搜档网
当前位置:搜档网 › 电厂循环流化床锅炉运行与异常研究

电厂循环流化床锅炉运行与异常研究

电厂循环流化床锅炉运行与异常研究
电厂循环流化床锅炉运行与异常研究

毕业设计

(说明书)

题目:

坑口电厂循环流化床锅炉运行与异常分析

姓名: xxx

学号: xxxxxx

xxxxxxxxxxxxxxxxxxxx

2014年x月x日

xxxxxxxxxxxxxxxxxxxxxxxxxx

毕业设计任务书

姓名 xxx

专业班级 xxxxxxxxxxxxxxxxxxxxxx

任务下达日期 2014 年 2 月 18 日设计开始日期 2014 年 2 月 25 日

设计完成日期 2014 年 4 月 30 日

设计题目:坑口电厂循环流化床锅炉运行与异常分析

指导教师 xxx

院(部)主任 xxx

2014 年5 月8日

xxxxxxxxxxxxxxxxxxxxxxxxxxxxx

毕业设计答辩委员会记录

xxxx 学院 xxxxxxxxxxxx 专业,学生 xxx 于

2014年 6 月 10 日进行了毕业设计(论文)答辩。

设计题目:坑口电厂循环流化床锅炉运行与异常分析

专题(论文)题目:坑口电厂循环流化床锅炉运行与异常分析

指导老师: xxx

答辩委员会根据学生提交的毕业设计材料,根据学生答辩情况,经答辩委员会讨论评定,给予学生 xxx 毕业设计成绩为。答辩委员会人,出席人

答辩委员会主任(签字):

答辩委员会副主任(签字):

答辩委员会委员:,,,,, , 。

xxxxxxxxxxxxxxxxxxxxxxxxxx

毕业设计评语

第页

毕业设计及答辩评语:

摘要

流化床技术最早应用于化学工业的气固两相反应,流化床的基本理论和实践大部分来自化学工业的成就,20世纪60年代后开始将流化床技术应用于煤的燃烧。

循环流化床锅炉拥有高效、清洁、环保等特点,具备了煤粉炉所不具备的诸多特点,被称之为“二十一世纪的燃烧技术”。

本设计根据平煤坑口电厂300MW,1025t/h循环流化床锅炉的实际运行情况,从循环流化床锅炉的运行方面进行研究和分析,力求解决循环流化床锅炉在该电厂使用运行当中的一些实际问题。本文主要包括:平煤坑口电厂1025t/h循环流化床锅炉的主要参数、循环流化床锅炉的工作原理以及循环流化床锅炉的异常运行状态与解决方案。

关键词:循环流化床锅炉;异常运行;故障

目录

摘要......................................................................................................................... I 第一章240t/h循环流化床锅炉简介. (8)

1.1循环流化床锅炉主要参数 (9)

1.2循环流化床锅炉系统 (12)

1.2.1燃烧室 (13)

1.2.2燃烧空气系统 (13)

1.2.2.1一次风系统 (13)

1.2.2.2二次风系统 (13)

1.2.3启动燃烧器系统 (14)

1.2.4制粉和给煤系统 (14)

1.2.5石灰石给料系统 (15)

1.2.6高温旋风分离系统 (15)

1.2.7高温排渣系统 (15)

1.2.8汽水系统 (16)

1.2.9尾部烟道系统 (16)

1.2.10除灰、出灰系统 (16)

第二章循环流化床锅炉的运行与研究 (18)

2.1循环流化床锅炉的工作原理 (18)

2.2循环流化床锅炉的启动 (10)

2.2.1冷态启动 (11)

2.2.2温态启动 (16)

2.2.3热态启动 (16)

2.3循环流化床锅炉运行调整 (18)

2.4循环流化床锅炉的停运 (18)

2.4.1正常停炉 (18)

2.4.2紧急停炉 (19)

2.4.3停炉注意事项 (20)

第三章循环流化床锅炉异常分析及处理 (22)

3.1锅炉满液位 (22)

3.2锅炉低液位 (23)

3.3锅炉汽水共腾 (24)

3.4省煤器管的损坏 (25)

3.5锅炉及管道的水冲击 (26)

3.7锅炉结焦、炉膛超温 (27)

3.8正常运行中炉膛超温结焦 (28)

3.9返料器结焦 (28)

结束语........................................................................................ 错误!未定义书签。参考文献 (31)

第一章240t/h循环流化床锅炉简介

流化床锅炉是一种高效清洁的燃煤发电技术,是目前商业化最好的清洁燃烧技术之一。循环流化床燃烧技术是以处于快速流化状态下的气-固流化床为基础的,具有易于大型化的特点,容量几乎可以像煤粉炉那样不受限制其燃烧技术基本成熟,污染物排放最能够控制在环保指标要求的范围内。循环流化床锅炉独特的流体动力特性和结构使其具备有许多独特的优点,与煤粉炉相比,循环流化床锅炉具有以下技术特点:

1、蓄热量极大,燃烧稳定,对燃料的适应性好:能够报据不同性质的燃料,设计使用相应燃料的循环流化床锅炉,而且能够保证锅炉稳定燃烧,控制污染物排放量在设计范围内。

2、燃烧效率高:循环流化床锅炉采用宽筛分燃料.燃料燃烧过程中进行着内外循环,内循环在整个炉膛内进行、停留时间长、湍流混合强度大:同时未燃尽的燃料被分离器分离下来,输入炉膛进行二次燃烧,较好的提高了燃烧效率。

3、低温燃烧,污染较轻:循环流化床锅炉炉内储有大量高温惰牲物料,正常运行时热物料占护内固体混合物料的98%。可燃物仅占2%左右,锅炉满负荷运行时,维持床温在850~920℃、氧量在 3.5~4.0%范围内,大量惰性热物料能够提供可燃物燃尽所需的热量,使燃料能在较低温度下迅速着火、稳定燃烧。

4、炉内传热强烈:炉膛内受热面的传热系数高于常规煤粉炉,且不存在管外积灰污染问题。

5、锅炉占地面积小。

6、负荷变化范围大,调节特性好:由于炉内储有大量热物料,能够根据电网运行方式和负荷分配要求,停炉压火热备用,实现热态启动,缩短启动、带负荷时间,便于调峰运行;同时能够在30%额定负荷下实现断油稳燃,安全性优于煤粉炉。

7、灰渣可以综合利用:循环流化床锅炉在800~920℃范围内燃烧,形成的灰渣活性较好,有利于灰渣的综合利用,可以用作制造水泥或建筑材料的原料。

随着科技的不断进步,循环流化床锅炉燃烧技术也随之进步,目前国外循环

流化床锅炉燃烧技术已经成熟,而我国由于该技术发展较晚,目前在该技方面多采取引进、消化、吸收的政策,并进行深入研究已经取得了较大的成果。但在锅炉设计、制造、安装、调试、运行及优化方面经验略显不足。需要从设计到运行等多方面的交流与协作,从而共同解决循环流化床锅炉生产运行中的技术问题。现存问题包括:飞灰含碳量仍略高于煤粉炉;对分离器的效率、耐高温和磨损性能要求高;烟风阻力大,风机电耗高、噪声大;锅炉受热面磨损严重等。

现以平煤坑口电厂240t/h循环流化床锅炉为例,对循环流化床锅炉的结构、运行调试进行介绍,对其故障进行分析与处理。

1.1循环流化床锅炉主要参数

济南锅炉厂240t/h循环流化床锅炉为亚临界参数、二次中间再热、自然循环、平衡通风的循环流化床锅炉。循环流化床锅炉的相关技术参数如表1-1、表1-2、表1-3所示。

表1-1.高限工况BMCR

名称单位参数

过热蒸汽流量t/h 1025

过热蒸汽蒸汽出口压力MPa(g) 17.5

过热蒸汽蒸汽出口温度℃540

再热蒸汽入口压力MPa(g) 3.99

再热蒸汽入口温度℃327

再热蒸汽流量t/h 846

再热蒸汽出口压力MPa(g) 3.8

再热蒸汽出口温度℃540

省煤器进口处给水温度℃282

表1-2.额定工况BECR(300MW)

表1-3其他参数

名称正常值高限值低限值

汽包水位0~±50mm +300mm -300mm

炉膛负压-25MPa

给水温度272℃280℃

排烟温度114 121

空气预热器一次风进/出

20/373℃

口温度

20/367℃

空气预热器二次风进/出

口温度

磨煤机分离器出口温度150℃175℃

循环流化床锅炉采用了高效、节能、低污染的外循环流化床锅炉燃煤新技术,它具有燃料适应性广、燃烧效率高、高效脱硫、NOX排放低、结构简单、操作方便等诸多优势。循环流化床锅炉过热器是该锅炉的一个重要部件,其安全运行直接关系到锅炉的使用寿命和生产成本,保证过热器长期的安全运行具有十分重要的意义,在锅炉操作过程中需要注意一下几个方面:

煮炉期间必须保证中低水位,煮炉时,药液不得进入过热器,以免悬浮物在蛇形管中沉淀而造成堵塞。煮炉结束后,应停炉防水,彻底清理过热器内壁的附着物和残渣,试运行前用软水冲洗过热器2小时左右。2

点火前必须打开过热器排气阀和疏水阀,到压力上升时,关闭排气阀同时打开分气缸进气阀和疏水阀。汽包压力达到规定数值时,关小疏水阀直到10%左右

的流量时,关闭疏水阀。

运行中如炉温高时,应打开减温水流量,此时疏水阀应关闭,应关小减温水流量同时打开疏水阀。

在锅炉运行中,如减温水已增至最大时,过热器蒸汽温度还是很高,可通过以下方法降低蒸汽温度:增加锅炉的循环灰量,减少给煤的颗粒度;适当减少给煤量,降低炉温;在氧气许可的条件下,可适当减少二次风。

如减温水已关闭,过热器蒸汽温度仍然偏低,可通过以下方法提高蒸汽温度:放掉一些循环灰,提高炉膛的出口烟气温度;可适当增加二次风量。

时刻检查过热器和锅筒的压差,如压差比平时突然变化,可采取如下措施:压差增大,甚至大于10%的额定压力,说明过热器内部有堵塞现象,应停炉对过热器内壁进行冲洗;压差突然减少,应立即停炉检查过热器是否有爆管现象发生,如有,应更换过的热器管子,再启动锅炉运行。

锅炉给水对过热器的安全运行具有十分重要的意义,锅炉的水质应符合GB1576-2001《工业锅炉水质》的要求:严格控制锅炉锅水的含盐量和碱度,测定氯盐比。将含盐量控制在≤3000mg/L,总碱度≤14mg/L;PH值控制在标准要求的范围内(10~12)。建议最好控制在10.81~1.3以内;锅水碱度过高会使水面泡沫层增厚,分离效果大大下降,也是造成蒸汽带水的重要原因。同时水随蒸汽进入过热器,使盐分沉积在管壁上阻碍传热,对锅水相对碱度应控制在0.2以下。

锅炉运行前对锅筒内件仔细检查,要求锅筒内件焊缝严密,无泄漏点。

严格控制燃烧高硫煤,防止过热器出现高温腐蚀现象。

定期检查高温过热器的防磨,脱落的护瓦要即使焊补,磨穿的护瓦要即时更换,转向的护瓦要即时校正。

锅炉在运行过程中要加强排污操作,连续排污不能中断,定期排污每班不能少于一次。

对有过热器的锅炉,锅炉运行时不能长时间的低负荷运行,特别是低压力高流量的运行,使得过热蒸汽密度降低,流量增大,过热器管子中的蒸汽速度大大

增加,热偏差增大,蒸汽阻力增加,传热恶化,传热量低的管子容易发生爆管现象,所以,锅炉严禁长期低压运行,建议运行压力不低于80%的额定负荷,如确实需要低压运行,需要对流量进行相应折算,计算出一定压力下对应一事实上的安全流量。

注意事项:

由于一、二次风机设计上的不同,在运行中,应根据煤种情况适当减小一次风,增大二次风,也可有效的降低厂用电率,提高锅炉运行的经济性。

1.2循环流化床锅炉系统

循环流化床锅炉在基本本结构上与常规煤粉炉相比差别较大,锅炉主要由炉膛、布风装置、启动燃烧器、高温绝热旋风分离器、自平衡“U”形回料阀和尾部烟道组成。循环流化床锅炉燃烧系统如图1.1所示。

图1.1循环流化床锅炉燃烧系统

1.2.1燃烧室

截面为矩形,其宽度一般为深度的2倍以上,下部为一倒锥型结构,底部为布风板。下部区域为密相区,颗粒浓度较大,是燃料发生着火和燃烧的主要区域,此区域的壁面上敷设耐热耐磨材料,并设置循环飞灰返料口、给煤口、排渣口等。上部为稀相区,颗粒浓度较小,壁面上主要布置水冷壁受热面,通常在炉膛上部空间布置屏式过热器,炉膛内维持微正压。

一次风经床底的布风板送入床层内,二次风口布置在密相区和稀相区之间。炉膛出口布置飞灰分离器,烟气中90%以上的飞灰被分离下来,然后烟气进入尾部对流受热面。

给煤经过机械或气力输送的方式送入炉膛,脱硫用的石灰石颗粒经单独的给料管采用气力输送的方式,或与给煤一起送入炉内,燃烧形成的灰渣经过布风板上的排渣口排出炉外。

1.2.2燃烧空气系统

该锅炉的燃烧空气系统较为复杂.与煤粉炉的差别较大。供风系统主要由一次风、二次风、高压流化风、冷渣热风回风、石灰石粉输送风和引风等系统组成,供风系统中一次风、二次风在燃烧空气中所占份额较大。

1.2.2.1一次风系统

一次风由2台50%容量的一次风机供给,一次风分为两路:第一路经空气预热器预热到218℃,预热后的热风通过水冷布风板后,用以流化混合物料,使燃料在密相内缺氧燃烧;第二路未经预热的冷风直接进入风道燃烧器的配风器内,提供风道燃烧器的燃烧风和混合风。

1.2.2.2二次风系统

二次风由2台50%容量的二次风机供给.二次风分为三路:第一路未经须热的冷风作为给煤机的密封风;第二路经空气预热器预热至220℃的热风送入炉膛中

部的二次环型风箱内,分为上、中、下三路由密相区的不同高度送入炉膛内,实现分级燃烧;第三路经预热后的热风作为落煤口的密封风。

1.2.3启动燃烧器系统

该锅炉设计有启动燃烧器系统,用于锅炉冷态启动点火时加热床体。提供入炉燃烧所需要的热量,维持锅炉的热量平衡,或者在锅炉运行异常需要维持床层温度和整个炉膛的温度分布水平时,投入启动燃烧,维持床层温度在正常运行值的范围内。每台锅炉设计有6支启动燃烧器,总点火容量为25%BMCR,设有2支床下启动燃烧器,4支床上启动燃烧器,启动燃料为#0轻柴油,采用床下、床上联合启动点火方式启动点火。

1.2.4制粉和给煤系统

燃料绪筛分破碎系统改计2套,按照100%容量设计,设计出力为2x1000t/h,一用一备.由一级筛分装置和一级破碎装置组成。碎煤设备分别采用锤击式碎煤机和笼式碎煤机,筛分设备采用滚轴筛。锤击式碎煤机的锤头和破碎板之间的间隙可以调整,笼式碎煤机的转速不能调整,滚轴筛由变频器控制其转速。

系统运行时,一路运行、一路备用,甲路碎煤系统主要通过调整碎煤机锤头和破碎板之间的间隙与控制滚轴筛的转速来控制出口粒度;乙路碎煤系统主要通过调整滚轴筛的转速来控制出口粒度。

当入口煤种和煤质偏离设计值时,出口粒度及分布则很难控制,同时筛分破碎装置的运行工况恶化、运行小时数延长、部件磨损程度增加、设备运行周期缩短。

由煤仓、耐压计量称重式给煤机、埋刮板给煤机和返料斜管组成。设计备用余量为锅炉满负荷运行8h的用煤量;锅炉采取后墙给煤方式,设计有2条给煤线,4个落煤口,4个落煤管交叉布置,落煤口均匀布置在锅炉后墙下部、风帽上部约350mm处。石灰石和回料返送装置返送的物料在回料斜管混合后,在其自身重力的作用下,下落至锅炉密相区下部的燃烧区域中,在一次风作用下流化、燃烧。

1.2.5石灰石给料系统

该锅炉的技术特点之一即是在燃烧过程中,向炉内添加石灰石粉,通过化学反应脱去硫分。

本工程设计的石灰石加料系统,锅炉启动前需要打开下二次风人孔门。添加床料至启动要求高度。石灰石给料系统由:石灰石粉仓、缓冲仓、旋转密封给料阀等装置组成。

当锅炉负荷上升至30%极定负荷时,可投入石灰石控制系统,由控制系统自动控制石灰石的添加量,满足设计的钙硫摩尔比要求,达到燃烧中脱硫的目的。

1.2.6高温旋风分离系统

循环流化床锅炉采用分离、回送装置,将分离出来的大颗粒物料返送至炉膛,热物料进行循环燃烧是循环流化床锅炉的技术特点之一,也是区别于其它燃烧方式的主要标志。

锅炉采用2个内径为7.72米的高温绝热旋风分离器,布置在燃烧室与尾部对流烟道之间,使进入的烟气进行离心分离,将气固两相流中的大部分固体粒子分离下来,通过料腿进入返料装置,送入燃烧室。旋风分离器由中心筒、上部圆筒、下部锥筒和垂直立管组成。

每个旋风分离器垂直立管下端设计有2只返料装置,用作回路密封,并将分离下来的固体物料返送回燃烧室,继续参与循坏、燃烧。在返料装置的底部设计有布风板和风箱.来自高压流化风机的风通过风箱和布风板上风帽来流化、输送物料。

分离器及回料阀外壳由钢板制造,内衬绝热材料及耐磨耐火材料。

1.2.7高温排渣系统

底渣冷却装置采用负压空冷式钢带冷渣器,设备运行可靠性高、维持量小、负压状态下工作、对环境污染小。

排渣冷却系统由排渣管、金属膨胀节、一级钢带冷渣器、二级钢带冷渣器、

斗式提升机、渣库和冷渣风机组成。

每台锅炉设计两个排渣口,布置在锅炉前墙底部、风帽上部约25mm处。底渣从排渣管排出经气动插板阀、膨胀节进入一级风冷钢带冷渣器进行冷却,温度降低至400℃左右;被冷却后的底渣进入二级钢带冷渣器被冷却至180℃,进入斗式提升机.被输送至渣库。系统在输送、冷热却热渣过程中,渣被由冷却风机引入的逆向流动的空气冷却。冷却空气被加热后作为燃烧用风的一部分,由冷却风机升压后回送入炉膛,使底渣从炉膛带走的热量又重新带回、反复利用、减少了热量报失。

空冷负压式钢带冷渣器系统在负压工况下运行,能够很好地降低对周边环境的污染;同时系统设计了功能较为完善的控制、保护装置,一、二级钢带冷渣器内均设计有紧急喷琳装置,用以当冷渣风机故障或者二级冷渣器出口底渣温度超限时.自动喷水降低渣温,使系统能够安全、稳定、可靠的运行。

1.2.8汽水系统

过热蒸汽温度由在过热器之间布置的两级喷水减温器调节,减温喷水来自于给水泵出口,高加进口管道前。冷却再热器的入口布置有事故喷水,冷段和热段再热器中间布置有一级喷水减温器,减温水来自于水泵中间抽水,

1.2.9尾部烟道系统

尾部对流烟道中飘着烟气流向布置有三级过热、一级过热器、冷段再热器、省煤器和空气预热器。尾部烟道采用的包墙过热器为膜式璧结构,省煤器、空气预热器烟到采用护板结构。

1.2.10除灰、出灰系统

每台锅炉配置一台双室四电场静电除尘器,每台静电除尘器配备8个集灰斗,设计有粗、细灰库,第一电场集灰斗的有效贮灰量满足大于8h满负荷运行的集灰量要求。

电除尘器集灰采用正压气力输送系统至灰库。

第二章循环流化床锅炉的运行与研究

2.1循环流化床锅炉的工作原理

循环流化床燃煤锅炉基于循环流态化的原理组织煤的燃烧过程,以携带燃料的大量高温固体颗粒物料的循环燃烧为重要特征。

炉膛内的颗粒物料处于携带速度和气力输送状态之间的流化区间,具有湍流流化和快速流化的特征,固体颗粒充满整个炉膛,处于悬浮并强烈掺混的燃烧方式。颗粒在循环流化床炉膛内的浓度远大于煤粉炉,并且存在显著的颗粒成团和床料的颗粒回混,颗粒与气体间的相对速度大,这一点显然与基于气力输送方式的煤粉悬浮燃烧过程完全不同。

经过预热的一次风(流化风)——通过风室由炉膛底部穿过布风板送入炉膛,炉膛内的固体处于快速流化状态,燃料在充满整个炉膛的惰性床料中燃烧;

炉膛下部为颗粒浓度较大的密相区,上部为颗粒浓度较小的稀相区;

较细小的颗粒被气流夹带飞出炉膛,并由飞灰分离装置收集,经回料管和反料器送回炉膛循环燃烧;

燃料在燃烧系统内完成燃烧和高温烟气向管内工质的热量传递过程。

烟气和未被分离器捕集的细颗粒排入尾部烟道,继续与受热面进行对流换热,最后排出锅炉。

循环流化床锅炉炉内高速流动的烟气与其携带的湍流扰动极强的固体颗粒密切接触,燃料的燃烧过程发生在整个固体循环通道内。在这种燃烧方式下,燃烧室内,尤其是密相区的温度水平受到燃煤过程中的高温结渣和最佳脱硫温度的限制,必须维持在850℃左右。尽管温度较低,但由于炉内颗粒的浓度较大,炉内受热面的传热条件优于常规的煤粉锅炉。由于采用高温固体颗粒物料的循环燃烧方式,炉内温度分布十分均匀,炉内的热容量很大,因此循环流化床锅炉对燃料的适应性优于常规煤粉锅炉,燃烧效率也基本相当。

2.2循环流化床锅炉的启动

1.循环流化床锅炉的启动顺序过程:风机启动----床下启动----燃烧器投入运行----床上启动燃烧器投入运行----炉内床料加热----脉动投煤----锅炉稳定燃烧----并网带初始负荷----断油投煤稳燃----升负荷----满负荷运行。

2.循环流化床锅炉的床温是决定锅炉能否投煤的一个重要条件,因而通常用锅炉的床温作为锅炉启动状态划分的重要参数。循环流化床锅炉的启动状态以床层温度的高低可分为冷态、温态和热态等三种状志。通常划分的标准为:锅炉床温低于650℃时为冷态;锅炉床温介于650~700℃时为温态;锅炉床温高于700℃时为热态。

3.锅炉冷态时,床温为环境温度、较低,启动时要按照锅炉冷态启动的顺序要求,投入启动燃烧器、加热床料,床温上升至投焦温度后,加煤、减油、稳定燃烧、连续供煤,停油撇枪,逐渐增加锅炉负荷。冷态启动过程中要严格控制锅炉汽包上、下壁温差小于50℃,床温上升温速率小于1.5℃/ min,主要是考虑锅炉本体设备系统的膨胀和保养锅炉内外循环系统中各部位浇注料的性能。

4.锅炉温态启动时,床温一般在650~700℃范用内,为了保证投煤后能够稳定燃烧,此时需要点燃一支或两支床上油枪,使床温上升率维持在+l.5~+2.0℃/min,当床温呈现上升趋势时,采取脉动投煤、缓慢减少燃油量,锅炉稳定燃烧时再停油撤枪、增加负荷。

5.锅炉热态启动时由于床温高于700℃,能够使煤迅速着火、称定燃烧,因而风机启动,炉膛负压稳定后,可直接脉动投煤3、4次,燃烧稳定后可连续均匀增大给煤量、快速升至满负荷。

6.机组冷态、温态、热态等工况参傲的划分,要根据锅炉结构、启动燃烧器的布置方式及煤种(设计煤种、试验煤种)等确定,上述的冷态、温态、热态三种锅炉启动方式的参数确定是基于上述原则确定的,可供同类型机组运行操作、调整时参考。

2.2.1冷态启动

1.风机启动顺序:引风机----高压流化风机----二次风机----冷渣器冷却风机----一次风机----石灰石输送风机。锅炉启动时,供风系统可各开启一台风机,调

整一次风量、二次风板及引风量,维持锅炉负压在-50Pa~+50Pa范圈内;当锅炉负荷上升至50%额定负荷以上时,技照风机设计容量、不同负荷下的风量配比和启动顺序要求,开启供风系统的另一台风机,满足对应负荷下的风煤比要求和流化质量要求,控制尾部烟气含氧量在3.5~4.0%范围内。

2.循环流化床锅炉的点火

循环流化床锅炉的点火是指通过某种方式将燃烧室内的床料加热到一定温度,并送风使床内底料呈流化状态,直到给煤机连续给进的燃料能稳定地燃烧。循环流化床锅炉的点火与其它锅炉相比有所不同,点火过程一直是该炉运行中的一个难点问题,尤其是从未接触过循环流化床锅炉或者是鼓泡床锅炉的人员,在未掌握点火方法前,常易引起床料结焦或灭火,既影响锅炉的按时正常启动,又会造成人力物力的浪费。

循环流化床锅炉的点火方式主要分为:固定床点火;床面油枪流态化点火;预燃室流态化油点火和热风流态化点火四种,其优、缺点比较见表1。前三种点火方式使用较多,后文将作详细介绍。

(1)点火前的检查与准备:

①检查燃烧室布风板和分离器等燃烧、循环系统,内部干净,风帽完好无损,通风小孔畅通。排渣管、放灰管和返料阀,无堵塞情况,关闭灵活。

②锅炉本体保温耐火层无脱落、破损现象,所有人孔、观察孔均应关闭,密封严实。

③检查鼓引风机调风门和风室、油点火各送风门是否正常,开关应灵活,指示正确。

④检查煤仓、给煤机、除尘器等辅机系统工作正常。

⑤油点火系统空压机(空气雾化)、油泵、管阀、点火器全面检查、试送正常。

循环流化床锅炉的技术特点

编号:SM-ZD-33151 循环流化床锅炉的技术特 点 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

循环流化床锅炉的技术特点 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 1、燃料适应性广 由于大量灰粒子的稳定循环,新加入循环流化床锅炉的燃料(煤)将只占床料的很小份额。由于循环流化床的特殊流体动力特性,使其中的质量和热量交换非常充分。这就为新加入燃料的预热、着火创造了十分有利的条件。而未燃尽的煤粒子通过多次循环既可增加其炉内停留时间又可多次参与床层中剧烈的质量和热量交换,十分有利于其燃尽。这就使循环流化床锅炉不仅可高效燃用烟煤、褐煤等易燃煤种,同样可高效燃用无烟煤等难燃煤种,还可高效燃用各种低热值、高灰分或高水分的矸石、固体垃圾等废弃物。 2、截面热强度高 同样由于流化床中剧烈的质量和热量交换,不仅使燃烧

过程能在较小截面内完成,还使炉膛内床层和烟气流与水冷壁之间的传热效率也大大增加。这就使循环流化床锅炉的炉膛截面和容积可小于同容量的链条炉,沸腾床锅炉甚至煤粉炉。这一点对现有锅炉的改造尤其具有现实意义。 3、污染物排放少 可利用脱硫剂进行炉内高效脱硫是循环流化床锅的突出优点。常用的脱硫剂是石灰石。通常循环流化床锅炉的床温保持在800-1000oC之间,过高可能因床内产生焦、渣块而破坏正常流化工况,过低则难以保证必要的燃烧温度。而这一区间正是脱硫反应效率最高的温度区间。因而在适当的钙硫比和石灰石粒度下,可获得高达80%--90%的脱硫率。同样由于较低的燃烧温度,加以分级送风,使循环流化床锅炉燃烧时产生的氮氧化物也远低于煤粉炉。这样,燃煤循环流化床锅炉的二氧化硫和氮氧化物排放量都远低于不加烟气脱硫的煤粉炉,可轻易地控制到低于标准允许排放量的水平。

循环流化床锅炉设计《毕业设计》

目录 1 绪论 (3) 1.1循环流化床锅炉的概念 (3) 1.2 循环流化床锅炉的优点 (3) 2 燃料与脱硫剂 (6) 2.1 燃料 (6) 2.2 脱硫剂 (6) 3 无脱硫工况计算 (7) 3. 1无脱硫工况下燃烧计算 (7) 3. 2无脱硫工况下烟气体积计算 (7) 4 灰平衡与灰循环倍率 (8) 4.1 循环灰量 (8) 4.2 灰平衡计算 (8) 4.2.1 灰循环倍率 (8) 4.2.2 a n与a f和ηf的关系 (9) 5 脱硫工况计算 (10) 5.1 脱硫原理 (10) 5.2 NO X的排放 (10) 5.3 脱硫计算 (11) 6 燃烧产物热平衡计算 (14) 6.1 炉膛燃烧产物热平衡方程式 (14) 6.2 燃烧产物热平衡计算 (14) 7 传热系数计算 (17) 7.1 炉膛传热系数 (17) 7.2 汽冷屏传热系数 (17) 7.3 传热系数的计算 (17) 8 炉膛结构设计与热力计算 (20) 8.1 炉膛结构 (20) 8.1.1 炉膛结构设计 (20) 8.1.2 炉膛受热面积计算 (20) 8.2 炉膛热力计算 (21)

9 汽冷旋风分离器结构设计与热力计算 (24) 9.1 汽冷旋风分离器结构设计 (24) 9.2 汽冷旋风分离器热力计算 (24) 10 计算汇总 (27) 10.1 基本数据 (27) 10.1.1设计煤种 (27) 10.1.2 石灰石 (28) 10.2 燃烧脱硫计算 (28) 10.2.1 无脱硫工况时的燃烧工况 (28) 10.2.2 无脱硫工况时的烟气体积计算 (28) 10.2.3 脱硫计算 (29) 10.2.4 脱硫工况时受热面中燃烧产物的平均特性 (32) 10.2.5 脱硫工况时燃烧产物焓温表 (32) 10.3 锅炉热力计算 (34) 10.3.1 锅炉设计参数 (34) 10.3.2 锅炉热平衡及燃料和石灰石消耗量 (34) 10.3.3 炉膛膜式水冷壁传热系数计算 (36) 10.3.4 炉膛汽冷屏传热系数计算 (38) 10.4 结构计算 (41) 10.4.1 炉膛膜式水冷壁计算受热面积 (41) 10.4.2 炉膛汽冷屏计算受热面积 (43) 10.4.3 汽冷旋风分离器计算受热面积 (44) 10.5 热力计算 (46) 10.5.1 炉膛热力计算 (46) 10.5.2 汽冷旋风分离器热力计算 (49) 设计总结 (53) 谢辞 (54) 参考文献 (55)

300MW机组运行规程(锅炉部分)

1 设备技术规范与热工定值 1.1锅炉设备特性 1.1.1北京巴·威有限公司为耒阳电厂二期工程生产的二台B﹠WB-1025/17.2-M锅炉为单汽包、 单炉膛平衡通风、中间一次再热、固态排渣、“w”火焰燃烧方式、露天戴帽布置、亚 临界压力、自然循环燃煤锅炉; 1.1.2锅炉为双拱炉膛,炉膛宽度为21m,上炉膛深度为8.4m,下炉膛深度为15.6m,炉高为 45.12m(由水冷壁下集箱到顶棚),水冷壁下集箱标高为7.6m,汽包中心线标高为56.99m, 炉拱标高为25.37m,.前后拱上各布置8支浓缩型EI-XCL双调风旋流燃烧器,下射式喷 射,火焰呈“W”形。每台燃烧器配备火焰检测器和点火器,火检配备二台探头冷却风 机,点火器由高能点火装置和点火油枪组成,其推进机构采用气动驱动方式。油枪采用 机械雾化,燃用轻柴油,16支油枪可带负荷30%MCR以上。在前后墙上各布置一个分 隔风箱,在下炉膛前后墙布置了分级风,二次风调节系统采用推拉式轴向调风结构。水 冷壁为膜式水冷壁,在热负荷较高的区域布置内螺纹管。有4根集中下降管; 1.1.3过热器由顶棚、包墙、一级过热器、屏式过热器及二级过热器组成。顶棚管处于炉膛和水 平烟道上部;包墙管为膜式结构;一级过热器位于后竖井烟道;屏式过热器位于炉膛上 部;二级过热器位于折焰角上方;一级喷水减温器布置在一级过热器出口集箱到屏式过 热器进口集箱的连接管上,二级喷水减温器布置在屏式过热器出口集箱到二级过热器进 口集箱的导管上,一二级减温器均采用文丘里式; 1.1.4再热器分低温、高温两部分:低温部分布置在竖井前部,由四个水平管组形成,高温部 分布置在水平烟道内;低温再热器进口处有事故喷水,正常调温由烟气挡板调节; 1.1.5省煤器位于尾部竖井后烟道下部的低温区,由与烟气成逆流布置的水平管组和悬吊一级 过热器水平管组的引出管组成。给水从锅炉左侧引入省煤器下集箱。省煤器前后上集箱 通过90度弯头和T形管接头连到一起,给水经由左右两根导管引入锅筒; 1.1.6配备正压直吹式制粉系统,离心式一次风机和密封风机各二台,四台瑞典SVEDALA双进 双出磨煤机,八台沈阳STOCK称重给煤机; 1.1.7风烟系统配两台动叶可调轴流式引、送风机、离心式一次风机,二台三分仓回转式空预 器; 1.1.8五台ATLAS生产的20Nm3/min无油空压机供两台机组仪用和厂用共用; 1.1.9二台BE型电除尘器,设计效率为99.68%,除灰渣系统采用就地集中控制,包括:炉底渣 灰系统,省煤器水力输送系统,溢流水系统; 1.1.10炉膛、水平烟道及尾部受热面配有蒸汽吹灰器; 1.1.11锅炉可带基本负荷和带负荷调峰;锅炉能以滑压和定压模式运行;滑压运行范围为 30-90%BMCR。

循环流化床锅炉技术(岳光溪)

循环流化床技术发展与应用 岳光溪清华大学热能工程系 摘要:循环流化床燃烧技术对我国燃煤污染控制具有举足轻重的意义。我国自上世纪八十年代后采取引进和自我开发两条路线,完全掌握了中小型循环流化床锅炉设计制造技术,在大型循环流化床燃烧技术上已经完成了首台135MWe超高压再热循环流化床锅炉的示范工程。引进的300MWe循环流化床锅炉进入示范实施阶段。燃煤循环流化床锅炉已在中国中小热电和发电厂得到大面积推广使用。中国积累的设计运行经验对世界上循环流化床燃烧技术的发展做出了重要贡献。超临界循环流化床锅炉是今后循环流化床燃烧技术发展极为重要的方向,是大型燃煤电站污染控制最具竞争力的技术。我国已经具备开发超临界循环流化床锅炉的能力,在政府支持下可以实现完全自主知识产权的超临界循环流化床锅炉,扭转过去反复引进的被动局面。 前言 能源与环境是当今社会发展的两大问题。我国是缺油,但煤炭资源相对丰富大国。石油天然气对我国是战略资源,要尽量减少直接燃用。目前一次能源消耗中煤炭占65%,在可预见的若干年内还会维持这个趋势。可见发展高效、低污染的清洁燃煤技术是当今亟待解决的问题。 循环流化床是近年来在国际上发展起来的新一代高效、低污染清洁燃烧技术,具有许多其它燃烧方式所没有的优点: 1)由于循环流化床属于低温燃烧,因此氮氧化物排放远低于煤粉炉,仅为120ppm左右。并可实现燃烧中直接脱硫,脱硫效率高且技术设备简单和经济,其脱硫的初投资及运行费用远低于煤粉炉加FGD,是目前我国在经济上可承受的燃煤污染控制技术; 2)燃料适应性广且燃烧效率高,特别适合于低热值劣质煤; 3)排出的灰渣活性好,易于实现综合利用。 4)负荷调节范围大,负荷可降到满负荷的30%左右。 因此,在我国目前环保要求日益严格,煤种变化较大和电厂负荷调节范围较大的情况下,循环流化床成为发电厂和热电厂优选的技术之一。我国的循环流化床燃烧技术的来自于自主开发、国外引进、引进技术的消化吸收三个主要来源。上世纪八十年代以来,我国循环流化床锅炉数量和单台容量逐年增加。据不完全统计,现有近千台35~460t/h 循环流化床蒸汽锅炉和热水锅炉在运行、安 106.78t/h,见图1;参数从中压、次高压、高压发 展到超高压,单台容量已经发展到670t/h,见图2。 截至2003年,投运台数已有700多台。单炉最大 容量为465t/h,发电量150MWE。近三年,我国 循环流化床锅炉发展迅速,100MWe以上循环流 化床锅炉订货量达到近80台,100MWe以下循环 流化床锅炉订货超过200台。今后,随着环保标 准的提高,供热及电力市场对循环流化床锅炉的 需求将会进一步扩大。

煤的粒度对循环流化床锅炉运行的影响(2021版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 煤的粒度对循环流化床锅炉运 行的影响(2021版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

煤的粒度对循环流化床锅炉运行的影响 (2021版) 煤的颗粒度对循环流化床锅炉运行的影响,如何确保煤的颗粒度是保证循环流化床锅炉正常运行的主要因素、循环流化床锅炉相比具有燃料适用性广、燃烧效率高、环保性能好、负荷调节灵活、灰渣便于综合利用等优点。所以,发展利用劣质煤、节约能源、减少环境污染等都具有深远的意义。 煤的粒度对循环流化床锅炉的影响,循环流化床锅炉的燃烧特点是宽筛分的煤粒在适当的气流作用下,在床中一面翻腾运动,一面燃烧,它既不同于煤粉锅也不同于层燃炉的燃烧方式,它是一种沸腾燃烧。 实践证明,入炉煤的颗粒度对循环流化床锅炉的点火启动、运行控制、燃烧效率、风帽及水冷壁等部件的运行均有很大影响。

对点火启动的影响:循环流化床锅炉的点火过程是通过加热锅炉底料至煤的燃点、到正常燃烧的动态过程,这一过程的成败与流化床底料的高度、配风、给煤等诸多因素有关。点火操作是既要把床内底料加热至投煤温度,又要控制投煤过程中不爆燃、不超温结焦,然后过渡到正常燃烧,接受热幅射。 从颗粒度来看,底料中要有足够的细煤粉作为启动前低温阶段的着火物料和底料温升的热源,细煤粉燃烧要求小风量,流化良好,又使煤粉本身以及所发生热量不被风带走过多。另外,细煤粉受热后温升快,对着火有利,可相应缩短加热到着火减少了热风损失,所以控制好点火床底料及入炉煤的粒度,可大大减少点火启动用燃料,节约能源。点火时,底料过少,会使床料流化不均度不均匀,使点火困难,甚至局部超温、结焦;床料过高,又会使底料升温缓慢,锅炉点火用油耗加大,同时料层阻力增大能增加,影响经济运行。因此,点火时底料静止高度一定要保持适当,大量的运行经验表明,底料的静止高度在400~500mm使锅炉点火顺利进行。在点火初期,底料温度、风温均较低,同样尺寸的颗粒达到沸腾状态的风

循环流化床锅炉的设计与实现毕业设计

循环流化床锅炉的设计与实现毕业设计 目录 目录 (1) 摘要 (1) Abstract (2) 第一章概述 (3) (3) 1.2循环流化床特点 (4) 1.2.1循环流化床优点 (4) 1.2.2循环流化床缺点 (5) 第二章燃料与脱硫剂 (6) 2.1 燃料 (6) 2.2 脱硫剂 (6) 第三章脱硫与排烟有害物质的形成 (7) 3.1循环流化床锅炉在环保上的必要性 (7) 3.2影响循环流化床锅炉SO2的排放控制 (7) 3.2 影响脱硫效率的一些主要因素 (8) 3.3 无脱硫工况燃烧计算 (9) 3.3.1无脱硫工况下燃烧计算 (9) 3.3.2无脱硫工况下烟气体积计算 (9)

第四章物料循环倍率 (10) 4.1循环灰量 (10) 4.2物料循环倍率的选择 (10) 第五章脱硫工况计算 (12) 5.1燃烧和脱硫化学反应式 (12) 5.2脱硫计算 (12) 第六章锅炉燃烧产物热平衡 (17) 6.1脱硫对循环流化床锅炉热效率的影响 (17) 6.1.1脱硫对入炉可支配热量的影响 (17) 6.1.2脱硫对q4的影响 (17) 6.1.3脱硫对q2的影响 (18) 6.1.4脱硫对q6的影响 (18) 6.2锅炉热平衡计算 (18) 第七章传热系数计算 (21) 7.1炉膛膜式水冷壁传热系数计算 (21) 7.2炉膛汽冷屛传热系数计算 (22) 第八章锅炉结构设计 (24) 8.1炉膛设计 (24) 8.1.1炉膛介绍 (24) 8.1.2炉膛床温选择 (24) 8.1.3炉膛高度的选择 (25) 8.2炉膛汽冷屛设计 (25)

8.3汽冷旋风分离器设计 (26) 8.4回料器的设计 (27) 第九章热力计算 (29) 9.1炉膛热力计算 (29) 9.2汽冷旋风分离器热力计算 (31) 第十章尾部受热面 (34) 10.1 过热器 (34) 10.2 省煤器 (34) 10.3 空气预热器 (36) 第十一章计算结果 (38) 11.1 基本数据 (38) 11.1.1 设计煤种 (39) 11.1.2 石灰石 (39) 11.2 燃烧脱硫计算 (39) 11.2.1 无脱硫计算时的燃烧计算 (39) 11.2.2 无脱硫工况时的烟气体积计算 (40) 11.2.3 脱硫计算 (40) 11.2.4 脱硫工况时受热面中燃烧产物的平均特性 (43) 11.2.5 脱硫工况时燃烧产物焓温表 (43) 11.3 240t/h CFB 锅炉热力计算 (45) 11.3.1 锅炉设计参数 (45) 循环硫化床燃烧 (45)

电厂锅炉检修技术措施

一、工程概况及特点 1、工程概况 神华亿利能源有限责任公司电厂(4×200MW)煤矸石电厂工程位于内蒙古鄂尔多斯市达拉特旗树林召镇。厂址建于亿利化学工业有限公司工业园区内。总装机容量4×200MW,一次全部建成。本工程采用循环流化床锅炉、直接空冷凝汽式汽轮机、发电机采用空冷式。 神华亿利能源有限责任公司电厂4×200MW工程采用EPC总承包形式,由山东电力工程咨询院总承包; #1-#4机组主厂房土建及安装由内蒙古电建二公司承建;化学系统、循环水泵房由东北电建二公司承建;空冷系统由中国十五冶承建。 锅炉制造厂:上海锅炉有限公司 型号:SG-690/13.7-M451 型式:超高压再热参数、单汽包自然循环、岛式布置、全钢架支吊结合的循环流化床锅炉。锅炉采用高温绝热旋风分离器进行气固分离,运转层标高为10m。 锅炉采用岛式紧身封闭布置、全钢结构、炉顶设置轻型钢屋盖。锅炉采用支吊结合的固定方式,锅炉运转层标高为10m。锅炉采用单锅筒自然循环、集中下降管、平衡通风、绝热式旋风气固分离器、循环流化床燃烧方式、滚筒冷渣器,后烟井内布置对流受热面,过热器采用两级喷水调节蒸汽温度,再热器采用以烟气挡板调节蒸汽温度为主、事故喷水装置调温为辅。 锅炉采用平衡通风,炉膛的压力零点设置在旋风分离器进口烟道内。循环流化床内物料的循环是由送风机(包括一、二次风机)和引风机启动和维持的。从一次风机出来的燃烧空气先后经由暖风器、一次风空气预热器加热后一路进入炉膛底部一次风室,通过布风板上的风帽使床料流化,并形成向上通过炉膛的固体循环; 6台给煤机布置在炉前,连接炉前大煤斗和落煤管,根据锅炉负荷要求的燃料量将破碎后的燃煤输送到落煤管进口。锅炉共设置四台水冷滚筒式冷渣器,分布于炉膛下部,布置在零米层,采用以水冷为主、风冷为辅的双冷却形式。 2、编制依据 1.神华亿利能源有限责任公司电厂#4机组A级检修锅炉标段招标文件 2.《发电企业设备检修导则》 DL/T838-2003 3.《火力发电厂焊接技术规程》DL/T 869-2004 4.《火力发电厂异种钢焊接技术规程》DL/T 752-2001 5.《焊接工艺评定规程》DL/T 868-2004 6.《电力建设施工及验收技术规范》(2004年版) 7.《钢熔化焊对接接头射线照相和质量分级》 UDA 621.791.65.05GB 3323—87

循环流化床锅炉的原理及结构

循环流化床锅炉的原理及结构 循环流化床锅炉是在炉膛里把燃料控制在特殊的流化状态下燃烧产生蒸汽的设备。 循环流化床锅炉工作原理及特点: 固体粒子经与气体或液体接触而转变为类似流体状态的过程,称为流化过程。流化过程用于燃料燃烧,即为流化燃烧,其锅炉称为流化床锅炉。 循环流化床锅炉是在鼓泡流化床锅炉技术的基础上发展起来的新炉型,循环流化床锅炉炉内流化风速较高(一般为4~8m/s),在炉膛出口加装了气固物料分离器。被烟气携带排出炉膛的细小固体颗粒,经分离器分离后,再送回炉内循环燃烧。 循环流化床锅炉可分为两个部分:第一部分由炉膛(快速流化床)、气固物料分离器、固体物料再循环设备等组成,上述部件形成了一个固体物料循环回路。第二部分为对流烟道,布置有过热器、省煤器和空气预热器等,与其它常规锅炉相近。 循环流化床锅炉燃烧所需的一次风和二次风分别从炉膛的底部和侧墙送入,燃料的燃烧主要在炉膛中完成,炉膛四周布置有水冷壁用于吸收燃烧所产生的部分热量。炉膛内燃烧所产生的大量烟气携带物料经分离器入口加速段加速进入分离器,将烟气和物料。物料经料斗、料腿、返料阀再返回炉膛;烟气自中心筒进入分离器出口区,流经转向室、进入尾部烟道。 锅炉给水经省煤器加热后进入汽包,汽包内的饱和水经集中下降管、分配管进入水冷壁下集箱,加热蒸发后流入上集箱,然后进入汽包;饱和蒸汽流经顶棚管、后包墙管、进入低温过热器,由低过加热后进入减温器调节汽温,然后经高过将蒸汽加热到额定蒸汽温度,进入汇汽集箱至主气管道。 循环流化床锅炉燃烧的基本特点: (1)低温的动力控制燃烧 循环流化床燃烧是一种在炉内使高速运动的烟气与其所携带的湍流扰动极强的固体颗粒密切接触,并具有大量颗粒返混的流态化燃烧反应过程;同时,在炉外将绝大部分高温的固体颗粒捕集,并将它们送回炉内再次参与燃烧过程,反复循环地组织燃烧。炉膛温度一般控制在850-950℃之间,(850℃左右为最佳脱硫温度)低于一般煤的灰熔点。

循环流化床锅炉操作工安全技术操作规程(标准版)

( 操作规程 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 循环流化床锅炉操作工安全技术操作规程(标准版) Safety operating procedures refer to documents describing all aspects of work steps and operating procedures that comply with production safety laws and regulations.

循环流化床锅炉操作工安全技术操作规程 (标准版) 一、锅炉点火启动 第1条打开风室人孔门,检查内部无杂物积灰,无堵塞、无破缝、无变形。 第2条检查布风板上所有风帽有无损坏现象,风孔无堵塞,放渣管无变形、开裂现象。 第3条燃烧室喷嘴无堵塞现象。 第4条所有炉墙的膨胀缝用酸铝耐火纤维充填严密。 第5条旋风分离、转变烟道及返料器中无杂物、积灰,返料器布风板上的风帽小孔无堵塞现象。 第6条所有的测点无堵塞、损坏现象。热电偶一般插入炉膛10~15mm。

二、漏风试验和烘炉 第7条漏风试验: 1、将所有的人孔门、看火门、检查门关闭。 2、启动引风机,保持炉膛负压为8-10㎜H2O。 3、用点燃的火把靠近炉墙、烟道、炉顶等处逐一检查,如火舌被吸,则表明漏风,漏风部位经试验确定无误后作标记,试验结束后予以检修消除。 第8条烘炉 1、在流化室烘炉 (1)待炉墙炉顶施工完毕自然养护三天后,方可进行烘炉。 (2)在布风板上装入0-8㎜底料(以沸腾炉渣最宜),厚度为300㎜。 (3)打开引风调节门。 (4)放入木柴,点火烘炉。烘炉时控制预热器的温度。 (5)在烘炉初期24小时内,排烟温度应<50℃ (6)24小时后,逐步增大火势,将排烟温度提高至60-80℃,稳

3MW循环流化床锅炉设计特点及运行情况分析.doc

3MW循环流化床锅炉设计特点及运行情况分析

135MW循环流化床锅炉设计特点及运行情况分析 1.概述 徐州彭城电力有限责任公司位于江苏省徐州市,根据国家环保及节约能源要求,扩建两台440t/h超高压中间再热循环流化床锅炉及135MW汽轮发电机组。 工程设计单位是中南电力设计院,锅炉由武汉锅炉股份公司供货,汽轮机和发电机由哈尔滨汽轮机有限公司供货。山东电力建设第三工程公司负责电厂主机的安装施工,机组调试由山东电力研究院负责。江苏兴源电力建设监理有限公司负责整个工程的监理工作。 机组于2004年2月28日开工建设,两台机组分别于2005年7月11日和9月16日顺利完成168小时满负荷试运行,移交电厂转入商业运行。 2.锅炉整体布置特点 2.1 锅炉本体设计参数及布置特点 锅炉是武汉锅炉股份有限公司采用引进的ALSTOM公司技术设计制造的首台440t/h超高压中间再热、高温绝热旋风分离器、返料器给煤、平衡通风、半露天布置的锅炉。 锅炉的主要设计参数如下表所示: 名称单位B-MCR B-ECR 过热蒸汽流量t/h 440 411.88 过热蒸汽出口压力MPa(g> 13.7 13.7 过热蒸汽出口温度℃540 540 再热蒸汽流量t/h 353.29 330.43 再热蒸汽进口压力MPa(g> 2.755 2.56 再热蒸汽进/出口温度℃318/540 313/540

锅炉启动点火和低负荷稳燃。炉膛前墙布置流化床风水冷冷渣器,把渣冷却至150℃以下。 第二部分为炉膛与尾部烟道之间布置有两台高温绝热旋风分离器,每个旋风分离器下部布置一台非机械型分路回料装置。回料装置将气固分离装置捕集下来的固体颗粒返送回炉膛,从而实现循环燃烧。 第三部分为尾部烟道及受热面。尾部烟道中从上到下依次布置有过热器、再热器、省煤器和空气预热器。过热器系统及再热器系统中设有喷水减温器。管式空气预热器采用光管卧式布置。 锅炉整体呈左右对称布置,支吊在锅炉钢架上。 2.2 锅炉岛系统布置特点 输煤系统:原煤经两级破碎机破碎后,由皮带输送机送入炉前煤斗,合格的原煤从煤斗经二级给煤机,由锅炉返料斜腿进入炉膛燃烧。床料加入系统:启动床料经斗式提升机送入启动料斗,再通过输煤系统的给煤机,由锅炉返料斜腿进入炉膛。 一次风系统:一次风经空预器加热成热风后分成两路,第一路直接进入炉膛底部水冷风室,第二路进入床下启动燃烧器。 二次风系统:二次风共分四路,第一路未经预热的冷风作为给煤机密封用风,第二路经空预器加热成热风后分上、下行风箱进入炉膛,第三路热风作为落煤管输送风,第四路作为床上启动燃烧器用风。 返料器用风系统:返料器输送风由单独的高压流化风机<罗茨风机)供应,配置为2x100%容量<一运一备)。

电厂锅炉专业总结

2007年年度发电部锅炉专业总结 2007年即将过去,这一年里在公司、安生部、发电部的领导下,按照公司年初制定的生产目标和任务,做为发电部锅炉运行专责工程师能够严格执行并认真落实,保证了本专业的安全、经济运行,完成了本年度的安全生产任务,特别是在保“元旦”、“春节”、“五一”、“十一”节日用电,在保“两会”及党的“十七”政治用电期间,制定了详细的措施,未出现了任何异常情况,确保了用电的安全,在年内凡大的操作如:开停机、主要设备的试验、大小修后的设备验收等工作,都是亲自到现场指导监督,在日常运行中加强了运行人员的技术培训工作,提高了运行人员技术水平,积极参加并认真落实了集团公司安评复查整改工作和集团公司运行规程审核修订的工作,能够协调好与维护部、安生部及运行各值的工作关系,具体主要体现在如下几个方面: 一、安全运行方面 1.针对#6、#7炉在冬季、夏季大负荷期间,炉内结焦问题,在总工、 安生部的领导下,组织了本专业的燃烧调整工作,统计了相关数据并进行了分析研究,制定了相关运行措施,根据公司来煤煤种的不同,逐渐摸索出合理的配烧方式和最佳的运行模式,使今年掉焦情况明显低于去年,特别是对准格尔、张家口煤的配烧,在本着确保安全的前提下,降低了公司运营的成本。 2.针对往年运行中出现喷燃器烧损问题,今年加强了这方面的工作, 分析、研究、总结了以往的现象、原因、措施,分别从煤质方面、一次风风速、一次风风温和喷燃器构造等方面着手,采取了相应

的措施,确保了今年未出现喷燃器烧损现象的发生。 3.针对#6、#7炉捞渣机因运行年头长,设备老化,容易出现故障而 影响机组运行的情况,采取了由除灰班长与零米值班工共同加强对捞渣机的巡检工作,发现问题及时联系检修处理,避免了事故的扩大,在今年未因捞渣机故障造成机组降负荷甚至被迫停炉的事故的发生. 4.针对脱水仓经常出现溢流问题,组织了除灰专业进行了分析,通 过零米与回水泵两岗位之间反复调试,在目前设备状况下(灰管路积灰,流通面积变窄),在保证除灰、除渣系统正常的情况下,在保证捞渣机、渣泵正常运行的前提下,控制额外用水量,多用回水,减少溢流情况的发生. 5.天然气调压站系统、油站系统泄漏检查 做为防火重点的天然气升压站,检漏工作非常重要,尤其在系统有泄漏点后,从新制定巡检路线和巡检次数,并建立了检漏记录。 在油站运行中除正常巡检外,配备了油气浓度检测仪,建立了检漏记录,尤其在汽车卸油过程中,加强了油气浓度的测检工作,确保了安全卸油工作,强化了油站出入登记制度和防火制度. 二、经济运行方面 1.按照公司的月度指标计划,认真执行并加以落实,首先确保每月 发电量任务的完成,没有因锅炉专业问题造成机组出力受阻,如因#6炉屏过第一点温度测点指示偏高问题,影响#6炉指标,经过认真分析、观察,在对照其材质查阅了相关资料后,并报总工批准进行

循环流化床锅炉简介

循环流化床锅炉简介 摘要:本文主要对国内外循环流化床发展现状进行了简略的总结、归纳,并通过与 国外循环流化床技术大型化、高参数的发展趋势对比,对我国循环流化床锅炉技术 发展前景进行展望同时,阐述了主要研究方法,技术路线和关键科学技术问题。 关键词:循环流化床;国内外现状;研究方法;技术路线;科学技术问题;前景 Abstract: This paper briefly summarized the current situation about the development of circulating fluidized bed at home and abroad,compared with the foreign circulating fluidized bed technology which has a large development trend,and investigated the prospects of circulating fluidized bed boiler technology in China.At the same time, this paper expounds the main research method, the technical route and to solve the key technological problems. Key words: CFB;development at home and abroad;research method;technical route ; key technological problems ;prospect 1 前言 循环流化床锅炉是从鼓泡床沸腾炉发展而来的一种新型燃煤锅炉技术,它的工作原理是将煤破碎成0~10mm 的颗粒后送后炉膛,同时炉膛内存有大量床料(炉渣或石英砂),由炉膛下部配风,使燃料在床料中呈“流态化”燃烧,并在炉膛出口或过热器后部安装气固分离器,将分离下来的固体颗粒通过回送装置再次送入炉膛燃烧[1]。 循环流化床锅炉的运行特点是燃料随床料在炉内多次循环,这为燃烧提供了足够的燃尽时间,使飞灰含碳量下降。对于燃用高热值燃料,运行良好的循环流化床锅炉来说,燃烧效率可达98%~99%相当于煤粉燃烧锅炉的燃烧效率。 循环流化床锅炉具有良好的燃烧适应性,用一般燃烧方式难以正常燃烧的石煤、煤矸石、泥煤、油页岩、低热值无烟煤以及各种工农业垃圾等劣质燃料,都可在循环流化床锅炉中有效燃烧。 由于其物料量是可调节的,所以循环流化床锅炉具有良好的负荷调节性能和低负荷运行性能,以能适应调峰机组的要求与环境污染小的优点[2],因此在电力、供热、化工生产等行业中得到越来越广泛的应用。 2 循环流化床锅炉国内外研究现状 2.1 国外研究现状及分析 国际上,循环流化床锅炉的主要炉型有以下流派:德国Lurgi公司的Lurgi型;原芬兰Ahlstrom公司(现为美国Foster Wheeler公司)的Pyroflow型;德国Babcock公司和VKW公司开发的Circofluid型;美国F. W.公司的FW型;美国巴威(Babcock&Wilcox)公司开发的内循环型;英国Kaverner公司的MYMIC型。 大型化、高参数是目前各种循环流化床锅炉的发展趋势,国际上大型CFB 锅炉技术正在向超临界参数发展。国际上在20世纪末开展了超临界循环流化床的研究。世界上容量为100~300MW的CFB电站锅炉已有百余台投入运行。Alhstrom和FW公司均投入大量人力物力开发大容量超临界参数循环流化床锅炉。由F.W.公司生产出了260MW循环流化床锅炉,并安装在波兰[3]。特别是2003年3月F.W.公司签订了世界上第一台也是最大容量的460MW 超临界循环流化床锅炉合同,将安装在波兰南部Lagisza电厂[4]。由西班牙的Endesa

循环流化床锅炉运行规范

目录 1 锅炉设备系统简介 (1) 1.1锅炉整体布置 (1) 1.2循环回路 (1) 1.3燃烧系统流程 (2) 1.4过热蒸汽流程 (2) 1.5再热蒸汽流程 (3) 2 设备规范 (4) 2.1锅炉设备概况 (4) 2.2锅炉要紧参数 (9) 3 锅炉主控各系统 (14) 3.1给煤系统 (14) 3.2石灰石系统 (15) 3.3床料的补充 (17) 3.4燃油系统 (17) 4 试验与养护 (19) 4.1检修后的检查验收 (19) 4.2设备试验总则 (19) 4.3主机联锁爱护试验规定 (20) 1 / 1

4.4水压试验 (21) 4.5过热器反冲洗 (25) 4.6安全门试验 (25) 4.7锅炉主联锁爱护 (26) 4.8锅炉烘炉养护 (28) 5 锅炉机组的启动 (29) 5.1总则 (29) 5.2启动前检查工作和应具备的条件 (29) 5.3锅炉上水 (32) 5.4锅炉底部加热 (33) 5.5冷态启动 (34) 5.6锅炉的温态启动和热态启动 (39) 6 锅炉运行中的操纵与调整 (42) 6.1运行调整的要紧任务 (42) 6.2定期维护工作及规定 (42) 6.3运行中要紧参数的操纵范围 (43) 6.4锅炉的运行调节 (43) 7 停炉及停炉后的保养 (51) 7.1停炉的有关规定 (51)

7.2停炉前的预备工作 (51) 7.3正常停炉 (51) 7.4锅炉的快速冷却 (52) 7.5锅炉放水 (52) 7.6停炉至热备用 (53) 7.7停炉的注意事项 (53) 7.8停炉后的保养 (53) 8 锅炉事故处理 (55) 8.1事故处理原则 (55) 8.2紧急停炉条件 (55) 8.3请示停炉条件 (56) 8.4紧急停炉的操作步骤 (56) 8.5床温高 (57) 8.6床温低 (58) 8.7床压过高或过低 (59) 8.8单条给煤线中断 (60) 8.9两条给煤线中断 (61) 8.10水冷壁泄漏及爆管 (62) 8.11过热器泄漏及爆管 (63) 1 / 1

生物质循环流化床锅炉技术介绍

生物质循环流化床锅炉技术介绍 发表时间:2019-09-21T22:55:42.280Z 来源:《基层建设》2019年第19期作者:刘曼 [导读] 摘要:生物质能是重要的可再生能源,具有资源来源广泛、利用方式多样化、能源产品多元化、综合效益显著的特点。 中国能源建设集团山西电力建设有限公司山西太原 030012 摘要:生物质能是重要的可再生能源,具有资源来源广泛、利用方式多样化、能源产品多元化、综合效益显著的特点。生物质锅炉供热具有清洁环保经济适用的特点,一是技术比较成熟,工艺简单;二是大气污染物排放较少,生物质燃料锅炉燃烧排放SO2浓度较低,安装除尘设施后锅炉烟尘、氮氧化物排放可达到轻油排放标准,以林业剩余物为主的生物质燃料锅炉大气污染物排放可达到天然气标准;三是经济可行,生物质燃料价格较低,生物质锅炉供热有着较为明显的成本优势;四是分布式供热,直接在终端消费侧替代燃煤供热,分散布局,运行灵活,适应性强,满足多元化用热需求。目前国内生物质燃烧的锅炉有往复式炉排炉、水冷振动式炉排炉、循环流化床锅炉、联合炉排锅、链条炉等等。其中链条炉和循环流化床运行较为广泛。本文对循环流化床锅炉和链条炉进行分析比较,为生物质锅炉选型提供依据。 关键词:生物质;循环流化床锅炉;链条炉;技术性能比较;经济性比较 引言 生物质是清洁、稳定、分布广泛的可再生资源,生物质的利用符合能源转型、碳减排、清洁环保及治理雾霾的能源发展战略。随着国家对环境保护的要求不断提高,生物质等可再生能源的重要性逐渐增加,国家先后发布多个文件,大力支持生物质发电技术应用推广。生物质发电技术包括生物质直接燃烧发电、生物质混合燃烧发电、生物质气化发电等。生物质直接燃烧技术生产过程比较简单,设备和运行的成本相对较低,是现行的可以大规模推广利用的技术。而循环流化床燃烧方式因其强烈的传热、传质、低温燃烧、燃料适应性广,负荷调整范围宽、燃烧效率高等特点,被广泛的应用于生物质发电。本文从生物质燃料的特点出发,介绍生物质直燃流化床锅炉的技术特点及相关技术问题。 1生物质燃料特性 1.1几种典型的生物质燃料 固体生物质燃料取材广泛,主要包括木本原料,即树木和各种采伐、加工的残余物质;草本原料,如农作物秸杆、草类及加工残余物;果壳类原料,如花生壳、板栗壳等;其他混杂燃料,如生活垃圾、造纸污泥等。 1.2生物质燃料灰分特性 生物质灰中含有丰富的无机矿物质成分,如:硅酸盐、碳酸盐、硫酸盐与磷酸盐等,灰的组成对生物质的热解特性有着重要的影响,且硅酸盐、碱金属及碱土金属的存在易引起管路系统的结渣、堵塞。为了安全、高效地运行,需对生物质灰的主要矿物质及微量元素的组成进行全面的分析。 2生物质CFB锅炉技术开发 2.1国内外生物质发电技术应用 我国生物质能目前主要以农林废弃物为主,农业废弃物主要是农作物秸秆。生物质发电产业通常包括生物质直燃发电、生物质混燃发电和生物质气化发电。国外烧秸秆及其它生物质的新建机组一般都采用了炉排燃烧的小型锅炉。秸秆通常被打成标准尺寸的大捆,应用专用设备打捆、装卸和运输。秸秆通过螺旋送料机,送进炉膛,在炉排上燃烧。 2.2生物质CFB锅炉技术介绍 CFB锅炉的燃烧方式、高温床料、特殊的物料循环系统,低温燃烧、燃料的适应性广等特性,使其更适合生物质燃料的复杂多变及低氮排放要求。锅炉采用单汽包、自然循环、单段蒸发系统,炉膛蒸发受热面采用膜式壁,炉膛内内置屏式三级过热器和水冷屏,以提高整个过热器系统的辐射传热特性,使锅炉过热汽温具有良好的调节特性。旋风分离器采用汽冷结构,回料阀为非机械型,回料为自平衡式。炉膛、分离器、回料阀组成了物料的热循环回路,分离后的烟气进入尾部烟道。尾部烟道采用三烟道型式,下行的一烟道内布置低温过热器、上行的二烟道内布置中温过热器和高温省煤器,下行的三烟道内布置低温省煤器和空气预热器。一、二烟道为膜式壁的包墙过热器,三烟道采用护板结构。低NOx燃烧技术和炉内脱硫,可有效控制NOx和SOx的排放,满足环保要求。同时为进一步超低排放,在分离器入口烟道预留SNCR.接口。 2.3相关配套设备 由于生物质燃料堆积密度小、比重轻,自密封性差,给料设备的选型尤为重要。可以采用两级螺旋给料系统或两级挡板给料系统。生物质锅炉沾污问题较重,一整套性能良好、质量可靠、数量足够的吹灰设备能在锅炉运行时保持尾部烟道内的过热器、再热器、省煤器和空气预热器受热面的清洁。由于生物质燃料灰分低、成灰特性差,可以考虑增加在线加料系统,以补充循环灰量的不足并能稀释碱金属浓度,降低结焦的风险,提高运行的安全性。 3流化床锅炉尾部排放NOx生成原理 3.1热力型和快速型 通过资料得知,1500℃是热力型NOx生成临界点。当温度<1500℃时,NOx不易生成;当温度>1500℃时,NOx生成量猛增。由于实际生产中本厂炉膛温度处于600-850℃,因此热力型不是本厂NOx的生成原因。另外快速型NOx由于其产生特点,实际生产中通常也不作为控制方向。 3.2燃料型 燃料型NOx是由燃料中的氮元素在燃烧时形成的。炉膛温度约为600℃-800℃时,燃料型NOx就能生成。研究发现空气系数是最重要的原因,转化率随空气系数增加而增大。结合本厂的实际情况得知,燃料型NOx是主要元凶,也是最主要的控制方向。在曲线中可以清晰的看到,当两侧空气系数升高时,NOx的生成量快速升高;当两侧空气系数降低时,NOx的生成量快速下降。因此控制合适的空气系数是重中之重。 4生物质锅炉生产中 NOx的控制方法(1)加强上配料精细化管理,燃运分部制定好当天的上配料方案,并按上配料方案提前做好干湿燃料的混合工作。上

电厂锅炉运行规程[1]

锅炉运行规程 (二00七年三月修订) 江苏省淮海盐化有限公司热电分厂 二00七年三月 前言 一、本规程根据《电力工业技术管理法规》、部颁《锅炉运行规程》和制造厂锅炉使用 说明书,并吸取了同类型锅炉机组的有关规定及经验,结合本厂实际情况编订,现予颁发。 二、本规程经分厂,生产技术部审核后予以颁布。 三、下列人员必须熟悉本规程: 1.锅炉运行班长及锅炉运行人员; 2.运行管理人员 3.其它相关人员 本规程审批程序 编写 初审 复审 审批 总目录 第一篇运行管理制度 第一章总则 第二章岗位责任制度 第一节班长岗位责任制 第二节司炉岗位责任制 第三节副司炉岗位责任制 第三章交接班制度 第四章培训制度 第五章巡回检查制度 第六章运行监护操作制度 第七章设备定期维护制度 第八章运行分析制度 第九章设备清洁管理及文明卫生制度 第二篇锅炉机组的运行 第一章设备及燃料的简要特性 第二章锅炉检修后检查和验收 第一节锅炉设备的验收 第二节锅炉检修后的检查 第三节锅炉进水 第四节水压试验 第五节过热器反冲洗 第六节转动机械的试运行及联锁试验 第七节漏风试验 第三章锅炉机组的启动

第一节启动前的检查 第二节启动前的准备 第三节锅炉烘炉 第四节锅炉点火 第五节锅炉升压 第六节汽包水位计冲洗操作 第七节安全阀的校验 第八节主蒸汽管暖管操作 第九节锅炉并汽 第四章锅炉运行中的监视和调整第一节锅炉运行调整任务 第二节锅炉水位的调整 第三节锅炉燃烧调整 第四节蒸汽压力的调整 第五节蒸汽温度的调整 第六节锅炉排污 第七节除尘器的运行 第八节转动机械的运行 第九节锅炉除渣与打焦 第十节锅炉设备的运行和维护第五章锅炉机组的停止 第一节停炉前的准备 第二节正常停炉 第三节检修停炉 第四节停炉后的防腐保养 第五节停炉后的防冻 第六章锅炉机组的事故及故障处理第一节事故处理总则 第二节事故停炉 第三节故障停炉 第四节锅炉满水 第五节锅炉缺水 第六节汽包水位计损坏 第七节汽水共腾 第八节锅炉排管、水冷壁管损坏 第九节省煤器损坏 第十节过热器管损坏 第十一节减温器损坏 第十二节蒸汽及给水管道的损坏 第十三节锅炉及管道的水冲击 第十四节烟道二次燃烧 第十五节锅炉结焦 第十六节负荷骤减(甩负荷)

循环流化床锅炉给煤机介绍

循环流化床给煤机介绍 1、产品概述 目前世界上,专业研制开发循环流化床给煤、给料设备的制造商仍然是美国STOCK设备公司,我国最早的流化床电厂:宁波中华纸业自备电厂,镇海炼化自备电厂均采用美国STOCK给煤机。即便现在,在流化床锅炉给煤设备基本国产化的情况下,国内首台300MW 循环流化床电厂-四川白马电厂的给煤机仍然采用美国STOCK给煤机。 循环流化床电厂在我国发展的历史并不是很长,九十年代初在我国沿海城市开始建设,我公司是国内首家提供与循环流化床锅炉配套的计量给煤机、计量石灰石给料机和埋刮板给煤机的设备制造厂家。目前,国内最早的CFB用户-杭州热电厂、重庆爱溪电厂给煤机已运行8、9年,情况较好。这些电厂是我公司第一代产品。2001年,芬兰FW公司总包的上海石化自备电厂,2004年我国投建的300MW循环流化床电厂云南小龙潭电厂、内蒙蒙西电厂,这些电厂系统及设备的复杂程度均高于目前国内流化床电厂的给煤形式,给煤机和给料机在国内唯一选中沈阳STOCK公司。 微机控制称重式计量给煤机是燃煤电厂锅炉系统中的关键辅机设备之一,在CFB锅炉系统中称重式计量给煤机的首要功能是将煤连续均匀的送入锅炉中,同时通过微机控制系统,在运行过程中完成

准确称量并显示给煤情况,同时根据锅炉燃烧情况自动调节控制不同煤种给煤量,使供煤量与燃烧空气量配比科学,保证燃烧始终处于最佳状态,即保证实际给煤量与锅炉负荷相匹配,进而保证电厂获得最佳经济效益。 我公司生产的给煤机是集十几年研制,生产给煤机的经验,并融合目前世界上先进美国STOCK公司称重式给煤机和其他类型给煤机的优点研制开发的结构合理,性能先进,运行安全可靠的理想给煤设备。 2、产品组成系统说明 对于CFB锅炉系统,称重式计量给煤机系统主要由:煤仓出口煤闸门,上部落煤管,可调联接节,称重式计量给煤机等部分组成。其中称重式计量给煤机由给煤机本体,微机控制系统、主驱动电机、主驱动减速机、清扫机构驱动电机、清扫机构驱动减速机、称重系统、报警保护系统等主要部分组成。 在CFB锅炉系统中,由于燃料(煤)是由给煤机直接给到锅炉中的,因此给煤机能否连续,可靠的运行是尤为重要的。如果给煤机不能可靠的运行,实现连续给煤不仅加大设备的维护量,更为严重的是影响锅炉的运行,降负荷甚至停炉。

相关主题