009年,处理器已经由双核升级到四核时代,在斯坦福大学召开的Hot Chips大会上,IBM、富士通、AMD和Intel等众多芯片制造商展示出其六核、八核等多核服务器处

课后作业答案云计算与大数据

第一章 1.硬件驱动力网络驱动力 2. 西摩·克雷( ) 3.约翰·麦卡锡 4.蒂姆·博纳斯·李 5.吉姆·格雷 6 7.基础设施即服务平台即服务软件即服务 8. (1) 超大规模 “云”具有相当的规模,云计算已经拥有100多万台服务器,、、微软、等的“云”均拥有几十万台服务器。企业私有云一般拥有数百上千台服务器。“云”能赋予用户前所未有的计算能力。 (2) 虚拟化 云计算支持用户在任意位置、使用各种终端获取应用服务。所请求的资源来自“云”,而不是固定的有形的实体。应用在“云”中某处运行,但实际上用户无需了解、也不用担心应用运行的具体位置。只需要一台笔记本或者一个手机,就可以通过网络服务来实现我们需要的一切,甚至包括超级计算这样的任务。 (3) 高可靠性 “云”使用了数据多副本容错、计算节点同构可互换等措施来保障服务的高可靠性,使用云计算比使用本地计算机可靠。

(4) 通用性 云计算不针对特定的应用,在“云”的支撑下可以构造出千变万化的应用,同一个“云”可以同时支撑不同的应用运行。 (5) 高可扩展性 “云”的规模可以动态伸缩,满足应用和用户规模增长的需要。 (6) 按需服务 “云”是一个庞大的资源池,你按需购买;云可以像自来水,电,煤气那样计费。 (7) 极其廉价 由于“云”的特殊容错措施可以采用极其廉价的节点来构成云,“云”的自动化集中式管理使大量企业无需负担日益高昂的数据中心管理成本,“云”的通用性使资源的利用率较之传统系统大幅提升,因此用户可以充分享受“云”的低成本优势,经常只要花费几百美元、几天时间就能完成以前需要数万美元、数月时间才能完成的任务。 云计算可以彻底改变人们未来的生活,但同时也要重视环境问题,这样才能真正为人类进步做贡献,而不是简单的技术提升。 (8) 潜在的危险性 云计算服务除了提供计算服务外,还必然提供了存储服务。但是云计算服务当前垄断在私人机构(企业)手中,而他们仅仅能够提供商业信用。对于政府机构、商业机构(特别像银行这样

分布式与并行计算报告

并行计算技术及其应用简介 XX (XXX,XX,XXX) 摘要:并行计算是实现高性能计算的主要技术手段。在本文中从并行计算的发展历程开始介绍,总结了并行计算在发展过程中所面临的问题以及其发展历程中出现的重要技术。通过分析在当前比较常用的实现并行计算的框架和技术,来对并行计算的现状进行阐述。常用的并行架构分为SMP(多处理系统)、NUMA (非统一内存存储)、MPP(巨型并行处理)以及集群。涉及并行计算的编程模型有MPI、PVM、OpenMP、TBB及Cilk++等。并结合当前研究比较多的云计算和大数据来探讨并行计算的应用。最后通过MPI编程模型,进行了并行编程的简单实验。 关键词:并行计算;框架;编写模型;应用;实验 A Succinct Survey about Parallel Computing Technology and It’s Application Abstract:Parallel computing is the main technology to implement high performance computing. This paper starts from the history of the development of Parallel Computing. It summarizes the problems faced in the development of parallel computing and the important technologies in the course of its development. Through the analysis of framework and technology commonly used in parallel computing currently,to explain the current situation of parallel computing.Framework commonly used in parallel are SMP(multi processing system),NUMA(non uniform memory storage),MPP(massively parallel processing) and cluster.The programming models of parallel computing are MPI, PVM, OpenMP, TBB and Cilk++, etc.Explored the application of parallel computing combined with cloud computing and big data which are very popular in current research.Finally ,through the MPI programming model,a simple experiment of parallel programming is carried out. Key words:parallel computing; framework; programming model; application; experiment 1引言 近年来多核处理器的快速发展,使得当前软件技术面临巨大的挑战。单纯的提高单机性能,已经不能满足软件发展的需求,特别是在处理一些大的计算问题上,单机性能越发显得不足。在最近AlphaGo与李世石的围棋大战中,AlphaGo就使用了分布式并行计算技术,才能获得强大的搜索计算能力。并行计算正是在这种背景下,应运而生。并行计算或称平行计算时相对于串行计算来说的。它是一种一次可执行多个指令的算法,目的是提高计算速度,及通过扩大问题求解规模,解决大型而复杂的计算问题。可分为时间上的并行和空间上的并行。时间上的并行就是指流水线技术,而空间上的并行则是指用多个处理器并发的执行计算。其中空间上的并行,也是本文主要的关注点。 并行计算(Parallel Computing)是指同时使用多种计算资源解决计算问题的过程,是提高计算机系统计算速度和处理能力的一种有效手段。它的基本思想是用多个处理器来协同求解同一问题,即将被求解的问题分解成若干个部分,各部分均由一个独立的处理机来并行计算。并行计算系统既可以是专门设计的,含有多个处理器的超级计算机,也可以是以某种方式互联的若干台的独立计算机构成的集群。通过并行计算集群完成数据的处理,再将处理的结果返回给用户。 目前常用的并行计算技术中,有调用系统函数启动多线程以及利用多种并行编程语言开发并行程序,常用的并行模型有MPI、PVM、OpenMP、TBB、Cilk++等。利用这些并行技术可以充分利用多核资源适应目前快速发展的社会需求。并行技术不仅要提高并行效率,也要在一定程度上减轻软件开发人员负担,如近年来的TBB、Cilk++并行模型就在一定程度上减少了开发难度,提高了开发效率,使得并行软件开发人员把更多精力专注于如何提高算法本身效率,而非把时间和精力放在如何去并行一个算法。

基于多核CPU的并行计算设计

26/3192294 长春工程学院学报(自然科学版)2009年第10卷第3期 J.Changchun I nst .Tech .(Nat .Sci .Edi .),2009,Vol .10,No .3I SS N 100928984 CN 2221323/N 基于多核CP U 的并行计算设计 收稿日期:2009-03-03 作者简介:谷照升(1965-),男(汉),吉林集安,教授 主要研究:数学应用。 谷照升 (长春工程学院理学院,长春130012) 摘 要:通过多核CP U 上多线程运算的效率分析,给出了相应的并行计算设计方案,并讨论了并行计算的发展趋势。 关键词:并行计算;多线程;多核中图分类号:TP316 文献标识码:A 文章编号:100928984(2009)0320092203 0 引言 在科学研究、工程计算的诸多领域,如凝聚态物理、数据挖掘、航天技术等,经常存在大规模的计算需求。这些计算任务有时还需要一定的实时性。由于单台计算设备处理能力的局限性,并行计算成为解决这类问题的主要技术手段。 迄今为止,并行计算主要的实现模式是将一个较大的运行任务同时并行地分配到多个计算机上执行 [1,2] 。由于各种大型计算一般采用的多是相应专 业的商业化通用软件,而这些软件在设计上都是基于这种并行分布式系统,通过网络构架,以相对较低性能的微机机群获取高效率的计算能力,所以其综合运行需要依赖完善的接口、协议支持[1—4] 。其中, MP I (Message Passing I nterface )是国内外在高性能计算系统中使用最广泛的并行编程的消息传递接口标准。这一标准移植性好、功能强大、效率高,有上百个函数调用接口,可以在各种提供外部扩展接口的高级编程语言中直接调用。 近几年计算机硬件技术与性能有了飞速的发展,多核、大内存乃至双CP U 的微机配置已成为主流。与此同时,W in2000以后的MS 系列操作系统对多核CP U 以及双CP U 资源也提供了完美的支持。而传统的面向机群的并行计算设计却无法利用 多核CP U 所带来的硬件优势。针对这一背景,如何更好地利用单机良好的CP U 多核资源,充分提高大型计算的性能和效率,就成为应该认真对待的问题。 1 基于多线程技术的并行计算 1.1 单机多核CP U 环境下的计算性能分析 为检验操作系统对多核CP U 的支持水平,笔者 编制了专门的测试程序。该程序在W indows XP 下 分别对2、3、4个线程、无多线程(只有程序进程自身的主线程)4种情况,每个线程完成完全相同的一个较大的计算任务进行测试,只有程序主线程时也对应相同任务。各线程同时开始,详细记录各线程开始、结束、总的耗时,精确到m s 。之后,又同时运行2个本测试程序,用计时器控件控制每个程序,同时启动仅用主线程的相同计算,并记录各自的耗时。在不同主频的2台I ntel 双核、2台I ntel 单核的单CP U 微机上分别做同样的测试。为观测CP U 的使 用率,测试过程中除系统本身和测试程序外,不运行其它程序。测试结果见表1。 多机多次实际测试发现,即使是双核双线程模式,每个线程的耗时也不完全相等,但相差基本在100m s 以内,所以表1中多采用“≈”表示。图1给 出了I ntel 双核主频1.60GHz CP U 的Dell 笔记本上3个线程和主线程的测试结果 。 图1 3个线程和主线程的测试结果

大数据并行处理方法与举例

大数据并行处理方法与举例 1、介绍 1.1 背景 互联网行业中,日常运营中生成、累积的用户网络行为数据等大数据规模相当庞大,以 至于不能用G或T来衡量。大数据到底有多大?一组名为“互联网上一天”的数据告诉我 们,一天之中,互联网产生的全部内容可以刻满1.68亿张DVD;发出的邮件有2940亿封之 多(相当于美国两年的纸质信件数量);发出的社区帖子达200万个(相当于《时代》杂志770年的文字量);卖出的手机为37.8万台,高于全球每天出生的婴儿数量37.1万……而到 了2020年,全世界所产生的数据规模将达到今天的44倍。可以说,人类社会已经步入了大 数据时代。然而,大数据用现有的一般技术又难以处理,并且海量的非结构化数据带来的并 不仅仅是存储、传输的问题,做好海量非结构化数据分析以及快速处理以更好的服务客户、 提高业务效率已经成为紧迫的问题。 伴随着数据规模的爆炸式增长,数据并行分析处理技术也在不断进行着改进,以满足大 数据处理对实时性的需求。数据并行处理(Data Parallel Processing)是指计算机系统能够同 时执行两个或更多个处理机的一种计算方法。并行处理的主要目的是节省大型和复杂问题的 解决时间。为使用并行处理,首先需要对程序进行并行化处理,也就是说将工作各部分分配 到不同处理机中。当下比较流行的大数据分布式计算应用最具有代表性的有:MapReduce、Spark和GraphX。下面详细介绍这三种应用的基本原理及应用例子。 1.2 MapReduce 2006年由Apache基金会开发的Hadoop项目,由分布式文件系统HDFS和MapReduce 工作引擎所组成。其中MapReduce采用“分而治之”的思想,把对大规模数据集的操作,分发给一个主节点管理下的各个分节点共同完成,然后通过整合各个节点的中间结果,得到最终结果。简单地说,MapReduce就是“任务的分解与结果的汇总”。在Hadoop中,用于执行MapReduce任务的机器角色有两个:一个是JobTracker;另一个是TaskTracker,JobTracker是用于调度工作的,TaskTracker是用于执行工作的。一个Hadoop集群中只有一台JobTracker。在分布式计算中,MapReduce框架负责处理了并行编程中分布式存储、工作调度、负载均衡、容错均衡、容错处理以及网络通信等复杂问题,把处理过程高度抽象为两个函数:map和reduce,map负责把任务分解成多个任务,reduce负责把分解后多任务处理的结果汇总起来。MapReduce极大地方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统上。 MapReduce在企业中被非常广泛地利用,包括分布grep、分布排序、web连接图反转、

相关主题