搜档网
当前位置:搜档网 › 2018年第23届“华杯赛”初赛初一组真题

2018年第23届“华杯赛”初赛初一组真题

2018年第23届“华杯赛”初赛初一组真题
2018年第23届“华杯赛”初赛初一组真题

第十一届全国“华罗庚金杯”少年数学邀请赛华杯赛初一组试卷附答案

第十一届全国"华罗庚金杯"少年数学邀请赛 决赛试卷(初一组) (红色字为参考答案) (时间20XX 年4月22日10:00~l l :30〉 一、.填空 1、计算:243331(0.25)(2)3()5(2)168?????? ---?-÷?-+÷-=??? ?????? ???( 47 ) 2、当2m π=时,多项式3 1am bm ++的值是0,则多项式3 1 45 2 a b ππ++=( 5 ) 3、将若干本书分给几名小朋友,如果每人分4本书,就还余下20本书,如果每人分8本书,就剩有1名小朋友虽然分到了一些书,但是不足8本,则共有(6)名小朋友 4、图l 中的长方形ABCD 是由四个等腰直角三角形和一个正方形EFGH 120平方厘米,则正方形EFGH 的面积等于(10 )平方厘米 5、满足方程|||x-2006|-1|+8|=2006的所有x 的和为(4012 ) 6、一个存有一些水的水池,有一个进水口和若干个口径相同的山水口,进水口每分钟进水3立方米.若同时打开进水口和三个出水口,池中水16分钟放完;若同时 打开进水口与五个出水口,池中水9分钟放完.池中原有水(288)立方米 7、已知1 2005 2006123420052006 (1)24816 2 22 k k k S += -+-++-++ -,则小于S 的最大的整数是(0) 8.如图2,数轴上标有2n+1个点,它们对应的整数是: ,(1),,2,1,0,1,2,,1,n n n n ------ 为了确保从这些点中可以取出2006个,其中任何两个点之间的距离都不等于4,则n 的最小值是( 2005 ) 图1图2 n n-10-1-2-(n-1)-n

第九届小学华杯赛决赛试题及解答

第九届小学“希望杯”全国数学邀请赛 六年级第I试 点击查看答案 1.计算:=___________. 2.计算:=__________. 3.对于任意两个数x, y定义新运算,运算规则如下: x ? y=x × y – x ÷2,x y =x + y ÷ 2, 按此规则计算,3.6 ? 2=_________,? (7.5 4.8) = __________. 4.在方框里分别填入两个相邻的自然数,使下式成立。 5.在循环小数中,将表示循环节的圆点移动到新的位置,使新的循环小数的小数点后第2011位上的数字是6,则新的循环小数是__________. 6.一条项链上共有99颗珠子,如图1,其中第1颗珠子是白色的,第2,3颗珠子是红色的,第四颗珠子是白色的,第5,6,7,8颗珠子是红色的,第9颗珠子是白色的,……则这条项链中共有红色的珠子_______颗。 7.自然数a和b的最小公倍数是140,最大公约数是5,则a+b的最大值是________。 8.根据图2计算,每块巧克力_______元(□内是一位数字)。 9.手工课上,小红用一张直径是20cm的圆形纸片剪出如图3所示的风车图案(空白部分),则被剪掉的纸片(阴影部分)的面积是________cm2。(π取3.14) 10.用若干棱长为1cm的小正方体码放成如图4所示的立体,则这个立体的表面积(含下底

面面积)等于_________cm2。 11.图5中一共有_________个长方形(不包含正方形). 12.图6中,每个圆圈内的汉字代表1~9中的一个数字,汉字不同,数字也不同,每个小三角形三个顶点上的数字之和相等。若7个数字之和等于12,则“杯”所代表的数字是________。 13.如图7,沿着圆周放置黑、白棋子各100枚,并且各自相邻排列。若将圆周上任意两枚棋子换位一次称为一次对换,则至少经过_________次对换可使全部的黑棋子彼此不相邻。 14.人口普查员站在王阿姨家门前问王阿姨:“您的年龄是40岁,您收养的三个孤儿的年龄各是多少岁?”王阿姨说:“他们的年龄的乘积等于我的年龄,他们的年龄的和等于我们家的门牌号。”普查员看了看门牌,说:“我还是不能确定他们的年龄。”那么,王阿姨家的门牌号是_______。 15.196名学生按编号从1到196顺次排成一列。令奇数号位(1,3,5……)上的同学离队,余下的同学顺序不变,重新自1从小到大编号,再令新编号中奇数上的同学离队,依次重复上面的做法,最后留下一位同学。这位同学开始的编号是_________号。 16.甲、乙两人同时从A地出发到B地,若两人都匀速行进,甲用4小时走完全程,乙用6小时走完全程。则当乙所剩路程是甲所剩路程的4倍时,他们已经出发了_______小时。17.某电子表在6时20分25秒时,显示6: 20: 25,那么从5时到6时这1个小时里,此表显示的5个数字都不相同的情况共有______种。 18.有三只蚂蚁外出觅食,发现一堆粮食,要运到蚁洞。根据图8中的信息计算,若甲、乙、丙三只蚂蚁共同搬运这堆粮食,那么,蚂蚁乙搬运粮食_________粒。 19.一批饲料可供10只鸭子和15只鸡共吃6天,或供12只鸭子和6只鸡共吃7天。则这批饲料可供_______只鸭子吃21天。 20.小明从家出发去奶奶家,骑自行车每小时12千米,他走后2.5小时,爸爸发现小明忘带作业,便骑摩托车以每小时36千米的速度去追。结果小明到奶奶家后半小时爸爸就到了。小明家距离奶奶家_________千米。

第二十二届“华杯赛”决赛初一组试题.pdf

第二十二届华罗庚金杯少年数学邀请赛 决赛试题(初中一年级组) (时间: 2017 年 3 月11 日10:00~11:30) 一、填空题(每小题10 分, 共80 分) 1.数轴上10个点所表示的数分别为a 1, a 2 , , a 10 , 且当i 为奇数时, a i +1-a i =2 , 当i 为偶数时, a i +1 -a i =1, 那么a 10 -a 6 = ?. 2.如右图, △ABC, △AEF 和△BDF 均为正三角形, 且 △ABC, △AEF 的边长分别为3和4, 则线段DF 长度 的最大值等于. 3.如下的代数和 -1?2016+2?2015- + (-1)m m ? (2016-m +1) + +1010?1007 的个位数字是, 其中m 是正整数. 4.已知2015

8.下面两串单项式各有2017个单项式: (1) (2) xy2, x4y5, x7y8, , x3n-2y3n -1, , x6046y6047, x6049y6050; x2y3, x7y8, x12y13, , x5m-3y5m-2, , x10077y10078, x10082y10083, 其中n, m 为正整数, 则这两串单项式中共有对同类项. 二、解答下列各题(每题10 分, 共40 分, 要求写出简要过程) 9.是否存在长方体, 其十二条棱的长度之和、体积、表面积的数值均相等?如 果存在, 请给出一个例子; 如果不存在, 请说明理由. 10.如右图, 已知正方形ABDF 的边长为6 厘米, △EBC 的面 积为6 平方厘米, 点C 在线段FD 的延长线上, 点E 为线 段BD 和线段AC 的交点. 求线段DC 的长度. 11.如右图, 先将一个菱形纸片沿对角线AC 折叠,使顶点 B 和D 重合. 再沿过A, B (D) 和 C 其中一点的直线剪 开折叠后的纸片, 然后将纸片展开. 这些纸片中菱形 最多有几个? 请说明理由. 12.证明: 任意5个整数中, 至少有两个整数的平方差是7的倍数. 三、解答下列各题(每小题15 分,共30 分,要求写出详细过程) 13.直线a 平行于直线b, a 上有10个点A 1, A 2 , , A 10 , b 上有11个点B 1 , B 2 , , B 11, 用线段连接A i 和B j ( i=1, ,10 , j=1, ,11), 所得到的图形中一条边 在a 上或者在b 上的三角形有多少个? 14.已知关于x, y 的方程x2-y2+k 求k 的最大值. =2017有且只有六组正整数解, 且x ≥y ,

初一华罗庚杯数学竞赛

绝密★启用前 2015-2016学年度???学校12月月考卷 试卷副标题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、选择题(题型注释) 1.船在江中顺水航行与逆水航行的速度之比为7:2,那么它在两港间往返一次的平均速度与顺 水速度之比为( )。 (A) 14 7 (B) 14 9 (C) 92 (D) 94 。 【答案】D 【解析】分析:设出顺水速度和逆水速度,那么可让总路程÷总时间求得平均速度,相比即可. 解答:解:设船在江中顺水速度为7x ,则逆水速度为2x ,一次的航程为1. ∴平均速度= 2117x 2x += 28 9 x , ∴它在两港间往返一次的平均速度与顺水速度之比为 289 x :7x=94. 故选D . 2. 如右图所示,三角形ABC 的面积为1cm 2 。AP 垂直∠B 的平分线BP 于P 。则与三角形PBC 的面积相等的长方形是( )。 【答案】B 【解析】分析:过P 点作PE ⊥BP ,垂足为P ,交BC 于E ,根据AP 垂直∠B 的平分线BP 于P ,即可求出△ABP ≌△BEP ,又知△APC 和△CPE 等底同高,可以证明两三角形面 0.5cm 0.5cm 0.9cm 1.0cm 1.1cm 1.2cm (A) (B) (C) (D) B

试卷第2页,总5页 订 … … … … ○ … … … … 线 … … … … ○ 内 ※ ※ 答 ※ ※ 题 ※ ※ 订 … … … … ○ … … … … 线 … … … … ○ 积相等,即可证明三角形PBC的面积. 解答:解:过P点作PE⊥BP,垂足为P,交BC于E, ∵AP垂直∠B的平分线BP于P, ∠ABP=∠EBP, 又知BP=BP,∠APB=∠BPE=90°, ∴△ABP≌△BEP, ∴AP=PE, ∵△APC和△CPE等底同高, ∴S△APC=S△PCE, ∴三角形PBC的面积=1 2 三角形ABC的面积= 1 2 cm2, 选项中只有B的长方形面积为1 2 cm2, 故选B. 3.设a,B的解集为x x的不等式bx-a>0的解集是( )。 (A) x x x。 【答案】C 【解析】分析:这是一个含有字母系数的不等式,仔细观察,通过移项、系数化为1求得解集,由不等式解集是x 式的性质3,运用性质3的前提是两边都乘以(?或除以)同一个负数,从而求出a<0,b>0.再通过移项、系数化为1求得关于x的不等式bx-a>0解集. x<-a b ,x 所以a b a<0,b>0, 所以不等式bx-a>0的解集为 bx>a x> a x> 故选C. 4.下图所示的五角星是用螺栓将两端打有孔的5根木条连接构成的图形,它的形状不稳定。如果在木条交叉点打孔加装螺栓的办法使其形状稳定,那么至少需要添加( )个螺栓。

2015年第二十届“华杯赛”决赛初一组试题.pdf

第二十届华罗庚金杯少年数学邀请赛 决赛试题(初一组) (时间: 2015年4月11日10:00~11:30) 一、选择题 (每小题10分, 共80分) 1. 计算: ??? ? ??++++?10241108134122112048 = . 2. 一堆彩球只有红、黄两色. 先数出的50个球中有49个红球, 此后, 每数出8 个球中都有7个红球, 恰好数完. 已数出的球中红球不少于90%. 这堆彩球最多有 个. 3. 正整数a ,b ,c ,d 满足 4332<<

8. 从一副扑克牌中抽走一些牌, 在剩下的牌中至少要数出20张, 才能确保数出 的牌中有两张同花色的牌的点数和为15. 那么最多抽走 张牌, 最少抽走 张牌. (J 、Q 、K 的点数分别为11, 12, 13, 大、小王的点数为0;一副扑克牌有54张牌, 其中52张是正牌, 另2张是副牌(大王和小王). 52张正牌又均分为13张一组, 并以黑桃、红桃、草花、方块四种花色表示各组, 每组花色的牌包括从1至10(1通常表示为A )以及J 、Q 、K 标示的13张牌). 二、解答下列各题(每小题10分, 共40分, 要求写出简要过程) 9. 算式20146422013531????+???? 的值被2015除的余数为多少? 10. (1)右图共含有几个四边形? (2) 在右图的每个顶点处标上 1或1-, 共有4个1和4个1-, 将每个四边形4个顶点处的数 相乘, 再将所得的所有的积相加, 问:至多有多少个不同的和? 11. 已知,2 343111=++=-+ab c ac b bc a a c b ,,)(024222=---c b b c c b b 与c 同号, 且.c b 2≠ 求.444c b a ++ 12. 加工十个同样的木制玩具, 需用260毫米和370毫米长的标准木方分别为30 根和40根. 仓库里有长度分别为900毫米、745毫米、1385毫米的三种标准木方, 用这三种标准木方锯出所需长度的木方, 每锯一次要损耗5毫米长木方. 问是否可以用三种木方, 每种木方选一些, 恰好锯出十个玩具所需的木方?如果可以, 要求锯的次数最少, 那么三种木方各选多少根?(说明:一根木方被锯一次要得到两个长度大于0的木方, 即不能从一端锯. ) 三、解答下列各题(每小题15分, 共30分, 要求写出详细过程) 13. 如图, △ABC 中, D 是BC 上一点且32::=DB CD , E 是 AB 上一点且12::=EB AE , F 是CA 的延长线上一点且 34::=AF CA . 若△DFE 的面积为1209, 求△ABC 的面积. 14. 求使得n n 22+为完全平方数的自然数n .

全国第十届华杯赛决赛试题及解答

全国第十届华杯赛决赛 试题及解答 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

第十届华杯赛决赛试题 一、填空(每题10分,共80分) 1.下表中每一列为同一年在不同历法中的年号,请完成下表: 公元历2005 1985 1910 希伯莱历5746 伊斯兰历1332 印度历1927 2.计算: ① ×+÷ = ();②= ()。 3.计算机中最小的存储单位称为“位”,每个“位”有两种状态:0和1。一个字节由8个“位”组成,记为B。常用KB,MB等记存储空间的大小,其中 1KB=1024B, 1MB=1024KB。现将240MB的教育软件从网上下载,已经下载了70%。如果当前的下载速度为每秒72KB,则下载完毕还需要()分钟。(精确到分钟) 4.a,b和c都是二位的自然数,a,b的个位分别是7与5,c的十位是1。如果它们满足等式ab+c=2005,则a+b+c=()。 5.一个正方体的每个顶点都有三条棱以其为端点,沿这三条棱的三个中点,从这个正方体切下一个角,这样一共切下八个角,则余下部分的体积(图1中的阴影部分)和正方体体积的比是()。 6.某种长方体形的集装箱,它的长宽高的比是4∶3∶2,如果用甲等油漆喷涂它的表面,每平方米的费用是元,如果改用乙等油漆,每平方米的费用降低为

元,一个集装箱可以节省元,则集装箱总的表面积是()平方米,体积是()立方米。 7.一列自然数0,1,2,3,…,2005,…,2004,第一个数是0,从第二个数开始,每一个都比它前一个大1,最后一个是2024。现在将这列自然数排成以下数表: 0 3 8 15 … 1 2 7 14 … 4 5 6 13 … 9 10 11 12 … …………… 规定横排为行,竖排为列,则2005在数表中位于第()行和第()列。8.图2中,ABCD是长方形,E,F分别是AB,DA的中点,G是BF和DE的交点,四边形BCDG的面积是40平方厘米,那么ABCD的面积是()平方厘米。 图2 二、解答下列各题,要求写出简要过程(每题10分,共40分) 9.图3是由风筝形和镖形两种不同的砖铺设而成。请仔细观察这个美丽的图案,并且回答风筝形砖的四个内角各是多少度 10.有2、3、4、5、6、7、8、9、10和11共10个自然数, ①从这10个数中选出7个数,使这7个数中的任何3个数都不会两两互质; ②说明从这10个数中最多可以选出多少个数,这些数两两互质。

第十六届华杯赛总决赛试题(最新整理)

第十六届华罗庚金杯少年数学邀请赛 总决赛小学组一试 2011年7月23日 中国·惠州 一.填空题:(共3题,每题10分) 1.计算 =_________.313615176413900114009144736543++++++ 2.如右图所示,正方形ABCD 的面积为12,AE =ED ,且EF =2FC , 则三角形ABF 的面积等于_________. 3.某地区的气象记录表明,在一段时间内,全天下雨共1天;白天雨夜间晴或白天晴夜间雨共9天;6个夜间和7个白天晴朗。则这段时间有_______天,其中全天天晴有_______天。 二.解答题:(共3题,每题10分,写出解答过程) 4.已知a 是各位数字相同的两位数,b 是各位数字相同的两位数,c 是各位数字相同的四位数,且。求所有满足条件的(a ,b ,c )。 c b a =+25.纸板上写着100、200、400三个自然数,再写上两个自然数,然后从这五个数中选出若干个数(至少两个)做只有加、减法的四则运算,在一个四则运算式子中,选出的数只能出现一次,经过所有这样的运算,可以得到k 个不同的非零自然数。那么k 最大是多少? 6.将1,2,3,4,5,6,7,8,9填入右图的圆圈中,每个 圆圈恰填一个数,满足下列条件: 1)正三角形各边上的数之和相等; 2)正三角形各边上的数之平方和除以3的余数相等。 问:有多少种不同的填入方法? ( 注意,经过旋转和轴对称反射,排列一致的,视为同一种填法 )

总决赛小学组二试 2011年7月23日 中国·惠州 一.填空题:(共3题,每题10分) 1.某班共36人都买了铅笔,共买了50支,有人买了1支,有人买了2支,有人买了3支。如果买1支的人数是其余人数的2倍,则买2支的人数是_________. 2.右图中,四边形ABCD 的对角线AC 与BD 相交于O , E 为BC 的中点,三角形ABO 的面积为45,三角形ADO 的面积为18,三角形CDO 的面积为69。则三角形 AED 的面积等于_________. 3.一列数的前三个依次是1,7,8,以后每个都是它前面相邻三个数之和除以4所得的余数,则这列数中的前2011个数的和是_________. 二.解答题:(共3题,每题10分,写出解答过程) 4.用57个边长等于1的小等边三角形拼成一个内角不大于180度的六边形,小等边三角形之间既无缝隙,也没有重叠部分。则这个六边形的周长至少是多少? 5.黑板上写有1,2,3,…,2011一串数。如果每次都擦去最前面的16个数,并在这串数的的最后再写上擦去的16个数的和,直至只剩下1个数,则 1)最后剩下的这个数是多少? 2)所有在黑板上出现过的数的总和是多少? 6.试确定积的末两位的数字。 )12()12)(12)(12(2011321++++

第华罗庚杯赛决赛初一组试题及答案

x 2 n ? 第二十一届华罗庚金杯少年数学邀请赛 决赛试题(初一组) (时间: 2016 年 3 月 12 日 10:00~11:30) 一、填空题(每小题 10 分, 共 80 分) 1. 已知 n 个数 x 1, x 2 , , x n , 每个数只能取 0, 1, -1中的一个. 若 x 1 + x 2 + + x n = 2016 , 则 2015 1 + x 2015 + + x 2015 的值为 . 2. 某停车场白天和夜间两个不同时段的停车费用的单价不同.张明 2 月份白天 的停车时间比夜间要多 40% , 3 月份白天的停车时间比夜间要少 40% . 若 3 月 份的总停车时间比 2 月份多 20% , 但停车费用却少了 20% , 那么该停车场白 天时段与夜间时段停车费用的单价之比是 . 3. 在 9? 9 的格子纸上, 1?1 小方格的顶点叫做格点. 如右图, 三角形 ABC 的三个顶点都是格点. 若一个格点 P 使得三角 形 PAB 与三角形 PAC 的面积相等, 就称 P 点为“好点”. 那 么在这张格子纸上共有 个“好点”. 4. 设正整数 x , y 满足 xy - 9x - 9y = 20, 则 x 2 + y 2 = . 5. 甲、乙两队修建一条水渠.甲先完成工程的三分之一, 乙后完成工程的三分 之二, 两队所用的天数为 A ; 甲先完成工程的三分之二, 乙后完成工程的三分 之一, 两队所用天数为 B ; 甲、乙两队同时工作完成的天数为 C . 已知 A 比 B 多 5, A 是 C 的 2 倍多 4. 那么甲单独完成此项工程需要 天. 6. 已知 x + y + z = 5 , 1 + 1 + 1 = 5 , xyz = 1, 则 x 2 + y 2 + z 2 = . x y z 7. 关于 x , y 的方程组 ? 1 x + y = a ? 2 ??| x | - y = 1 只有唯一的一组解, 那么 a 的取值为 . 总分 密封 线 内 请勿答 题 学 校 _ ___ __ __ _ ___ 姓名____ ___ __ 参赛证号

第十届华杯赛决赛小学组试题及解答

第十届华杯赛决赛小学 组试题及解答 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

第十届华杯赛决赛小学组试题及解答 一、填空(每题10分,共80分) 1.下表中每一列为同一年在不同历法中的年号,请完成下表: 2.计算: ① ×+÷ = ( ); ②= ( )。 3.计算机中最小的存储单位称为“位”,每个“位”有两种状态:0和1。一个字节由8个“位”组成,记为B。常用KB,MB等记存储空间的大小,其中1KB=1024B, 1MB=1024KB。现将240MB的教育软件从网上下载,已经下载了70%。如果当前的下载速度为每秒72KB,则下载完毕还需要()分钟。(精确到分钟) 4.a,b和c都是二位的自然数,a,b的个位分别是7与5,c的十位是1。如果它们满足等式ab+c=2005,则a+b+c=( )。 5.一个正方体的每个顶点都有三条棱以其为端点,沿这三条棱的三个中点,从这个正方体切下一个角,这样一共切下八个角,则余下部分的体积(图1中的阴影部分)和正方体体积的比是()。

6.某种长方体形的集装箱,它的长宽高的比是4∶3∶2,如果用甲等油漆喷涂它的表面,每平方米的费用是元,如果改用乙等油漆,每平方米的费用降低为元,一个集装箱可以节省元,则集装箱总的表面积是()平方米,体积是()立方米。 7.一列自然数0,1,2,3,…,2005,…,2004,第一个数是0,从第二个数开始,每一个都比它前一个大1,最后一个是2024。现在将这列自然数排成以下数表: 规定横排为行,竖排为列,则2005在数表中位于第()行和第()列。 8.图2中,ABCD是长方形,E,F分别是AB,DA的中点,G是BF和DE的交点,四边形BCDG的面积是40平方厘米,那么ABCD的面积是()平方厘米。

2019年第十八届华杯赛决赛小高年级(A)卷-试题及解析word版

第十八届华罗庚金杯少年邀请赛 决赛试题A (小学高年级组) (时间2019年4月20日10:00~11:30) 一、填空题(每小题 10分, 共80分) 1.计算: 19×0.125+281×8 1-12.5=________. 解析:原式=(19+281-100)×0.125 =200×0.125 =25 2.农谚‘逢冬数九’讲的是, 从冬至之日起, 每九天分为一段, 依次称之为一九, 二九, ……, 九九, 冬至那天是一九的第一天. 2019年12月21日是冬至, 那么2019年的元旦是________九的第________天. 解析:31-21+1+1=12,12÷9=1…3,2019年的元旦是二九的第3天. 3.某些整数分别被119977553,,,除后, 所得的商化作带分数时, 分数部分分别是92725232,,,, 则满足条件且大于1的最小整数是________. 解析:设整数为A, 分别被119977553,,,除后, 所得的商分别为A A A A 911795735,,,; )1(911921911)1(7972179)1(5752157)1(3532135-++=-++=-++=-++=A A A A A A A A ,,,显然,当A-1是[3,5,7,9]的时候满足题意。所以A-1=315,A=316。 4.如右图, 在边长为12厘米的正方形ABCD 中, 以AB 为底边作腰长为10厘米的等腰 三角形PAB . 则三角形PAC 的面积等于________平方厘米. 解析:过P 点做PE ⊥AB,由于三角形PAB 为等腰三角形,所以AE=EB=6cm 。 根据勾股定理:PE 2=102-62=64=82,所以PE=8cm 。 S △PAB=12×8÷2=48cm 2,S △PCB=12×6÷2=36cm 2, S △PAC=48+36-12×12÷2=12 cm 2。 5.有一筐苹果, 甲班分, 每人3个还剩11个; 乙班分, 每人4个还剩10个; 丙班分, 每人5个还剩12个. 那么这筐苹果至少有________个. 解析:11≡2(mod3)=2;10≡2(mod4)=2;12≡5(mod5)=2,所以苹果数除以3,4,5都余2, [3,4,5]=60, 这筐苹果至少有60+2=62个. 6.两个大小不同的正方体积木粘在一起, 构成右图所示的立体图形, 其中, 小积木 的粘贴面的四个顶点分别是大积木的粘贴面各边的一个三等分点.如果大积木的棱长 为3, 则这个立体图形的表面积为________. 解析:如图所示,四个三角形面积都是1×2÷2=1, 所以小积木一个面的面积是32-1×4=5。 这个立体图形的表面积为大积木的表面积加上小积木四个面的面积。 所以面积为6×32+4×5=74。 7.设n 是小于50 的自然数, 那么使得4n +5和7n +6有大于1 的公约数的所有n 的可能值之和 为 . E

华杯赛历届试题

第一届华杯赛决赛一试试题 1. 计算: 2.975×935×972×(),要使这个连乘积的最后四个数字都是“0”,在括号内最小应填什么数? 3.把+、-、×、÷分别填在适当的圆圈中,并在长方形中填上适当的整数,可以使下面 的两个等式都成立,这时,长方形中的数是几? 9○13○7=10014○2○5=□ 4.一条1米长的纸条,在距离一端0.618米的地方有一个红点,把 纸条对折起来,在对准红点的地方涂上一个黄点然后打开纸条从红点的地方把纸条剪断,再把有黄点的一段对折起来,在对准黄点的地方剪一刀,使纸条断成三段,问四段纸条中最短的一段长度是多少米? 5.从一个正方形木板锯下宽为米的一个木条以后,剩下的面积是平方米,问锯下的木条面积是多少平方米? 6.一个数是5个2,3个3,2个5,1个7的连乘积。这个数当然有许多约数是两位数,这些两位的约数中,最大的是几? 7.修改31743的某一个数字,可以得到823的倍数,问修改后的这个数是几? 8.蓄水池有甲、丙两条进水管,和乙、丁两条排水管,要灌满一池水,单开甲管需3小时,单开丙管需要5小时,要排光一池水,单开乙管需要4小时,单开丁管需要6小时,现在池 内有池水,如果按甲、乙、丙、丁的顺序,循环各开水管,每天每管开一小时,问多少时间后水清苦始溢出水池? 9.一小和二小有同样多的同学参加金杯赛,学校用汽车把学生送往考场,一小用的汽车,每车坐15人,二小用的汽车,每车坐13人,结果二小比一小要多派一辆汽车,后来每校各增加一个人参加竞赛,这样两校需要的汽车就一样多了,最后又决定每校再各增加一个人参加竞赛,二小又要比一小多派一辆汽车,问最后两校共有多少人参加竞赛? 10.如下图,四个小三角形的顶点处有六个圆圈。如果在这些圆圈中分别填上六个质数,它们的和是20,而且每个小三角形三个顶点上的数之和相等。问这六个质数的积是多少? 11.若干个同样的盒子排成一排,小明把五十多个同样的棋子分装在盒中,其中只有一个盒子没有装棋子,然后他外出了,小光从每个有棋子的盒子里各拿一个棋子放在空盒内,再把

华罗庚金杯赛初一初赛试题及答案

1.代数和的个位数字是(). (A)7 (B)8 (C)9 (D)0 2.已知则下列不等式成立的是(). 3.在数轴上, 点A和点B分别表示数a和b, 且在原点O的两侧.若AO=2OB, 则a+b=(). 4.如右图所示, 三角形ABC是直角三角形,∠ABC=60度.若在直线AC或BC上取一点P, 使得三角形PAB为等腰三角形,那么这样的点P的个数为(). (A)4(B)5(C)6(D)7 5.如右图, 乙是主河流甲的支流, 水流流向如箭头所示. 主流和支流的水流速度相等, 船在主流和支流中的静水速度也相等. 已知AC=CD, 船从A处经C开往B处需用6小时, 从B经C到D需用8小时, 从D经C到B需用5小时. 则船从B经C到A, 再从A经C到D需用()小时.

6.甲、乙、丙、丁四种商品的单价分别为2元, 3元, 5元和7元. 现从中选购了6件共花费了36元. 如果至少选购了3种商品, 则买了()件丁商品. (A)1 (B)2 (C)3 (D)4 二、填空题(每小题10 分, 共40分) 7.如右图, 在平行四边形ABCD中,AB=2AB.点O为平行四边形内一点, 它到直线AB, BC, CD的距离分别为a, b, c, 且它到AD和CD的距离相等,则2a-b+c=. 8.如右图所示, 韩梅家的左右两侧各摆了3盆花.韩梅每次按照以下规则往家中搬一盆花:先选择左侧还 是右侧, 然后搬该侧离家最近的. 要把所有的花搬到家里, 共有种不同的搬花顺序. 9.如右图,在等腰梯形ABCD中, AB//CD, AB=6, CD=14, ∠AEC=90度, CE=CB, 则 10.已知四位数x是完全平方数, 将其4个数字各加1后得到的四位数仍然是完全 平方数, 则x=.

(完整版)第二十二届华杯赛小高年级组决赛试题A解析

第二十二届华杯赛小高年级组决赛试题 A 解析 1.用[x ]表示不超过x 的最大整数,例如[3.14]=3,则: ,2017 3,『2017 4] [2017 5] [2017 6] [2017 7] [ 11 ] [ 11 ] [ 11 ] [ 11 ] [ 11 ] 【考点】取整运算 【专题】计算 【难度】☆ 【解析】直接计算即可 比较麻烦的简算方法: 先看第一项 第二项: 「2017 3 r (2002 15) 4 r 8 1001 60 60 60n [ ][ ][ ][8 91 ] 8 91 [] 11 11 11 11 11 所以原式= =6048 2. 从4个整数中任意选出3个,求出它们的平均值,然后再求这个平均值和余 2 1 下1个数的和,这样可以得到4个数:8,12,10-和9-,则原来给定的4 3 3 个整数的和为 ________ [2017 3] [ (2002 15) 3, ,6 1001 45, 11 11 11 [6 91 91 [鲨 11 2017 8 11 ]的值为 6 91 [45] 8 11 91 [60] 11 10 91 [75] 12 11 91 禺14 11 91 [遁]16 91 [空] 11 11 =(6 8 10 12 14 16) 91 4 5 6 8 9 10

【考点】平均数与求和 【专题】计算 【难度】☆ 【解析】假设这四个数为a,b,c,d 每三个数的平均值为:(a b c) 3,(a b d) 3,(a c d) 3,(b c d) 3 分别与余下的数的和为: 2 1 (a b c) 3 d 8,(a b d) 3 c 12,(a c d) 3 b 10—,(b c d) 3 d 9- 3 3 将这四个式子左右两边分别相加得到: (a b c) 3 d (a b d) 3 c (a c d) 3 b (b c d) 3 d 8 12 10- 9 3 3 (a b c a b d acdbcd)3abcd 40 3 (a b c d) 3 (a b c d) 40 2 (a b c d) 40 a b c d 20 3. 在3 X3的网格中(每个格子是个1 X1的正方形)放两枚相同的棋子,每个格 子最多放一枚棋子,共有 ___________ 种不同的摆放方法.(如果两种放法能够由旋 转而重合,则把它们视为同一种摆放方法) 【考点】 【专题】杂题 【难度】☆

第九届华杯赛总决赛初一组第二试试题

第九届华杯赛总决赛初一组第二试试题 1.甲乙两家医院同时接受同样数量的病人,每个病人患x病或y病中的一种, 经过几天治疗,甲医院治好的病人多于乙医院治好的病人。问:经过这几天治疗,是否可能甲医院对x病的治愈率和对y病的治愈率均低于乙医院的?举例说明。(x病的治愈率 =×100%) 2.在长方形ABCD中,BF=AE=3厘米,DE=6厘米,三角形GEC的面积是20平方厘米,三角形GFD的面积是16平方厘米,那么,长方形ABCD的面积是多少平方厘米? 3.甲,乙,丙三辆汽车分别从ΔABC的顶点A,B,C出发,选择一个地点相会,每辆车沿直线路段到相会地点(AB=c, AC=b,BC=a),三辆车的单位路程的耗油量分别为1/3,1/6,1/8。要使三辆车路上所用的油量之和最少,相会地点应选在何处?最小耗油量是多少(用a,b,c表示)? 4.用十进制表示的某些自然数等于它各位数字之和的16倍,求所有这样的自然数之和。5.求同时满足下列三个条件的自然数a,b: (1) a>b; (2); (3)a+b是平方数。

6.如图,101×7长方阵,行距和列距都是1,第6列上(除和第0列相交处外),每一个阵点上放有一个靶标,而前5列上所有的阵点上都放有障碍物。神枪手站在第0行第0列的位置,要击中靶标,必须先扫清子弹前进弹道(直线)上的一切障碍物,若神枪手每发子弹都能击中目标,而且每发子弹能击毁且仅能击毁一个障碍物,那么 (1)不需要扫除障碍物就能击中的靶标有多少个? (2)要扫清一个障碍物才能击中的靶标有多少个? ┝┿┿┿┿┿┿┥ 第7行┝┿┿┿┿┿┿┥ 第6行┝┿┿┿┿┿┿┥ 第5行┝┿┿┿┿┿┿┥ 第4行┝┿┿┿┿┿┿┥ 第3行┝┿┿┿┿┿┿┥ 第2行┝┿┿┿┿┿┿┥ 第1行┝┿┿┿┿┿┿┥ 第0行┕┷┷┷┷┷┷┙ 第第第第第 1 2 3 4 5 列列列列列

2018最新华杯赛决赛模拟试题(1)及详解

2018最新华杯赛决赛模拟试题(1) 一、填空题(每题10分)。 1.计算:。 __________72.01 72.01 72.0=++?????? 2. 如图,在5×7的方格表中有_______个“ ”图形。 3.今年小明父亲的年龄是小明年龄的5倍,几年后,小明父亲年龄是小明的4倍。又过几年,小明父亲年龄是小明年龄的3倍。如果小明父亲今年56岁,那么小明今年_______岁。 4. 从1,2,3,4,……,98,99,100这100个自然数中取出若干个数,使其中任意两个数的和都不能被9整除,最多可取______个数。 5. 如图,两个矩形,它们的边长都是整数,且有一边的长分 别是9厘米和7厘米。矩形的面积之差是100平方厘米,则 两个矩形面积之和最小为_______平方厘米。 6. 最小正整数n=__________,使得2n+1和16n+1都是平方数。 7. 有一个杯子装满了浓度为16%的盐水,有大、中、小铁球各一个,它们的体积比为10:4:3,首先将小球沉入盐水杯中,结果盐水溢出10%,接着取出小球,再把中球沉入盐水杯中,又将它取出;最后将大球沉入盐水杯中后取出,此时在杯中倒入纯水,倒满为止,此时杯中盐水的浓度是_________%。(精确到一位小数) 8.甲、乙、丙三人练习打靶,靶子及环数如图所示,甲和乙共命 中95环,乙和丙共命中84环,甲和丙共命中81环。丙最多命 中_______环。

二、简答题(每题10分,要求写出解题简要过程)。 9.如图,ABCD 是正方形,E,F 是BC 上的点,BE=EF=FC,G 是CD 上的中点,AF 与EG 交于H ,已知三角形AEH 的面 积比三角形HFG 的面积多15平方厘米。求正方形ABCD 的面积。 10.任意50个自然数排成一列,从中可否找出一个或若干个连续的项的和能被50整除?说明理由。 11. 甲乙两辆汽车先后从A 地出发到B 地,当甲车到达AB 的中点时,乙车走了全程的61;当甲车到达B 地时,乙车走了全程的4 3 ;甲车行完全程要6小时,那么乙车行完全程需要几小时? 12.一蓄水池有甲、乙两个进水管和丙、丁两个排水管。要灌满一池水,单开甲管需要3小时,单开乙管需要5小时;要排光一池水,单开丙管需要6小时,单开丁管需要8小时.现在池中无水,如果按甲、丙、乙、丁,甲、丙、乙、丁……的顺序循环开各水管,各管每次开1小时,那么经过多少小时后,水开始溢出水池?

(完整版)第十六届华杯赛总决赛试题

第十六届华罗庚金杯少年数学邀请赛 总决赛 小学组一试 2011年7月23日 中国·惠州 一. 填空题:(共3题,每题10分) 1. 计算 313615176413900114009144736543++++++=_________. 2. 如右图所示,正方形ABCD 的面积为12,AE =ED ,且EF =2FC , 则三角形ABF 的面积等于_________. 3. 某地区的气象记录表明,在一段时间内,全天下雨共1天;白天雨夜间晴或白天晴夜间雨共9天;6个夜间和7个白天晴朗。则这段时间有_______天,其中全天天晴有_______天。 二. 解答题:(共3题,每题10分,写出解答过程) 4. 已知a 是各位数字相同的两位数,b 是各位数字相同的两位数,c 是各位数字相同的四位数,且c b a =+2。求所有满足条件的(a ,b ,c )。 5. 纸板上写着100、200、400三个自然数,再写上两个自然数,然后从这五个数中选出若干个数(至少两个)做只有加、减法的四则运算,在一个四则运算式子中,选出的数只能出现一次,经过所有这样的运算,可以得到k 个不同的非零自然数。那么k 最大是多少? 6. 将1,2,3,4,5,6,7,8,9填入右图的圆圈中,每 个圆圈恰填一个数,满足下列条件: 1) 正三角形各边上的数之和相等; 2) 正三角形各边上的数之平方和除以3的余数相等。 问:有多少种不同的填入方法? ( 注意,经过旋转和轴对称反射,排列一致的,视为同一种填法 )

总决赛 小学组二试 2011年7月23日 中国·惠州 一. 填空题:(共3题,每题10分) 1. 某班共36人都买了铅笔,共买了50支,有人买了1支,有人买了2支,有人买了3支。如果买1支的人数是其余人数的2倍,则买2支的人数是_________. 2. 右图中,四边形ABCD 的对角线AC 与BD 相交于 O ,E 为BC 的中点,三角形ABO 的面积为45, 三角形ADO 的面积为18,三角形CDO 的面积为 69。则三角形AED 的面积等于_________. 3. 一列数的前三个依次是1,7,8,以后每个都是它前面相邻三个数之和除以4所得的余数,则这列数中的前2011个数的和是_________. 二. 解答题:(共3题,每题10分,写出解答过程) 4. 用57个边长等于1的小等边三角形拼成一个内角不大于180度的六边形,小等边三角形之间既无缝隙,也没有重叠部分。则这个六边形的周长至少是多少? 5. 黑板上写有1,2,3,…,2011一串数。如果每次都擦去最前面的16个数,并在这串数的的最后再写上擦去的16个数的和,直至只剩下1个数,则 1) 最后剩下的这个数是多少? 2) 所有在黑板上出现过的数的总和是多少? 6. 试确定积)12()12)(12)(12(2011321++++Λ的末两位的数字。

第十六届华杯赛总决赛试题

第十六届华罗庚金杯少年数学邀请赛 总决赛 小学组一试 2011年7月23日 中国·惠州 一. 填空题:(共3题,每题10分) 1. 计算 313615176413900114009144736543++++++=_________. 2. 如右图所示,正方形ABCD 的面积为12,AE =ED ,且EF =2FC , 则三角形ABF 的面积等于_________. 3. 某地区的气象记录表明,在一段时间内,全天下雨共1天;白天雨夜间晴或白天晴夜间雨共9天;6个夜间和7个白天晴朗。则这段时间有_______天,其中全天天晴有_______天。 二. 解答题:(共3题,每题10分,写出解答过程) 4. 已知a 是各位数字相同的两位数,b 是各位数字相同的两位数,c 是各位数字相同的四位数,且c b a =+2。求所有满足条件的(a ,b ,c )。 5. 纸板上写着100、200、400三个自然数,再写上两个自然数,然后从这五个数中选出若干个数(至少两个)做只有加、减法的四则运算,在一个四则运算式子中,选出的数只能出现一次,经过所有这样的运算,可以得到k 个不同的非零自然数。那么k 最大是多少? 6. 将1,2,3,4,5,6,7,8,9填入右图的圆圈中,每 个圆圈恰填一个数,满足下列条件: 1) 正三角形各边上的数之和相等; 2) 正三角形各边上的数之平方和除以3的余数相等。 问:有多少种不同的填入方法? ( 注意,经过旋转和轴对称反射,排列一致的,视为同一种填法 )

总决赛 小学组二试 2011年7月23日 中国·惠州 一. 填空题:(共3题,每题10分) 1. 某班共36人都买了铅笔,共买了50支,有人买了1支,有人买了2支,有人买了3支。如果买1支的人数是其余人数的2倍,则买2支的人数是_________. 2. 右图中,四边形ABCD 的对角线AC 与BD 相交于 O ,E 为BC 的中点,三角形ABO 的面积为45, 三角形ADO 的面积为18,三角形CDO 的面积为 69。则三角形AED 的面积等于_________. 3. 一列数的前三个依次是1,7,8,以后每个都是它前面相邻三个数之和除以4所得的余数,则这列数中的前2011个数的和是_________. 二. 解答题:(共3题,每题10分,写出解答过程) 4. 用57个边长等于1的小等边三角形拼成一个内角不大于180度的六边形,小等边三角形之间既无缝隙,也没有重叠部分。则这个六边形的周长至少是多少? 5. 黑板上写有1,2,3,…,2011一串数。如果每次都擦去最前面的16个数,并在这串数的的最后再写上擦去的16个数的和,直至只剩下1个数,则 1) 最后剩下的这个数是多少? 2) 所有在黑板上出现过的数的总和是多少? 6. 试确定积)12()12)(12)(12(2011321++++ 的末两位的数字。

相关主题