搜档网
当前位置:搜档网 › 黄石市(完整版)动量守恒定律单元测试题

黄石市(完整版)动量守恒定律单元测试题

黄石市(完整版)动量守恒定律单元测试题
黄石市(完整版)动量守恒定律单元测试题

黄石市(完整版)动量守恒定律单元测试题

一、动量守恒定律 选择题

1.如图所小,在粗糙水平面上,用水平轻绳相连的两个相同物体P 和Q ,质量均为m ,在水平恒力F 作用下以速度v 做匀速运动.在t =0时轻绳断开,Q 在F 的作用下继续前进,则下列说法正确的是( )

A .t =0至2mv

t F

=时间内,P 、Q 的总动量守恒 B .t =0至3mv

t F

=时间内,P 、Q 的总动量守恒 C .4mv

t F

=时,Q 的动量为3mv D .3mv

t F =

时,P 的动量为32

mv 2.A 、B 两球沿同一直线运动并发生正碰,如图所示为两球碰撞前后的位移—时间(x-t)图像,图中a 、b 分别为A 、B 两球碰撞前的图线,c 为碰撞后两球共同运动的图线.若A 球的质量

2A m kg =,则由图可知下列结论正确的是( )

A .A 、

B 两球碰撞前的总动量为3 kg·m/s B .碰撞过程A 对B 的冲量为-4 N·s

C .碰撞前后A 的动量变化为4kg·m/s

D .碰撞过程A 、B 两球组成的系统损失的机械能为10 J

3.水上飞行运动使用的是一种叫“喷射式悬浮飞行器”的装置,也称为“喷水飞行背包”,它通过向下喷射高压水柱的方式将操控者托举在水面 上空,利用脚上喷水装置产生的反冲动力,让你可以在水面之上腾空而起,另外配备有手动控 制的喷嘴,用于稳定空中飞行姿态.如图所示运动员在水上做飞行运动表演.他操控喷射式悬浮飞行器将水带竖直送上来的水反转180°后向下喷出,令自己悬停在空中.已知运动员与装备的总质量为100 kg ,两个圆管喷嘴的直径均为10cm ,已知重力加速度大小g =10m/s 2,水的密度ρ=1.0×103kg/cm 3,则喷嘴处喷水的速度大约为

A .3.0 m/s

B .5.4 m/s

C .8.0 m/s

D .10.2 m/s

4.将质量为m 0的木块固定在光滑水平面上,一颗质量为m 的子弹以速度v 0沿水平方向射入木块,子弹射穿木块时的速度为

3

v .现将同样的木块放在光滑的水平桌面上,相同的子弹仍以速度v 0沿水平方向射入木块,设子弹在木块中所受阻力不变,则以下说法正确的是()

A .若m 0=3m ,则能够射穿木块

B .若m 0=3m ,子弹不能射穿木块,将留在木块中,一起以共同的速度做匀速运动

C .若m 0=3m ,子弹刚好能射穿木块,此时子弹相对于木块的速度为零

D .若子弹以3v 0速度射向木块,并从木块中穿出,木块获得的速度为v 1;若子弹以4v 0速度射向木块,木块获得的速度为v 2;则必有v 1<v 2

5.如图所示,在光滑的水平面上有体积相同、质量分别为m =0.1kg 和M =0.3kg 的两个小球A 、B ,两球之间夹着一根压缩的轻弹簧(弹簧与两球不相连),A 、B 两球原来处于静止状态.现突然释放弹簧,B 球脱离弹簧时的速度为2m/s ;A 球进入与水平面相切、半径为0.5m 的竖直面内的光滑半圆形轨道运动,PQ 为半圆形轨道竖直的直径,不计空气阻力,g 取10m/s 2,下列说法正确的是( )

A .A 、

B 两球离开弹簧的过程中,A 球受到的冲量大小等于B 球受到的冲量大小 B .弹簧初始时具有的弹性势能为2.4J

C .A 球从P 点运动到Q 点过程中所受合外力的冲量大小为1N ?s

D .若逐渐增大半圆形轨道半径,仍然释放该弹簧且A 球能从Q 点飞出,则落地的水平距离将不断增大

6.如图所示,将质量为M 1、半径为R 且内壁光滑的半圆槽置于光滑水平面上,左侧靠竖直墙壁,右侧靠一质量为M 2的物块.今让一质量为m 的小球自左侧槽口A 的正上方h 高处从静止开始下落,与半圆槽相切自A 点进入槽内,则以下结论中正确的是( )

A.小球在槽内运动的全过程中,小球与半圆槽在水平方向动量守恒

B.小球在槽内运动的B至C过程中,小球、半圆槽和物块组成的系统水平方向动量守恒C.小球离开C点以后,将做竖直上抛运动

D.小球从A点经最低点向右侧最高点运动的过程中,小球、半圆槽和物块组成的系统机械能守恒

7.如图所示,光滑水平面上有一质量为m=1kg的小车,小车右端固定一水平轻质弹簧,弹簧左端连接一质量为m0=1kg的物块,物块与上表面光滑的小车一起以v0=5m/s的速度向右匀速运动,与静止在光滑水平面上、质量为M=4kg的小球发生弹性正碰,若碰撞时间极短,弹簧始终在弹性限度内.则()

A.碰撞结束时,小车的速度为3m/s,速度方向向左

B.从碰后瞬间到弹簧最短的过程,弹簧弹力对小车的冲量大小为4N·s

C.小车的最小速度为1m/s

D.在小车速度为1m/s时,弹簧的弹性势能有最大值

8.如图甲,质量M=0.8 kg 的足够长的木板静止在光滑的水平面上,质量m=0.2 kg的滑块静止在木板的左端,在滑块上施加一水平向右、大小按图乙所示随时间变化的拉力F,4 s后撤去力F。若滑块与木板间的动摩擦因数μ=0.2,最大静摩擦力等于滑动摩擦力,重力加速度g=10 m/s2,则下列说法正确的是

A.0~4s时间内拉力的冲量为3.2 N·s B.t= 4s时滑块的速度大小为9.5 m/s

C.木板受到滑动摩擦力的冲量为2.8 N·s D.2~4s内因摩擦产生的热量为4J

9.如图所示,用长为L的细线悬挂一质量为M的小木块,木块处于静止状态.一质量为m、速度为v0的子弹自左向右水平射穿木块后,速度变为v.已知重力加速度为g,则

A .子弹刚穿出木块时,木块的速度为

0()

m v v M

- B .子弹穿过木块的过程中,子弹与木块组成的系统机械能守恒 C .子弹穿过木块的过程中,子弹与木块组成的系统动量守恒

D .木块上升的最大高度为22

02mv mv Mg

-

10.如图所示,质量为M 的长木板静止在光滑水平面上,上表面OA 段光滑,AB 段粗糙且长为l ,左端O 处固定轻质弹簧,右侧用不可伸长的轻绳连接于竖直墙上,轻绳所能承受的最大拉力为F .质量为m 的小滑块以速度v 从A 点向左滑动压缩弹簧,弹簧的压缩量达最大时细绳恰好被拉断,再过一段时间后长木板停止运动,小滑块恰未掉落.则( )

A .细绳被拉断瞬间木板的加速度大小为F M

B .细绳被拉断瞬间弹簧的弹性势能为212

mv C .弹簧恢复原长时滑块的动能为

212

mv D .滑块与木板AB 间的动摩擦因数为2

2v gl

11.如图所示,滑块和小球的质量分别为M 、m .滑块可在水平放置的光滑固定导轨上自由滑动,小球与滑块上的悬点O 由一不可伸长的轻绳相连,轻绳长为l .开始时,轻绳处于水平拉直状态,小球和滑块均静止.现将小球由静止释放,当小球到达最低点时,下列说法正确的是( )

A .滑块和小球组成的系统动量守恒

B .滑块和小球组成的系统水平方向动量守恒

C.滑块的最大速率为

2

2

()

m gl M M m

+

D.滑块的最大速率为

2 ()

m gl

M M m

+

12.如图所示,足够长的光滑水平面上有一质量为2kg的木板B,质量为1kg的木块C叠放在B的右端点,B、C均处于静止状态且B、C之间的动摩擦因数为μ = 0.1。质量为1kg 的木块A以初速度v1 = 12m/s向右滑动,与木板B在极短时间内发生碰撞,碰后与B粘在一起。在运动过程中C不从B上滑下,已知g = 10m/s2,那么下列说法中正确的是

()

A.A与B碰撞后A的瞬时速度大小为3m/s

B.A与B碰撞时B对A的冲量大小为8N?s

C.C与B之间的相对位移大小为6m

D.整个过程中系统损失的机械能为54J

13.如图所示,光滑弧形滑块P锁定在光滑水平地面上,其弧形底端切线水平,小球Q (视为质点)的质量为滑块P的质量的一半,小球Q从滑块P顶端由静止释放,Q离开P 时的动能为

1k

E.现解除锁定,仍让Q从滑块顶端由静止释放,Q离开P时的动能为2

k

E,1k E和2k E的比值为()

A.1

2

B.

3

4

C.

3

2

D.

4

3

14.如图所示,一轻杆两端分别固定a、b 两个半径相等的光滑金属球,a球质量大于b球质量.整个装置放在光滑的水平面上,将此装置从图示位置由静止释放,则()

A.在b球落地前瞬间,a球的速度方向向右

B.在b球落地前瞬间,a球的速度方向向左

C.在b球落地前的整个过程中,轻杆对b球的冲量为零

D.在b球落地前的整个过程中,轻杆对b球做的功为零

15.如图甲所示,一轻弹簧的两端与质量分别为m 1和m 2的两物块A ,B 相连接,静止在光滑水平地面上,现使A 瞬时获得水平向右的速度3m/s ,从此刻开始计时,两物块的速度随时间变化的规律如图乙所示,下列说法正确的是( )

A .物块A 在t 1和t 3两个时刻的加速度大小相等

B .从开始计时到t 4这段时间内,物块A ,B 在t 2时刻相距最远

C .t 1到t 3这段时间内弹簧长度一直在增大

D .12:1:2m m =

16.一个物体以某一初速度从粗糙斜面的底部沿斜面向上滑,物体滑到最高点后又返回到斜面底部,则下述说法中正确的是()

A .上滑过程中重力的冲量小于下滑过程中重力的冲量

B .上滑过程中摩擦力的冲量与下滑过程中摩擦力的冲量大小相等

C .上滑过程中合力的冲量大于下滑过程中合力的冲量

D .上滑与下滑的过程中合外力冲量的方向相同

17.如图所示,半径为R 、质量为M 的

1

4

一光滑圆槽静置于光滑的水平地面上,一个质量为m 的小木块从槽的顶端由静止滑下,直至滑离圆槽的过程中,下列说法中正确的是

A .M 和m 组成的系统动量守恒

B .m 飞离圆槽时速度大小为

2gRM

m M

+

C .m 飞离圆槽时速度大小为2gR

D .m 飞离圆槽时,圆槽运动的位移大小为

m

R m M

+ 18.如图所示,一质量为M 的木板A 静止在光滑的水平面上,一质量为m 的滑块B 以初速度v 0滑到木板上,滑块在木板上滑行的距离为d ,木板向前移动S 后以速度v 与滑块一起匀速运动,此过程中转化为内能的能量为( )

A .

2001()2

m v v v - B .00()mv v v -

C .

0()2m v v vd

S

-

D .

0()

m v v vd S

- 19.带有

1

4

光滑圆弧轨道、质量为M 的小车静止置于光滑水平面上,如图所示,一质量为m 的小球以速度0v 水平冲上小车,到达某一高度后,小球又返回车的左端,则( )

A .小球一定向左做平抛运动

B .小球可能做自由落体运动

C .若m M =,则此过程小球对小车做的功为

201

2

Mv D .若m M <,则小球在弧形槽上升的最大高度将大于2

04v g

20.如图所示,在光滑的水平杆上套有一个质量为m 的滑环.滑环上通过一根不可伸缩的轻绳悬挂着一个质量为M 的物块(可视为质点),绳长为L .将滑环固定时,给物块一个水平冲量,物块摆起后刚好碰到水平杆;若滑环不固定时,仍给物块以同样的水平冲量,则( )

A .给物块的水平冲量为2gL

B .物块上升的最大高度为

mL

m M + C 2m gL

D .物块在最低点时对细绳的拉力3Mg

二、动量守恒定律 解答题

21.如图,倾角θ=370的直轨道AC 与圆弧轨道CDEF 在AC 处平滑连接,整个装置固定在同一竖直平面内.圆弧划口直的半径为R ,DF 是竖直直径,以氨为圆心,E 、O 、B 三点在同一水平线上,A 、F 也在同一水平线上.两个小滑块P 、Q (都可视为质点)的质量都为m .已知滑块Q 与轨道AC 间存在摩擦力且动摩擦因数处处相等,但滑块P 与整个轨道间和滑块Q 与圆弧轨道间的摩擦力都可忽略不计.同时将两个滑块P 、Q 分别静止释放在A 、B 两点,之后P 开始向下滑动,在B 点与Q 相碰,碰后P 、Q 立刻一起向下且在BC 段保持匀速运动.已知P 、Q 每次相碰都会立刻合在一起运动但两者并不粘连,

sin370=0.6,cos370=0.8,取重力加速度为g,求:

(1)两滑块进入圆弧轨道运动过程中对圆弧轨道的压力的最大值.

(2)滑块Q在轨道ACI往复运动经过的最大路程.

22.如图所示,在光滑、绝缘的水平面内,有一个正方形MNPQ区域,边长L=1m.半径R=20cm的圆形磁场与MN、MQ边均相切,与MQ边切于点A,磁感应强度B=0.5T,方向垂直于水平面向上.圆形磁场之外区域,有方向水平向左的匀强电场,场强大小

E=0.5V/m.两个大小完全相同的金属小球a、b均视为质点.小球a的质量m a=2×10-5kg,电量q=+4×10-4C.小球b的质量m b=1×10-5kg,不带电,放在圆周上的D点静止,A、C、D 三点在同一直线上.小球a从A点正对磁场圆心C射入,会与球b在D点沿平行于MN的方向发生弹性碰撞,碰后忽略两球之间的相互作用力及小球重力.π=3.14,求:

(1)小球a射入磁场时的速度大小及小球a射入磁场到与小球b相碰撞经历的时间;

(2)小球a与b碰撞后在正方形MNPQ区域内运动,两球之间的最大距离.

23.如图所示,平行导轨EF和GH相距L=1m,电阻可忽略,其倾斜部分与水平面成37°,且导体棒与倾斜部分之间的动摩擦因数为0.3

μ=;其水平部分ECDH光滑,且置于磁感应强度大小为1T、方向竖直向上的匀强磁场中:倾斜部分没有磁场,上端接一个阻值R=1Ω的电阻,两部分平滑对接,其上拥有两根导体棒a、b,b垂直于水平导轨放置,a垂直于倾斜导轨放置,a、b棒与导轨始终接触良好。已知细导体棒a质量为0.5kg,b质量为

1.5kg,在导轨间部分的电阻均为1Ω,a棒从倾斜轨道上高为4

3

m处无初速度释放。

(cos37°=08,sin37°=0.6)求:

(1)若b棒被锁定在水平导轨上始终不动,则a棒刚进入磁场时,a棒两端的电势差U;

(2)若b棒被锁定在水平导轨上始终不动,要使a棒进入磁场后与b棒相碰。b棒距CD线的距离最大为多少;

(3)若b 棒被锁定在距CD 线左侧1.5m 处,当a 棒即将与b 棒碰撞时解除锁定a 、b 棒碰撞后粘在一起,求b 棒在磁场中通过的距离和电阻R 在整个过程中产生的焦耳热Q R 。

24.一木板置于光滑水平地面上,木板左端放置一个可以看作质点的小物块,小物块的质量m 1=2kg ,木板质量m 2=1kg ,小物块与木板间的动摩擦因数为μ=0.2。在距离木板右端L =12m 处有一墙壁。现小物块与木板一起以共同速度1v =6m/s 向右运动,木板与墙壁的碰撞可以看作弹性碰撞。运动过程中小物块始终未离开木板。(g 取10m/s 2)求:(以向右为正方向)

(1)木板与墙壁发生第一次碰撞后,木板向左运动的最大距离;

(2)木板从开始运动到第二次与墙壁碰撞所经历的时间,并画出小物块和木板此过程v-t 图像;

(3)木板从第一次与墙壁碰撞后到最终静止所走的总路程。

25.如图所示,两平行圆弧导轨与两平行水平导轨平滑连接,水平导轨所在空间有竖直向上的匀强磁场,磁感应强度 1.0T B =,两导轨均光滑,间距0.5m L =。质量为

10.1kg m =的导体棒ab 静止在水平导轨上,质量20.2kg m =的导体棒cd 从高0.45m

h =的圆弧导轨上由静止下滑。两导体棒总电阻为5ΩR =,其它电阻不计,导轨足够长,

210m /s g =。求:

(1)cd 棒刚进入磁场时ab 棒的加速度;

(2)若cd 棒不与ab 棒相碰撞,则两杆运动过程中释放出的最大电能是多少;

(3)当cd 棒的加速度为220.375m /s a =时,两棒之间的距离比cd 棒刚进入磁场时减少了多少?

26.如图BC 是位于竖直平面内的一段光滑的圆弧轨道,圆弧轨道的半径为r =3m ,圆心角θ=53°,圆心O 的正下方C 与光滑的水平面相连接,圆弧轨道的末端C 处安装了一个压力传感器.水平面上静止放置一个质量M =1kg 的木板,木板的长度l =2m ,木板的上表面的最右端放置一个静止的小滑块P 1,小滑块P 1的质量m 1未知,小滑块P 1与木板之间的动摩擦因数μ=0.2.另有一个质量m 2=1kg 的小滑块P 2,从圆弧轨道左上方的某个位置A 处以某一水平的初速度抛出,恰好能够沿切线无碰撞地从B 点进入圆弧轨道,滑到C 处时压力传感器的示数为

79

3

N ,之后滑到水平面上并与木板发生弹性碰撞且碰撞时间极短.(不计空气阻力,重力加速度g =10m/s 2,cos53°=0.6).求:

(1)求小滑块P 2经过C 处时的速度大小;

(2)求位置A 与C 点之间的水平距离和竖直距离分别是多少?

(3)假设小滑块P 1与木板间摩擦产生的热量为Q ,请定量地讨论热量Q 与小滑块P 1的质量m 1之间的关系.

【参考答案】***试卷处理标记,请不要删除

一、动量守恒定律 选择题 1.A 解析:AC 【解析】 【分析】 【详解】

AB .开始P 、Q 在拉力F 作用下匀速运动,则根据平衡状态知

2F mg μ=

当剪断绳子后,P 做减速运动,Q 做加速运动,加速度大小均为

a g μ=

由运动学公式知,P 物体停止运动的时间为

2v mv t g F

μ=

= 则在20

mv

F

时间内,P 、Q 均在运动。 将PQ 看成整体,则整体的总动量守恒,为

2p mv =

保持不变,选项A 正确,B 错误; CD .在24mv mv

F F

时间内,P 物体静止,Q 物体做加速运动,P 、Q 的总动量增加。 在

4mv

F

时Q 物体的速度为 4432t mv mv

v v at v g v g v F mg

μμμ=+=+?

=+= 则此时Q 的动量为

3Q p mv =

选项C 正确,D 错误。 故选AC 。

2.B

解析:BCD 【解析】 【分析】 【详解】

A 、由s-t 图像可以知道:碰撞前A 的速度为410

3/2

A v m s -==- ; 碰撞前

B 的速度40

2/2

B v m s -=

= , 碰撞后AB 的速度为24

1/2C v m s -=

=- 根据动量守恒可知 ()b B a A a b C m v m v m m v -=-+ 代入速度值可求得:43

b m kg =

所以碰撞前的总动量为 10

/3

b B a A m v m v kg m s -=-

? ,故A 错误; B 、碰撞时A 对B 所施冲量为即为B 的动量变化量4B b C b B P m v m v N s ?=--=-? 故B 正确;

C 、根据动量守恒可知44/A B P P N s kg m s ?=-?=?=? ,故C 正确;

D 、碰撞中A 、B 两球组成的系统损失的动能为()22211110222

a A

b B a b C m v m v m m v J +-+= ,故D 正确, 故选BCD 【点睛】

结合图像求出碰前碰后的速度,利用动量守恒求出B 的质量,然后根据定义求出动量的变化量.

3.C

解析:C 【解析】 【详解】

设△t 时间内有质量为m 的水射出,忽略重力冲量,对这部分水速度方向变为反向,由动量定理得:

2F t m v ?=

2()2

d

m v t ρπ=?

设运动员与装备的总质量为M ,运动员悬停在空中,所以:

' F Mg =

由牛顿第三定律得:

' F F =

联立解得:

v ≈8.0m/s

C 正确。

4.B

解析:B 【解析】 【分析】 【详解】

A 、木块固定时,子弹射穿木块,设子弹在木块中所受阻力为f ,木块长度为d ,对子弹由

动能定理得:fd =12mv 02-12m 2

03v ?? ???=4

9

mv 02;木块放在光滑的水平面上不固定时,子弹射

入木块,系统动量守恒,假设子弹能刚好穿出木块;由动量守恒定律得:mv 0=(m 0+m )

v ,由能量守恒定律得:

12mv 02=1

2

(m 0+m )v 2+Q ,Q =fd ,解得:m 0=8m ,则子弹要穿出木块m 0≥8m ,故A 、C 错误,B 正确;

D 、子弹以3v 0速度射向木块,并从木块中穿出,则子弹以4v 0速度射向木块时,子弹也能从木块中穿出,木块宽度一定,子弹速度越大,子弹穿过木块的时间t 越短,由于子弹穿

过木块时受到的阻力f 相同,对木块由动量定理得:ft =m 0v -0,可知时间t 越短,木块获得的速度越小,则v 2<v 1,故D 错误.

5.A

解析:ABC 【解析】 【分析】 【详解】

A .A 、

B 两球离开弹簧的过程中,A 受到弹簧的弹力与B 受到弹簧的弹力是相等的,而作用时间也是相等的,所以A 、B 球合力的冲量大小是相等的,故A 正确; B .释放弹簧过程中系统动量守恒、机械能守恒,以向右为正方向,由动量守恒定律得:

0A B mv Mv -=

代入数据得

6m/s A v =

根据能量守恒,系统增加的动能等于系统减少的弹性势能

2211 2.4J 22

A B Ep mv Mv ?=

+= 故B 正确;

C .A 球从P 点运动到Q 的过程中利用动能定理可以求出Q 点的速度

22

11222

Q P mg R mv mv -=

- 解得

4m/s Q v =

所以A 球从P 点运动到Q 点过程中所受合外力的冲量等于动量的该变量即

0.1(46)1N s Q p I mv mv =+=+=?

故C 正确;

D .设圆轨道半径为r 时,m 由P 到Q 的过程,由机械能守恒定律得:

22

11222Q P mg r mv mv --'=

m 从Q 点飞出后做平抛运动,则:

2

122

r gt =

Q

x v t =' 解得

x =

当40=(3640r r -),即0.45r =时,x 有最大值,所以若逐渐增大半圆形轨道半径,仍然释放该弹簧且A 球能从Q 点飞出,则落地的水平距离会减小,故D 错误; 故选ABC 。

解析:BD 【解析】 【分析】 【详解】

AB .小球从A →B 的过程中,半圆槽对球的支持力沿半径方向指向圆心,而小球对半圆槽的压力方向相反指向左下方,因为有竖直墙挡住,所以半圆槽不会向左运动,可见,该过程中,小球与半圆槽在水平方向受到外力作用,动量并不守恒,而由小球、半圆槽和物块组成的系统动量也不守恒;从B →C 的过程中,小球对半圆槽的压力方向向右下方,所以半圆槽要向右推动物块一起运动,因而小球参与了两个运动:一个是沿半圆槽的圆周运动,另一个是与半圆槽一起向右运动,小球所受支持力方向与速度方向并不垂直,此过程中,因为有物块挡住,小球与半圆槽在水平方向动量并不守恒,但是小球、半圆槽和物块组成的系统水平方向动量守恒,小球运动的全过程,水平方向动量也不守恒,选项A 错误,选项B 正确;

C .当小球运动到C 点时,它的两个分运动的合速度方向并不是竖直向上,所以此后小球做斜上抛运动,即选项C 错误;

D .因为小球在槽内运动过程中,速度方向与槽对它的支持力始终垂直,即支持力不做功,且在接触面都是光滑的,所以小球、半圆槽.物块组成的系统机械能守恒,故选项D 正确. 故选BD.

7.A

解析:ABD 【解析】 【分析】 【详解】

A 、设碰撞后瞬间小车的速度大小为v 1,小球的速度大小为v ,由动量守恒及动能守恒有: mv 0=Mv +mv 1,22201111222mv mv Mv =+;解得:103m/s m M v v m M

-==-+,小车速度方向向左;022m/s m

v v m M

=

=+,小球速度方向向右;选项A 正确. D 、当弹簧被压缩到最短时,设小车的速度大小为v 2,根据动量守恒定律有:m 0v 0+mv 1=(m 0+m )v 2,解得:v 2=1 m/s ,选项D 正确. C 、由以上分析可知小车最小速度为0,选项C 错误.

B 、设从碰撞的瞬间到弹簧最短的过程,弹簧弹力对小车的冲量大小为I ,根据动量定理有I =mv 2-mv 1,解得:I =4N·s ,选项B 正确. 故选ABD . 【点睛】

本题在整个运动的过程中,系统的动量守恒,对于不同的过程,根据动量守恒定律和能量守恒定律计算即可,注意要规定正方向.

解析:BCD 【解析】 【详解】

A.冲量的定义式:I Ft =,所以F -t 图像面积代表冲量,所以0-4 s 时间内拉力的冲量为

0.51

(

221)N S 3.5N S 2

I +=?+??=? 故A 错误;

B.木块相对木板滑动时:对木板:

mg Ma =μ

对木块:

F mg ma μ-=

联立解得:

0.5F N =,20.5m /s a =

所以0时刻,即相对滑动,对滑块:

10F I mgt mv μ-=-

解得4s 时滑块速度大小:

19.5m/s v =

故B 正确; C.4s 时,木板的速度

20.54m /s 2m /s v at ==?=

撤去外力后,木板加速,滑块减速,直到共速,根据动量守恒:

12()mv Mv M m v +=+

解得: 3.5m /s v =, 对木板根据动量定理可得:

2.8N s I Mv ==?

故C 正确; D.0-2s 内,对m :

11F I mgt mv -=μ

0.51

2N s 1.5N s 2

F I +=

??=? 解得:1 3.5m /s v = 对M

12mgt Mv μ=

解得v 2=1m/s 2-4s 内:对m

2110.4

3m /s 0.2

F mg a m --=

==μ 2

112121132

x v t a t m =+=;

对M

220.5m/s mg

a M

μ=

=

2

2222213m 2

x v t a t =+=

所以

1210m s x x =-=相 4J Q mg s =?=相μ

故D 正确。

9.A

解析:AC 【解析】

子弹穿过木块的过程中,系统动量守恒,但机械能不守恒,有部分机械能转化为系统内能,故B 错误C 正确;根据动量守恒,0mv mv Mv =+',解得0mv mv

v M

'-=

,所以A 正确.子弹穿出以后,对木块应用动能定理有2

12

Mv Mgh '=得202()2mv mv h gM -=

,所以D 错误.故选择AC.

【点睛】根据动量守恒求子弹穿出以后木块的速度,根据动能定理或者机械能守恒求木块上升的最大高度.

10.A

解析:ABD 【解析】 【分析】 【详解】

A .细绳被拉断瞬间,对木板分析,由于OA 段光滑,没有摩擦力,在水平方向上只受到弹簧给的弹力,细绳被拉断瞬间弹簧的弹力等于F ,根据牛顿第二定律有:

F Ma =

解得F

a M

=

,A 正确; B .滑块以速度v 从A 点向左滑动压缩弹簧,到弹簧压缩量最大时速度为0,由系统的机械能守恒得:细绳被拉断瞬间弹簧的弹性势能为

2

12

mv ,B 正确;

C .弹簧恢复原长时木板获得的动能,所以滑块的动能小于

2

12

mv ,C 错误; D .由于细绳被拉断瞬间,木板速度为零,小滑块速度为零,所以小滑块的动能全部转化为弹簧的弹性势能,即2

12

p E mv =

,小滑块恰未掉落时滑到木板的右端,且速度与木板相同,设为v ',取向左为正方向,由动量守恒定律和能量守恒定律得

()0m M v =+'

()21

2

p E m M v mgl μ=

+'+ 联立解得2

2v gl

μ=,D 正确。

故选ABD 。

11.B

解析:BC 【解析】 【分析】 【详解】

A .小球下落过程中系统合外力不为零,因此系统动量不守恒.故A 项错误.

B .绳子上拉力属于内力,系统在水平方向不受外力作用,因此系统水平方向动量守恒.故B 项正确.

CD .当小球落到最低点时,只有水平方向的速度,此时小球和滑块的速度均达到最大.据系统水平方向动量守恒有

max Mv mv =

据系统机械能守恒有

22max 1122

mgl mv Mv =

+ 联立解得

max

v =

故C 项正确,D 项错误. 故选BC 。

12.B

解析:BCD 【解析】 【分析】 【详解】

A .A 与

B 碰撞过程动量守恒,有

()A 1A B 2m v m m v =+

代入数据解得

A

21A B

4m/s m v v m m =

=+

即碰后A 的瞬时速度大小为4m/s ,故A 错误; B .A 与B 碰撞,对A ,由动量定理得

A 2A 18N s I m v m v =-=-?

所以A 与B 碰撞时B 对A 的冲量大小为8N?s ,故B 正确;

C .在运动过程中C 不从B 上滑下,则A 与B 碰撞后与C 相互作用过程中,由动量守恒得

()()A B 2A B C 3m m v m m m v +=++

代入数据解得

A B

32A B C

3m/s m m v v m m m +=

=++

此过程根据能量守恒有

()()22C A B 2A B C 311

6J 22

Q m gl m m v m m m v μ==

+-++= 所以C 与B 之间的相对位移大小为

6m l =

故C 正确;

D .整个过程中系统损失的机械能为

()22

A 1A

B

C 311Δ54J 22

E m v m m m v =-++=

故D 正确。 故选BCD 。

13.C

解析:C 【解析】 【详解】

滑弧形滑块P 锁定在光滑水平地面上,根据动能定理可知1k E mgR =;解除锁定,让Q 从滑块顶端由静止释放,小球Q 与滑块组成的系统水平方向动量守恒,设小球Q 离开P 时的速度为1v ,滑块的速度为2v ,根据动量守恒则有1220mv mv -=,根据能量守恒则有

221211·222mv mv mgR +=,解得Q 离开P 时的动能为22112

23k E mv mgR ==,所以123

2

k k E E =,故C 正确,A 、B 、D 错误; 【点睛】

解除锁定,让Q 从滑块顶端由静止释放,小球Q 与滑块组成的系统水平方向动量守恒,根

据动量守恒和能量守恒求出Q 离开P 时的动能.

14.D

解析:D 【解析】 【分析】 【详解】

A 、

B 、对两球及杆系统,在b 球落地前瞬间,b 球的水平速度为零,根据系统水平方向动量守恒,系统初始动量为零,则此时a 球的速度必定为零,故A 、B 均错误;

C 、对b 球,水平方向上动量变化为零,由动量定理可知,杆对b 球的水平冲量为零.在竖直方向上,根据系统机械能守恒可知,b 落地时速度与只在重力作用下的速度一样,如图所示v-t 图象中斜线为b 球自由落体运动的图线,曲线为b 球竖直方向的运动图线,在竖直方向上运动的位移与落地速度相同,对比可知b 球落地所用时间相对自由落体运动的时间要长,由动量定理可知杆对b 球的竖直方向的冲量必定不为零,且冲量方向向上,所以杆对b 球的水平和竖直冲量可知,杆对b 球的冲量不为零,且方向竖直向上.故C 错误;

D 、设杆对a 球做功W 1,对b 球做功W 2,系统机械能守恒,则除了重力之外的力的功必定为零,即W 1+W 2=0,对a 球由动能定理可知W 1=0,故W 2=0.故D 正确.

15.A

解析:ACD 【解析】 【分析】 【详解】

A .根据图像的对称性可知,在t 1和t 3两个时刻,图像的斜率大小相等,因此物块A 在t 1和t 3两个时刻的加速度大小相等,A 正确;

BC .结合图象可知,开始时m 1逐渐减速,m 2逐渐加速,弹簧被压缩,t 1时刻二者速度相等,弹簧压缩量最大,弹性势能最大,系统动能最小;然后弹簧逐渐恢复原长,m 2依然加速,m 1先减速为零,然后反向加速,t 2时刻,弹簧恢复原长状态,由于此时两物块速度相反,因此弹簧的长度将逐渐增大,两木块均减速,当t 3时刻,两木块速度相等,弹簧最长,弹簧弹性势能最大,系统动能最小,B 错误,C 正确;

D .两物块和弹簧组成的系统动量守恒,选择从开始到t 1时刻列方程可知

11122()m v m m v =+

将v 1=3m/s ,v 2=1m/s 代入得

m 1:m 2=1:2

D 正确。 故选ACD 。

16.A

解析:ACD 【解析】 【详解】

上滑过程加速度:a 上=g (sinθ+μcosθ),下滑过程加速度:a 下=g (sinθ-μcosθ),则a 上>a

,上滑过程为匀减速直线运动,末速度为零,其逆过程为初速度为零的匀加速直线运动,

下滑过程为初速度为零的匀加速直线运动,上滑与下滑过程的位移x 大小相等,由x=

12

at 2

,a 上>a 下,可知:t 上<t 下;重力的冲量:I G =mgt ,由于t 上<t 下,则上滑过程重力的冲量小于下滑过程中重力的冲量,故A 正确;摩擦力的冲量:I f =ft=μmgtcosθ,由于t 上<t 下,则上滑过程摩擦力的冲量小于下滑过程中摩擦力的冲量,故B 错误;上滑过程为匀减速直线运动,末速度为零,其逆过程为初速度为零的匀加速直线运动,下滑过程为初速度为零的匀加速直线运动,上滑与下滑过程的位移x 大小相等,由v 2=2ax ,a 上>a 下,可知:v 上>v 下,由动量定理得:I 合=mv-0=mv ,可知:I 合上>I 合下,故C 正确;上滑和下滑过程中,合外力均沿斜面向下,则上滑与下滑的过程中合外力冲量的方向均沿斜面向下,选项D 正确;故选ACD. 【点睛】

本题考查了比较各力的冲量大小,本题的解题关键是分析受力和两个运动过程中的时间关系,由牛顿第二定律和运动学公式、冲量的意义、动量定理即可正确解题.

17.B

解析:BD 【解析】 【详解】

A .对木块和槽所组成的系统,水平方向不受外力,则只有水平方向动量守恒,选项A 错误;

BC .设木块滑出槽口时的速度为v ,槽的速度为u ,在水平方向上,由动量守恒定律可得:

mv -Mu =0

木块下滑时,只有重力做功,系统机械能守恒,由机械能守恒定律得:

2211

22

mgR mv Mu =

+ 联立解得

v =

故选项B 正确,C 错误;

D .对木块和槽的系统动量守恒定律可得:

m (R -x )-Mx =0

解得

mR

x m M

=

+ 选项D 正确。

18.A

解析:AC 【解析】

高中物理动量守恒定律试题类型及其解题技巧

高中物理动量守恒定律试题类型及其解题技巧 一、高考物理精讲专题动量守恒定律 1.如图所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,O 点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B 相碰后立即一起沿斜面向下运动,但不粘连,它们到达最低点后又一起向上运动,并恰好回到O 点(A 、B 均视为质点),重力加速度为g .求: (1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧具有的弹性势能; (3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆弧轨道与斜面相切 于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,则v 至少为多大时物块A 能沿圆弧轨道运动到Q 点.(计算结果可用根式表示) 【答案】20132v gx =01 4 P E mgx =0(2043)v gx =+【解析】 试题分析:(1)A 与B 球碰撞前后,A 球的速度分别是v 1和v 2,因A 球滑下过程中,机械能守恒,有: mg (3x 0)sin30°= 1 2 mv 12 解得:103v gx = 又因A 与B 球碰撞过程中,动量守恒,有:mv 1=2mv 2…② 联立①②得:21011 322 v v gx == (2)碰后,A 、B 和弹簧组成的系统在运动过程中,机械能守恒. 则有:E P + 1 2 ?2mv 22=0+2mg?x 0sin30° 解得:E P =2mg?x 0sin 30°? 1 2?2mv 22=mgx 0?34 mgx 0=14mgx 0…③ (3)设物块在最高点C 的速度是v C ,

最新物理动量守恒定律练习题20篇

最新物理动量守恒定律练习题20篇 一、高考物理精讲专题动量守恒定律 1.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求: (1)A球与B球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中B球的最小速度. 【答案】(1);(2);(3)零. 【解析】 试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有: 碰后A、B的共同速度 损失的机械能 (2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大 根据动量守恒定律有: 三者共同速度 最大弹性势能 (3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速. 弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有: 根据机械能守恒定律: 此时A、B的速度,C的速度

可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的 ,故B 的最小速度为零 . 考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞. 【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答 2.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求: (1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ; (2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1; (3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值. 【答案】(1)2 4.610N F N -=? (2)1 1.25B T = (3)127s 360 t π = ,001290143ββ==和 【解析】 【详解】 解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v

高中物理动量守恒定律练习题及答案及解析

高中物理动量守恒定律练习题及答案及解析 一、高考物理精讲专题动量守恒定律 1.如图所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,O 点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B 相碰后立即一起沿斜面向下运动,但不粘连,它们到达最低点后又一起向上运动,并恰好回到O 点(A 、B 均视为质点),重力加速度为g .求: (1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧具有的弹性势能; (3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆弧轨道与斜面相切 于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,则v 至少为多大时物块A 能沿圆弧轨道运动到Q 点.(计算结果可用根式表示) 【答案】20132v gx =01 4 P E mgx =0(2043)v gx =+【解析】 试题分析:(1)A 与B 球碰撞前后,A 球的速度分别是v 1和v 2,因A 球滑下过程中,机械能守恒,有: mg (3x 0)sin30°= 1 2 mv 12 解得:103v gx = 又因A 与B 球碰撞过程中,动量守恒,有:mv 1=2mv 2…② 联立①②得:21011 322 v v gx == (2)碰后,A 、B 和弹簧组成的系统在运动过程中,机械能守恒. 则有:E P + 1 2 ?2mv 22=0+2mg?x 0sin30° 解得:E P =2mg?x 0sin30°? 1 2?2mv 22=mgx 0?34 mgx 0=14mgx 0…③ (3)设物块在最高点C 的速度是v C ,

动量守恒定律中的典型模型

动量守恒定律中的典型模型 1、子弹打木块模型包括木块在长木板上滑动的模型,其实是一类题型,解决方法基本相同。一般要用到动量守恒、动量定理、动能定理及动力学等规律,综合性强、能力要求高,是高中物理中常见的题型之一,也是高考中经常出现的题型。 例1:质量为2m、长为L的木块置于光滑的水平面上,质量为m的子弹以初速度V0水平向右射穿木块后,速度为V0/2。设木块对子弹的阻力F恒定。求: (1)子弹穿过木块的过程中木块的位移 (2)若木块固定在传送带上,使木块随传送带始终以恒定速度u

3、弹簧木块模型 例5、质量为m 的物块甲以3m/s 的速度在光滑水平面上运动,有一轻弹簧固定其上,另一质量也为m 的物体乙以4m/s 的速度与甲相向运动,如图所示。则( ) A .甲、乙两物块在弹簧压缩过程中,由于弹力作用,动量 不守恒 B .当两物块相距最近时,甲物块的速率为零 C .当甲物块的速率为1m/s 时,乙物块的速率可能为2m/s ,也可能为0 D .甲物块的速率可能达到5m/s 例6、如图所示,光滑的水平面上有m A =2kg ,m B = m C =1kg 的三个物体,用轻弹簧将A 与B 连接.在A 、C 两边用力使三个物体靠近,A 、B 间的弹簧被压缩,此过程外力做功72 J ,然后从静止开始释放,求: (1)当物体B 与C 分离时,B 对C 做的功有多少? (2)当弹簧再次恢复到原长时,A 、B 的速度各是多大? 例7、如图所示,光滑水平地面上静止放置两由弹簧相连木块A 和B,一质量为m 子弹,以速度v 0,水平击中木块A,并留在其中,A 的质量为3m,B 的质量为4m. (1)求弹簧第一次最短时的弹性势能 (2)何时B 的速度最大,最大速度是多少? 4、碰撞、爆炸、反冲 Ⅰ、碰撞分类(两物体相互作用,且均设系统合外力为零) (1)按碰撞前后系统的动能损失分类,碰撞可分为弹性碰撞、非弹性碰撞和完全非弹性碰撞. (2)弹性碰撞前后系统动能相等.其基本方程为① m 1v 1+m 2v 2=m 1 v 1'+m 2 v 2' ② 222211222211'2 1'212121v m v m v m v m +=+ . (3)A 、B 两物体发生弹性碰撞,设碰前A 初速度为v 0,B 静止,则基本方程为 ① m A v 0=m A v A +m B v B ,② 2 220212121B B A A A v m v m v m += 可解出碰后速度0v m m m m v B A B A A +-= ,

四动量守恒定律练习题及答案

四 动量守恒定律 姓名 一、选择题(每小题中至少有一个选项是正确的) 1.在下列几种现象中,动量守恒的有( ) A .原来静止在光滑水平面上的车,从水平方向跳上一个人,人车为一系统 B .运动员将铅球从肩窝开始加速推出,以运动员和球为一系统 C .从高空自由落下的重物落在静止于地面上的车厢中,以重物和车厢为一系统 D .光滑水平面上放一斜面,斜面光滑,一个物体沿斜面滑下,以重物和斜面为一系统 2.两物体组成的系统总动量守恒,这个系统中( ) A .一个物体增加的速度等于另一个物体减少的速度 B .一物体受的冲量与另一物体所受冲量相同 C .两个物体的动量变化总是大小相等,方向相反 D .系统总动量的变化为零 3.砂子总质量为M 的小车,在光滑水平地面上匀速运动,速度为v 0,在行驶途中有质量为m 的砂子从车上漏掉,砂子漏掉后小车的速度应为 ( ) A .v 0 B .m M Mv -0 A .m M mv -0 A .M v m M 0)(- 、B 两个相互作用的物体,在相互作用的过程中合外力为0,则下述说法中正确的是( ) A .A 的动量变大, B 的动量一定变大 B .A 的动量变大,B 的动量一定变小 C .A 与B 的动量变化相等 D .A 与B 受到的冲量大小相等 5.把一支枪水平固定在小车上,小车放在光滑的水平地面上,枪发射子弹时,关于枪、子弹、车的下列说法正确的有( ) A. 枪和子弹组成的系统动量守恒 B.枪和车组成的系统动量守恒 C .枪、弹、车组成的系统动量守恒 D .若忽略不计弹和枪筒之间的摩擦,枪、车组成的系统动量守恒 6.两球相向运动,发生正碰,碰撞后两球均静止,于是可以判定,在碰撞以前( ) A .两球的质量相等 B .两球的速度大小相同 C .两球的动量大小相等 D .以上都不能断定 7.一只小船静止在水面上,一个人从小船的一端走到另一端,不计水的阻力,以下说法正确的是( ) A .人在小船上行走,人对船的冲量比船对人的冲量小,所以 人向前运动得快,小船后退得慢 B .人在小船上行走时,人的质量比船的质量小,它们受到的 冲量大小是一样的,所以人向前运动得快,船后退得慢 C .当人停止走动时,因为小船惯性大,所以小船要继续后退 D .当人停止走动时,因为总动量守恒,所以小船也停止后退 8.如图所示,在光滑水平面上有一静止的小车,用线系一小球, 将球拉开后放开,球放开时小车保持静止状态,当小球落下以后 与固定在小车上的油泥沾在一起,则从此以后,关于小车的运动状态是 ( ) A .静止不动 B .向右运动 C .向左运动 D .无法判断 *9.木块a 和b 用一根轻弹簧连接起来,放在光滑水平面上,a 紧靠在墙壁上,在b 上施加向左的水平力使弹簧压缩,如图所示,当撤去外力后,下列说法中正确的是( ) A .a 尚未离开墙壁前,a 和b 系统的动量守恒 B .a 尚未离开墙壁前,a 与b 系统的动量不守恒 C .a 离开墙后,a 、b 系统动量守恒 D .a 离开墙后,a 、b 系统动量不守恒 *10.向空中发射一物体.不计空气阻力,当物体的速度恰好沿水平方向 时,物体炸裂为a,b 两块.若质量较大的a 块的速度方向仍沿原来的方向则 ( ) A .b 的速度方向一定与原速度方向相反 B .从炸裂到落地这段时间里,a 飞行的水平距离一定比b 的大

动量、冲量及动量守恒定律

动量、冲量及动量守恒定律

动量和动量定理 一、动量 1.定义:运动物体的质量和速度的乘积叫动量;公式p=m v; 2.矢量性:方向与速度的方向相同.运算遵循平行四边形定则. 3.动量的变化量 (1)定义:物体在某段时间内末动量与初动量的矢量差(也是矢量),Δp=p′-p(矢量式). (2)动量始终保持在一条直线上时的运算:选定一个正方向,动量、动量的变化量用带有正负号的数值表示,从而将矢量运算简化为代数运算(此时的正负号仅代表方向,不代表大小). 4.与动能的区别与联系: (1)区别:动量是矢量,动能是标量. (2)联系:动量和动能都是描述物体运动状态的物 理量,大小关系为E k=p2 2m或p=2mE k. 二、动量定理 1.冲量 (1)定义:力与力的作用时间的乘积.公式:I=

Ft.单位:牛顿·秒,符号:N·s. (2)矢量性:方向与力的方向相同. 2.动量定理 (1)内容:物体在一个运动过程中始末的动量变化量等于它在这个过程中所受力的冲量. (2)公式:m v′-m v=F(t′-t)或p′-p=I.3.动量定理的应用 碰撞时可产生冲击力,要增大这种冲击力就要设法减少冲击力的作用时间.要防止冲击力带来的危害,就要减小冲击力,设法延长其作用时间.(缓冲) 题组一对动量和冲量的理解 1.关于物体的动量,下列说法中正确的是() A.运动物体在任一时刻的动量方向,一定是该时刻的速度方向 B.物体的动能不变,其动量一定不变 C.动量越大的物体,其速度一定越大 D.物体的动量越大,其惯性也越大 2.如图所示,在倾角α=37°的斜面上, 有一质量为5 kg的物体沿斜面滑下,物 体与斜面间的动摩擦因数μ=0.2,求物体下滑2

动量守恒定律分类练习教师版含答案

《动量守恒定律》分类练习 一、守恒条件 1、如图所示,在光滑的水平面上有两辆小车,中间夹一根压缩了的轻质弹簧,两手分别按住小车使它们静止,对两车及弹簧组成的系统,下列说法中不正确的是 ( ) A. 只要两手同时放开后,系统的总动量始终为零 B. 先放开左手,后放开右手,动量不守恒 C. 先放开左手,后放开右手,总动量向右 D. 无论怎样放开两手,系统的总动能一定不为零 2、M 置于光滑平面上,上表面粗糙且足够长,木块m 以初速度v 滑上车表面,则:( ) A .m 的最终速度为mv /(M+m) B .因车表面粗糙,故系统动量不守恒 C .车面越粗糙,小车M 获得动量越大 D . m 速度最小时,M 速度最大 二、简单碰撞判断 3、甲、乙两节车厢在光滑水平轨道上相向运动,通过碰撞而挂接,挂接前甲车向东运动,乙车向西运动,挂接后一起向西运动,由此可以肯定 ( ) A .乙车质量比甲车大 B .乙车初速度比甲车大 C .乙车初动量比甲车大 D .乙车初动能比甲车大 4、质量为M 的小车在水平地面上以速度v0匀速向右运动。当车中的砂子从底部的漏斗中不断流下时,车子速度将( ) A .减小 B .不变 C .增大 D .无法确定 5、质量为M 的玩具车拉着质量为m 的小拖车在水平地面上以速度v 匀速前进。某一时刻 拉拖车的线突然断了,而玩具车的牵引力不变,那么在小拖车的速度减为零时,玩具车的速度为(设玩具车和拖车与地面间的动摩擦因数相同) ( ) A .mV /M B .(M+m)V /M C .MV /(M+m) D .0 6、如图所示,放在光滑水平桌面上的A 、B 木块中部夹一被压缩的弹簧,当弹簧被放开时,它们各安闲桌面上滑行一段距离后,飞离桌面落在地上。A 的落地点与桌边水平距离0.5m ,B 的落地点距离桌边1m ,那么( ) A .A 、 B 离开弹簧时的速度比为1∶2 B .A 、B 质量比为2∶1 C .未离开弹簧时,A 、B 所受冲量比为1∶2 D .未离开弹簧时,A 、B 加速度之比1∶2

高中物理公式大全(全集) 八、动量与能量

八、动量与能量 1.动量 2.机械能 1.两个“定理” (1)动量定理:F ·t =Δp 矢量式 (力F 在时间t 上积累,影响物体的动量p ) (2)动能定理:F ·s =ΔE k 标量式 (力F 在空间s 上积累,影响物体的动能E k ) 动量定理与动能定理一样,都是以单个物体为研究对象.但所描述的物理内容差别极大.动量定理数学表达式:F 合·t =Δp ,是描述力的时间积累作用效果——使动量变化;该式是矢量式,即在冲量方向上产生动量的变化. 例如,质量为m 的小球以速度v 0与竖直方向成θ角 打在光滑的水平面上,与水平面的接触时间为Δt ,弹起 时速度大小仍为v 0且与竖直方向仍成θ角,如图所示.则 在Δt 内: 以小球为研究对象,其受力情况如图所示.可见小球 所受冲量是在竖直方向上,因此,小球的动量变化只能在 竖直方向上.有如下的方程: F ′击·Δt -mg Δt =mv 0cos θ-(-mv 0cos θ) 小球水平方向上无冲量作用,从图中可见小球水平方向动量不变. 综上所述,在应用动量定理时一定要特别注意其矢量性.应用动能定理时就无需作这方 面考虑了.Δt 内应用动能定理列方程:W 合=m υ02/2-m υ02 /2 =0 2.两个“定律” (1)动量守恒定律:适用条件——系统不受外力或所受外力之和为零 公式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2 ′或 p =p ′ (2)机械能守恒定律:适用条件——只有重力(或弹簧的弹力)做功 公式:E k2+E p2=E k1+E p1 或 ΔE p = -ΔE k 3.动量守恒定律与动量定理的关系 一、知识网络 二、画龙点睛 规律

动量守恒定律经典习题(带答案)

动量守恒定律习题(带答案)(基础、典型) 例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为 4kg,地面光滑,则车后来的速度为多少? 例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0.2,则此过程经历的时间为多少? 例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地 点的距离。(g取10m/s2) 例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1.6kg,木块与小车之间的摩擦系数为0.2(g取10m/s2)。设 小车足够长,求: (1)木块和小车相对静止时小车的速度。 (2)从木块滑上小车到它们处于相对静止所经历的时间。 (3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。 例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞? 答案:1.

h b 分析:以物体和车做为研究对象,受力情况如图所示。 在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。因此地面给车的支持力远大于车与重物的重力之和。 系统所受合外力不为零,系统总动量不守恒。但在水平方向系统不受外力作用,所以系统水平方向动量守恒。以车的运动方向为正方向,由动量守恒定律可得: 车 重物初:v 0=5m/s 0末:v v ?Mv 0=(M+m)v ?s m v m N M v /454 14 0=?+=+= 即为所求。 2、分析:以滑块和小车为研究对象,系统所受合外力为零,系统总动量守恒。 以滑块的运动方向为正方向,由动量守恒定律可得 滑块 小车初:v 0=4m/s 0末:v v ?mv 0=(M+m)v ?s m v m M M v /143 11 0=?+=+= 再以滑块为研究对象,其受力情况如图所示,由动量定理可得 ΣF=-ft=mv-mv 0 ?s g v v t 5.110 2.0) 41(0=?--=-=μf=μmg 即为所求。 3、分析:手榴弹在高空飞行炸裂成两块,以其为研究对象,系统合外力不为零,总动量不守恒。但手榴弹在爆炸时对两小块的作用力远大于自身的重力,且水平方向不受外力,系统水平方向动量守恒,以初速度方向为正。 由已知条件:m 1:m 2=3:2 m 1 m 2 初:v 0=10m/s v 0=10m/s

动量守恒定律

动量守恒定律 一.动量和冲量 1.动量:物体的质量和速度的乘积叫做动量:p =mv ⑴动量是描述物体运动状态的一个状态量,它与时刻相对应。 ⑵动量是矢量,它的方向和速度的方向相同。 2.冲量:力和力的作用时间的乘积叫做冲量:I =Ft ⑴冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。 ⑵冲量是矢量,它的方向由力的方向决定(不能说和力的方向相同)。如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。 ⑶高中阶段只要求会用I=Ft 计算恒力的冲量。对于变力的冲量,高中阶段只能利用动量定理通过物体的动量变化来求。 ⑷要注意的是:冲量和功不同。恒力在一段时间内可能不作功,但一定有冲量。 例1. 质量为m 的小球由高为H 的光滑斜面顶端无初速滑到底端过程中,重力、弹力、合力的冲量各是多大 - 解:力的作用时间都是g H g H t 2sin 1 sin 22 α α== ,力的大小依次是mg 、 mg cos α和mg sin α,所以它们的冲量依次是: gH m I gH m I gH m I N G 2,tan 2,sin 2=== 合α α 特别要注意,该过程中弹力虽然不做功,但对物体有冲量。 二、动量定理 1.动量定理:物体所受合外力的冲量等于物体的动量变化。既I =Δp ⑴动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。这里所说的冲量必须是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。 ⑵动量定理给出了冲量(过程量)和动量变化(状态量)间的互求关系。 ⑶现代物理学把力定义为物体动量的变化率:t P F ??=(牛顿第二定律的动量形式)。 ⑷动量定理的表达式是矢量式。在一维的情况下,各个矢量必须以同一个规定的方向为正。 ^ 三.动量守恒定律 1.动量守恒定律的条件 ⑴系统不受外力或者所受外力之和为零; ⑵系统受外力,但外力远小于内力,可以忽略不计; ⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。 ⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。 2.动量守恒定律的表达形式 (1) 即p1 p2=p1/ p2/, (2)Δp1 Δp2=0,Δp1= -Δp2 3.运用动量守恒定律的解题步骤 1.明确研究对象,一般是两个或两个以上物体组成的系统; . 2.分析系统相互作用时的受力情况,判定系统动量是否守恒; 3.选定正方向,确定相互作用前后两状态系统的动量; 4.在同一地面参考系中建立动量守恒方程,并求解.

《动量守恒定律》单元测试题含答案(4)

《动量守恒定律》单元测试题含答案(4) 一、动量守恒定律 选择题 1.两滑块a 、b 沿水平面上同一条直线运动,并发生碰撞,碰撞后两者粘在一起运动.两者的位置x 随时间t 变化的图象如图所示.若a 滑块的质量a m 2kg =,以下判断正确的是 ( ) A .a 、b 碰撞前的总动量为3 kg m /s ? B .碰撞时a 对b 所施冲量为4 N s ? C .碰撞前后a 的动量变化为4 kg m /s ? D .碰撞中a 、b 两滑块组成的系统损失的动能为20 J 2.如图所示,固定的光滑金属水平导轨间距为L ,导轨电阻不计,左端接有阻值为R 的电阻,导轨处在磁感应强度大小为B 、方向竖直向下的匀强磁场中.质量为m 、电阻不计的导体棒ab ,在垂直导体棒的水平恒力F 作用下,由静止开始运动,经过时间t ,导体棒ab 刚好匀速运动,整个运动过程中导体棒始终与导轨垂直并保持良好接触.在这个过程中,下列说法正确的是 A .导体棒ab 刚好匀速运动时的速度22 FR v B L = B .通过电阻的电荷量2Ft q BL = C .导体棒的位移222 44 FtRB L mFR x B L -= D .电阻放出的焦耳热22222 44 232tRF B L mF R Q B L -= 3.将质量为m 0的木块固定在光滑水平面上,一颗质量为m 的子弹以速度v 0沿水平方向射入木块,子弹射穿木块时的速度为 3 v .现将同样的木块放在光滑的水平桌面上,相同的子弹仍以速度v 0沿水平方向射入木块,设子弹在木块中所受阻力不变,则以下说法正确的是()

A.若m0=3m,则能够射穿木块 B.若m0=3m,子弹不能射穿木块,将留在木块中,一起以共同的速度做匀速运动 C.若m0=3m,子弹刚好能射穿木块,此时子弹相对于木块的速度为零 D.若子弹以3v0速度射向木块,并从木块中穿出,木块获得的速度为v1;若子弹以4v0速度射向木块,木块获得的速度为v2;则必有v1<v2 4.在光滑水平面上,有两个小球A、B沿同一直线同向运动(B在前),已知碰前两球的动量分别为pA=10 kg·m/s、pB=13 kg·m/s,碰后它们动量的变化分别为ΔpA、ΔpB.下列数值可能正确的是( ) A.ΔpA=-3 kg·m/s、ΔpB=3 kg·m/s B.ΔpA=3 kg·m/s、ΔpB=-3 kg·m/s C.ΔpA=-20 kg·m/s、ΔpB=20 kg·m/s D.ΔpA=20kg·m/s、ΔpB=-20 kg·m/s 5.如图所示,左图为大型游乐设施跳楼机,右图为其结构简图.跳楼机由静止从a自由下落到b,再从b开始以恒力制动竖直下落到c停下.已知跳楼机和游客的总质量为m,ab 高度差为2h,bc高度差为h,重力加速度为g.则 A.从a到b与从b到c的运动时间之比为2:1 B.从a到b,跳楼机座椅对游客的作用力与游客的重力大小相等 C.从a到b,跳楼机和游客总重力的冲量大小为m gh D.从b到c,跳楼机受到制动力的大小等于2mg 6.如图所示,小车质量为M,小车顶端为半径为R的四分之一光滑圆弧,质量为m的小球从圆弧顶端由静止释放,对此运动过程的分析,下列说法中正确的是(g为当地重力加速度)() A.若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为mg B.若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为3 2 mg

高中物理动量守恒定律练习题

一、系统、内力和外力┄┄┄┄┄┄┄┄① 1.系统:相互作用的两个(或多个)物体组成的一个整体。 2.内力:系统内部物体间的相互作用力。 3.外力:系统以外的物体对系统内部的物体的作用力。 [说明] 1.系统是由相互作用、相互关联的多个物体组成的整体。 2.组成系统的各物体之间的力是内力,将系统看作一个整体,系统之外的物体对这个整体的作用力是外力。 ①[填一填]如图,公路上有三辆车发生了追尾事故,如果把前面两辆车看作一个系统,则前面两辆车之间的撞击力是________,最后一辆车对前面两辆车的撞击力是________(均填“内力”或“外力”)。 答案:内力外力 二、动量守恒定律┄┄┄┄┄┄┄┄② 1.内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。 2.表达式:对两个物体组成的系统,常写成: p1+p2=或m1v1+m2v2=。 3.适用条件:系统不受外力或者所受外力的矢量和为0。 4.动量守恒定律的普适性 动量守恒定律是一个独立的实验规律,它适用于目前为止物理学研究的一切领域。 [注意] 1.系统动量是否守恒要看研究的系统是否受外力的作用。

2.动量守恒是系统内各物体动量的矢量和保持不变,而不是系统内各物体的动量不变。 ②[判一判] 1.一个系统初、末状态动量大小相等,即动量守恒(×) 2.两个做匀速直线运动的物体发生碰撞,两个物体组成的系统动量守恒(√) 3.系统动量守恒也就是系统的动量变化量为零(√) 1.对动量守恒定律条件的理解 (1)系统不受外力作用,这是一种理想化的情形,如宇宙中两星球的碰撞,微观粒子间的碰撞都可视为这种情形。 (2)系统受外力作用,但所受合外力为零。像光滑水平面上两物体的碰撞就是这种情形。 (3)系统受外力作用,但当系统所受的外力远远小于系统内各物体间的内力时,系统的总动量近似守恒。例如,抛出去的手榴弹在空中爆炸的瞬间,弹片所受火药爆炸时的内力远大于其重力,重力可以忽略不计,系统的动量近似守恒。 (4)系统受外力作用,所受的合外力不为零,但在某一方向上合外力为零,则系统在该方向上动量守恒。 2.关于内力和外力的两点提醒 (1)系统内物体间的相互作用力称为内力,内力会改变系统内单个物体的动量,但不会改变系统的总动量。 (2)系统的动量是否守恒,与系统的选取有关。分析问题时,要注意分清研究的系统,系统的内力和外力,这是正确判断系统动量是否守恒的关键。 [典型例题] 例 1.[多选]如图所示,光滑水平面上两小车中间夹一压缩了的轻弹簧,两手分别按住小车,使它们静止,对两车及弹簧组成的系统,下列说法中正确的是() A.两手同时放开后,系统总动量始终为零

冲量与动量公式汇编

冲量与动量公式汇编 1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同} 2.冲量:I=Ft {I:冲量(N s),F:恒力(N),t:力的作用时间(s),方向由F决定} 3.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式} 4.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′ 5.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒} 6.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能} 7.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体} 8.物体m1以v1初速度与静止的物体m2发生弹性正碰:v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2) 9.由8得的推论——等质量弹性正碰时二者交换速度(动能守恒、动量守恒) 10.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动 时的机械能损失。 E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块 的位移} 注: (1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上; (2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算; (3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、 爆炸问题、反冲问题等); (4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒; (5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;

动量守恒定律测试题及解析

动量守恒定律测试题及解析 1.(2019·北京海淀一模)如图所示,站在车上的人,用锤子连续敲打小车。 初始时,人、车、锤子都静止。假设水平地面光滑,关于这一物理过程,下列 说法正确的是( ) A .连续敲打可使小车持续向右运动 B .人、车和锤子组成的系统机械能守恒 C .当锤子速度方向竖直向下时,人和车水平方向的总动量为零 D .人、车和锤子组成的系统动量守恒 解析:选C 人、车和锤子整体看做一个处在光滑水平地面上的系统,水平方向上所受合外力为零,故水平方向上动量守恒,总动量始终为零,当锤子有相对地面向左的速度时,车有向右的速度,当锤子有相对地面向右的速度时,车有向左的速度,故车做往复运动,故A 错误;锤子击打小车时,发生的不是完全弹性碰撞,系统机械能有损耗,故B 错误;锤子的速度竖直向下时,没有水平方向速度,因为水平方向总动量恒为零,故人和车水平方向的总动量也为零,故C 正确;人、车和锤子在水平方向上动量守恒,因为锤子会有竖直方向的加速度,故锤子竖直方向上合外力不为零,竖直方向上动量不守恒,系统总动量不守恒,故D 错误。 2.质量为1 kg 的物体从距地面5 m 高处自由下落,落在正以5 m /s 的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为4 kg ,地面光滑,则车后来的速度为(g =10 m/s 2)( ) A .4 m /s B .5 m/s C .6 m /s D .7 m/s 解析:选A 物体和车作用过程中,两者组成的系统水平方向不受外力,水平方向系统的动量守恒。已知两者作用前,车在水平方向的速度v 0=5 m/s ,物体在水平方向的速度v =0;设当物体与小车相对静止后,小车的速度为v ′,取原来小车速度方向为正方向,则根据水平方向系统的动量守恒得:m v +M v 0=(M +m )v ′,解得:v ′=m v +M v 0M +m =4×51+4 m /s =4 m/s ,故选项A 正确,B 、C 、D 错误。 3.[多选](2020·泸州第一次诊断)在2019年世界斯诺克国际锦标赛中,中国选手丁俊晖把质量为m 的白球以5v 的速度推出,与正前方另一静止的相同质量的黄球发生对心正碰,碰撞后黄球的速度为3v ,运动方向与白球碰前的运动方向相同。若不计球与桌面间的摩擦,则( ) A .碰后瞬间白球的速度为2v B .两球之间的碰撞属于弹性碰撞 C .白球对黄球的冲量大小为3m v D .两球碰撞过程中系统能量不守恒 解析:选AC 由动量守恒定律可知,相同质量的白球与黄球发生对心正碰,碰后瞬间白球的速度为 2v ,故A 正确。碰前的动能为12m (5v )2=252m v 2,碰后的动能为12m (3v )2+12m (2v )2=132 m v 2,两球之间的碰撞不属于弹性碰撞,故B 错误。由动量定理,白球对黄球的冲量I 大小就等于黄球动量的变化Δp ,Δp =

动量守恒题型分类总结

动量守恒定律 第一部分: 一、动量守恒条件类题目 动量守恒条件:1、系统不受外力或所受外力的合力为零 2、某个方向合外力为零,这个方向动量守恒 3爆炸、碰撞、反冲,力远大于外力或者相互作用时间极短,动量守恒 1、关于动量守恒的条件,其中错误的是() A.系统所受外力为零则动量守恒 B.采用直角坐标系,若某轴方向上系统不受外力,则该方向分动量守恒 C.当系统所受外力远小于力时系统动量可视为守恒-- D.当系统所受外力作用时间很短时可认为系统动量守恒 2、A、B两个小车,中间夹着一个被压缩的弹簧,用两手分别拿着两个小车放在光滑水平面上,然后由静止开始松手,则( ) A.若两手同时放开,A、B两车的总动量守恒 B.若先放开A车,稍后再放开B车,两车的总动量指向B车的运动方向 C.若先放开A车,稍后再放开B车,两车的总动量指向A车一边 D.无论同时放开两车,还是先后放开两车,两手都放开后两车的总动量都守恒 3、斜面体的质量为M,斜面的倾角为α,放在光滑的水平面上处于静止。一个小物块质量为m,沿斜面方向以速度v冲上斜面体,若斜面足够长,物体与斜面的动摩擦因数为μ,μ>tgα,则小物块冲上斜面的过程中( ) A.斜面体与物块的总动量守恒B.斜面体与物块的水平方向总动量守恒 C.斜面体与物块的最终速度为mv/(M+m) D.斜面体与物块的最终速度小于mv/(M+m) 4.(04理综21)如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动.两球质量关系为m B=2m A,规定向右为正方向,A、B两球的动量均为6 kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为-4 kg·m/s,则() A.左方是A球,碰撞后A、B两球速度大小之比为2∶5 B.左方是A球,碰撞后A、B两球速度大小之比为1∶10 C.右方是A球,碰撞后A、B两球速度大小之比为2∶5 D.右方是A球,碰撞后A、B两球速度大小之比为1∶10 二、给出碰前的动量,判断碰后的可能情况 解题原则:1、碰前后动量守恒,即碰后大小方向与碰前相同 2、一般只能碰一次 3、碰撞动能不增加原理

动量守恒定律测试题(1)

动量守恒定律测试题(1) 一、动量守恒定律选择题 1.如图所示,一轻杆两端分别固定a、b 两个半径相等的光滑金属球,a球质量大于b球质量.整个装置放在光滑的水平面上,将此装置从图示位置由静止释放,则() A.在b球落地前瞬间,a球的速度方向向右 B.在b球落地前瞬间,a球的速度方向向左 C.在b球落地前的整个过程中,轻杆对b球的冲量为零 D.在b球落地前的整个过程中,轻杆对b球做的功为零 2.如图所示,弹簧的一端固定在竖直墙壁上,质量为m的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m的小球从槽高h处开始下滑,则 A.在小球从圆弧槽上下滑过程中,小球和槽组成的系统水平方向的动量始终守恒 B.在小球从圆弧槽上下滑运动过程中小球的机械能守恒 C.在小球压缩弹簧的过程中小球与弹簧组成的系统机械能守恒 D.小球离开弹簧后能追上圆弧槽 3.如图甲所示,一轻弹簧的两端与质量分别为99m、200m的两物块A、B相连接,并静止在光滑的水平面上,一颗质量为m的子弹C以速度v0射入物块A并留在A中,以此刻为计时起点,两物块A(含子弹C)、B的速度随时间变化的规律如图乙所示,从图象信息可得() A.子弹C射入物块A的速度v0为600m/s B.在t1、t3时刻,弹簧具有的弹性势能相同,且弹簧处于压缩状态 C.当物块A(含子弹C)的速度为零时,物块B的速度为3m/s D.在t2时刻弹簧处于自然长度 4.如图所示,固定的光滑金属水平导轨间距为L,导轨电阻不计,左端接有阻值为R的电

阻,导轨处在磁感应强度大小为B 、方向竖直向下的匀强磁场中.质量为m 、电阻不计的导体棒ab ,在垂直导体棒的水平恒力F 作用下,由静止开始运动,经过时间t ,导体棒ab 刚好匀速运动,整个运动过程中导体棒始终与导轨垂直并保持良好接触.在这个过程中,下列说法正确的是 A .导体棒ab 刚好匀速运动时的速度22 FR v B L = B .通过电阻的电荷量2Ft q BL = C .导体棒的位移222 44 FtRB L mFR x B L -= D .电阻放出的焦耳热22222 44 232tRF B L mF R Q B L -= 5.如图,质量分别为m A 、m B 的两个小球A 、B 静止在地面上方,B 球距地面的高度h =0.8m ,A 球在B 球的正上方. 先将B 球释放,经过一段时间后再将A 球释放. 当A 球下落t =0.3s 时,刚好与B 球在地面上方的P 点处相碰,碰撞时间极短,碰后瞬间A 球的速度恰为零.已知m B =3m A ,重力加速度大小为g =10 m/s 2,忽略空气阻力及碰撞中的动能损失.下列说法正确的是( ) A . B 球第一次到达地面时的速度为4m/s B .A 、B 球在B 球向上运动的过程中发生碰撞 C .B 球与A 球碰撞后的速度为1m/s D .P 点距离地面的高度0.75m 6.如图所示,左图为大型游乐设施跳楼机,右图为其结构简图.跳楼机由静止从a 自由下落到b ,再从b 开始以恒力制动竖直下落到c 停下.已知跳楼机和游客的总质量为m ,ab 高度差为2h ,bc 高度差为h ,重力加速度为g .则

16.3动量守恒定律教案

16.3动量守恒定律 主备人:审核人:主讲教师:授课班级:【三维目标】 一、知识与技能: 1.理解动量守恒定律的确切含义和表达式,知道定律的适用条件和适用范围 2.,会应用动量守恒定律分析计算有关问题。 二、过程与方法: 在理解动量守恒定律的确切含义的基础上正确区分内力和外力; 三. 情感、态度与价值观: 培养逻辑思维能力,会应用动量守恒定律分析计算有关问题。 【教学重点】:动量的概念和动量守恒定律。 【教学难点】:动量的变化和动量守恒的条件。 【教学方法】:教师启发、引导,学生讨论、交流。 【教学用具】:投影片,多媒体辅助教学设备。 【教学过程】: 【自主学习】 指导学生完成“知识体系梳理” 【新知探究】 一. 设疑激趣,创设研究情境 设置悬念:鸡蛋是我们每天都需要的营养食品,如果我将这只生鸡蛋用力扔出去,鸡蛋的命运会怎样? 演示:站在教室中部用力将鸡蛋水平扔向竖直悬挂在黑板前的大绒布。 提问:你观察到什么现象? 学生:扔在绒布上鸡蛋没破。 教师从绒布下拿出那只鸡蛋并提问:如果站在同一位置将同一只鸡蛋以相同的力向墙上扔,会出现什么结果? 演示:用力将鸡蛋水平扔向墙壁(墙壁上事先贴有白纸)。 学生:鸡蛋破了。 激疑:两种情况下鸡蛋与墙或布作用前的动量可以认为是相同的,作用后的 动量变为零,鸡蛋的动量变化是相同的。但究竟是什么原因使得鸡蛋出现不

同的结局? 教师:再请大家看一段录象。 教师演示课件:播放几个体育运动的视频录象(在节奏感强烈的音乐背景下 依次出现亚运会跳高、拳击、跳马、吊环等比赛镜头)。 提问:看完这段录象后,我们可能会提出很多问题,比如跳高、跳马、吊环运动员落地时为什么要落在软垫上?激烈的拳击比赛中,运动员为什么要戴拳击手套?以上这些问题是大家熟悉却不能科学解释的问题,也正是本节课我们要研究的问题。 课件显示: 二. 分层展开,引导自主探究 1. 关于物体动量的变化跟哪些因素有关的研究 ①提出假说 教师:要解决刚才提出的问题,必须首先研究、解决物体的动量变化跟哪些因素有关这一问题。你们先猜一猜看,物体的动量变化与哪些因素有关? 学生甲猜想:可能与物体的质量和它受到的力有关。 学生乙猜想:可能与物体受到的力的大小和力的作用时间有关。 ②定性验证 教师:同学们会提出各种不同的假说,这些假说是否正确?请你们操作第一个学习软件,先对两个实例进行定性讨论,由此你能得出什么结论? 学生:动手操作学习软件并相互协作讨论。 学生计算机显示:讨论题—— a.一辆以某一速度行驶的汽车,关闭发动机后,要使汽车停下来即使它的动 量为零,如果你是驾驶员可以采取哪些措施? b.静止的足球,要使它运动起来即使它获得一定的动量,可用哪些方法? 请一学生回答对讨论题的分析结果:…… 学生归纳:物体动量的变化跟物体所受力的大小和作用时间的长短有关。 ③定量验证 提问:你得出的这一结论是否正确?你如何验证? 学生提出观点:可以采用数学推导的方法。 教师:很好!数学推导的方法也称定量分析法,请大家继续研究。 学生:继续操作计算机进行定量分析推导。 学生计算机显示(动画):一个质量为m 的物体,初速度为v ,在合外力F 的作用下,经过时间t,速度变为v',该物体动量的变化与什么有关? v v'

相关主题