搜档网
当前位置:搜档网 › matlab计算多元正态分布函数

matlab计算多元正态分布函数

matlab计算多元正态分布函数
matlab计算多元正态分布函数

函数名对应分布的概率密度函数

betapdf 贝塔分布的概率密度函数

binopdf 二项分布的概率密度函数

chi2pdf 卡方分布的概率密度函数

exppdf 指数分布的概率密度函数

fpdf f分布的概率密度函数

gampdf 伽玛分布的概率密度函数

geopdf 几何分布的概率密度函数

hygepdf 超几何分布的概率密度函数normpdf 正态(高斯)分布的概率密度函数lognpdf 对数正态分布的概率密度函数nbinpdf 负二项分布的概率密度函数

ncfpdf 非中心f分布的概率密度函数nctpdf 非中心t分布的概率密度函数

ncx2pdf 非中心卡方分布的概率密度函数poisspdf 泊松分布的概率密度函数

raylpdf 雷利分布的概率密度函数

tpdf 学生氏t分布的概率密度函数

unidpdf 离散均匀分布的概率密度函数unifpdf 连续均匀分布的概率密度函数weibpdf 威布尔分布的概率密度函数

表Ⅰ-2 累加分布函数

函数名对应分布的累加函数

betacdf 贝塔分布的累加函数

binocdf 二项分布的累加函数

chi2cdf 卡方分布的累加函数

expcdf 指数分布的累加函数

fcdf f分布的累加函数

gamcdf 伽玛分布的累加函数

geocdf 几何分布的累加函数

hygecdf 超几何分布的累加函数logncdf 对数正态分布的累加函数nbincdf 负二项分布的累加函数

ncfcdf 非中心f分布的累加函数

nctcdf 非中心t分布的累加函数

ncx2cdf 非中心卡方分布的累加函数normcdf 正态(高斯)分布的累加函数poisscdf 泊松分布的累加函数

raylcdf 雷利分布的累加函数

tcdf 学生氏t分布的累加函数

unidcdf 离散均匀分布的累加函数unifcdf 连续均匀分布的累加函数weibcdf 威布尔分布的累加函数

表Ⅰ-3 累加分布函数的逆函数

函数名对应分布的累加分布函数逆函数betainv 贝塔分布的累加分布函数逆函数binoinv 二项分布的累加分布函数逆函数chi2inv 卡方分布的累加分布函数逆函数expinv 指数分布的累加分布函数逆函数finv f分布的累加分布函数逆函数

gaminv 伽玛分布的累加分布函数逆函数

geoinv 几何分布的累加分布函数逆函数

hygeinv 超几何分布的累加分布函数逆函数logninv 对数正态分布的累加分布函数逆函数nbininv 负二项分布的累加分布函数逆函数

ncfinv 非中心f分布的累加分布函数逆函数nctinv 非中心t分布的累加分布函数逆函数

ncx2inv 非中心卡方分布的累加分布函数逆函数icdf

norminv 正态(高斯)分布的累加分布函数逆函数poissinv 泊松分布的累加分布函数逆函数

raylinv 雷利分布的累加分布函数逆函数

tinv 学生氏t分布的累加分布函数逆函数

unidinv 离散均匀分布的累加分布函数逆函数unifinv 连续均匀分布的累加分布函数逆函数weibinv 威布尔分布的累加分布函数逆函数

表Ⅰ-4 随机数生成器函数

函数对应分布的随机数生成器

betarnd 贝塔分布的随机数生成器

binornd 二项分布的随机数生成器

chi2rnd 卡方分布的随机数生成器

exprnd 指数分布的随机数生成器

frnd f分布的随机数生成器

gamrnd 伽玛分布的随机数生成器

geornd 几何分布的随机数生成器

hygernd 超几何分布的随机数生成器lognrnd 对数正态分布的随机数生成器nbinrnd 负二项分布的随机数生成器ncfrnd 非中心f分布的随机数生成器nctrnd 非中心t分布的随机数生成器

ncx2rnd 非中心卡方分布的随机数生成器normrnd 正态(高斯)分布的随机数生成器poissrnd 泊松分布的随机数生成器

raylrnd 瑞利分布的随机数生成器

trnd 学生氏t分布的随机数生成器

unidrnd 离散均匀分布的随机数生成器unifrnd 连续均匀分布的随机数生成器weibrnd 威布尔分布的随机数生成器

表Ⅰ-5 分布函数的统计量函数

函数名对应分布的统计量

betastat 贝塔分布函数的统计量

binostat 二项分布函数的统计量

chi2stat 卡方分布函数的统计量

expstat 指数分布函数的统计量

fstat f分布函数的统计量

gamstat 伽玛分布函数的统计量

geostat 几何分布函数的统计量

hygestat 超几何分布函数的统计量lognstat 对数正态分布函数的统计量nbinstat 负二项分布函数的统计量

ncfstat 非中心f分布函数的统计量nctstat 非中心t分布函数的统计量

ncx2stat 非中心卡方分布函数的统计量normstat 正态(高斯)分布函数的统计量poisstat 泊松分布函数的统计量

续表

函数名对应分布的统计量

raylstat 瑞利分布函数的统计量

tstat 学生氏t分布函数的统计量unidstat 离散均匀分布函数的统计量unifstat 连续均匀分布函数的统计量weibstat 威布尔分布函数的统计量

表Ⅰ-6 参数估计函数

函数名对应分布的参数估计

betafit 贝塔分布的参数估计

betalike 贝塔对数似然函数的参数估计binofit 二项分布的参数估计

expfit 指数分布的参数估计

gamfit 伽玛分布的参数估计

gamlike 伽玛似然函数的参数估计

mle 极大似然估计的参数估计

normlike 正态对数似然函数的参数估计normfit 正态分布的参数估计

poissfit 泊松分布的参数估计

unifit 均匀分布的参数估计

weibfit 威布尔分布的参数估计

weiblike 威布尔对数似然函数的参数估计表Ⅰ-7 统计量描述函数

函数描述

bootstrap 任何函数的自助统计量corrcoef 相关系数

cov 协方差

crosstab 列联表

geomean 几何均值

grpstats 分组统计量

harmmean 调和均值

iqr 内四分极值

kurtosis 峰度

mad 中值绝对差

mean 均值

median 中值

moment 样本模量

nanmax 包含缺失值的样本的最大值

续表

函数描述

Nanmean 包含缺失值的样本的均值nanmedian 包含缺失值的样本的中值nanmin 包含缺失值的样本的最小值

nanstd 包含缺失值的样本的标准差

nansum 包含缺失值的样本的和

prctile 百分位数

range 极值

skewness 偏度

std 标准差

tabulate 频数表

trimmean 截尾均值

var 方差

表Ⅰ-8 统计图形函数

函数描述

boxplot 箱形图

cdfplot 指数累加分布函数图

errorbar 误差条图

fsurfht 函数的交互等值线图

gline 画线

gname 交互标注图中的点

gplotmatrix 散点图矩阵

gscatter 由第三个变量分组的两个变量的散点图lsline 在散点图中添加最小二乘拟合线normplot 正态概率图

pareto 帕累托图

qqplot Q-Q图

rcoplot 残差个案次序图

refcurve 参考多项式曲线

refline 参考线

surfht 数据网格的交互等值线图weibplot 威布尔图

表Ⅰ-9 统计过程控制函数

函数描述

capable 性能指标

capaplot 性能图

ewmaplot 指数加权移动平均图

续表

函数描述

histfit 添加正态曲线的直方图normspec 在指定的区间上绘正态密度schart S图

xbarplot x条图

表Ⅰ-10 聚类分析函数

函数描述

cluster 根据linkage函数的输出创建聚类clusterdata 根据给定数据创建聚类cophenet Cophenet相关系数dendrogram 创建冰柱图

inconsistent 聚类树的不连续值

linkage 系统聚类信息

pdist 观测量之间的配对距离

squarefrom距离平方矩阵

zscore Z分数

表Ⅰ-11 线性模型函数

函数描述

anova1 单因子方差分析

anova2 双因子方差分析

anovan 多因子方差分析

aoctool 协方差分析交互工具dummyvar 拟变量编码

friedman Friedman检验

glmfit 一般线性模型拟合

kruskalwallis Kruskalwallis检验leverage 中心化杠杆值

lscov 已知协方差矩阵的最小二乘估计manova1 单因素多元方差分析manovacluster 多元聚类并用冰柱图表示multcompare 多元比较

多项式评价及误差区间估计

polyfit 最小二乘多项式拟合

polyval 多项式函数的预测值

polyconf 残差个案次序图

regress 多元线性回归

regstats 回归统计量诊断

续表

函数描述

Ridge 岭回归

rstool 多维响应面可视化

robustfit 稳健回归模型拟合

stepwise 逐步回归

x2fx 用于设计矩阵的因子设置矩阵

表Ⅰ-12 非线性回归函数

函数描述

nlinfit 非线性最小二乘数据拟合(牛顿法)nlintool 非线性模型拟合的交互式图形工具nlparci 参数的置信区间

nlpredci 预测值的置信区间

nnls 非负最小二乘

表Ⅰ-13 试验设计函数

函数描述

cordexch D-优化设计(列交换算法)daugment 递增D-优化设计

dcovary 固定协方差的D-优化设计

ff2n 二水平完全析因设计

fracfact 二水平部分析因设计

fullfact 混合水平的完全析因设计hadamard Hadamard矩阵(正交数组)

rowexch D-优化设计(行交换算法)

表Ⅰ-14 主成分分析函数

函数描述

barttest Barttest检验

pcacov 源于协方差矩阵的主成分pcares 源于主成分的方差

princomp 根据原始数据进行主成分分析

表Ⅰ-15 多元统计函数

函数描述

classify 聚类分析

mahal 马氏距离

manova1 单因素多元方差分析manovacluster 多元聚类分析

表Ⅰ-16 假设检验函数

函数描述

ranksum 秩和检验

signrank 符号秩检验

signtest 符号检验

ttest 单样本t检验

ttest2 双样本t检验

ztest z检验

表Ⅰ-17 分布检验函数

函数描述

jbtest 正态性的Jarque-Bera检验

kstest 单样本Kolmogorov-Smirnov检验

kstest2 双样本Kolmogorov-Smirnov检验

lillietest 正态性的Lilliefors检验

表Ⅰ-18 非参数函数

函数描述

friedman Friedman检验

kruskalwallis Kruskalwallis检验

ranksum 秩和检验

signrank 符号秩检验

signtest 符号检验

表Ⅰ-19 文件输入输出函数

函数描述

caseread 读取个案名

casewrite 写个案名到文件

tblread 以表格形式读数据

tblwrite 以表格形式写数据到文件

tdfread 从表格间隔形式的文件中读取文本或数值数据

表Ⅰ-20 演示函数

函数描述

aoctool 协方差分析的交互式图形工具disttool 探察概率分布函数的GUI工具glmdemo 一般线性模型演示randtool 随机数生成工具

polytool 多项式拟合工具

rsmdemo 响应拟合工具robustdemo 稳健回归拟合工具

标准正态分布的密度函数样本

幻灯片1 正态分布 第二章 第七节 一、标准正态分布的密度函数 二、标准正态分布的概率计算 三、一般正态分布的密度函数 四、正态分布的概率计算幻灯片2 正态分布的重要性正态分布是概率论中最重要的分布, 这能够由 以下情形加以说明: ⑴ 正态分布是自然界及工程技术中最常见的分布之一, 大量的随机现象都是服从或近似服从正态分布的.能够证明, 如果一个随机指标受到诸多因素的影响, 但其中任何一个因素都不起决定性作用, 则该随机指标一定服从或近似服从正态分布. 这些性质是其它 ⑵ 正态分布有许多良好的性质, 许多分布所不具备的. ⑶ 正态分布能够作为许多分布的近似分布.幻灯片3 -标准正态分布下面我们介绍一种最重要的正态分布 一、标准正态分布的密度函数若连续型随机变量X 的密度函数为定义 则称X 服从标准正态分布,

记为标准正态分布是一种特别重要的它的密度函数经常被使用, 分布。 幻灯片4 密度函数的验证 则有 ( 2) 根据反常积分的运算有能够推出 幻灯片5 标准正态分布的密度函数的性质若随机变量 , X 的密度函数为 则密度函数的性质为: 的图像称为标准正态( 高斯) 曲线幻灯片6 随机变量 由于 由图像可知, 阴影面积为概率值。对同一长度的区间 , 若这区间越靠近 其对应的曲边梯形面积越大。标准正态分布的分布规律时”中间多, 两头少” . 幻灯片7 二、标准正态分布的概率计算 1、分布函数分布函数为幻灯片8 2、标准正态分布表书末附有标准正态分布函数数值表, 有了它, 能够解决标准正态分布的概率计算.表中给的是x > 0时,①(x)的值. 幻灯片9 如果由公式得令则幻灯片10

Matlab 概率论与数理统计

Matlab 概率论与数理统计一、matlab基本操作 1.画图 【例01.01】简单画图 hold off; x=0:0.1:2*pi; y=sin(x); plot(x,y,'-r'); x1=0:0.1:pi/2; y1=sin(x1); hold on; fill([x1, pi/2],[y1,1/2],'b'); 【例01.02】填充,二维均匀随机数 hold off; x=[0,60];y0=[0,0];y60=[60,60]; x1=[0,30];y1=x1+30; x2=[30,60];y2=x2-30; xv=[0 0 30 60 60 30 0];yv=[0 30 60 60 30 0 0]; fill(xv,yv,'b'); hold on; plot(x,y0,'r',y0,x,'r',x,y60,'r',y60,x,'r'); plot(x1,y1,'r',x2,y2,'r'); yr=unifrnd (0,60,2,100); plot(yr(1,:),yr(2,:),'m.') axis('on'); axis('square'); axis([-20 80 -20 80 ]);

2. 排列组合 C=nchoosek(n,k):k n C C =,例nchoosek(5,2)=10, nchoosek(6,3)=20. prod(n1:n2):从n1到n2的连乘 【例01.03】至少有两个人生日相同的概率 公式计算n n n n N N n N N N N n N N N C n p )1()1(1)! (! 1!1+--?-=--=- = 365364 (3651)365364 3651 11365365365365 rs rs rs ?-+-+=- =-? rs=[20,25,30,35,40,45,50]; %每班的人数 p1=ones(1,length(rs)); p2=ones(1,length(rs)); % 用连乘公式计算 for i=1:length(rs) p1(i)=prod(365-rs(i)+1:365)/365^rs(i); end % 用公式计算(改进) for i=1:length(rs) for k=365-rs(i)+1:365 p2(i)=p2(i)*(k/365); end ; end % 用公式计算(取对数) for i=1:length(rs)

标准正态分布表

标准正态分布表 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

标准正态分布表

4432198653 1.80.964 1 0.964 8 0.965 6 0.966 4 0.967 2 0.967 8 0.968 6 0.969 3 0.970 0.970 6 1.90.971 3 0.971 9 0.972 6 0.973 2 0.973 8 0.974 4 0.975 0.975 6 0.976 2 0.976 7 20.977 2 0.977 8 0.978 3 0.978 8 0.979 3 0.979 8 0.980 3 0.980 8 0.981 2 0.981 7 2.10.982 1 0.982 6 0.983 0.983 4 0.983 8 0.984 2 0.984 6 0.985 0.985 4 0.985 7 2.20.986 1 0.986 4 0.986 8 0.987 1 0.987 4 0.987 8 0.988 1 0.988 4 0.988 7 0.989 2.30.989 3 0.989 6 0.989 8 0.990 1 0.990 4 0.990 6 0.990 9 0.991 1 0.991 3 0.991 6 2.40.991 8 0.992 0.992 2 0.992 5 0.992 7 0.992 9 0.993 1 0.993 2 0.993 4 0.993 6 2.50.993 8 0.994 0.994 1 0.994 3 0.994 5 0.994 6 0.994 8 0.994 9 0.995 1 0.995 2 2.60.995 3 0.995 5 0.995 6 0.995 7 0.995 9 0.996 0.996 1 0.996 2 0.996 3 0.996 4 2.70.996 5 0.996 6 0.996 7 0.996 8 0.996 9 0.997 0.997 1 0.997 2 0.997 3 0.997 4 2.80.997 4 0.997 5 0.997 6 0.997 7 0.997 7 0.997 8 0.997 9 0.997 9 0.998 0.998 1 2.90.998 1 0.998 2 0.998 2 0.998 3 0.998 4 0.998 4 0.998 5 0.998 5 0.998 6 0.998 6 x00.10.20.30.40.50.60.70.80.9 30.998 7 0.999 0.999 3 0.999 5 0.999 7 0.999 8 0.999 8 0.999 9 0.999 9 1.000 正态分布概率表 Φ( u ) =

Matlab概率统计工具箱(3)

Matlab概率统计工具箱(3) 4.8 假设检验 4.8.1 已知,单个正态总体的均值μ的假设检验(U检验法) 函数ztest 格式h = ztest(x,m,sigma) % x为正态总体的样本,m为均值μ0,sigma为标准差,显著性水平为0.05(默认值) h = ztest(x,m,sigma,alpha) %显著性水平为alpha [h,sig,ci,zval] = ztest(x,m,sigma,alpha,tail) %sig为观察值的概率,当sig为小概率时则对原假设提出质疑,ci为真正均值μ的1-alpha置信区间,zval为统计量的值. 说明若h=0,表示在显著性水平alpha下,不能拒绝原假设; 若h=1,表示在显著性水平alpha下,可以拒绝原假设. 原假设:, 若tail=0,表示备择假设:(默认,双边检验); tail=1,表示备择假设:(单边检验); tail=-1,表示备择假设:(单边检验). 例4-74 某车间用一台包装机包装葡萄糖,包得的袋装糖重是一个随机变量,它服从正态分布.当机器正常时,其均值为0.5公斤,标准差为0.015.某日开工后检验包装机是否正常,随机地抽取所包装的糖9袋,称得净重为(公斤)

0.497, 0.506, 0.518, 0.524, 0.498, 0.511, 0.52, 0.515, 0.512 问机器是否正常 解:总体μ和σ已知,该问题是当为已知时,在水平下,根据样本值判断μ=0.5还是.为此提出假设: 原假设: 备择假设: >> X=[0.497,0.506,0.518,0.524,0.498,0.511,0.52,0.515,0.512 ]; >> [h,sig,ci,zval]=ztest(X,0.5,0.015,0.05,0) 结果显示为 h = 1 sig = 0.0248 %样本观察值的概率 ci = 0.5014 0.5210 %置信区间,均值0.5在此区间之外 zval = 2.2444 %统计量的值 结果表明:h=1,说明在水平下,可拒绝原假设,即认为包装机工作不正常.

标准正态分布

标准正态分布 标准正态分布(英语:standard normal distribution,德语Standardnormalverteilung),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。期望值μ=0,即曲线图象对称轴为Y轴,标准差σ=1条件下的正态分布,记为N(0,1)。 定义: 标准正态分布又称为u分布,是以0为均数、以1为标准差的正态分布,记为N(0,1)。标准正态分布曲线下面积分布规律是:在-1.96~+1.96范围内曲线下的面积等于0.9500,在-2.58~+2.58范围内曲线下面积为0.9900。统计学家还制定了一张统计用表(自由度为∞时),借助该表就可以估计出某些特殊u1和u2值范围内的曲线下面积。 正态分布的概率密度函数曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分布是位置参数均数为0, 尺度参数:标准差为1的正态分布 特点: 密度函数关于平均值对称 平均值与它的众数(statistical mode)以及中位数(median)同一数值。 函数曲线下68.268949%的面积在平均数左右的一个标准差范围内。 95.449974%的面积在平均数左右两个标准差的范围内。 99.730020%的面积在平均数左右三个标准差的范围内。 99.993666%的面积在平均数左右四个标准差的范围内。 函数曲线的反曲点(inflection point)为离平均数一个标准差距离的位置。 标准偏差:

深蓝色区域是距平均值小于一个标准差之内的数值范围。在正态分布中,此范围所占比率为全部数值之68%,根据正态分布,两个标准差之内的比率合起来为95%;三个标准差之内的比率合起来为99%。 在实际应用上,常考虑一组数据具有近似于正态分布的概率分布。若其假设正确,则约68.3%数值分布在距离平均值有1个标准差之内的范围,约95.4%数值分布在距离平均值有2个标准差之内的范围,以及约99.7%数值分布在距离平均值有3个标准差之内的范围。称为“68-95-99.7法则”或“经验法则”

t分布和标准规定正态分布

数理统计实验 t分布与标准正态分布 院(系): 班级: 成员:

成员: 成员: 指导老师: 日期:

目录 t分布与标准正态分布的关系 (1) 一、实验目的 (1) 二、实验原理 (1) 三、实验内容及步骤 (1) 四、实验器材 (6) 五、实验结果分析 (6) 六、实验结论 (6)

t分布与标准正态分布的关系 一、实验目的 正态分布是统计中一种很重要的理论分布,是许多统计方法的理论基础。正态分布有两个参数,μ和σ,决定了正态分布的本质。为了应用和计算方便,常将一般的正态变量X通过μ变换[(X-μ)/σ]转化成标准正态变量μ,以使原来各种形态的正态分布都转换为μ=0,σ=1的标准正态分布,亦称μ分布。对于标准正态分布来说,μ是数据整体的平均值,σ是整体的标准差。但实际操作过程中,人们往往难以获得μ和σ。因此人们只能通过样本对这两个参数做出估计,用样本平均值和样本标准差代替整体的平均值和标准差,从而得出了t分布。另外从图像的层面说,正态分布的位置和形态只与μ和σ有关,而t分布不只与样本平均值和样本标准差有关,还与自由度相关。通过实验了解t分布与标准正态分布之间的关系。 二、实验原理 运用EXCEL软件验证t分布与标准正态分布的关系,绘制相应的统计图表进行分析。 三、实验内容及步骤 1.打开Excel文件,将“t分布与标准正态分布N(0,1)”合并并居中,黑体,20字号,红色;

2.选中文件,选项,自定义功能区,加载开发工具.在开发工具中插入滚动条,调节滚动条大小; 3.设置A2单元格格式,数字自定义区”!n=#,##0;[红 色]¥-#,##0”.然后左对齐,设置为红色;

第9章概率论与数理统计的MATLAB实现讲稿汇总

第9章 概率论与数理统计的MATLAB 实现 MATLAB 总包提供了一些进行数据统计分析的函数,但不完整。利用MATLAB 统计工具箱,可以进行概率和数理统计分析,以及进行比较复杂的多元统计分析。 9.1 随机变量及其分布 利用统计工具箱提供的函数,可以比较方便地计算随机变量的分布列(或密度函数)和分布函数。 9.1.1 常见离散型随机变量的分布列的计算 如果随机变量全部可能取到的不相同的值是有限个或可列无限多个,则称为离散型随机变量。 MATLAB 提供的计算常见离散型随机变量分布列的函数及调用格式: 函数调用格式(对应的分布) 分布列 y=binopdf(x,n,p)(二项分布) )() 1(),|(),,1,0(x I p p C p n x f n x n x x n --= y=geopdf(x,p)(几何分布) x p p p x f )1()|(-= ),1,0( =x y=hygepdf(x,M,K,n)(超几何分布) n M x n k M x K C C C n K M x f --=),,|( y=poisspdf(x,lambda)(泊松分布) λ λλ-=e x x f x ! )|(),1,0( =x y=unidpdf(x,n)(离散均匀分布) N N x f 1)|(= 9.1.2 常见连续型随机变量的密度函数计算 对于随机变量X 的分布函数)(x F ,如果存在非负函数)(x f ,使对于任意实数x 有 ? ∞ -=x dt t f x F )()( 则称X 为连续型随机变量,其中函数)(x f 称为X 的密度函数。 MA TLAB 提供的计算常见连续型随机变量分布密度函数的函数及调用格

MATLAB计算概率

一、实验名称 已知随机向量(X ,Y )独立同服从标准正态分布,D={(x,y)|a0&&e<6 if e==1

p=erchong(a,b,c,d) end if e==2 p=wangge(a,b,c,d); end if e==3 p=fenbu(a,b,c,d); end if e==4 p=mente(a,b,c,d); end if e==5 [X,Y]=meshgrid(-3:0.2:3); Z=1/(2*pi)*exp(-1/2*(X.^2+Y.^2)); meshz(X,Y,Z); end e=input('请选择: \n'); end % ===============================用二重积分计算function p=erchong(a,b,c,d) syms x y; f0=1/(2*pi)*exp(-1/2*(x^2+y^2)); f1=int(f0,x,a,b); %对x积分 f1=int(f1,y,c,d); %对y积分 p=vpa(f1,9); % ================================等距网格法function p=wangge(a,b,c,d) syms x y ; n=100; r1=(b-a)/n; %求步长 r2=(d-c)/n; za(1)=a;for i=1:n,za(i+1)=za(i)+r1;end %分块 zc(1)=c;for j=1:n,zc(j+1)=zc(j)+r2;end for i=1:n x(i)=unifrnd(za(i),za(i+1));end %随机取点 for i=1:n y(i)=unifrnd(zc(i),zc(i+1));end s=0; for i=1:n for j=1:n s=1/(2*pi)*exp(-1/2*(x(i)^2+y(j)^2))+s;%求和end end p=s*r1*r2;

标准正态分布表

标准正态分布表 x 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0 0.500 0 0.504 0 0.508 0 0.512 0 0.516 0 0.519 9 0.523 9 0.527 9 0.531 9 0.535 9 0.1 0.539 8 0.543 8 0.547 8 0.551 7 0.555 7 0.559 6 0.563 6 0.567 5 0.571 4 0.575 3 0.2 0.579 3 0.583 2 0.587 1 0.591 0 0.594 8 0.598 7 0.602 6 0.606 4 0.610 3 0.614 1 0.3 0.617 9 0.621 7 0.625 5 0.629 3 0.633 1 0.636 8 0.640 4 0.644 3 0.648 0 0.651 7 0.4 0.655 4 0.659 1 0.662 8 0.666 4 0.670 0 0.673 6 0.677 2 0.680 8 0.684 4 0.687 9 0.5 0.691 5 0.695 0 0.698 5 0.701 9 0.705 4 0.708 8 0.712 3 0.715 7 0.719 0 0.722 4 0.6 0.725 7 0.729 1 0.732 4 0.735 7 0.738 9 0.742 2 0.745 4 0.748 6 0.751 7 0.754 9 0.7 0.758 0 0.761 1 0.764 2 0.767 3 0.770 3 0.773 4 0.776 4 0.779 4 0.782 3 0.785 2 0.8 0.788 1 0.791 0 0.793 9 0.796 7 0.799 5 0.802 3 0.805 1 0.807 8 0.810 6 0.813 3 0.9 0.815 9 0.818 6 0.821 2 0.823 8 0.826 4 0.828 9 0.835 5 0.834 0 0.836 5 0.838 9 1 0.841 3 0.843 8 0.846 1 0.848 5 0.850 8 0.853 1 0.855 4 0.857 7 0.859 9 0.86 2 1 1.1 0.864 3 0.866 5 0.868 6 0.870 8 0.872 9 0.87 4 9 0.877 0 0.879 0 0.881 0 0.883 0 1.2 0.884 9 0.886 9 0.888 8 0.890 7 0.892 5 0.894 4 0.89 6 2 0.898 0 0.899 7 0.901 5 1.3 0.903 2 0.904 9 0.906 6 0.90 8 2 0.90 9 9 0.911 5 0.913 1 0.914 7 0.916 2 0.917 7 1.4 0.919 2 0.920 7 0.922 2 0.923 6 0.925 1 0.926 5 0.927 9 0.929 2 0.930 6 0.931 9 1.5 0.933 2 0.934 5 0.935 7 0.937 0 0.938 2 0.939 4 0.940 6 0.941 8 0.943 0 0.944 1 1.6 0.945 2 0.946 3 0.947 4 0.948 4 0.949 5 0.950 5 0.951 5 0.952 5 0.953 5 0.953 5 1.7 0.955 4 0.956 4 0.957 3 0.958 2 0.959 1 0.959 9 0.960 8 0.961 6 0.962 5 0.963 3 1.8 0.964 1 0.964 8 0.965 6 0.966 4 0.967 2 0.967 8 0.968 6 0.969 3 0.970 0 0.970 6 1.9 0.971 3 0.971 9 0.972 6 0.973 2 0.973 8 0.974 4 0.975 0 0.975 6 0.976 2 0.976 7 2 0.977 2 0.977 8 0.978 3 0.978 8 0.979 3 0.979 8 0.980 3 0.980 8 0.981 2 0.981 7 2.1 0.982 1 0.982 6 0.983 0 0.983 4 0.983 8 0.984 2 0.984 6 0.98 5 0 0.985 4 0.985 7 2.2 0.98 6 1 0.986 4 0.986 8 0.98 7 1 0.987 4 0.987 8 0.988 1 0.988 4 0.988 7 0.98 9 0 2.3 0.989 3 0.989 6 0.989 8 0.990 1 0.990 4 0.990 6 0.990 9 0.991 1 0.991 3 0.991 6 2.4 0.991 8 0.992 0 0.992 2 0.992 5 0.992 7 0.992 9 0.993 1 0.993 2 0.993 4 0.993 6 2.5 0.993 8 0.994 0 0.994 1 0.994 3 0.994 5 0.994 6 0.994 8 0.994 9 0.995 1 0.995 2 2.6 0.995 3 0.995 5 0.995 6 0.995 7 0.995 9 0.996 0 0.996 1 0.996 2 0.996 3 0.996 4 2.7 0.996 5 0.996 6 0.996 7 0.996 8 0.996 9 0.997 0 0.997 1 0.997 2 0.997 3 0.997 4 2.8 0.997 4 0.997 5 0.997 6 0.997 7 0.997 7 0.997 8 0.997 9 0.997 9 0.998 0 0.998 1 2.9 0.998 1 0.998 2 0.998 2 0.998 3 0.998 4 0.998 4 0.998 5 0.998 5 0.998 6 0.998 6 x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 3 0.998 7 0.999 0 0.999 3 0.999 5 0.999 7 0.999 8 0.999 8 0.999 9 0.999 9 1.000 0

正态分布讲解(含标准表)

2.4正态分布 复习引入: 总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线. 总体密度曲线 b 单位 O 频率/组距 a 它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a,b)内取值的概率等于总体密度曲线,直线x=a,x=b及x轴所围图形的面积. 观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示: 2 2 () 2 , 1 (),(,) 2 x x e x μ σ μσ ? πσ - - =∈-∞+∞ 式中的实数μ、)0 (> σ σ是参数,分别表示总体的平均数与标准差,, ()x μσ ? 的图象为正态分布密度曲线,简称正态曲线. 讲解新课:

一般地,如果对于任何实数a b <,随机变量X 满足 ,()()b a P a X B x dx μσ?<≤=?, 则称 X 的分布为正态分布(normal distribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作),(2 σ μN .如果随机变量 X 服从正态分布,则记为X ~),(2σμN . 经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标 X 是众多随机碰撞的结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.因此,正态分布广泛存在于自然现象、生产和生活实际之中.正态分布在概率和统计中占有重要的地位. 说明:1参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计. 2.早在 1733 年,法国数学家棣莫弗就用n !的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布. 2.正态分布),(2 σ μN )是由均值μ和标准差σ唯一决定的分布 通过固定其中一个值,讨论均值与标准差对于正态曲线的影响

matlab在概率统计中的应用实例

关于全国受旱灾土地总面积的数理分析 提出问题:下表是从1990年至2010年全国因干旱而受灾的土地总面积(单位:千公顷)数。(数据来源于全国统计局官网) 试解决一下问题: (1)计算所给样本的均值与标准差; (2)检验在显著水平为0.05的情况下,全国每年因干旱而受灾的土地总面积是否服从正态分布? (3)如果服从正态分布,用极大似然估计法对未知参数μ和σ作出估计; (4)若年受旱灾总面积大于35000千公顷即为重灾年,根据估计出的μ值和σ值,计算当年为重灾年的概率。 分析问题:这是一个样本均值和标准差的计算以及正态性检验和计算的一系列问题。对于此类问题可以应用数学软件MATLAB进行处理,应用MATLAB可以很容易的计算出均值及标准差,此外,采用Jarque-Beran检验即可知道其是否服从正态分布,并估计出总体的均值μ和标准差σ。 解决问题:下面计算样本的均值和标准差 MATLAB程序代码如下 clear

X=[18175 24917 32981 21097 30423 23455 20152 33516 14236 30156 40541 38472 22124 24852 17253 16028 20738 29386 12137 29259 13259]; [h,stats]=cdfplot(X) 运行程序后,输出如下 h =152.0022 stats = min: 12137 max: 40541 mean: 2.4436e+004 median: 23455 std: 8.1234e+003 从输出结果可看出,样本的最小值为12137,最大值为40541,

(完整版)Matlab概率论与数理统计

Matlab 概率论与数理统计 、matlab 基本操作 1. 画图 【例01.01】简单画图 hold off; x=0:0.1:2*pi; y=sin (x); plot(x,y, '-r'); x1=0:0.1:pi/2; y1=s in( x1); hold on; fill([x1, pi/2],[y1,1/2], 'b'); 【例01.02】填充,二维均匀随机数 hold off ; x=[0,60];y0=[0,0];y60=[60,60]; x1=[0,30];y1=x1+30; x2=[30,60];y2=x2-30; plot(x,y0, 'r' ,y0,x, plot(x1,y1, 'r' ,x2,y2, yr=u nifrnd (0,60,2,100); plot(yr(1,:),yr(2,:), axis( 'on'); axis( 'square' ); axis([-20 80 -20 80 ]); xv=[0 0 30 60 60 30 0];yv=[0 30 60 60 30 0 0]; fill(xv,yv, 'b'); hold on ; 'r' ,x,y60, 'r' ,y60,x, 'r') 'r'); 'm.')

2. 排列组合 k C=nchoosek(n,k) : C C n ,例 nchoosek(5,2)=10, nchoosek(6,3)=20. prod(n1:n2):从 n1 至U n2 的连乘 【例01.03】至少有两个人生日相同的概率 365 364|||(365 rs 1) rs 365 365 364 365 rs 1 365 365 365 rs=[20,25,30,35,40,45,50]; %每班的人数 p1= on es(1,le ngth(rs)); p2=on es(1,le ngth(rs)); %用连乘公式计算 for i=1:le ngth(rs) p1(i)=prod(365-rs(i)+1:365)/365A rs(i); end %用公式计算(改进) for i=1:le ngth(rs) for k=365-rs(i)+1:365 p2(i)=p2(i)*(k/365); end ; end %用公式计算(取对数) for i=1:le ngth(rs) p1(i)=exp(sum(log(365-rs(i)+1:365))-rs(i)*log(365)); end 公式计算P 1 n!C N N n N! 1 (N n)! 1 N n N (N 1) (N n 1)

第二章 多元正态分布及参数的估计汇总

第二章多元正态分布及参数的估计 在多元统计分析中,多元正态分布占有相当重要的地位.这是因为许多实际问题涉及到的随机向量服从正态分布或近似服从正态分布;当样本量很大时,许多统计量的极限分布往往和正态分布有关;此外,对多元正态分布,理论与实践都比较成熟,已有一整套行之有效的统计推断方法.基于这些理由,我们在介绍多元统计分析的种种具体方法之前,首先介绍多元正态分布的定义、性质及多元正态分布中参 数的估计问题. 目录 §2.1 随机向量 §2.2 多元正态分布的定义与基本性质 §2.3 条件分布和独立性 §2.4 多元正态分布的参数估计 §2.1 随机向量 本课程所讨论的是多变量总体.把p个随机变量放在一起得X=(X1,X2,…,Xp)′为一个p维随机向量,如果同时对p维总体进行一次观测,得一个样品为p维数据.常把n个样品排成一个n×p矩阵,称为样本资料阵.

?? ? ? ?? ??'''= ?????? ??=)()2()1(2 1 2222111211n np n n p p X X X x x x x x x x x x X def =(X 1,X 2,…,X p ) 其中 X(i)( i =1,…,n)是来自p 维总体的一个样品. 在多元统计分析中涉及到的都是随机向量,或是多个随机向量放在一起组成的随机矩阵. 本节有关随机向量的一些概念(联合分布,边缘分布,条件分布,独立性;X 的均值向量,X 的协差阵和相关阵,X 与Y 的协差阵)要求大家自已复习. 三﹑ 均值向量和协方差阵的性质 (1) 设X ,Y 为随机向量,A ,B 为常数阵,则 E(AX )=A·E(X ), E(AXB )=A·E(X )·B D(AX)=A·D(X)·A' COV(AX,BY)=A·COV(X,Y)·B' (2) 若X,Y 相互独立,则COV(X,Y)=O;反之不成立. 若COV(X,Y)=O,我们称X 与Y 不相关.故有: 两随机向量若相互独立,则必不相关;

利用Excel的NORMSDIST计算正态分布函数表

利用Excel的NORMSDIST函数建立正态 分布表 董大钧,乔莉 理工大学应用技术学院、信息与控制分院,113122 摘要:利用Excel办公软件特有的NORMSDIST函数可以很准确方便的建立正态分布表、查找某分位数点的正态分布概率值,极大的提高了数理统计的效率。该函数可返回指定平均值和标准偏差的正态分布函数,将其引入到统计及数据分析处理过程中,代替原有的手工查找正态分布表,除具有直观、形象、易用等特点外,更增加了动态功能,极大提高了工作效率及准确性。 关键词:Excel;正态分布;函数;统计 引言 正态分布是应用最广泛的连续概率分布,生产与科学实验中很多随机变量的概率分布都可以近似地用正态分布来描述。例如,在生产条件不变的情况下,某种产品的力、抗压强度、口径、长度等指标;同一种生物体的身长、体重等指标;同一种种子的重量;测量同一物体的误差;弹着点沿某一方向的偏差;某个地区的年降水量;以及理想气体分子的速度分量等等。一般来说,如果一个量是由许多微小的独立随机因素影响的结果,那么就可以认为这个量具有正态分布。从理论上看,正态分布具有很多良好的性质,许多概率分布可以用它来近似;还有一些常用的概率分布是由它直接导出的,例如对数正态分布、t分布、F分布等。在科学研究及数理统计计算过程中,人们往往要通过某本概率统计教材附录中的正态分布表去查找,非常麻烦。若手头有计算机,并安装有Excel软件,就可以利用Excel的NORMSDIST( x )函数进行计算某分位数点的正态分布概率值,或建立一个正态分布表,准确又方便。 1 正态分布及其应用 正态分布(normal distribution)又名高斯分布(Gaussian distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。若随机变量X服从一个数学期望为μ、标准方差为σ2的高斯分布,记为N(μ,σ2 )。则其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。因其曲线呈钟

matlab计算多元正态分布函数

函数名对应分布的概率密度函数 betapdf 贝塔分布的概率密度函数 binopdf 二项分布的概率密度函数 chi2pdf 卡方分布的概率密度函数 exppdf 指数分布的概率密度函数 fpdf f分布的概率密度函数 gampdf 伽玛分布的概率密度函数 geopdf 几何分布的概率密度函数 hygepdf 超几何分布的概率密度函数normpdf 正态(高斯)分布的概率密度函数lognpdf 对数正态分布的概率密度函数nbinpdf 负二项分布的概率密度函数 ncfpdf 非中心f分布的概率密度函数nctpdf 非中心t分布的概率密度函数 ncx2pdf 非中心卡方分布的概率密度函数poisspdf 泊松分布的概率密度函数 raylpdf 雷利分布的概率密度函数 tpdf 学生氏t分布的概率密度函数 unidpdf 离散均匀分布的概率密度函数unifpdf 连续均匀分布的概率密度函数weibpdf 威布尔分布的概率密度函数 表Ⅰ-2 累加分布函数 函数名对应分布的累加函数 betacdf 贝塔分布的累加函数 binocdf 二项分布的累加函数

chi2cdf 卡方分布的累加函数 expcdf 指数分布的累加函数 fcdf f分布的累加函数 gamcdf 伽玛分布的累加函数 geocdf 几何分布的累加函数 hygecdf 超几何分布的累加函数logncdf 对数正态分布的累加函数nbincdf 负二项分布的累加函数 ncfcdf 非中心f分布的累加函数 nctcdf 非中心t分布的累加函数 ncx2cdf 非中心卡方分布的累加函数normcdf 正态(高斯)分布的累加函数poisscdf 泊松分布的累加函数 raylcdf 雷利分布的累加函数 tcdf 学生氏t分布的累加函数 unidcdf 离散均匀分布的累加函数unifcdf 连续均匀分布的累加函数weibcdf 威布尔分布的累加函数 表Ⅰ-3 累加分布函数的逆函数 函数名对应分布的累加分布函数逆函数betainv 贝塔分布的累加分布函数逆函数binoinv 二项分布的累加分布函数逆函数chi2inv 卡方分布的累加分布函数逆函数expinv 指数分布的累加分布函数逆函数finv f分布的累加分布函数逆函数

MATLAB 概率分布函数

统计工具箱函数 Ⅰ-1 概率密度函数 函数名对应分布的概率密度函数 betapdf贝塔分布的概率密度函数 binopdf二项分布的概率密度函数 chi2pdf 卡方分布的概率密度函数exppdf指数分布的概率密度函数 fpdf f分布的概率密度函数 gampdf伽玛分布的概率密度函数 geopdf几何分布的概率密度函数 hygepdf超几何分布的概率密度函数 normpdf正态(高斯)分布的概率密度函数lognpdf对数正态分布的概率密度函数 nbinpdf负二项分布的概率密度函数 ncfpdf非中心f分布的概率密度函数 nctpdf非中心t分布的概率密度函数 ncx2pdf 非中心卡方分布的概率密度函数poisspdf泊松分布的概率密度函数 raylpdf雷利分布的概率密度函数 tpdf学生氏t分布的概率密度函数 unidpdf离散均匀分布的概率密度函数 unifpdf连续均匀分布的概率密度函数 weibpdf威布尔分布的概率密度函数 Ⅰ-2 累加分布函数 函数名对应分布的累加函数 betacdf贝塔分布的累加函数 binocdf二项分布的累加函数 chi2cdf 卡方分布的累加函数 expcdf指数分布的累加函数 fcdf f分布的累加函数 gamcdf伽玛分布的累加函数 geocdf几何分布的累加函数 hygecdf超几何分布的累加函数 logncdf对数正态分布的累加函数 nbincdf负二项分布的累加函数 ncfcdf非中心f分布的累加函数 nctcdf非中心t分布的累加函数 ncx2cdf 非中心卡方分布的累加函数normcdf正态(高斯)分布的累加函数poisscdf泊松分布的累加函数 raylcdf雷利分布的累加函数 tcdf学生氏t分布的累加函数 unidcdf离散均匀分布的累加函数 unifcdf连续均匀分布的累加函数

标准正态分布的密度函数

正态分布 第二章 第七节 一、标准正态分布的密度函数 二、标准正态分布的概率计算 三、一般正态分布的密度函数 四、正态分布的概率计算 幻灯片2 正态分布的重要性正态分布是概率论中最重要的分布, 这可以由 以下情形加以说明: ⑴正态分布是自然界及工程技术中最常见的分布 之一, 大量的随机现象都是服从或近似服从正态分布的. 可以证明, 如果一个随机指标受到诸多因素的影响, 但其中任何一个因素都不起决定性作用, 则该随机指标 一定服从或近似服从正态分布. 这些性质是其它 ⑵正态分布有许多良好的性质, 许多分布所不具备的. ⑶正态分布可以作为许多分布的近似分布. 幻灯片3 -标准正态分布 下面我们介绍一种最重要的正态分布 一、标准正态分布的密度函数 若连续型随机变量X的密度函数为 定义 则称X服从标准正态分布, 记为 标准正态分布是一种特别重要的 它的密度函数经常被使用, 分布。 幻灯片4 密度函数的验证 则有 (2)根据反常积分的运算有 可以推出 幻灯片5 标准正态分布的密度函数的性质

,X的密度函数为 则密度函数的性质为: 的图像称为标准正态(高斯)曲线。 幻灯片6 随机变量 由于 由图像可知,阴影面积为概率值。 对同一长度的区间 ,若这区间越靠近 其对应的曲边梯形面积越大。 标准正态分布的分布规律时“中间多,两头少”. 幻灯片7 二、标准正态分布的概率计算 1、分布函数 分布函数为 幻灯片8 2、标准正态分布表 书末附有标准正态分布函数数值表,有了它,可以解决标准正态分布的概率计算. 表中给的是x > 0时, Φ(x)的值. 幻灯片9 如果 由公式得 令 则 幻灯片10 例1 解 幻灯片11 由标准正态分布的查表计算可以求得, 当X~N(0,1)时, 这说明,X 的取值几乎全部集中在[-3,3]区间内,超出这个范围的可能性仅占不到0.3%. 幻灯片12 三、一般正态分布的密度函数 如果连续型随机变量X的密度函数为 (其中 为参数) 的正态分布,记为 则随机变量X服从参数为 所确定的曲线叫 作正态(高斯)曲线. 幻灯片13

数学建模常用到的matlab函数有哪些

附录Ⅰ工具箱函数汇总 Ⅰ.1 统计工具箱函数 表Ⅰ-1 概率密度函数 函数名对应分布的概率密度函数betapdf 贝塔分布的概率密度函数binopdf 二项分布的概率密度函数 chi2pdf 卡方分布的概率密度函数 exppdf 指数分布的概率密度函数 fpdf f分布的概率密度函数 gampdf 伽玛分布的概率密度函数 geopdf 几何分布的概率密度函数hygepdf 超几何分布的概率密度函数normpdf 正态(高斯)分布的概率密度函数lognpdf 对数正态分布的概率密度函数nbinpdf 负二项分布的概率密度函数ncfpdf 非中心f分布的概率密度函数nctpdf 非中心t分布的概率密度函数 ncx2pdf 非中心卡方分布的概率密度函数poisspdf 泊松分布的概率密度函数 raylpdf 雷利分布的概率密度函数 tpdf 学生氏t分布的概率密度函数 unidpdf 离散均匀分布的概率密度函数unifpdf 连续均匀分布的概率密度函数weibpdf 威布尔分布的概率密度函数 表Ⅰ-2 累加分布函数 函数名对应分布的累加函数 betacdf 贝塔分布的累加函数 binocdf 二项分布的累加函数 chi2cdf 卡方分布的累加函数 expcdf 指数分布的累加函数 fcdf f分布的累加函数 gamcdf 伽玛分布的累加函数 geocdf 几何分布的累加函数 hygecdf 超几何分布的累加函数 logncdf 对数正态分布的累加函数nbincdf 负二项分布的累加函数 ncfcdf 非中心f分布的累加函数 nctcdf 非中心t分布的累加函数 ncx2cdf 非中心卡方分布的累加函数normcdf 正态(高斯)分布的累加函数poisscdf 泊松分布的累加函数 raylcdf 雷利分布的累加函数 tcdf 学生氏t分布的累加函数

相关主题