搜档网
当前位置:搜档网 › 关于模糊控制的综述

关于模糊控制的综述

关于模糊控制的综述
关于模糊控制的综述

模糊控制综述

摘要:模糊控制[8](fuzzy control)是以模糊集理论、模糊语言变量和模糊控制逻辑推理为基础的一种智能控制方法。本文主要讲述了模糊控制系统的发展,模糊控制理论的原理,现状及其应用,并对今后的发展前景进行了展望。Abstract :Fuzzy control (fuzzy control) is a kind of intelligent control method which is based on the fuzzy set theory, the fuzzy language variables and fuzzy control logic reasoning.This paper is mainly about the development of the fuzzy control system, the fuzzy control theory of principle, present situation and its application, and then it prospectsthe development in the future .

关键词:模糊控制,模糊控制器,模糊控制系统

一引言

传统的控制理论(包括经典控制理论和现代控制理论)是利用受控对象的数学模型(即传递函数模型或状态空间模型)对系统进行定量分析,而后设计控制策略[1]。这种方法由于其本质的不溶性,当系统变得复杂时,难以对其工作特性进行精确描述。而且,这样的数学模型结构也不利于表达和处理有关受控对象的一些不确定信息,更不利于人的经验、知识、技巧和直觉推理,所以难以对复杂系统进行有效地控制[2]。自从美国加利福尼亚大学控制论专家L.A.Zadeh教授在1965年提出的《Fuzzy Set》开创了模糊数学的历史[3],吸引了众多的学者对其进行研究,使其理论和方法日益完善,并且广泛的应用于自然科学和社会科学的各个领域,尤其是第五代计算机的研制和知识工程开发等领域占有特殊重要的地位[4]。把模糊逻辑应用于控制领域则始于1973年[5]。1974年英国的E.H.Mamdani 成功地将模糊控制应用于锅炉和蒸汽机的控制。此后20年来,模糊控制不断发展并在许多领域中得到成功应用[6]。由于模糊逻辑本身提供了由专家构造语言信息并将其转化为控制策略的一种体系理论方法,因而能够解决许多复杂而无法建立精确数学模型系统的控制问题,所以它是处理推理系统和控制系统中不精确和不确定性的一种有效方法。从广义上讲,模糊控制是基于模糊推理,模仿人的思维方式,对难以建立精确数学模型的对象实施的一种控制策略。它是模糊数学同控制理论相结合的产物,同时也是智能控制的重要组成部分。

二模糊控制系统的发展

模糊控制的发展基本上可分为两个阶段:初期的模糊控制器是按一定的语言控制规则进行工作的,而这些控制规则是建立在总结操作者对过程进行控制的经验基础上,或设计者对某个过程认识的模糊信息的归纳基础上,因而它适用于控制不易获得精确数学模型和数学模型不确定或多变的对象。后期的模糊控制器则是基于控制规则难以描述,即过程控制还总结不出什么成熟的经验,或者过程有较大的非线性以及时滞等特征,试图吸取人脑对复杂对象进行随机识别和判决的特点,用模糊集理论设计自适应、自组织、自学习的模糊控制器。模糊控制现正从以下几个方面加紧研究:

1) 研究模糊控制器非线性本质的框架结构及其同常规控制策略的联系,揭示模糊控制器工作的实质和机理。它可提供系统的分析和设计方法,解决一些先前被认为是困难但却是非常重要的问题,如稳定性、鲁棒性等。

2) 在模糊控制已取得良好实践效果的同时,从理论分析和数学推导角度揭示和证明模糊控制系统的鲁棒性优于常规控制策略。

3) 研究模糊控制器的优化设计问题,尤其是在线优化问题。模糊控制器源于采用启发式直觉推理,其本身的推理方式难于保证控制效果的最优。解决模糊控制器的优化问题也是进一步将其推向工业应用的有效手段。

4) 在理论研究中规则本身非线性问题及实际应用中模糊控制器的规则自学习和自动获取问题。前者之所以成为难点,是因为具有线性规则的模糊控制器本身已属非线性控制,非线性规则则更使问题的系统化研究方法困难;后者则构成智能控制中专家系统的核心问题。

5) 将模糊控制同其它领域的理论研究方法相结合,利用模糊控制的优势解决该领域中过去用常规方法难以解决的问题。

三模糊控制的原理

模糊控制算法的工作过程可以描述如下:微机通过中断采样获取被控制量的精确值,并将此量与给定值比较得到一误差信号E, 一般选误差信号E作为模糊控制器的一个输入量。把误差信号E的精确量进行模糊化变成模糊量。误差E 的模糊量可用相应的模糊语言表示,得到误差E的模糊语言集合的一个子集e ( e是一个误差E的模糊矢量) ,再由e和模糊关系R根据推理的合成规则进行模糊决策,得到模糊

控制量u,即u = eR.模糊控制的框图如图1所示。

图1模糊控制原理框图

由图1可知, 模糊控制系统与通常的计算机数字控制系统的主要区别是采用了模糊控制器。模糊控制器是整个模糊控制系统的核心, 一个模糊控制系统性能优劣,主要取决于模糊控制器的结构,所采用的模糊规则、合成推理算法及模糊决策的方法等因素。

四模糊控制理论的现状

尽管模糊控制理论已经取得了可观的进展,但与常规控制理论相比仍不成熟。模糊控制系统的分析和设计尚未建立起有效的方法,在很多场合下仍然需要依靠经验和试凑。近年来,许多人一直尝试将常规控制理论的概念和方法扩展至模糊控制系统,而模糊控制与神经网络相结合的方法已成为研究的热点,二者的结合有效地推动了自学习模糊控制的发展。

神经模糊控制是神经网络技术与模糊逻辑控制技术相结合的产物, 是指基于神经网络的模糊控制方法。模糊系统是建立在IF2THEN 表达式之上, 这种方式容易让人理解, 但是在自动生成和调整隶属函数和模糊规则上却很困难。而人工神经网络是模拟人直观性思维的一种方式, 它是将分布式存储的信息并行协同处理, 是一个非线性动力学系统, 每个神经元结构简单, 但大量神经元构成网络系统能实现很强的功能, 因此人工神经网络具有自适应的学习能力、容错性和鲁棒性, 并且神经网络对环境的变化具有较强的自适应能力, 所以可结合神经网络的学习能力来训练__模糊规则, 提高整个系统的学习能力和表达能力。现有人工神经网络代表性的模型有感知器、多层映射、BP 网络、RBF 神经网络实现局部或全部的模糊逻辑控制功能, 前者如利用神经网络实现模糊控制规则或模糊推理, 后者通常要求网络层数多于3 层;自适应神经网络模糊控制, 利用神经

网络的学习功能作为模型辨识或直接用作控制器; 基于模糊神经网络的隶属函数及推理规则的获取方法, 具有模糊连接强度的模糊神经网等, 均在控制中有所应用。而且, 还有神经网络与遗传算法同模糊控制相结合的自调整应用。

模糊控制易于获得由语言表达的专家知识,能有效地控制那些难以建立精确模型而凭经验可控制的系统,而神经网络则由于其仿生特性更能有效利用系统本身的信息,并能映射任意函数关系,具有并行处理和自学习能力,容错能力也很强。在集成大系统中,神经网络可用于处理低层感知数据,模糊逻辑可用于描述高层的逻辑框架。模糊逻辑与神经网络的结合有两种情况: 一是将模糊技术用于神经网络形成模糊神经网络,一是用神经网络实现模糊控制。这两方面均见于大量的研究文献。

常规模糊控制的两个主要问题在于: 改进稳态控制精度和提高智能水平与适应能力。从大量文献中可以看出,在实际应用中,往住是将模糊控制或模糊推理的思想,与其他相对成熟的控制理论或方法结合起来,发挥各自的长处,从而获得理想的控制效果。

如: 利用模糊复合控制理论的分档控制,将PI或PID 控制策略引入Fuzzy 控制器,构成Fuzzy2PI或Fuzzy2PID 复合控制;适应高阶系统模糊控制需要的三维模糊控制器;将精确控制和模糊控制结合起来的精确—模糊混合控制;将预测控制与模糊控制相结合,利用预测模型对控制结果进行预报,并根据目标误差和操作者的经验应用模糊决策方法在线修正控制策略的模糊预测控制等。

遗传算法优化的模糊控制也是模糊控制与其它智能控制的复合产生了多种控制方式方法之一。考虑到模糊控制器的优化涉及到大范围、多参数、复杂和不连续的搜索表面, 而专家的经验只能起一个指导作用, 很难根据它准确地定出各项参数, 因而实际上还要反复试凑, 寻找一个最优过程。因此,人们自然想到用遗传算法来进行优化。遗传算法应用于模糊控制器的优化设计是非常适合的, 遗传算法的运行仅由适应度数值驱动而不需要被优化对象的局部信息。此外, 优化模糊控制器正好符合遗传算法的所谓“积木块”假设, 积木块指长度较短的、性能较好的基因片段。用遗传算法优化模糊控制器时, 优化的主要对象是模糊控制器的隶属函数和规则集。已经有人运用这个方法对倒立摆控制器隶属函数的位置、形状等参数, 结果表明遗传算法优化后的隶属函数远远优于手工设计的。显然通

过改进遗传算法, 按所给优化性能指标, 对被控对象进行寻优学习, 可以有效地确定模糊逻辑控制器的结构和参数。

模糊控制与其他智能控制方法的结合组成的模糊控制,如专家模糊控制能够表达和利用控制复杂过程和对象所需的启发式知识,重视知识的多层次和分类的需要,弥补了模糊控制器结构过于简单、规则比较单一的缺陷,赋予了模糊控制更高的智能。二者的结合还能够拥有过程控制复杂的知识,并能够在更为复杂的情况下对这些知识加以有效利用。基于神经网络的模糊控制能够实现局部或全部的模糊逻辑控制功能。

模糊控制器正向着自适应、自组织、自学习方向发展,使得模糊控制参数、规则在控制过程中自动地调整、修改和完善,从而不断完善系统的控制性能,达到更好的控制效果,而与专家系统、神经网络等其他智能控制技术相融合成为其发展趋势。

五模糊控制系统的应用

模糊控制理论是控制领域中非常有前途的一个分支,在工程上也取得了很多成功的应用。1974 年, E.H.Mamdani 首次将模糊控制理论应用于蒸汽机和锅炉的控制,取得了满意的控制效果; 随后,J . J . Oster2garad 又将模糊控制成功地应用于热交换器和水泥窖的生产;之后,M. Sugeno 又将模糊控制用于汽车控制,取得了很好的控制效果。80 年代末,在日本兴起了一次模糊控制技术的高潮,其成果被广泛应用于各个领域。模糊控制在许多实际控制系统中得到广泛应用,如工业控制过程中的蒸汽发生装置控制系统、合金钢冶炼控制系统、炼油厂催化炉控制系统、铸铁退火炉温度控制系统等。另外,模糊控制也应用于航天飞行器控制、机器人控制、核反应堆控制、热交换过程控制、异步电动机控制、污水处理、肌肉麻醉控制、病人血压调整、电梯群控制、吊车自动控制等系统中。日用家电产品中的模糊控制应用也已相当普遍,如用模糊控制系统控制水温。

六模糊控制的发展前景

在模糊控制的发展初期,大多数学者的主要精力放在模糊控制的应用研究上,在很多领域取得辉煌的成果。但与应用的成果相比,模糊控制的系统分析和理论研究却没有显著进展,以至于西方的一些学者对模糊控制的理论依据和有效性产生疑虑。1993年7月,在美国第十一届人工智能年会上,加州大学圣地亚

哥分校计算机科学和工程系助教授Clarles Elkan博士的一篇题为“模糊逻辑似是而非的成功”报告,就代表了这种思想。虽然C.Elkan 的一些观点是不确切和片面的,会后很多专家对此进行了批驳,但他确确实实指出了模糊控制理论基础不够坚实的缺点,从而引起了模糊控制领域的学者的广泛关注并加强了对这一方面的研究。通过上节的介绍可以看到,目前模糊控制的理论研究很热,并已取得了许多显著进展,模糊控制在理论上和应用方面都取得了巨大成就。虽然模糊控制技术发展历史只有三十年,本身还有待于完善,理论与实际的结合也有待于进一步探索,但是其发展前景十分诱人。

目前在国际大趋势的推动下,模糊控制已开始向多元化和交叉学科方向发展。国外专家预言:模糊技术、神经网络技术、混沌理论作为人工智能的三大支柱,将是下一代工业自动化的基础。随着模糊控制理论研究的不断完善和应用的广泛深入、高性能模糊控制器的研究开发,模糊控制技术将会更大限度地发挥其优势,为工业过程控制、运动控制和其它领域的控制开辟新的应用前景。

七结束语

近年来,模糊控制系统的研究取得了很大的进展,特别是模糊控制器的结构分析,模糊系统的万能逼近特性,模糊状态方程及稳定性分析,软计算技术等;同时,模糊逻辑在软件硬件方面也取得了飞速的发展.但模糊系统理论仍存在一定的问题,主要有以下不足之处:

1)尽管模糊系统的万能逼近特性已被证明,但只是一个存在性定理.实际中,对于一般的未知系统,如何找到一个合理的模糊逼近器,尚无确定的方法。

2)常见的模糊系统种类比较多,如TS,FBF,SAM等,一般的模糊系统应具有怎样的形式,目前仍不很清晰。模糊系统的系统化设计方法仍须进一步研究。

3)模糊控制系统的稳定性分析近年来有了一定的进展,但这些分析都是针对一定的特殊系统。模糊控制器具有一定的鲁棒性,但只能从概念上讲,严格的理论分析仍须进一步深入研究。稳定性和鲁棒性的分析仍依赖于模糊系统的系统化设计方法和模糊系统理论的进一步研究发展。这些问题都有待于进一步研究。

4)建立一套系统的模糊控制理论,以解决模糊控制的机理、稳定性分析、系统化设计方法、专家模糊控制系统、神经模糊控制系统和多变量模糊控制系统的分析与设计等一系列问题;

5)模糊控制在非线性复杂系统应用中的模糊建模、模糊规则的建立和推理算法的深入研究;

6)模糊集成控制系统的设计方法研究;.

7)自学习模糊控制策略的实现;

8)模糊控制系统的稳定性分析。

参考文献

[1]汪培庄.模糊集合及应用.上海: 上海科学技术出版社,1983.

[2]Y ager R R and Filev DP. SLIDE:a simple adatpive defuzzification method [J]. IEEETrans. on Fuzzy Systems, 1993,1(1) : 69-78.

[3]Zadeh L A. Fuzzy sets [J]. Information and Control,1965,8:338-353.

[4]Faouzi Bonslama,Akira Ichiltawa.Application of limit fuzzy controllers to stability analysis.Fuzzy Sets and Systems,1992,49: 103-220.

[5] Zadeh L A. Outline of a new approach to the analysis of complex systems and decision processess. IEEE Trans. On Systems, Man, and Cybernetics ,1973,SMC-3(1)28-44.

[6]权太范等. 模糊控制技术在过程控制中的应用现状及前景.控制与决策,1988,3(1):59-62.

[7]窦振中. 模糊逻辑控制技术及其应用[M]. 北京: 北京航空航天大学出版社,1995.

[8]刘金锟.智能控制[M] 北京:电子工业出版社,2005

[9]张化光.复杂系统的模糊辨识与模糊自适应控制.沈阳: 东北大学出版社,1994.

微型计算机控制技术学习心得

微型计算机控制技术学习心得 转眼间,一个学期又过去了。微机原理与控制技术课程已经结束了。通过从大三下学期的微机原理与接口技术到这学期的微机原理与控制技术的学习,回想起来受益匪浅,主要是加深了对计算机的一些硬件情况和运行原理的理解和汇编语言的编写,期间也听老师讲过,微机原理这门课程是比较偏硬件一点的。正是因为这一点我还是对它比较喜欢的,因为它和我的专业方向“机电工程”有很大的联系,在机电工程领域很多场合要应用到微机,而且是微机原理是考研复试面试时必考问的专业课,因为我要考研,本着一定要考上的心态,因此对该课程的学习还是有浓厚的兴趣和动力的。下面谈谈这期学习该课程的心得与体会:总体介绍下这门课程的轮廓吧(也就是教学大纲): 一、课程性质与设置目的 (一)课程性质 微型计算机控制技术是高等院校计算机应用专业本科教学中的一门选修专业课,是从微型计算机原理到微型计算机控制,从理论到实际的必经桥梁,是着重解决和处理工程实际问题的一门课程。在该课程的教学过程中,将课堂教学与实验教学有机结合,注意培养同学分析问题、解决问题的方法和能力。 该课程主要介绍微型计算机应用在工业控制中的各种技术,重点讲述微型机用于实时控制中的软件、硬件设计方法,以及它们之间的结合问题。课程注重理论联系实际,从工程实际出发,在设计方法,即实验技术、操作运行、系统调试等方面对学生进行训练,为学生的毕业设计及将来的实际工作奠定基础。(二)教学目的 通过本课程的学习,可使我们对微型机在工业过程控制和智能化仪器方面的应用有个比较全面的了解,为以后的工作和毕业设计打下基础。 二、下面我对该门课程的教学内容做了一个详细的总结 1.第1章微型计算机控制系统概述 2.教学要点 1.微型计算机控制系统的组成 2.微型计算机控制系统的分类 3.微型计算机控制系统的发展 3.教学内容 通过对本章的学习,应当对微型计算机控制系统有一个完整的概念,具体掌握以下几方面的内容。 4. 1.了解微型计算机控制系统的组成。 2.学习并掌握微型计算机控制系统的分类 及各系统之间的区别。

神经网络与模糊控制考试题及答案

一、填空题 1、模糊控制器由模糊化接口、解模糊接口、知识库和模糊推理机组成 2、一个单神经元的输入是 1.0 ,其权值是 1.5,阀值是-2,则其激活函数的净输入是-0.5 ,当激活函数是阶跃函数,则神经元的输出是 1 3、神经网络的学习方式有导师监督学习、无导师监督学习 和灌输式学习 4、清晰化化的方法有三种:平均最大隶属度法、最大隶属度取最小/最大值法和中位数法,加权平均法 5、模糊控制规则的建立有多种方法,是:基于专家经验和控制知识、基于操作人员的实际控制过程和基于过程的模糊模型,基于学习 6、神经网络控制的结构归结为神经网络监督控制、神经网络直接逆动态控制、神网自适应控制、神网自适应评判控制、神网内模控制、神网预测控制六类 7.傅京逊首次提出智能控制的概念,并归纳出的3种类型智能控制系统是、和。 7、人作为控制器的控制系统、人机结合作为控制器的控制系统、无人参与的自主控 制系统 8、智能控制主要解决传统控制难以解决的复杂系统的控制问题,其研究的对象具备的3个特点为、和。 8、不确定性、高度的非线性、复杂的任务要求 9.智能控制系统的主要类型有、、、 、和。 9、分级递阶控制系统,专家控制系统,神经控制系统,模糊控制系统,学习控制系统,集成或者(复合)混合控制系统 10.智能控制的不确定性的模型包括两类:(1); (2)。 10、(1)模型未知或知之甚少;(2)模型的结构和参数可能在很大范围内变化。11.控制论的三要素是:信息、反馈和控制。 12.建立一个实用的专家系统的步骤包括三个方面的设计,它们分别是、 和。知识库的设计推理机的设计人机接口的设计 13.专家系统的核心组成部分为和。知识库、推理机 14.专家系统中的知识库包括了3类知识,它们分别为、、 和。判断性规则控制性规则数据

模糊理论综述

模糊理论综述 引言 模糊理论(Fuzzy Logic)是在美国加州大学伯克利分校电气工程系的L.A.zadeh(扎德)教授于1965年创立的模糊集合理论的数学基础上发展起来的,主要包括模糊集合理论、模糊逻辑、模糊推理和模糊控制等方面的内容.L.A.Zadeh教授在1965年发表了著名的论文,文中首次提出表达事物模糊性的重要概念:隶属函数,从而突破了19世纪末康托尔的经典集合理论,奠定模糊理论的基础。1974年英国的E.H.Mamdani成功地将模糊控制应用于锅炉和蒸汽机的控制,标志着模糊控制技术的诞生。随之几十年的发展,至今为止模糊理论已经非常成熟,主要包括模糊集合理论、模糊逻辑、模糊推理和模糊控制等方面的内容。 模糊理论是以模糊集合为基础,其基本精神是接受模糊性现象存在的事实,而以处理概念模糊不确定的事物为其研究目标,并积极的将其严密的量化成计算机可以处理的讯息,不主张用繁杂的数学分析即模型来解决问题。 二、模糊理论的一般原理 由于客观世界广泛存在的非定量化的特点,如拔地而起的大树,人们可以估计它很重,但无法测准它实际重量。又如一群人,男性女性是可明确划分的,但是谁是“老年人”谁又算“中年人”;谁个子高,谁不高都只能凭一时印象去论说,而实际人们对这些事物本身的判断是带有模糊性的,也就是非定量化特征。因此事物的模糊性往往是人类推理,认识客观世界时存在的现象。虽然利用数学手段甚至精确到小数点后几位,实际仍然是近似的。特别是对某一个即将运行的系统进行分析,设计时,系统越复杂,它的精确化能力越难以提高。当复杂性和精确化需求达到一定阈值时,这二者必将出现不相容性,这就是著名的“系统不相容原理”。由于系统影响因素众多,甚至某些因素限于人们认识方法,水准,角度不同而认识不足,原希望繁荣兴旺,最后导致失败,这些都是客观存在的。这些事物的现象,正反映了我们认识它们时存在模糊性。所以一味追求精确,倒可能是模糊的,而适当模糊以达到一定的精确倒是科学的,这就是模糊理论的一般原理。 三、模糊理论的分支 它可分类为模糊数学、模糊系统,模糊信息,模糊决策,模糊逻辑与人工智能这五个分支,它们并不是完全独立的,它们之间有紧密的联系。例如,模糊控制就会用到模糊数学和模糊逻辑中的概念。从实际应用的观点来看,模糊理论的应用大部分集中在模糊系统上,尤其集中在模糊控制上。也有一些模糊专家系统应用于医疗诊断和决策支持。 模糊逻辑:模糊逻辑指模仿人脑的不确定性概念判断、推理思维方式,对于模型未知或不能确定的描述系统,以及强非线性,大滞后的控制对象,应用模糊集合和模糊规则进行推理,表达过渡性界限或定型知识经验,模拟人脑方式,实行模糊综合判断,推理解决常规方法难于对付的规则型模糊信息问题。模糊逻辑善于表达界限不清晰的定性知识与经验。它借助于隶属度函数概念,区分模糊集合,处理模糊关系,模拟人脑实施规则型推理,解决因“排中律”的逻辑破缺产生的种种不确定问题。模糊逻辑是处理部分真实概念的布尔逻辑扩展。经典逻辑坚持所有事物(陈述)都可以用二元项(0或1,黑或白,是或否)来表达,而模糊逻辑用真实度替代了布尔真值。这些陈述表示实际上接近于日常人们的问题和语意陈述,因为“真实”和结果在多数时候是部分(非二元)的和/或不精确的(不准确的,不清晰的,模糊的)。真实度经常混淆于概率,但是它们在概念上是不一样的;模糊真值表示在模糊定义的集合中的成员归属关系,而不是某事件或条件的可能度(likelihood)。要展示这种区别,考虑下列情节: Bob在有两个毗邻的屋子的房子中:厨房和餐厅。在很多情况下,Bob的状态是在事物“在厨房中”的集合内是完全明确的:他要么“在厨房中”要么“不在厨房中”。但

模糊控制的优缺点

模糊控制的优缺点

————————————————————————————————作者:————————————————————————————————日期:

1.模糊控制中模糊的含义 模糊控制中的模糊其实就是不确定性。从属于该概念和不属于该概念之间没有明显的分界线。模糊的概念导致了模糊现象。 2.模糊控制的定义 模糊控制就是利用模糊数学知识模仿人脑的思维对模糊的现象进行识别和判断,给出精确的控制量,利用计算机予以实现的自动控制。 3.模糊控制的基本思想 模糊控制的基本思想:根据操作人员的操作经验,总结出一套完整的控制规则,根据系统当前的运行状态,经过模糊推理,模糊判断等运算求出控制量,实现对被控制对象的控制。 4.模糊的控制的特点 不完全依赖于纯粹的数学模型,依赖的是模糊规则。模糊规则是操作者经过大量的操作实践总结出来的一套完整的控制规则。 模糊控制的对象称为黑匣(由于不知道被控对象的内部结构、机理,无法用语言去描述其运动规律,无法去建立精确的数学模型)。但是模糊规则又是模糊数学模型。 5 模糊控制的优缺点及需要解决的问题分析 5.1模糊控制的优点 (1)使用语言方便,可不需要过程的精确数学模型;(不需要精确的数学模型) (2)鲁棒性强,适于解决过程控制中的非线性、强耦合时变、

滞后等问题;鲁棒性即系统的健壮性。 (3)有较强的容错能力。具有适应受控对象动力学特征变化、环境特征变化和动行条件变化的能力; (4)操作人员易于通过人的自然语言进行人机界面联系,这些模糊条件语句容易加到过程的控制环节上。 5.2模糊控制的缺点 (1)信息简单的模糊处理将导致系统的控制精度降低和动态品质变差; (2)模糊控制的设计尚缺乏系统性,无法定义控制目标。 6.模糊数学 模糊数学就是利用数学知识研究和解决模糊现象。在数学和模糊现象之间架起了一座桥梁。 6.1模糊集合的概念 每一个概念都有内涵和外延。 内涵就是指概念的本质属性的集合。外延就是符合某种本质属性的全体对象的集合。 模糊数学的基础就是模糊理论集。 在模糊集合设计到的论域U 上,给定了一个映射A,A :U →[0,1] ,)(x x A μ ,则称A 为论域U 上的模糊集合或者模糊子集; )(x A μ表示U 中各个元素x 属于集合A 的程度,称为元素x 属于模糊集合A 的隶属函数。当x 是一个确定的0x 时,称)(0x A μ为元素0x 对于模糊集合A 的隶属 度。 F 集合引出的几个概念

模糊控制理论外文文献翻译

模糊控制理论 概述 模糊逻辑广泛适用于机械控制。这个词本身激发一个一定的怀疑,试探相当于“仓促的逻辑”或“虚假的逻辑”,但“模糊”不是指一个部分缺乏严格性的方法,而这样的事实,即逻辑涉及能处理的概念,不能被表达为“对”或“否”,而是因为“部分真实”。虽然遗传算法和神经网络可以执行一样模糊逻辑在很多情况下,模糊逻辑的优点是解决这个问题的方法,能够被铸造方面接线员能了解,以便他们的经验,可用于设计的控制器。这让它更容易完成机械化已成功由人执行。 历史以及应用 模糊逻辑首先被提出是有Lotfi在加州大学伯克利分校在1965年的一篇论文。他阐述了他的观点在1973年的一篇论文的概念,介绍了语言变量”,在这篇文章中相当于一个变量定义为一个模糊集合。其他研究打乱了,第二次工业应用中,水泥窑建在丹麦,即将到来的在线1975。 模糊系统在很大程度上在美国被忽略了,因为他们更多关注的是人工智能,一个被过分吹嘘的领域,尤其是在1980年中期年代,导致在诚信缺失的商业领域。 然而日本人对这个却没有偏见和忽略,模糊系统引发日立的Seiji Yasunobu和Soji Yasunobu Miyamoto的兴趣。,他于1985年的模拟,证明了模糊控制系统对仙台铁路的控制的优越性。他们的想法是被接受了,并将模糊系统用来控制加速、制动、和停车,当线于1987年开业。 1987年另一项促进模糊系统的兴趣。在一个国际会议在东京的模糊研究那一年,Yamakawa论证<使用模糊控制,通过一系列简单的专用模糊逻辑芯片,在一个“倒立摆“实验。这是一个经典的控制问题,在这一过程中,车辆努力保持杆安装在顶部用铰链正直来回移动。 这次展示给观察者家们留下了深刻的印象,以及后来的实验,他登上一Yamakawa酒杯包含水或甚至一只活老鼠的顶部的钟摆。该系统在两种情况下,保持稳定。Yamakawa最终继续组织自己的fuzzy-systems研究实验室帮助利用自己的专利在田地里的时候。

模糊控制与PID控制性能比较

本程序选自楼顺天,胡昌华,张伟编著《基于MATLAB 的系统分析与设计:模糊系统》,西安电子科技大学出版社,2001年5月第一版,ISBN7-5606-1011-0,定价:14元第77-87页例3.8中源程序。程序运行输出图形如下: 00.51 1.52 2.53 3.54 4.5 0.2 0.4 0.6 0.8 1 1.21.4 1.6 1.8 时间(0.01秒)输出程序运行后在输出图形时需要用鼠标左键分别先后在红色曲线和蓝色曲线上方点一下,输出提示文本,否则若在图形区域外直接点击鼠标左键,会输出错误提示。源程序清单如下: %Example 3.8 %------------------------- %典型二阶系统的模糊控制与传统PID 控制的性能比较 %------------------------ num=20; den=[1.6,4.4,1]; [a1,b,c,d]=tf2ss(num,den); x=[0;0]; T=0.01;h=T; umin=0.07;umax=0.7; td=0.02;Nd=td/T; N=500;R=1.5*ones(1,N); %-------------------- %传统PID 控制 %-------------------- e=0;de=0;ie=0; kp=5;ki=0.1;kd=0.001; for k=1:N uu1(1,k)=-(kp*e+ki*de+kd*ie);

%延迟环节 if k<=Nd u=0; else u=uu1(1,k-Nd); end %死区和饱和环节 if abs(u)<=umin u=0; elseif abs(u)>umax u=sign(u)*umax; end %利用龙格-库塔法进行系统仿真 k0=a1*x+b*u; k1=a1*(x+h*k0/2)+b*u; k2=a1*(x+h*k1/2)+b*u; k3=a1*(x+h*k2)+b*u; x=x+(k0+2*k1+2*k2+k3)*h/6; y=c*x+d*u; %计算误差、微分和积分 e1=e; e=y(1,1)-R(1,k); de=(e-e1)/T; ie=e*T+ie; yy1(1,k)=y; end %----------------- %模糊控制 %----------------- %定义输入和输出变量及其隶属度函数 a=newfis('Simple'); a=addvar(a,'input','e',[-6,6]) a=addmf(a,'input',1,'NB','trapmf',[-6,-6,-5,-3]); a=addmf(a,'input',1,'NS','trapmf',[-5,-3,-2,0]); a=addmf(a,'input',1,'ZR','trimf',[-2,0,2]); a=addmf(a,'input',1,'PS','trapmf',[0,2,3,5]); a=addmf(a,'input',1,'PB','trapmf',[3,5,6,6]); a=addvar(a,'input','de',[-6,6]); a=addmf(a,'input',2,'NB','trapmf',[-6,-6,-5,-3]); a=addmf(a,'input',2,'NS','trapmf',[-5,-3,-2,0]); a=addmf(a,'input',2,'ZR','trimf',[-2,0,2]); a=addmf(a,'input',2,'PS','trapmf',[0,2,3,5]); a=addmf(a,'input',2,'PB','trapmf',[3,5,6,6]); a=addvar(a,'output','u',[-3,3]);

关于模糊控制理论的综述

物理与电子工程学院 《人工智能》 课程设计报告 课题名称关于模糊控制理论的综述 专业自动化 班级 11级3班 学生姓名郑艳伟 学号 指导教师崔明月 成绩 2014年6月18日

关于模糊控制理论的综述 摘要:模糊控制方法是智能控制的重要组成部分,本文简要回顾了模糊控 制理论的发展,详细介绍了模糊控制理论的原理和模糊控制器的设计步骤, 分析了模糊控制理论的优缺点以及模糊控制需要完善或继续研究的内容,根 据各种模糊控制器的不同特点,对模糊控制在电力系统中的应用进行了分 类,并分析了各类模糊控制器的应用效能.最后,展望了模糊控制的发展趋 势与动态. 关键词:模糊控制;模糊控制理论;模糊控制系统;模糊控制理论的发展模糊控制是以模糊集理论、模糊语言变量和模糊控制逻辑推理为基础的一种智能控制方法,从行为上模拟人的思维方式,对难建模的对象实施模糊推理和决策的一种控制方法.模糊控制作为智能领域中最具有实际意义的一种控制方法,已经在工业控制领域、电力系统、家用电器自动化等领域中解决了很多的问题,引起了越来越多的工程技术人员的兴趣. 模糊控制系统简介 模糊控制系统是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制技术.1965年美国的扎德[1]创立了模糊集合论, 1973 年, 他给出了模糊逻辑控制的定义和相关的定理.1974 年英国的Mamdani 首先用模糊控制语句组成模糊控制器,并把它用于锅炉和蒸汽机的控制, 在实验室获得成功, 这一开拓性的工作标志着模糊控制论的诞生. 模糊控制系统主要是模拟人的思维、推理和判断的一种控制方法, 它将人的经验、常识等用自然语言的形式表达出来, 建立一种适用于计算机处理的输入输出过程模型, 是智能控制的一个重要研究领域.从信息技术的观点来看, 模糊控制是一种基于规则的专家系统.从控制系统技术的观点来看, 模糊控制是一种普遍的非线性特征域控制器. 相对传统控制, 包括经典控制理论与现代控制理论.模糊控制能避开对象的数学模型(如状态方程或传递函数等) , 它力图对人们关于某个控制问题的成功与失败和经验进行加工, 总结出知识, 从中提炼出控制规则, 用一系列多维模糊条件语句构造系统的模糊语言变量模型, 应用CRI 等各类模糊推理方法,

模糊控制综述

模糊控制研究及发展现状综述

模糊控制研究及发展现状综述 摘要:模糊控制是智能控制的重要组成部分。本文主要介绍了模糊控制理论的研究及发展的现状等 ,详细介绍了模糊控制理论的原理、模糊控制的数学基础, 其发展现状中介绍了模糊 PID 控制、自适应模糊控制、神经模糊控制、遗传算法优化的模糊控制、专家模糊控制等 , 还介绍了一些模糊控制的软硬件产品, 对模糊控制系统的稳定性作了简单介绍, 最后对模糊控制的发展作了展望。 关键词:模糊控制;模糊控制器

引言 模糊控制是近代控制理论中的一种基于语言规则与模糊推理的高级控制策略和新颖技术,它是智能控制的一个重要分支,发展迅速,应用广泛,实效显著,引人关注。随着科学技术的进步,现代工业过程日趋复杂,过程的严重非线性、不确定性、多变量、时滞、未建模动态和有界干扰,使得控制对象的精确数学模型难以建立,单一应用传统的控制理论和方法难以满足复杂控制系统的设计要求。而模糊控制则无需知道被控对象的精确数学模型,且模糊算法能够有效地利用专家所提供的模糊信息知识,处理那些定义不完善或难以精确建模的复杂过程。因此,模糊控制成为了近年来国内外控制界关注的热点研究领域。 模糊控制作为智能领域中最具有实际意义的一种控制方法 ,已经在工业控制领域、家用电器自动化领域和其他很多行业中解决了传统控制方法无法或者是难以解决的问题, 取得了令人瞩目的成效, 引起了越来越多的控制理论的研究人员和相关领域的广大工程技术人员的极大兴趣。 一:模糊控制简介 模糊控制是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制技术。 1965 年美国的扎德创立了模糊集合论, 1973 年, 他给出了模糊逻辑控制的定义和相关的定理。 1974 年英国的 Mamdani 首先用模糊控制语句组成模糊控制器,并把它用于锅炉和蒸汽机的控制, 在实验室获得成功, 这一开拓性的工作标志着模糊控制论的诞生。 模糊控制主要是模拟人的思维、推理和判断的一种控制方法, 它将人的经验、常识等用自然语言的形式表达出来, 建立一种适用于计算机处理的输入输出过程模型 , 是智能控制的一个重要研究领域。从信息技术的观点来看 , 模糊控制是一种基于规则的专家系统。从控制系统技术的观点来看, 模糊控制是一种普遍的非线性特征域控制器。 相对传统控制, 包括经典控制理论与现代控制理论。模糊控制能避开对象的数学模型 (如状态方程或传递函数等), 它力图对人们关于某个控制问题的成功与失败和经验进行加工 , 总结出知识 , 从中提炼出控制规则 , 用一系列多维模糊条件语句构造系统的模糊语言变量模型 , 应用 C RI 等各类模糊推理方法,可以得到适合控制要求的控制量, 可以说模糊控制是一种语言变量的控制. 模糊控制具有以下特点:

过程控制考试总结

1.控制系统对检测变送的基本要求是准确、迅速和可靠 2.从理论上讲,干扰通道存在纯滞后不影响系统的控制质量。 3.离心泵的控制方案有直流节流法、改变泵的转速n 改变旁路回流量。效 率最差的是改变旁路回流量。 4.随着控制通道的增益K o的增加,控制作用___增强_______,克服干扰能力 增大,最大偏差减小系统的余差减小 5.控制器的选择包括结构材质的选择、口径的选择、流量特性的选择和 正反作用的选择。 6.防积分饱和的措施有对控制器的输出限幅、限制控制器积分部分的输出 和积分切除法。 7.如果对象扰动通道增益K f增加,扰动作用__增强__,系统的余差__增大__,最 大偏差_增大___。 8.简单控制系统的组成,各部位的作用是什么? 解答: 简单控制系统由检测变送装置、控制器、执行器及被控对象组成。 检测变送装置的作用是检测被控变量的数值并将其转换为一种特定输出信号。 控制器的作用是接受检测装置送来的信号,与给定值相比较得出偏差,并按某种运算规律算出结果送往执行器。 执行器能自动地根据控制器送来的控制信号来改变操纵变量的数值,以达到控制被控变量的目的。 被控对象是指需要控制其工艺参数的生产设备或装置 9.气动执行器由__调节__机构和执行机构两部分组成,常用的辅助装置有 __阀门__定位器和手轮机构。 10.调节系统中调节器正反作用的确定依据是保证控制系统成为负反馈。 11.被控变量是指工艺要求以一定的精度保持__恒定 _或随某一参数的变化而 变化的参数。 12.反应对象特性的参数有放大倍数、时间常数、和纯滞后时间。 13.自动调节系统常用参数整定方法有哪些?常用的参数整定方法有!经验法*衰 减曲线法*临界比例度法*反应曲线法) 动态特性参数法,稳定边界法,衰减曲线法,经验法。 14.检测变送环节对控制系统的影响主要集中在检测元件的滞后和信号传递 的滞后问题上。 15.什么是对象数学模型,获取模型的方法有哪些? 答:对对象特性的数学描述就叫数学模型。 机理建模和实验建模混合建模 16.简述被控量与操纵量的选择原则。. 答:一、(1) 被控量的选择原则: ①必须尽可能选择表征生产过程的质量指标作为被控变量; ②当没有合适的质量指标时,应选择与质量指标由单质对应关系的间接指标作为被控量; ③间接指标必须有足够的灵敏度;

基于simulink的模糊控制仿真

已知系统的传递函数为:1/(10s+1)*e(-0.5s)。假设系统给定为阶跃值r=30,系统初始值r0=0.试分别设计 (1)常规的PID控制器; (2)常规的模糊控制器; (3)比较两种控制器的效果; (4)当通过改变模糊控制器的比例因子时,系统响应有什么变化? 一.基于simulink的PID控制器的仿真及其调试: 调节后的Kp,Ki,Kd分别为:10 ,1,0.05。 示波器观察到的波形为: 二.基于simulink的模糊控制器的仿真及其调试: (1)启动matlab后,在主窗口中键入fuzzy回车,屏幕上就会显现出如下图所示的“FIS Editor”界面,即模糊推理系统编辑器。

(2)双击输入量或输出量模框中的任何一个,都会弹出隶属函数编辑器,简称MF编辑器。

(3)在FIS Editor界面顺序单击菜单Editor—Rules出现模糊规则编辑器。 本次设计采用双输入(偏差E和偏差变化量EC)单输出(U)模糊控制器,E的论域是[-6,6],EC的论域是[-6,6],U的论域是[-6,6]。它们的状态分别是负大(NB)、负中(NM)、负小(NS)、零(ZO)、正小(PS)、正中(PM)、正大(PB)。语言值的隶属函数选择三角形的隶属度函数。推理规则选用Mamdani 控制规则。 该控制器的控制规则表如图所示:

Simulink仿真图如下: 在调试过程中发现加入积分调节器有助于消除静差,通过试凑法得出量化因子,比例因子以及积分常数。Ke,Kec,Ku,Ki分别是: 3 ,2.5 ,3.5 ,0.27

三.实验心得: 通过比较PID控制器和模糊控制器,我们可知两个系统观察到的波形并没有太大的区别。相对而言,对于给出精确数学模型的控制对象,PID控制器显得更具有优势,其一是操作简单,其二是调节三个参数可以达到满意的效果;对于给出给出精确数学模型的控制对象,模糊控制器并没有展现出太大的优势,其一是操作繁琐,其二是模糊控制器调节参数的难度并不亚于PID控制器。 在实验中增大模糊控制器的比例因子Ku会加快系统的响应速度,但Ku过大将会导致系统输出上升速率过快,从而使系统产生较大的超调量乃至发生振荡;Ku过小,系统输出上升速率变小,将导致系统稳态精度变差。

模糊控制学习心得

模糊控制学习心得 班别:电气143 学号:1407300043 姓名:范宝荣 “模糊”是人类感知万物,获取知识,思维推理,决策实施的重要特征。“模糊”比“清晰”所拥有的信息容量更大,内涵更丰富,更符合客观世界。 在日常生活中,人们的思维中有许多模糊的概念,如大、小、冷、热等,都没有明确的内涵和外延,只能用模糊集合来描述。人们常用的经验规则都是用模糊条件语句表达,例如,当我们拧开水阀往水桶里注水时,有这样的经验:桶里没水或水较少时,应开大水阀;桶里水较多时,应将水阀关小些;当水桶里水快满时,则应把阀门关得很小;而水桶里水满时应迅速关掉水阀。其中,“较少”、“较多”、“小一些”、“很小”等,这些表示水位和控制阀门动作的概念都具有模糊性。即有经验的操作人员的控制规则具有相当的模糊性。模糊控制就是利用计算机模拟人的思维方式,按照人的操作规则进行控制,实现人的控制经验。 模糊控制理论是由美国著名的学者加利福尼亚大学教授Zadeh·L·A于1965年首先提出,它以模糊数学为基础,用语言规则表示方法和先进的计算机技术,由模糊推理进行决策的一种高级控制策略。1974年,英国伦敦大学教授Mamdani·E·H 研制成功第一个模糊控制器,充分展示了模糊技术的应用前景。 尽管模糊控制理论已经取得了可观的进展,但与常规控制理论相比仍不成熟。模糊控制系统的分析和设计尚未建立起有效的方法,在很多场合下仍然需要依靠经验和试凑。近年来,许多人一直尝试将常规控制理论的概念和方法扩展至模糊控制系统,而模糊控制与神经网络相结合的方法已成为研究的热点,二者的结合有效地推动了自学习模糊控制的发展。模糊控制易于获得由语言表达的专家知识,能有效地控制那些难以建立精确模型而凭经验可控制的系统,而神经网络则由于其仿生特性更能有效利用系统本身的信息,并能映射任意函数关系,具有并行处理和自学习能力,容错能力也很强。在集成大系统中,神经网络可用于处理低层感知数据,模糊逻辑可用于描述高层的逻辑框架[5]。模糊逻辑与神经网络的结合有两种情况:一是将模糊技术用于神经网络形成模糊神经网络,一是用神经网络实现模糊控制。这两方面均见于大量的研究文献。 常规模糊控制的两个主要问题在于:改进稳态控制精度和提高智能水平与适应能力。从大量文献中可以看出,在实际应用中,往住是将模糊控制或模糊推理的思想,与其他相对成熟的控制理论或方法结合起来,发挥各自的长处,从而获得理想的控制效果。 例如,利用模糊复合控制理论的分档控制,将PI或PID控制策略引入Fuzzy 控制器,构成Fuzzy-PI或Fuzzy-PID复合控制;适应高阶系统模糊控制需要的三维模糊控制器;将精确控制和模糊控制结合起来的精确—模糊混合控制;将预测控制与模糊控制相结合,利用预测模型对控制结果进行预报,并根据目标误差和操作者的经验应用模糊决策方法在线修正控制策略的模糊预测控制等。 模糊控制的发展过程中,提出了多种自组织、自学习、自适应模糊控制器。它们根据被控过程的特性和系统参数的变化,自动生成或调整模糊控制器的规则和参数,达到控制目的。这类模糊控制器在实现人的控制策略基础上,又进一步将人的学习和适应能力引入控制器,使模糊控制具有更高的智能性。自校正模糊控制器、参数自调整模糊控制等控制方法也较大地增强了对环境变化的适应能力。

最优控制结课心得体会

最优控制结课心得体会 最优控制理论的形成和发展和整个现代自动控制理论的形成和发展十分不开的。在20世纪50年代初期,就有人开始发表从工程观点研究最短时间控制问题的文章,尽管其最优性的证明多半借助于几何图形,仅带有启发性质,但毕竟为发展现代控制理论提供了第一批实际模型。由于最优控制问题引人注目的严格表述形式,特别是空间技术的迫切需求,从而吸引了大批科学家的密切注意。 非常荣幸今年能够在刘老师班中学习最优控制这门课程,在这门课上,我们了解了最优控制是系统设计的一种方法,研究的中心问题是如何选择控制信号(控制策略),才能保证控制系统的性能在某种意义下最优。而最优控制是现代控制理论的核心,它研究的主要问题是:在满足一定约束条件下,寻求最优控制策略,使得性能指标取极大值或极小值。 使控制系统的性能指标实现最优化的基本条件和综合方法,可概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。这类问题广泛存在于技术领域或社会问题中。例如,确定一个最优控制方式使空间飞行器由一个轨道转换到另一轨道过程中燃料消耗最少。最优控制理论是50年代中期在空间技术的推动下开始形成和发展起来的。美国学者R.贝尔曼1957年提出的动态规划和前苏联学者L.S.庞特里亚金1958年提出的极大值原理,两者的创立仅相差一年左右。对最优控制理论的形成和发展起了重要的作用。线性系统在二次型性能指标下的最优控制问题则是R.E.卡尔曼在60年代初提出和解决的。 从数学上看,确定最优控制问题可以表述为:在运动方程和允许控制范围的约束下,对以控制函数和运动状态为变量的性能指标函数(称为泛函)求取极值(极大值或极小值)。解决最优控制问题的主要方法有古典变分法(对泛函求极值的一种数学方法)、极小值原理和动态规划。最优控制已被应用于综合和设计最速控制系统、最省燃料控制系统、最小能耗控制系统、线性调节器等。解决最优控制问题的主要方法有古典变分法、极小值原理和动态规划。 通过学习我们了解到:最优控制是一门比较新兴的学科,也是一门富有朝气的学说。但是,随着社会科技的不断进步,最优控制理的应用领域十分广泛,如时间最短、能耗最小、线性二次型指标最优、跟踪问题、调节问题和伺服机构问题等。但它在理论上还有不完善的地方,其中两个重要的问题就是优化算法中的鲁棒性问题和最优化算法的简化和实用性问

PID模糊控制器发展现状综述

模糊PID控制器的发展现状综述 1模糊PID控制器研究背景 1.1PID控制器 传统的PID控制器虽然以其结构简单、工作稳定、适应性好、精度高等优点成为过程控制中应用最广泛最基本的一种控制器。PID调节规律一般都能得到比较令人满意的控制效果,尤其是对于线性定常系统的控制是非常有效的,但是它的调节品质取决于PID控制器各个参数的确定。随着工业生产过程的日趋复杂化,系统不可避免地存在非线性、滞后和时变现象,其中有的参数未知或缓慢变化,有的带有延时和随机干扰,有的无法获得较精确的数学模型或模型非常粗糙,如果使用常规的PID控制器,PID参数的整定变得十分困难甚至无法整定,因此并不能得到理想的控制效果。为此,近年来各种改进的PID控制器如自校正、自适应PID[1][2][3]及智能控制器[4]迅速发展起来,但仍存在一定的局限性。 1.2模糊控制器 随着技术的发展,模糊控制理论和模糊技术成为最广泛最有前景的应用分支之一。模糊控制器是一种专家控制系统,它的优点是不需要知道被控对象的数学模型而能够利用专家已有的经验对系统进行建模。与传统的PID控制方式相比,它适合解决一些难以建立精确数学模型、非线性、大滞后和时变的复杂过程的问题,因此得到了很好的发展,尤其是在工业控制、电力系统等领域中解决了许多实际性的问题,引起了越来越多的工程技术人员的兴趣。但是经过深入研究,会发现基本模糊控制存在着其控制品质粗糙和精度低等弊病。而且用的最多的二维输入的模糊控制器是PI或PD型控制器,会出现过渡过程品质不好或不能消除稳态误差的问题。 因此,在许多情况下,将模糊控制和PID控制两者结合起来,扬长避短,既具有模糊控制灵活、适应性强、快速性好的优点,又具有PID控制精度高的特点。把规则的条件、操作用模糊集表示,并把这些模糊控制规则及有关信息作为知识存入计算机知识库中,然后计算机根据控制系统的实际响应情况,运用模糊推理,自动实现对PID参数的最佳整定,实现模糊PID控制。

模糊控制的理论基础

第二章:模糊控制的理论基础 第一节:引言 模糊控制的发展 传统控制方法:数学模型。 模糊控制逻辑:使计算机具有智能和活性的一种新颖的智能控制方法。 模糊控制以模糊集合论为数学基础。 模糊控制系统的应用对于那些测量数据不准确,要处理的数据量过大以致无法判断它们的兼容性以及一些复杂可变的被控对象等场合是有益的。 模糊控制器的设计依赖于操作者的经验。 模糊控制器参数或控制输出的调整是从过程函数的逻辑模型产生的规则来进行的。 改善模糊控制器性能的有效方法是优化模糊控制规则。 模糊控制的特点: 一、无需知道被控对象的数学模型 二、是一种反应人类智慧思维的智能控制 三、易被人们所接受 四、推理过程采用“不精确推理” 五、构造容易 六、存在的问题: 1、要揭示模糊控制器的实质和工作原理,解决稳定性和鲁棒性理论问题,从理 论分析和数学推导的角度揭示和证明模糊控制系统的鲁棒性优于传统控制策略; 2、信息简单的模糊处理将导致系统的控制精度降低和动态品质变差; 3、模糊控制的设计尚缺乏系统性,无法定义控制目标。 “模糊控制的定义” 定义:模糊控制器的输出是通过观察过程的状态和一些如何控制过程的规则的推理得到的。基于三个概念:测量信息的模糊化,推理机制,输出模糊集的精确化;

测量信息的模糊化:实测物理量转换为在该语言变量相应论域内的不同语言值的模糊子集;推理机制:使用数据库和规则库,根据当前的系统状态信息决定模糊控制的输出子集;模糊集的精确化:将推理过程得到的模糊控制量转化为一个清晰,确定的输出控制量的过程。 “模糊控制技术的相关技术” 模糊控制器的核心处理单元:1.传统单片机;2.模糊单片机处理芯片;3.可编程门阵列芯片。 模糊信息与精确转换技术:AD,DA,转换技术。 模糊控制的软技术:系统的仿真软件。 综述:模糊控制是一种更人性化的方法,用模糊逻辑处理和分析现实世界的问题,其结果往往更符合人的要求。 第二节:模糊集合论基础 “模糊集合的概念” 经典集合论所表达概念的内涵和外延都必须是明确的。 集合既可以是连续的也可以是离散的。 集合表示方法:1、列举法;2、定义法;3、归纳法;4、特征函数法;5、集合运算; 思维中每一个概念都有一定的内涵和外延,概念的内涵是指一个概念所包含的区别于其他概念的全体本质属性,概念的外延指符合某概念的对象的全体。从集合论的角度看,内涵就是集合的定义,外延就是集合的所有元素。 与传统的经典集合对事物只用“1”,“0”简单地表示“属于”或“不属于”分类不同,模糊集合是把它扩展成用0~1之间连续变化值来描述元素的属于程度。这个0~1之间连续变化值称作“隶属度”。模糊集合中的特征函数就称作隶属度函数。 模糊集合的定义实际上是将经典集合论中的特征函数表示扩展都用隶属度函数表示。

模糊控制用于机器人避障

北京工业大学 结课论文 课题名称:基于模糊控制的机器人避障 姓名:鑫元 12521121 唐堂 12521130 成绩: 引言

智能小车是移动机器人的一种,可通过计算机编程来实现其对行驶方向、启停以及速度的控制。要想让智能小车在行驶过程中能成功地避开障碍物,必须对其进行路径规划?,路径规划的任务是为小车规划一条从起始点到目标点的无碰路径。路径规划方法有:BP人工神经网络法(Back Propagation)、机器学习(Reinforcement Learning)、以及模糊控制(Fuzzy Control)方法等。模糊技术具有人类智能的模糊性和推理能力,在路径规划中,模糊推理的应用主要体现在基于行为的导航方式上,即将机器人的运动过程分解为避障、边界跟踪、调速、目标制导等基本行为,各基本行为的激活由不同的机构分别控制,机器人的最终操作由高层控制机构对基本行为进行平衡后作出综合反应。模糊控制方法将信息获取和模糊推理过程有机结合,其优点在于不依赖机器人的动力学、运动学模型,系统控制融入了人类经验,同时计算量小,构成方法较为简单,节省系统资源,实时性。本文探讨了模糊控制技术在避障路径规划中的应用,并对其进行了仿真设计。 摘要 基于MATLAB的仿真结果表明模糊逻辑推理方法在智能小车的导航控制中具有良好的效果。 目录

引言,摘要 (1) 1.模糊控制技术基本理 (3) 2模糊控制器设计 (4) 3.避障算法设计 (6) 4 仿真实验 (14) 5.实验截图 (17) 6. 结论 (19) 7.实验心得 (20) 8.参考文献 (22)

1模糊控制技术基本原理 环境中存在障碍物时,路径规划控制系统具有高度不确定性,是一个多输入多输出(MIMO)系统。对于这种具有高度不确定性的MIMO系统,传统的控制方法不能达到很好的控制效果。模糊推理控制方法将人类的驾驶经验融入系统控制之中,因此可以较好地满足系统自适应性、鲁棒性和实时性的要求。模糊控制方式借助模糊数学这一工具通过推理来实现控制。模糊逻辑模拟了人类思维的模糊性,它采用与人类语言相近的语言变量进行推理,因此借助这一工具可将人类的控制经验融人系统控制之中,使得系统可以像有经验的操作者一样去控制复杂、激励不明的系统。总的说来模糊控制具有以下特点: 1)不依赖于被控对象的精确数学模型,易于对不确定性系统进行控制; 2)易于控制、易于掌握的较理想非线性控制器,是一种语言控制器; 3)抗干扰能力强,响应速磨陕,并对系统参数的变化有较强的鲁棒性。 模糊控制器的基本结构由模糊输入接口、模糊推理以及模糊输出接口三个模块组成。模糊输入接口的主要功能是实现精确量的模糊化,即把物理量的精确值转换成语言变量值。语言变量的分档根据实际情况而定,一般分为3—7档,档数越多,控制精度越高,计算量也越大。模糊推理决策机构的主要功能是模仿人的思维特征,根据总结人工控制策略取得的语言控制规则进行模糊推理,并决策出模糊输出控制量。模糊输出接口的主要功能是把输出模糊量转化为精确量,施于被控对象。 2模糊控制器设计

模糊控制算法在汽车中的应用综述

模糊控制算法在汽车中的应用综述 摘要:模糊控制应用于没有精确数学模型的对象,具有很大的优越性。随着模糊控制技术的不断发展,它越来越广泛应用在汽车上,本文分别介绍模糊控制的原理及特点,在ABS系统、汽车巡航系统、汽车空调的使用情况,并介绍各个模糊控制系统的组成。 关键词:汽车;模糊控制;ABS系统;汽车巡航系统;汽车空调 Application of Fuzzy Control Algorithm in Motor Vehicl e ZHANG Zhen-hua (College of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063,China) Abstract:Fuzzy control is applied to the object without accurate mathematical model has great superiority. With the continuous development of fuzzy control technology, it is widely used in automobile. This paper introduces the principle and characteristics of fuzzy control in ABS system, automobile cruise control system, the use of automotive air conditioning, and introduces the various components of the fuzzy control system. Key words:The car;fuzzy control;anti-lock braking system;The car cruise system;automotive air conditioning 引言 传统的常规控制方法是基于被控对象的数学模型基础上的,然而某些情况下我们难以精确地建立起被控对象的数学模型,因而难以对被控对象进行精确地控制。为此可以采用一种基于语言规则与模糊推理的高级控制策略即模糊控制对多变量、非线性、不确定的复杂系统进行有效控制。此方法在汽车的系统控制中得到有效应用。 模糊控制理论发展初期在西方遇到了很大的阻力,西方学者认为模糊控制在应用研究中意义不大。然而,在东方尤其是日本,模糊控制却得到了迅速的发展,20世纪80年代,日本的工程师用模糊控制技术首先实现了对一家电子水净化工厂的控制,又开发了仙台地铁模糊控制系统,创造了当时世界上最先进的地铁系统,而这引起了模糊控制领域的一场巨变,使得西方又开始重视模糊控制理论[1]。 早在七十年代中期,我国就开始了智能控制的研究和应用,并且取得了许多应用成果,我国是最早把模糊理论引入气象预报、地震预测和高炉冶炼控制等方面应用的国家之一。例如,在地震发生趋势预测中对模糊信息的处理在工程设计方面发展了软件理论,并求得最佳设计方案研究出许多专家系统,特别是运用模糊数学方法描述中医经验在交通网、水管网、通信网、可靠性分析方面的实际功能运用等。 随着科学技术的不断发展和进步以及人们生活水平的提高,人们在日常的生活和劳动生产中对空气环境的要求也不断提高,特别是对空气的温度、湿度、以及洁净度的要求,使空调系统的应用越来越广泛。空调控制系统涉及面广,要实现的任务复杂,它通过空调系统为建筑物的不同区域提供满足不同使用要求的环境。 在满足用户对空气环境要求的前提下,采用先进的控制策略对空调系统进行控制,达到控制要求并且节约能源成为空调控制系统的最终目标。特别是近几年来,“绿色建筑”、“环保建筑”的提出,使得对空调控制系统的控制模式的研究显

相关主题