搜档网
当前位置:搜档网 › 水性聚氨酯丙烯酸酯复合乳液的合成研究

水性聚氨酯丙烯酸酯复合乳液的合成研究

水性聚氨酯丙烯酸酯复合乳液的合成研究
水性聚氨酯丙烯酸酯复合乳液的合成研究

第19卷第3期

厦门理工学院学报Vol.19No.32011年9月Journal of Xiamen University of Technology Sep.2011

[收稿日期]2010-11-19[修回日期]2011-07-08

[基金项目]漳州职业技术学院科研计划项目(ZZY1111)

[作者简介]陈建福(1982-),男,助教,硕士,从事应用化学研究.E-

mail :qjf1996@https://www.sodocs.net/doc/2b12174414.html, 水性聚氨酯丙烯酸酯复合乳液的合成研究

陈建福

(漳州职业技术学院食品与生物工程系,福建漳州363000)

[摘要]采用种子溶胀乳液聚合法,以水性聚氨酯为种子,甲基丙烯酸甲酯和丙烯酸丁酯为单体制

备水性聚氨酯丙烯酸酯复合乳液,考察了聚合温度、搅拌速度、引发剂种类、引发剂用量及反应时间对聚合过程的影响.结果表明:适宜的聚合温度控制为85?;适宜的搅拌速率为150 250r /min ;采用水溶性引发剂时引发效率较高,过硫酸钾的最佳用量为0.8%;随着反应时间的增加,乳液粒径先减小后增大.

用红外光谱对聚氨酯丙烯酸酯乳液进行分析,表明丙烯酸酯参与了反应.

[关键词]水性聚氨酯;丙烯酸酯;复合乳液;合成

[中图分类号]TQ323.8[文献标志码]A [文章编号]1008-3804(2011)03-0069-05

随着人们对清洁生产方式、环保法规的日益关注以及石油化工产品成本的不断升高,水性涂料越

来越受到人们的关注

[1-3].水性聚氨酯涂料是以水替代有机溶剂作为分散介质发展起来的新兴高分子材料,水性聚氨酯特殊的分子结构及聚集状态使其具有优良的耐磨蚀、柔韧性、附着力、耐化学品及软硬随温度变化不大等优点,但水性聚氨酯乳液的自增稠性差、固含量偏低、涂膜的耐水性和光泽性

不足[4-6]

.丙烯酸酯类乳液则具有良好的耐水性、耐候性及物理机械性能,用丙烯酸酯类乳液对水性聚氨酯进行改性,可以把两者的性能有机结合起来,从而制备综合性能优良的水性聚氨酯丙烯酸酯(PUA )复合乳液[7-8].本文采用种子溶胀乳液聚合法,不外加乳化剂,合成稳定性好、综合性能优良的丙烯酸酯共聚改性水性聚氨酯乳液,对合成工艺条件进行了系统的探讨.1

实验部分1.1主要原料和试剂

甲苯二异氰酸酯(TDI )、聚酯多元醇(M n =2000)、二羟甲基丙酸(DPMA ),工业级;N ,N -二甲基甲酰胺(DMF )、三乙胺(TEA )、乙二胺,分析纯,用4A 分子筛脱水;甲基丙烯酸甲酯(MMA )、丙烯酸丁酯(BA )、二月桂酸二丁基锡(DBTDL )、过硫酸钾(KPS )、过硫酸铵(APS )、过氧化苯甲酰(BPO )、偶氮二异丁腈(AIBN )等为化学纯,其他试剂均为分析纯.

1.2PUA 复合乳液的制备

将一定量的聚酯多元醇在120?真空脱水,将计量好的甲苯二异氰酸酯缓慢滴加到装有冷凝管、机械搅拌和通氮管的三口烧瓶里,升温到75?反应2h ,加入DMPA 及催化剂,升温到85?反应,隔一定时间取样并测定异氰酸酯基含量(NCO%,质量分数,下同),当NCO%达到理论值时降温到40?,加入丙烯酸酯以降低体系粘度,用三乙胺中和,然后在快速搅拌下加入含有乙二胺的去离子水进行乳化分散,再将乳液升温至85?,加入剩余量的丙烯酸酯单体,并在3h 内滴完引发剂,保温2h 后出料.

1.3性能测试与表征

1)异氰酸酯基含量的测定

厦门理工学院学报2011年

取适量试样溶于甲苯中,加入一定量的二正丁胺,再加入异丙醇,以溴甲酚绿为指示剂,以盐酸

标准溶液滴定,同时作空白试验,其计算公式为[9]:

-NCO%=[(V 0-V 1)?C ?42/1000m ]?100%

式中:V 0、V 1分别为空白滴定和样品滴定消耗盐酸标准溶液的体积(mL ),C 为盐酸标准溶液的浓度(mol /L ),m 为试样质量(g ),42为-NCO 的摩尔质量(g /mol ).

2)丙烯酸酯单体转化率的测定

聚合过程中,每隔一定时间取样0.5 2.0g 置于已恒重的称量瓶中,加入2滴5%对苯二酚水溶液,干燥至恒重,按下式计算转化率:

C (t )=((X -X 0)/(X 0?M /S ))?100%

式中,X 为t 时样品的固含量,X 0为开始计时的固含量,M /S 为丙烯酸酯单体与水性聚氨酯的质量比.

3)PUA 复合乳液的表征

PUA 复合乳液的平均粒径采用德国Sympatec -NANOPHOX 纳米激光粒度仪测定.PUA 复合乳液胶膜的红外光谱采用Nicolet -360型傅立叶红外光谱仪测定,胶膜先在50?下真空除水,然后KBr 压片制样.

2

结果与讨论2.1聚合温度选择

表1

不同温度所合成复合乳液的稳定性Tab .1

Effect of temperature on the stability of PUA composite emulsions 温度/?

产物外观离心稳定性75

乳白色乳液不稳定,不分层80

白色乳浊液稳定,不分层85

淡黄色半透明泛蓝光乳液稳定,不分层90

淡黄色半透明乳液稳定,不分层95淡黄色乳液不稳定,不分层温度对聚合反应影响很大,见表1所示.温度低聚合速率较低,滴加的单体聚合时间较长,容易造成反应体系的浓度局部过大,引起暴聚的几率增大,操作难度较大;而聚合温度过高,引发剂分解过快,引发速率加快,反应速率剧烈,乳液颗粒的布朗运动加剧,以致克服乳胶粒彼此间位垒而发生凝聚,同时还会导致乳液粒子表面水化层变薄,乳胶粒间空间位阻下降而使得乳液稳定性下降.本实验反应温度控制在85?为宜,当单体和引发剂滴加完毕后,继续保温3 4h ,

以提高单体的转化率.

2.2搅拌速率选择

在乳液聚合过程中,为了提高传热和传质效率,保证反应的顺利进行,必须具有良好的搅拌装置,搅拌把单体分散成单体珠滴,增大了两相界面接触的面积.

搅拌速率的快慢对乳液的质量及稳定性有一定的影响,同时影响着胶乳的粒径及分布.搅拌速率较低时,单体分散性较差,单体局部过浓而进行局部本体聚合,有时甚至发生分层,而导致凝胶;搅拌速率过高,乳液的稳定性下降,甚至出现破乳和凝胶,乳胶的粒径较大,分布变宽.搅拌速率控制在150 250r /min 较合适.

2.3不同引发剂对反应的影响

聚氨酯丙烯酸酯复合乳液聚合过程既可采用水溶性引发剂,也可用油溶性引发剂,图1为不同种类引发剂(用量均为0.8%)对聚合物转化率的影响.

从图1可知,聚合过程采用油溶性引发剂的引发效率都比较低,这是因为油溶性引发剂倾向于分布在丙烯酸酯溶胀的水性聚氨酯粒子内部,引发剂热分解产生的成对自由基在空间有限的粒子内容易重新结合而终止,降低了引发效率.而水溶性引发剂溶解在较大空间的连续水相,其分解的带有负电荷的自

·07·

第3期陈建福:水性聚氨酯丙烯酸酯复合乳液的合成研究由基扩散进入乳胶粒内需要克服较大的阻力,使粒子内的增长链自由基寿命较长,单体转化率高.

2.4引发剂用量的影响

引发剂的用量不仅影响反应速率和分子量,对粒度分布也有很大影响,会直接影响聚合反应及产物的性能.以过硫酸钾为引发剂,固定其它条件不变,考察引发剂用量对丙烯酸酯单体转化率和PUA 乳液粒径的影响,结果见图

2.

从图2中可以看出,随着引发剂用量的增加,单体的转化率提高,粒径变小.当过硫酸钾用量为0.8%时单体的转化率达最大、粒径达最小;引发剂量继续增加,转化率反而降低,而粒径增大.这是因为引发剂用量的增加,形成的自由基增多,会使水相中活性中心数目增多,聚合物的分子量下降,使得形成的乳胶粒径减小,此时单体能够充分反应,转化率增大.若引发剂量继续增大,一方面在水相中分解产生的活性中心聚集量增多,自由基之间的链终止反应而消耗大量的活性中心,造成反应物体系中瞬时颗粒过于集中,从而引起集聚;另一方面过量的引发剂起到了电解质的作用,使粒子的稳定性下降,粒子间容易聚结使粒径变大,甚至出现凝胶化现象,从而造成转化率降低.

2.5

乳液粒径与反应时间关系

反应中未外加乳化剂,水性聚氨酯起着乳化剂

稳定粒子的作用,丙烯酸酯单体则溶胀于水性聚氨

酯的聚集体粒子中.固定过硫酸钾用量为0.8%,

反应过程PUA 粒径的变化如图3所示.

从图3中可以看出,丙烯酸酯单体加入体系

后,所得乳液粒子的粒径很大,可达235nm ,但随

着反应的进行,粒径开始迅速降低,而后又缓慢地

增大.这可能是丙烯酸酯单体加入体系后水性聚氨

酯粒子溶胀不均衡,形成了少数高度溶胀的粒子,

致使动态光散射法测量粒径的结果较大.随着引发

剂的分解,大量的小粒子不断被引发聚合,单体在

粒子间重新分配,粒径迅速变小,随着聚合时间的

延长,反应程度不断增加,粒子碰撞融合逐渐长大

直至达到平衡状态.

2.6PUA 红外表征

为了考察反应是否按设计的方向进行,利用红外光谱仪对所合成的复合乳液结构进行了表征.从

·17·

厦门理工学院学报2011

图4可以看出在3350cm -1有强的N -H 吸收峰,

且为较宽的峰,说明脲基上的-NH -已几乎完全氢

键化.2960cm -1为甲基与亚甲基C -H 的伸缩振动

吸收峰;在2750cm -1到1850cm -1间没有-NCO

的特征吸收峰,说明异氰酸酯反应完全生成氨基甲

酸酯基;在1750cm -1左右均存在着一个非常强的

吸收峰,它是由聚酯中羰基和氨基甲酸酯中羰基相

重叠的吸收峰;1150cm -1为甲基丙烯酸甲酯的酯

键特征峰,842cm -1为聚丙烯酸酯的特征峰,表明

水性聚氨酯预聚物与丙烯酸酯发生了聚合,生成了

聚氨酯-丙烯酸酯复合乳液,且在1600

l 700cm -1之间未出现C =C 的伸缩振动峰,说明甲

基丙烯酸甲酯和丙烯酸丁酯参与了反应,该乳胶既

含有聚氨酯组分,又含有丙烯酸酯组分.

表2PUA 复合乳液的性能指标

Tab .2Properties index of

PUA Composite emulsions

性能指标实测值外观

淡黄色半透明泛蓝光乳液固含量/%

38.7吸水率/%

3.4成膜性

连续透明、成膜性好pH 值

7 8贮存稳定性>6个月2.7乳液性能指标

PUA 复合乳液的性能指标如表2所示.3结论1)采用种子溶胀乳液聚合法,以水性聚氨酯为种子,甲基丙烯酸甲酯和丙烯酸丁酯为单体制备水性聚氨酯丙烯酸酯复合乳液.适宜的聚合温度为85?,适宜的搅拌速率应控制在150 250r /min.

2)水溶性引发剂的引发效率高于油溶性引发剂,丙

烯酸酯单体的转化率也高,当水溶性引发剂过硫酸钾的用量为0.8%时,单体转化率最大,胶乳粒径最小,随反应的进行,乳液粒径呈先迅速减小后逐渐增大的趋势.

3)红外光谱分析表明丙烯酸酯参与了反应,该乳胶既含有聚氨酯组分,又含有丙烯酸酯组分.

[参考文献]

[1]AITZIBER L ,ELISE D C ,ELISABETTA C ,et al.Waterborne polyurethane-acrylic hybrid nanoparticles by

miniemulsion polymerization :Applications in pressure-sensitive adhesives [J ].Langmuir ,2011,27(3):3878-

3888.[2]王璐,沈一丁,杨晓武.无溶剂阳离子型聚氨酯/丙烯酸酯复合乳液的制备及成膜性能研究[J ].精细化工,

2010,27(10):959-

963.[3]YING X ,RICHARD C L.Castor-oil-based waterborne polyurethane dispersions cured with an aziridine-based crosslinker

[J ].Macromolecular Material and Engineering ,2011,296(2):1-

7.[4]陈建福.丙烯酸酯改性水性聚氨酯的制备及性能研究[J ].延边大学学报:自然科学版,2010,36(3):244-249.[5]瞿金清,罗春晖,陈焕钦.新型丙烯酸酯杂合乳液的合成与水性双组分聚氨酯涂料性能[J ].四川大学学报:

工程科学版,2011,

43(1):179-184.[6]HU X H ,ZHANG X Y ,BINA D J.Synthesis and fluorescent investigations of VBL-based waterborne polyurethane dye

[J ].Journal of Luminescence ,2010,131(5):2160-2165.

[7]LU Y S ,YING X ,RICHARD C L.Surfactant-free core-shell hybrid latexes from soybean oil-based waterborne

polyurethanes and poly (styrene-butyl acrylate )[J ].Progress in Organic Coatings ,2011,71(5):336-

342.[8]齐明超,李晓萱.丙烯酸酯改性水性聚氨酯复合乳液的研究[J ].新型建筑材料,2010,36(3):88-

90.[9]许戈文.水性聚氨酯材料[M ].北京:化学工业出版社,2007:170-171.

·27·

第3期陈建福:水性聚氨酯丙烯酸酯复合乳液的合成研究Synthesis of Waterborne Polyurethane-acrylate Composite Emulsions

CHEN Jian-fu

(Department of Food and Biology Engineering,Zhangzhou Institute of Technology,Zhangzhou 363000,China)

Abstract:Polyurethane-acrylate composite emulsions were synthesized by seed swelling polymerization with aqueous polyurethane dispersion as seed,methyl methacrylate and butyl acrylate as vinyl monomers.The influences of polymerization temperature,stirring rare,the species and content of initiator and the reaction time on the polymerization process were investigated.The results showed that the suitable polymerization temperature was 85?and the stirring rare were between the 150 250r /min;the initiating efficiency of the water-soluble initiator was higher,and the optimum content of potassium persulphate was 0.8%.The latex particle size decreased and then increased with the increase of reaction time.In addition the arylate was found in polyurethane-acrylate emulsion by FT-IR.

Key words:waterborne polyurethane;acrylate;composite emulsion;synthesis

(责任编辑陆英英编辑李宁檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱)

(上接第63页)

Design and Realization of Current and Temperature

Monitoring System Based on CC 2530

DONG Jian-huai

(Information Technology Department Concord College,Fujian Normal University,Fuzhou 350007,China)

Abstract:A current and temperature monitoring system based on ZigBee technology is designed to real-timely monitor the work of the equipment,which is widely distributive,quantitive,capable of working long time and in large current.The wireless sensor node in this system consists of ACS712,DS18B20and PSoC CC2530.The system which is featured with high precision,high reliability,low cost,easy installation and maintenance,and could be widely used in industry for on-line current and temperature monitoring.

Key words:current monitoring;ZigBee;PSoC;wireless sensor node

(责任编辑陆英英编辑李宁)·

37·

丙烯酸酯的乳液聚合

丙烯酸酯的乳液聚合 1 前言 丙烯酸酯类聚合物是工业生产中应用比较广泛的原料,可以用于生产涂料、粘合剂、塑料等产品,具有良好的性能,价格便宜。丙烯酸酯类单体多是通过乳液聚合的方式进行聚合反应。乳液聚合是高分子合成过程中常用的一种合成方法,因为它以水作溶剂,在乳化剂的作用下并借助于机械搅拌,使单体在水中分散成乳状液,由引发剂引发而进行的聚合反应。其特点是聚合热易扩散,聚合反应温度易控制; 聚合体系即使在反应后期粘度也很低,因而也适于制备高粘性的聚合物; 能获得高分子量的聚合产物; 可直接以乳液形式使用。本实验利用丙烯酸酯乳液聚合来探究其性质以及应用。 2 实验目的 1)掌握丙烯酸酯乳液合成的基本方法和工艺路线; 2)理解乳液聚合中各组成成分的作用和乳液聚合的机理; 3)了解高聚物不同玻璃化转变温度对产品性能的影响; 3 实验原理 在乳液聚合过程中,乳液的稳定性会发生变化。乳化剂的种类、用量与用法、pH值、引发剂的类型与加入方式、单体的种类与配比、加料方式、聚合工艺、搅拌形状与搅拌速度等都会影响到聚合物乳液的稳定性及最终乳液的性能。功能性单体如硅烷偶联剂、丙烯酸、丙烯酰胺、丙烯酸羟乙酯等作为交联单体参与共聚,在一定程度上可提高乳液的稳定性,但因其具有极强的亲水性,聚合过程中若在水相发生均聚形成水溶性大分子,会产生絮凝作用,极易破乳。因此选择合适的乳化体系和聚合工艺对乳液聚合过程的稳定性具有极重要的意义。 聚合物乳液承受外界因素对其破坏的能力称为聚合物乳液的稳定性。在乳液聚合过程中局部胶体稳定性的丧失会引起乳胶粒的聚结形成宏观或微观的凝聚物,即凝胶现象。凝胶多为大小不等、形态不一的块状聚合物,有的发软、发粘,有的发硬、发脆、多孔。在搅拌作用下凝胶分散在乳液中,可通过过滤法或沉降法除去,但有时也会形成大量肉眼看不到的、普通方法很难分离的微观凝胶,使乳液蓝光减弱颜色发白,外观粗糙。严重时甚至整个体系完全凝聚,造成抱轴、粘釜和挂胶现象。 乳胶粒子的表面性质与吸附或结合在其上的起稳定作用的物质有关,酸性、碱性离子末端以及吸附在乳胶粒表面上的乳化剂在一定的pH值下都是以离子形式存在的,使乳胶粒子表面带上一层电荷,从而在乳胶粒子之间就存在静电斥力,乳胶粒难于互相接近而不发生聚结。当乳胶粒表面吸附有非离子型乳化剂或高分子保护胶体时,其稳定性则与空间位阻有关。 因此乳化剂的选择是决定乳液聚合体系稳定性的关键因素之一。乳化剂虽不直接参与反应,但乳化剂的种类及用量将直接影响到引发速率、链增长速率以及聚合物的分子量和分子量分布。此外乳化剂的类型、用量和加入方式对乳胶粒的粒径和粒径分布也有着决定性的影响。如果所选用的乳化剂不适合本乳液聚合体系,则不论怎样改变乳化剂的浓度和调节聚合工艺参数,乳液聚合仍不能平稳进行或是所得到的乳液产品缺乏实用价值。离子型乳化剂的特点是乳化效率高,可有效地降低表面张力,胶束和乳胶粒子尺寸小,机械稳定性好,但由于其离子特性对电解质比较敏感;非离子型乳化剂对电解质有较好的稳定性,但机械稳定性不好,对搅拌速度比较敏感。离子型乳化剂主要靠静电斥力使乳液稳定,而非离子型乳化剂主要靠水化,两种乳化剂复合使用时,两类乳化剂分子交替吸附在乳胶粒子表面上,既使乳

丙烯酸树脂的合成

实验一溶剂型丙烯酸酯的合成实验(演示实验) 一、实验目的 了解涂料用热塑性丙烯酸酯树脂的合成方法。 二、实验原理 涂料用丙烯酸酯树脂的合成,可采用溶液聚合,乳胶聚合,本体聚合和悬浮聚合及非水分散聚合,其中以前两种方法最常用。 溶剂型丙烯酸酯树脂可分为热塑性和热固性两大类。热塑性丙烯酸酯树脂涂料的成膜主要是通过溶剂的挥发,分子链相互缠绕形成的。因此,漆膜的性能主要取决于单体的选择,分子量大小和分布及共聚物组成的均匀性。漆膜的性能如光泽,硬度,柔韧性,附着力,耐腐蚀性,耐候性和耐磨性等都与上述因素有关。漆用热塑性丙烯酸酯树脂的分子量一般在30000-130000之间,共聚物组成的均一性主要是通过分批逐步增量投入反应速度快的单体来实现的。漆膜的硬度,柔韧性等机械性能又与其玻璃化转变温度(T g)有直接的关系,共聚物的T g可由Fox 公式近似计算。 对于溶剂型清漆的配方设计,溶剂的选择极为重要,良溶剂使体系的粘度降低,固含量增加,树脂及其涂料的成膜性能好,不良溶剂则相反。选择溶剂时主要取决于溶剂的成本,对树脂的溶解能力,挥发速度,可燃性和毒性等。成膜物质可以由一种或多种热塑性丙烯酸酯树脂组成,也可以与其他成膜物质合用来改进其性能,混溶性好而常用的有硝酸纤维素,醋酸丁酸纤维素,乙基纤维素,氯乙烯-醋酸乙烯树脂以及过氧乙烯树脂等,它们在配方中的比例,可根据产品技术要求选择。 热塑性丙烯酸酯清漆表现了丙烯酸酯树脂的特点,具有较好的色泽,耐大气,保光,保色等性能,在金属,建筑,塑料,电子和木材等的保护和装饰上起着越来越重要的作用。 三、实验仪器和试剂 电动搅拌机,电动热套,四口烧瓶(250ml),球形冷凝管,温度计,涂-4

水性丙烯酸酯类共聚物乳液的合成与应用_张心亚

第一作者:张心亚,27岁,博士研究生 收稿日期:2001-07-03 专论与综述 水性丙烯酸酯类共聚物乳液的合成与应用 张心亚 涂伟萍 杨卓如 陈焕钦 (华南理工大学化工学院化工研究所 广州 510640) 摘要:通过查阅国内外有关文献资料,阐述了水性丙烯酸酯类共聚物乳液的制备方法、性能改进及应用,综述了水性丙烯酸类共聚物乳液目前的研究现状和发展趋势,并对这一蓬勃发展的新型聚合物乳液作了展望。 关键词:水性 丙烯酸酯类共聚物 乳液聚合 合成方法 性能改进 技术进展 丙烯酯类共聚物乳液(Acrylate Copolymeric Emulsion )是丙烯酸酯或甲基丙烯酯与其它乙烯基类单体进行乳液聚合的产物,还包括丙烯酸(酯)类衍生物接枝大分子共聚物[1]。随着现代工业科学技术的发展,丙烯酸及其酯类共聚也液已得到广泛的应用。目前应用最多的是全(甲基)丙烯酸酯类共聚物乳液、醋酸乙烯-(甲基)丙烯酸酯类共聚物乳液和苯乙烯-(甲基)丙烯酸酯类共聚物乳液,主要用作涂料成膜剂和纺织印染粘合剂,并用于密封胶、结构胶等行业中,其用量与日俱增[2]。随着丙烯酸酯类共聚物乳液的应用和研究进展以及环保要求的日益提高,水性丙烯酯酯类共聚物乳液正逐步取代溶剂型丙烯酸酯类共聚物乳液成为涂料和胶粘剂领域的一个重要组成部分,特别地,水性丙烯酸酯类共聚物乳液用于建筑涂料,具有优良的耐候性、耐水性、耐酸碱性、耐玷污性、无毒、对环境友好等性能,是建筑涂料体系中最具发展前途的一类产品 [3] 。 1 水性丙烯酸酯类共聚物乳液聚合技 术的研究进展及发展趋势 国内外主要围绕水性丙烯酸酯乳液的聚合技术开展了研究,目前已开发出核-壳乳液聚合、无皂乳液聚合、有机-无机复合乳液聚合、基团转移聚合(GTP )、互穿网络聚合(LIPN )、微乳液聚合等新技术。一些新技术如核-壳乳液聚合、无皂乳液聚合、 有机-无机复合乳液聚合技术等已在国内外树脂及乳液生产中得到了广泛应用[4],产品性能如耐冻融性能、低温施工性能、贮存稳定性等性能有了很大的提高和改善。 1.1 核-壳乳液聚合(Core /Shell Emulsion Polymerization ) 核-壳乳液聚合是80年代发展起来的一种新技术[5]。核-壳乳液聚合提出了“粒子设计”的新概念,即在不改变乳液单体组成的前提下改变乳液粒子结构,从而提高乳液性能。采用常规乳液聚合得到的乳胶粒子是均相的,核-壳乳液聚合得到的乳胶粒子是非均相的,采用特殊工艺可以设计乳胶粒子的核结构和壳结构的组成。聚合的第一阶段首先制备种子(核)乳液,然后第二阶段加入单体继续聚合形成壳层,最终形成核-壳结构的非均相粒子。用核-壳乳液聚合和常规乳液聚合得到的乳液的最大差异在于:核-壳乳液聚合得到的乳液抗回粘性好、成膜温度低,最好的成膜性、稳定性以及更优越的力学性能,因此该项技术极有实用价值[2、6]。1.2 无皂乳液聚合(Free -Soap Emulsion Polymerization ) 无皂乳液聚合又称无乳化剂乳液聚合,是从传统乳液聚合发展起来的一种新技术[7]。传统的乳液聚合法因乳化剂的存在而影响乳液成膜的致密性、耐水性、耐擦洗性和附着力等;而无皂乳液聚合技术

丙烯酸酯乳液改性研究现状及发展

丙烯酸酯乳液改性的研究现状及发展 姓名:何阳班级:应用化工技术1班学号:20131880 摘要:文章就丙烯酸酯乳液改性的研究现状及其用途作了详细论述,重点介绍了有机硅改性丙烯酸酯乳液和聚氨酯改性的丙烯酸酯乳液(PUA)以及氟改性丙烯酸酯乳液的研究现状及发展前景,并简要地对丙烯酸酯乳液改性的未来方向作了展望。 关键词:丙烯酸酯乳液改性原理现状发展 前言: 丙烯酸酯类共聚物乳液是丙烯酸酯类或甲基丙烯酯类与其它乙烯基酯类单体进行乳液聚合的产物[1],它主要用作涂料成膜剂和纺织印染粘合剂,也广泛应用于日用化工、化学电源、功能膜、医用高分子、纳米材料以及水处理等方面,其用量与日俱增。丙烯酸酯乳液具有优异的耐水性、耐候性、耐酸碱性和耐腐蚀性,但它存在着耐水性和附着性差及低温变脆、高温变粘等缺点,限制了其应用。 近年来随着聚合理论和技术的不断完善和发展,以及人们对环境友好的绿色化工产品的呼声愈来愈高,丙烯酸酯乳液的改性受到了广泛的重视。一般来说,从两个方面对丙烯酸酯乳液进行改性:一是引入一些功能性单体对丙烯酸酯乳液进行改性,得到高性能的共聚乳液;二是采用新的乳液聚合方法如核壳乳液聚合和互穿网络聚合技术以及微乳液共聚技术来改善丙烯酸酯乳液的性能,在研究过程中通常是这两个方面的相互结合,共同提高丙烯酸酯乳液的性能。本文主要探讨有机硅、有机氟、聚氨酯等对丙烯酸酯乳液性能的改性及其对乳液性能的影响。 1、有机硅改性的丙烯酸酯乳液 1.1 改性原理 有机硅对丙烯酸酯乳液的改性是指将有机硅化学和丙烯酸酯乳液聚合技术结合起来,用来制备高性能的硅丙乳液。丙烯酸酯聚合物具有优良的成膜性、粘接性、保光性、耐候性、耐腐蚀性和柔韧性。但其本身是热塑性的,线性分子上又缺少交联点,难以形成三维网状交联胶膜,因此其耐水性、耐沾污性差,低温

丙烯酸酯乳液检测方法

乳液性能检测方法 (1)固含量的测定 (2)粘度的测定 (3)PH的测定 (4)筛余物的测定 (5)粒径的测定 (6 )残余单体的测定 (7)最低成膜温度的测定 (8)玻璃化温度的测定 (9)机械稳定性的测定 (10)冻融稳定性的测定 (11)储存稳定性的测定 (12)钙离子稳定性的测定 (13)稀释稳定性的测定 (14)耐水白的测定 (1)固体含量的测定: a) 按GB/T-20263-2006规定:取直径75mm左右的玻璃皿或马口铁洁净小皿称其重量为m o。称1g左右样品于皿内(样品尽量在容器内分散开),并称重质量为m1。将装有样品的小皿置于 150±2C的烘箱中15min烘干。然后,将小皿置干燥器中冷却至室温,再称重量为m2。(所有质量精确到0.001g) 固含=(m2- m o) / (m1- m o)x 100% 平行测定三次,取平均值。 b) 或者按GB/T11175-2002 规定: 用容器称取约1g试样,准确至0.001g .并使之流平,对于高粘度样品,最好用水或溶剂进行稀释。将其置于恒温105C士2C的电烘箱中部,经干燥60min 土5min 后取出,放入干燥器内冷却至

室温后称量。 2)粘度的测定: 用容器取约500 mL 试样,注意勿混入气泡,将容器置于恒温水槽中,使试样液面低于水面。用玻璃棒加以搅拌,使试样各部分的温度达到试验要求的温度。测量温度的选择要依据配方来定,配方上的指标要求多少度就在多少度下测量。一般先用热水或冷水将待测物调到制定的温度范围再进行测量。 安装防护装置和转子,按照转速和转子的组合,选择转子使测定粘度时指针正好能指在指示刻度盘20 写-100%范围内。实验室一般采用固定转速为60rpm 的方法测定。一般1#转 子的测量范围为1-100cps;2#转子的测量范围为:500cps;3#转子测量范围为:1-2000cps; 4#转子测量范围为:1-10000cps。根据不同的粘度选择不同的转子。 旋转升降手柄,使粘度计平缓地下降,勿使转子粘上气泡,并使液面达到转子液位标线。用水平调节螺丝将粘度计调节至水平位置后,确认转子置于试样容器的中心位置,设定转子、转速,开始测量。 报数据要注明所用转子号,所用转速和测定时的温度。例如:25000 cps (4#/60rpm/30C)。 3)PH 值的测定: 一般测量,精密试纸即可。用玻璃棒沾取少量乳液于精密试纸之上,刮去表层多余的乳 液,一般要求半分钟内不变色,与标准比色卡对比观察颜色变化,读取pH 值。 精密测量,可用以缓冲溶液标定的玻璃甘汞电极pH 计测定。先用标准液校准pH 计, 用蒸馏水洗净后置于乳液(23 ± 2C)中待稳定后读数。平行测定三次,取平均值。 乳液中表面活性剂可能对测定结果有所干扰。

聚氨酯丙烯酸酯的合成及应用

聚 氨 酯 丙 烯 酸 酯 的 合 成 及 应 用 姓名:樊荣 学号:2009296015 专业:化学 化学化工学院

聚氨酯丙烯酸酯的合成及应用 樊荣 2009296014 化学 (山西大学化学化工学院山西太原030006) 摘要:聚氨酯丙烯酸酯(PUA)体系综合了聚氨酯树脂和丙烯酸酯树脂各自的优点,使得该体系具有耐溶剂性,耐低温性,耐磨性,耐热冲击性,柔韧性和良好的粘结性,成为目前研究比较活跃的体系。本文就对近年来聚氨酯丙烯酸酯的一些合成方法、性能研究及在各个领域中的应用景做一个简单的综述。 关键字:聚氨酯丙烯酸酯合成性能应用前景 Synthesis of polyurethane acrylate and its application Fan rong 2009296014 chemical (Chemistry and Chemical Engineering of Shanxi University, Taiyuan, Shanxi 030006) Abstract: polyurethane acrylate (PUA) system integrated polyurethane resin and acrylic resin and their respective advantages, so that the system is solvent resistance, low temperature resistance, wear resistance, thermal shock resistance, flexibility and good adhesion, becomes the present study comparing active system. The article in recent years polyurethane acrylate some synthetic methods, properties and applications in various fields of king to do a simple review. Keywords: acrylate polyurethane ,synthesis ,properties , potential applications 前言 聚氨酯丙烯酸酯(PUA)的分子中含有丙烯酸官能团和氨基甲酸酯键,固化后的胶黏剂具有聚氨酯的高耐磨性、粘附力、柔韧性、高剥离强度和优良的耐低温性能以及聚丙烯酸酯卓越的光学性能和耐候性,是一种综合性能优良的辐射固化材料。该体系涂料已经广泛应用于金属、木材、塑料涂层,油墨印刷,织物印花,光纤涂层等方面.目前,PUA已成为防水涂料领域应用非常重要的一大类低聚物,鉴于PUA固化速度较慢、价格相对较高,在常规涂料配方中较少以PUA为主体低聚物,往往作为辅助性功能树脂使用,大多数情况下,配方中使用PUA主要是为了增加涂层的柔韧性、降低应力收缩、改善附着力。但是由于PUA树脂优异的性能,对PUA的研究也日益增多,聚氨酯丙烯酸酯也逐步向跟其他类型的树脂共聚形成杂化体系,向水性体系发展,特别是水性体系因直接采用水稀释降低粘度,使制成的涂料更加环保和健康,减少了活性单体的使用,在很大程度上弥补了PUA树脂价格贵的不足,可以扩大PUA树脂的应用范围,同时减少甚至不使用单体,有效地降低了防水涂料的收缩,减少固化时的内应力,增加涂料的附着力和提高涂膜的柔韧。

水性聚氨酯的合成与改性_闫福安

CHINA COATINGS 2008年第23卷第7期 15 0 引 言 聚氨酯是综合性能优秀的合成树脂之一。由于其合成单体品种多、反应条件温和、专一、可控,配方调整余地大及其高分子材料的微观结构特点,可广泛用于涂料、黏合剂、泡沫塑料、合成纤维以及弹性体,已成为人们衣、食、住、行必不可少的材料之一,其本身就已经形成了一个多品种、多系列的材料家族,形成了完整的聚氨酯工业体系,这是其它树脂所不具备的。 据有关报道,在全球聚氨酯产品的消耗总量中,北美洲和欧洲占到70%左右。美国人均年消耗聚氨酯材料约5.5 kg,西欧约4.5 kg,而我国的消费水平 还很低,年人均不足0.5 kg。 溶剂型的聚氨酯涂料品种众多、用途广泛,在涂料产品中占有非常重要的地位。水性聚氨酯的研究始自20世纪50年代,60、70年代,对水性聚氨酯的研究、开发迅速发展,70年代开始工业化生产用作皮革涂饰剂的水性聚氨酯。进入90年代,随着人们环保意识以及环保法规的加强,环境友好的水性聚氨酯的研究、开发日益受到重视,其应用已由皮革涂饰剂不断扩展到涂料、黏合剂等领域,正在逐步占领溶剂型聚氨酯的市场。在水性树脂中,水性聚氨酯仍然是优秀树脂的代表,是现代水性树脂研究的热点之一。 水性聚氨酯的合成与改性 □ 闫福安,陈 俊 (武汉工程大学化工与制药学院,武汉 430073) 摘要:对水性聚氨酯的合成单体、合成原理、合成工艺及改性方法作了介绍。水性聚氨酯合成技术不断完善,市场正在推进,国内相关企业和研究机构应加强合作,从分子设计出发,不断推进水性聚氨酯产业的技术进步和市场推广。 关键词:水性聚氨酯;合成;改性 中图分类号:TQ630 文献标识码:A 文章编号:1006-2556(2008)07-0015-08 Synthesis and modifi cation of water-borne PU Yan fuan, Chen jun (School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, Hubei Province) Abstract: This paper introduces water-borne PU about its monomers, synthesis mechanism, and synthesis technology and modifi cation methods. Relevant enterprises and research institutes China should strengthen the work cooperatively on molecule design, to promote the continuously progressing synthesis technology and the growing market of water-borne PU. Keywords: water-borne PU, synthesis, modifi cation 编者按:本文搜集了相关的情报资料,比较全面地阐述水性聚氨酯的合成技术。相应地,嘉宝莉朱延安、中国科技大章鹏进行了这方面的研发和实验实践。相比之下,为改善PUD分散体涂膜力学性能,选用聚碳酸酯型方向是可行的,但在水性木器涂料中的应用,应综合考虑制造成本、涂料使用范围、对涂膜光泽大小不同要求等方面因素;软段多元醇的选用不可能单一型,可以选用混合型,如PCD与PCL混合,或PCD与聚醚型混合,否则单用PCD,因价格太贵或存在功能过剩,影响水性聚氨酯涂料的推广应用与市场定位。 TECHNICAL PROGRESS DOI:10.13531/https://www.sodocs.net/doc/2b12174414.html,ki.china.coatings.2008.07.007

丙烯酸酯乳液检测方法

乳液性能检测方法 (1)固含量的测定 (2)粘度的测定 (3)PH的测定 (4)筛余物的测定 (5)粒径的测定 (6)残余单体的测定 (7)最低成膜温度的测定 (8)玻璃化温度的测定 (9)机械稳定性的测定 (10)冻融稳定性的测定 (11)储存稳定性的测定 (12)钙离子稳定性的测定 (13)稀释稳定性的测定 (14)耐水白的测定 (1)固体含量的测定: a)按GB/T-20263-2006规定:取直径75mm左右的玻璃皿或马口铁洁净小皿称其重量为m0。称1g左右样品于皿(样品尽量在容器分散开),并称重质量为m1。将装有样品的小皿置于150±2℃的烘箱中15min烘干。然后,将小皿置干燥器中冷却至室温,再称重量为m2。(所有质量精确到0.001g) 固含= (m2- m0)/(m1- m0)×100% 平行测定三次,取平均值。 b)或者按GB/T11175-2002规定: 用容器称取约1g试样,准确至0.001g .并使之流平,对于高粘度样品,最好用水或溶剂进行稀释。将其置于恒温105℃士2℃的电烘箱中部,经干燥60min±5min 后取出,放入干燥器冷却至室温后称量。

(2)粘度的测定: 用容器取约 500 mL试样,注意勿混入气泡,将容器置于恒温水槽中,使试样液面低于水面。用玻璃棒加以搅拌,使试样各部分的温度达到试验要求的温度。测量温度的选择要依据配方来定,配方上的指标要求多少度就在多少度下测量。一般先用热水或冷水将待测物调到制定的温度围再进行测量。 安装防护装置和转子,按照转速和转子的组合,选择转子使测定粘度时指针正好能指在指示刻度盘20写-100%围。实验室一般采用固定转速为60rpm的方法测定。一般1#转子的测量围为1-100cps;2#转子的测量围为:500cps;3#转子测量围为:1-2000cps;4#转子测量围为:1-10000cps。根据不同的粘度选择不同的转子。 旋转升降手柄,使粘度计平缓地下降,勿使转子粘上气泡,并使液面达到转子液位标线。 用水平调节螺丝将粘度计调节至水平位置后,确认转子置于试样容器的中心位置,设定转子、转速,开始测量。 报数据要注明所用转子号,所用转速和测定时的温度。例如:25000 cps(4#/60rpm/30C)。(3)PH值的测定: 一般测量,精密试纸即可。用玻璃棒沾取少量乳液于精密试纸之上,刮去表层多余的乳液,一般要求半分钟不变色,与标准比色卡对比观察颜色变化,读取pH值。 精密测量,可用以缓冲溶液标定的玻璃甘汞电极pH计测定。先用标准液校准pH计,用蒸馏水洗净后置于乳液(23±2℃)中待稳定后读数。平行测定三次,取平均值。 乳液中表面活性剂可能对测定结果有所干扰。 (4)筛余物的测定: (无国标) 将100g左右的过滤后的产品取样称重为m1(精确到0.1g),经过配方规定目数的滤袋过滤,将残渣烘干,降至常温称重,为m2(精确到0.001g)

水性聚氨酯的制备

水性聚氨酯的制备 1、原料 聚醚二元醇(PPG,分子量为2000和1000),2,4-甲苯二异氰酸酯(TDI),二羟甲基丙酸,丙酮(工业品),2-甲基-2-氨基-7-丙醇。 2、合成 制备水性聚氨酯的主要方法有:丙酮法、预聚体直接分散法、熔融分散法、酮距胺法和酮丫嗪法等按照水性化方法不同,水性聚氨酯的制备又可以分为内乳化法和外乳化法。内乳化法,又称自乳化法,是因聚氨酯链段中含有亲水性成分,无需乳化剂即可得到稳定的乳液的方法。外乳化法,又称强制乳化法,若分了链中仅含少量或者不含亲水性链段或基团必须添加乳化剂,凭借外力进行乳化。 1)丙酮法 亲水的异氰酸酯预聚物和扩链剂的扩链反应在溶剂丙酮中进行,故称之为丙酮法。由于聚合物的合成反应在均相的溶液中进行,故再现性很好。水性聚氨酯树脂合成好以后,再加水乳化,最后减压抽出丙酮溶剂就可得到粒径较小的聚氨酯分敞体。这种方法是经典的方法,浚方法的优点是试验重现性好,得到的聚氨酯水分散体粒径小,稳定性好;但该方法也有缺点,那就是试验过程中丙酮的大量使用,而且还得将丙酮减压抽出,制备工艺复杂,生产成本较大。 2)预聚体直接分散法 该方法是合成聚氨酯分散体的一个普通方法。先制得亲水性的预聚体,当然预聚体含有游离的异氰酸酯基团,然后将预聚体和水混合,扩链反应是预聚体和扩链剂在水中进行。本人在这种方法基础上对此方法进行了改进,得到了一种方法把它罩尔之为边扩链边分散法,运用这种方法成功合成了长期稳定的水性聚氨酯分散体,而且在合成过程中不使用溶剂,简化了制备工艺,节约了合成成本。 3)熔融分散法 将聚酯或聚醚二醇、叔胺和异氰酸酯在熔融状态下制备预聚体,用过量尿素终止生成亲水性的双缩二脲离聚物,在将其在甲醛水溶液中分散,使发生羟甲基阳离子型水性聚氨酯发生反应。 4)外乳化法 外乳化法是最早使用的制备水性聚氯酯的方法,它是1953年美国Du Pont公司的、V Yandott发明。选取制成适当分子量的聚氨酯预聚体或其溶液,然后加入乳化剂,在强烈搅拌下强制性地将其分散于水中,制成聚氨酯乳液或分散体。外乳化法工艺简单,但存在以下缺点: a.在分散阶段需要强力搅拌设备,搅拌工艺对分散液性能影响很大; b.制得的分散液粒径较大,一般大于1.0mm,粒径分布宽,储存稳定性差; c.乳化剂的存在影响成膜后胶膜的耐水性、强韧性和粘结性等力学性能。 5)自乳化法 聚氨酯的自乳化过程实际上是一个相反转过程,在乳化过程中经历了一个从w/o 到o/w的转变过程,随着乳化的进行,聚集念结构也会发生相应变化,并且体现出物化性质(如粘度和电导率)改变。众所周知,聚氨酯材料内由于软链段和硬链段各自成相生微相分离,若将离子型水性聚氨酯中和成盐,那么它就属于离聚体。对离聚体的聚集态结构,许多人进行了研究,提出了很多模型,包括微离子点阵模型、各相同性模型、两相结构模型等。

丙烯酸酯乳液胶黏剂配方组成,生产工艺及应用

丙烯酸酯乳液胶黏剂配方组成,生产工艺及应用 导读:本文详细介绍了丙烯酸酯乳液胶黏剂的分类,组成,配方等等,需要注意的是,本文中所列出配方表数据经过修改,如需要更详细的内容,请与我们的技术工程师联系。 1. 背景 丙烯酸乳液型胶粘剂是我国20世纪80年代以来发展最快的一种聚合物乳液胶粘剂,它一般是由丙烯酸酯类和甲基丙烯酸酯类共聚或加入醋酸乙烯酯等其它单体共聚而成。该胶粘剂耐候性、耐水性、耐老化性能特别好,并目具有优良的抗氧化性和很大的断裂仲长率,广泛用于包装、涂料、建筑、纺织以及皮革等行业。 随着人们对环境保护的愈发重视,环境友好型产品越来越受到普遍的关注,乳液型胶粘剂因具有无毒无害、无环境污染、不易燃易爆、生产成本低、使用方便等优点而逐渐成为未来胶粘剂的发展趋势。 禾川化学是一家专业从事精细化学品以及高分子分析、研发的公司,具有丰富的分析研发经验,经过多年的技术积累,可以运用尖端的科学仪器、完善的标准图谱库、强大原材料库,彻底解决众多化工企业生产研发过程中遇到的难题,利用其八大服务优势,最终实现企业产品性能改进及新产品研发。 样品分析检测流程:样品确认—物理表征前处理—大型仪器分析—工程师解谱—分析结果验证—后续技术服务。有任何配方技术难题,可即刻联系禾川化学技术团队,我们将为企业提供一站式配方技术解决方案!

2. 丙烯酸乳液胶黏剂 聚丙烯酸酯是一类具有多种性能的、用途广泛的聚合物,其乳液一般是以丙烯酸甲酯、丙烯酸乙酯或丙烯酸丁酯为主要单体,与甲基丙烯酸酯单体、苯乙烯、丙烯腈等共聚形成乳液。对聚合物的结构或聚合方法加以改进,可使得改性后的丙烯酸酯胶黏剂性能更加优异。 2.1有机硅改性 有机硅树脂具有优异的耐高低温性能和耐水性能,利用有机硅对聚丙烯酸酯类乳液胶粘剂改性成为近年来研究的热点。有机功能烷氧基硅烷作为粘合促进剂和交联剂,广泛用于胶粘剂、密封胶和涂料等领域。有专家研究了一种专用于水性体系的有机硅烷Wz-A在水乳型聚丙烯酸密封胶中的应用,这种水性硅烷可以在不改变产品稳定性的情况下显著提高密封胶的力学性能和粘接性能,Wz-A 的添加量在0.8%-1.6%较为合适。专家们通过乳液聚合法,用羟基硅油与硅烷偶联剂A-151和KH-570对丙烯酸酯进行化学改性,借助硅烷偶联剂中的碳碳双键和硅氧烷结构将羟基硅油与丙烯酸酯连接起来,结果发现,通过KH-570改性后的丙烯酸酯乳液胶黏剂在各项性能上都有明显的提升。由八甲基环四硅氧烷与端基为乙烯基的硅烷偶联剂开环聚合,制得了乙烯基改性有机硅乳液。在反应温度为80℃、催化剂为十二烷基苯磺酸、硅烷偶联剂为A-151时候,制得的核-壳乳液中乙烯基改性有机硅乳液单体转化率高、乳液稳定性好。将该乳液作为种子乳液用于聚丙烯酸酯乳液的改性,可以制得一种柔软性好、色牢度佳的涂料印花胶黏剂。 2.2环氧改性

水性聚氨酯的合成

闫福安,陈俊 (武汉工程大学化工与制药学院,武汉430073) 摘要:对水性聚氨酯的合成单体、合成原理、合成工艺及改性方法作了介绍。水性聚氨酯合成技术不断完善,市场正在推进,国内相关企业和研究机构应加强合作,从分子设计出发,不断推进水性聚氨酯产业的技术进步和市场推广。 关键词:水性聚氨酯;合成;改性 0引言 聚氨酯是综合性能优秀的合成树脂之一。由于其合成单体品种多、反应条件温和、专一、可控,配方调整余地大及其高分子材料的微观结构特点,可广泛用于涂料、黏合剂、泡沫塑料、合成纤维以及弹性体,已成为人们衣、食、住、行必不可少的材料之一,其本身就已经形成了一个多品种、多系列的材料家族,形成了完整的聚氨酯工业体系,这是其它树脂所不具备的。据有关报道,在全球聚氨酯产品的消耗总量中,北美洲和欧洲占到70%左右。美国人均年消耗聚氨酯材料约5.5kg,西欧约4.5kg,而我国的消费水平还很低,年人均不足0.5kg。溶剂型的聚氨酯涂料品种众多、用途广泛,在涂料产品中占有非常重要的地位。水性聚氨酯的研究始自20世纪50年代,60、70年代,对水性聚氨酯的研究、开发迅速发展,70年代开始工业化生产用作皮革涂饰剂的水性聚氨酯。进入90年代,随着人们环保意识以及环保法规的加强,环境友好的水性聚氨酯的研究、开发日益受到重视,其应用已由皮革涂饰剂不断扩展到涂料、黏合剂等领域,正在逐步占领溶剂型聚氨酯的市场。在水性树脂中,水性聚氨酯仍然是优秀树脂的代表,是现代水性树脂研究的热点之一。 1水性聚氨酯的合成单体 1.1多异氰酸酯(polyisocynate) 多异氰酸酯可以根据异氰酸酯基与碳原子连接的部位特点,可分为四大类:芳香族多异氰酸酯(如甲苯二异氰酸酯,TDI)、脂肪族多异氰酸酯(六亚甲基二异氰酸酯,HDI)、芳脂族多异氰酸酯(即在芳基和多个异氰酸酯基之间嵌有脂肪烃基-常为多亚甲基,如苯二亚甲基二异氰酸酯,XDI)和脂环族多异氰酸酯(即在环烷烃上带有多个异氰酸酯基,如异佛尔酮二异氰酸酯,IPDI。芳香族多异氰酸酯合成的聚氨酯树脂户外耐候性差,易黄变和粉化,属于“黄变性多异氰酸酯”,但价格低,来源方便,在我国应用广泛,如TDI常用于室内涂层用树脂;脂肪族多异氰酸酯耐候性好,不黄变,其应用不断扩大,欧美发达国家已经成为主流的多异氰酸酯单体;芳脂族和脂环族多异氰酸酯接近脂肪族多异氰酸酯,也属于“不黄变性多异氰酸酯”。水性聚氨酯合成用的多异氰酸酯主要有TDI、IPDI、HDI、TMXDI(四甲基苯二亚甲基二异氰酸酯)。TMXDI可直接用于水性体系,或用于零VOC水性聚氨酯的合成。

不同类型乳化剂对丙烯酸脂乳液

不同类型乳化剂对丙烯酸脂乳液 压敏胶粘剂耐水性能影响的研究 王峰杨玉昆 (中科院化学研究所 100080) 摘要:用两种低分子乳化剂(SDS,钠盐和CO-436,铵盐)和两种可聚合乳化剂(AMPS-Na和AMPS—NH4)分别在最佳条件下制得了四种主体成分相同的丙烯酸酯乳液压敏胶。测试并比较了四种乳液和压敏胶的性能,较系统的研究了不同类型的乳化剂对丙烯酸酯乳液压敏胶耐水性能的影响。 关键词:低分子乳化剂可聚合乳化剂丙烯酸酯乳液压敏胶耐水性能 1 前言: 丙烯酸酯乳液压敏胶因其价廉,无污染,使用方便和安全等特点在我国压敏胶制造工业中有着特殊而重要的地位。目前,我国70%以上的压敏胶制品是丙烯酸酯乳液压敏胶制造的;其年生产和使用量已超过十万吨。[1] 然而,丙烯酸酯乳液压敏胶与相应的溶剂型压敏胶相比还存在着压敏胶性能较差,特别是胶层的耐水性较差和对高湿环境敏感等缺点。这主要是由于胶层中少量乳化剂的存在引起的。[2]用可聚合乳化剂代替普通低分子乳化剂是提高乳液聚合物耐水性能的重要途径。也有人认为用铵盐乳化剂制得压敏胶比用钠盐乳化剂制得的相应压敏胶的耐水性能要好。[3]但还未见到过不同类型的乳化剂对丙烯酸乳液压敏胶耐水性能影响的系统研究报道。 本文采用一种普通的低分子钠盐乳化剂(十二烷基硫酸钠,商称SDS),一种低分子铵盐乳化剂(硫酸—(—2—对壬基酚氧—)—乙酯铵盐,Rhodapex CO—436)以及两种可聚合乳化剂(2—丙烯酰胺基—2—甲基—丙基硫酸钠盐,AMPS—NA和2—丙烯酰胺基—2—甲基—丙基硫酸铵盐AMPS—NH4)分别在最佳的实验条件下制得了四种主体成分相同的丙烯酸酯乳液压敏胶,分别标记为EPS—1,EPS—2,EPS—3,EPS—4。四种乳化剂的分子式如下:

水性聚氨酯的制备及改性方法

聚氨基甲酸酯(polyurethane),简称聚氨酯(PU),是分子结构中含有重复氨基甲酸酯(-NHCOO-)结构的高分子材料的总称。聚氨酯一般由二异氰酸酯和二元醇或多元醇为基本原料经加聚反应而成,根据原料的官能团数不同,可制成线形或体形结构的聚合物,其性能也有差异。聚氨酯具有良好的力学性能、粘结性能及耐磨性等,在各领域得到了广发应用。 由于溶剂型聚氨酯的溶剂为有机物,具有挥发性,不仅污染环境,而且对人体有害。在人们日益重视环境保护的今天以及环保法规的确立,溶剂型涂料中的有机化合物的排放量受到了严格的控制,因此,开发污染小的水性涂料已成为研究的主要方向。水性聚氨酯(WPU)具有优异的物理机械性能,其不含或含有少量可挥发性有机物,生产施工安全,对环境及人体基本无害,符合环保要求。其生产方法分为外乳化法和内乳化法,外乳化法又称强制乳化法,由使用这种方法得到的乳液稳定性较差,所以使用较少。目前使用较多的是内乳化法,也称自乳化法,即在聚氨酯分子链上引入一些亲水性基团,使聚氨酯分子具有一定的亲水性,然后在高速分散下,凭借这些亲水基团使其自发地分散于水中,从而得到WPU。 然而,亲水基团的引入在提高聚氨酯亲水性的同时却降低了它的耐水性和拒油性。为了改善其耐水性和拒油性,通常是将强疏水性链段引入聚氨酯结构之中。有机硅、有机氟由于其表面能低和热稳定性好受到人们的重视,已经得到了广泛应用。同时利用纳米材料来提高涂膜的光学、热学和力学性能。纳米改性WPU 完美地结合了无机物的刚性、尺寸稳定性、热稳定性及WPU的韧性、易加工性,纳米改性WPU为涂料向高性能化和多功能化提供了崭新的手段和途径,是最有前途的现代涂料研究品种之一。[1] 1.2 水性聚氨酯的基本特征及发展历史 1937年德国的Otto Bayer博士首次将异氰酸酯用于聚氨酯的合成。直到1943年德国科学家Schlack在乳化剂或保护胶体存在的情况下,将二异氰酸酯在水中乳化并在强烈搅拌下加入二胺,首次成功制备了水性聚氨酯。1975年研究者们向聚氨酯分子链中引入亲水成分,从而提高了水性聚氨酯的乳液稳定性和涂膜性能,其应用领域也随之拓广。进入21世纪以来,随着水性聚氨酯乳液应用范围的进一步拓宽,世界范围内日益高涨的环保要求,进一步加快了水性聚氨酯工业发展的步伐。[2] 相对于国外,国内的水性聚氨酯发展较晚。我国水性聚氨酯的研究开始于上世纪七十年代,1976年沈阳皮革研究所最早研制出用于皮革涂饰用的水性聚氨

丙烯酸树脂的合成及其应用

丙烯酸树脂的合成及应用 以丙烯酸酯、甲基丙烯酸酯以及苯乙烯(St)等乙烯基单体为主要原料合成的共聚物称为丙烯酸酯树脂(简称AR)。该类树脂具有色浅、保色、保光、耐候、耐腐蚀和耐污染等特点,已广泛应用于汽车、飞机、机械电子、家具、建筑、皮革、木材、造纸、印染、工业塑料及日用品涂饰等领域。其主要类型有溶剂型AR、水性AR、高固体组分AR和粉末型AR等。 通过选用不同的树脂结构、不同的配方、生产工艺及溶剂组成,可合成不同类型、不同性能和不同应用领域的丙烯酸树脂,丙烯酸树脂根据结构和成膜机理的差异又可分为热塑性丙烯酸树脂和热固性丙烯酸树脂。热塑性丙烯酸树脂在成膜过程中不发生进一步交联,因此它的相对分子量较大,具有良好的保光保色性、耐水耐化学性、干燥快、施工方便,易于施工重涂和返工,制备铝粉漆时铝粉的白度、定位性好。热塑性丙烯酸树脂在汽车、电器、机械、建筑等领域应用广泛。热固性丙烯酸树脂是指在树脂结构中带有一定的官能团,在制漆时通过加入的氨基树脂、环氧树脂、聚氨酯等树脂中的官能团反应形成网状结构,热固性树脂一般相对分子量较低。热固性丙烯酸涂料有优异的丰满度、光泽、硬度、耐溶剂性、耐侯性、在高温烘烤时不变色、不返黄。最重要的应用是和氨基树脂配合制成氨基-丙烯酸烤漆,目前在汽车、摩托车、自行车、卷钢等产品上应用十分广泛。1.水溶性丙烯酸树脂 随着人类对环境及健康的日益重视,水性涂料已获得了愈来愈广泛的应用。国内工业涂料的水性化水平和工业发达国家相比存在着很大差距。水性涂料面临的主要难题是在成本可接受的前提下如何提高产品的性能,使之达到与溶剂型漆相同或接近的水平,并进一步降低VOCs的排放量。水性涂料代表着低污染涂料发展的主要方向。为了不断改善其性能,扩大其应用范围,近半个世纪以来国内外对水性涂料进行了大量的研究。 水性丙烯酸酯树脂涂料在近几十年内得以迅速发展,除了它具有水性涂料的优缺点外,还与丙烯酸酯单体的结构有密切的关系。丙烯酸酯类单体中具有的碳碳不饱和双键经聚合反应生成丙烯酸树脂,该树脂的主链为碳-碳链,有很高的光、热和化学稳定性。因此由丙烯酸酯树脂制备的涂料具有很好的耐候性、耐污

丙烯酸酯的乳液合成方法

丙烯酸酯的乳液合成 一、实验目的 1.了解和掌握苯丙乳液合成的基本方法和工艺路线; 2.理解乳液聚合中各组成成分的作用和乳液聚合的机理; 二、实验原理 在乳液聚合过程中,乳液的稳定性会发生变化。乳化剂的种类、用量与用法、pH值、引发剂的类型、搅拌形状与搅拌速度、加料方式、聚合工艺等都会影响到聚合物乳液的稳定性。功能性单体如硅烷偶联剂、丙烯酸、丙烯酰胺、丙烯酸羟乙酯等作为交联单体参与共聚,在一定程度上可提高乳液的稳定性,但因其具有极强的亲水性,聚合过程中若在水相发生均聚形成水溶性大分子,会产生絮凝作用,极易破乳。因此选择合适的乳化体系和聚合工艺对乳液聚合过程的稳定性具有极重要的意义。 聚合物乳液承受外界因素对其破坏的能力称为聚合物乳液的稳定性。在乳液聚合过程中局部胶体稳定性的丧失会引起乳胶粒的聚结形成宏观或微观的凝聚物,即凝胶现象。凝胶多为大小不等、形态不一的块状聚合物,有的发软、发粘,有的发硬、发脆、多孔。在搅拌作用下凝胶分散在乳液中,可通过过滤法或沉降法除去,但有时也会形成大量肉眼看不到的、普通方法很难分离的微观凝胶,使乳液蓝光减弱颜色发白,外观粗糙。严重时甚至整个体系完全凝聚,造成抱轴、粘釜和挂胶现象。凝聚物的生成在乳液研究和生产中具有极大的危害性,它不仅降低单体的有效利用率,增加聚合装置的停机时间和处理的费用,而且还会加大各釜和各批次间产品性能的不一致性,污染环境。 目前比较权威的用于解释聚合物乳液稳定性的理论是双电层理论和空间位阻理论。乳胶粒子的表面性质与吸附或结合在其上的起稳定作用的物质有关,酸性、碱性离子末端以及吸附在乳胶粒表面上的乳化剂在一定的pH值下都是以离子形式存在的,使乳胶粒子表面带上一层电荷,从而在乳胶粒子之间就存在静电斥力,乳胶粒难于互相接近而不发生聚结。当乳胶粒表面吸附有非离子型乳化剂或高分子保护胶体时,其稳定性则与空间位阻有关。 乳化剂的选择是决定乳液聚合体系稳定性的关键因素之一。乳化剂虽不直接参与反应,但乳化剂的种类及用量将直接影响到引发速率、链增长速率以及聚合物的分子量和分子量分布。此外乳化剂的类型、用量和加入方式对乳胶粒的粒径和粒径分布、乳液粒度也有着决定性的影响。如果所选用的乳化剂不适合本乳液聚合体系,则不论怎样改变乳化剂的浓度和调节聚合工艺参数,乳液聚合仍不能平稳进行或是所得到的乳液产品缺乏实用价值。离子型乳化剂的特点是乳化效率高,可有效地降低表面张力,胶束和乳胶粒子尺寸小,机械稳定性好,但由于其离子特性对电解质比较敏感;非离子型乳化剂对电解质有较好的稳定性,但机械稳定性不好,对搅拌速度比较敏感。离子型乳化剂主要靠静电斥力使乳液稳定,而非离子型乳化剂主要靠水化,两种乳化剂复合使用时,两类乳化剂分子交替吸附在乳胶粒子表面上,既使乳胶粒间有很大的静电斥力,又在乳胶粒表面形成很厚的水化层,二者双重作用的结果可使聚合物乳液稳定性大大提高。目前乳液聚合体系多采用阴离子型与非离子型复配乳化体系,所得乳液兼有粒子尺寸小、低泡和稳定性好的特点。 引发剂对整个聚合过程起差重要的作用,不同的引发剂制得的聚合物具有不同的分子结构及性能。乳液聚合引发剂分为两类:受热分解产生自由基的引发剂(如过硫酸铵APS、过硫酸钾KPS、过硫酸钠NPS、过氧化氢等无机过氧化物);有机过氧化物和还原剂组合可构成另一类引发剂。丙烯酸酯类共聚物乳液聚合体系中的引发剂多为水性的过硫酸盐,常用的有APS、KPS及NPS等。较适宜的引发剂量为单体总量的0.2%~0.8%,当引发剂用量为0.2%~0.4%时,制备的丙烯酸酯类共聚物乳液呈蓝相、乳液粒子的粒度小,并且稳定性好。

水性聚氨酯合成、改性及应用前景

水性聚氨酯合成、改性及应用前景 摘要:随着水性聚氨酯合成与改性工艺的不断进步,水性聚氨酯的应用也得到了极大地提升,反过来由于水性聚氨酯涂料的优异性能以及其极好的应用前景近些年来有关于水性聚氨酯的合成与改性研究也是如火如荼。本文主要介绍了水性聚氨酯涂料的合成方法,综述了水性聚氨酯的改性方法,包括丙烯酸酯改性、环氧树脂改性、有机硅改性、纳米材料改性和复合改性,并对水性聚氨酯涂料的发展进行了展望。 关键字:水性聚氨酯;合成;改性;丙烯酸酯;有机硅。 水性聚氨酯是以水代替有机溶剂作为分散介质的新型聚氨酯体系,也称水分散聚氨酯、水系聚氨酯或水基聚氨酯。水性聚氨酯以水为溶剂,无污染、安全可靠、机械性能优良、相容性好、易于改性等优点。水性聚氨酯可广泛应用于涂料、胶粘剂、织物涂层与整理剂、皮革涂饰剂、纸张表面处理剂和纤维表面处理剂。水性聚氨酯虽然具有很多优良的性能,但是仍然有许多不足之处。如耐水性差、耐溶剂性不良、硬度低、表面光泽差等缺点,由于水性聚氨酯的这些缺点,我们需要对其进行改性,目前常见的改性方法有丙烯酸酯改性、环氧树脂改性、有机硅改性、纳米材料改性和复合改性等,本文将对水性聚氨酯的合成与改性进行阐述。 一、水性聚氨酯的合成 水性聚氨酯的制备可采用外乳化法和自乳化法。目前水性聚氨酯的制备和研究主要以自乳化法为主。自乳化型水性聚氨酯的常规合成工艺包括溶剂法(丙酮法)、预聚体法、熔融分散法、酮亚胺等。丙酮法是先制得含端基的高粘度预聚体,加入丙酮、丁酮或四氢呋喃等低沸点、与水互溶、易于回收的溶剂,以降低粘度,增加分散性,同时充当油性基和水性基的媒介。反应过程可根据情况来确定加入溶剂的量,然后用亲水单体进行扩链,在高速搅拌下加入水中,通过强力剪切作用使之分散于水中,乳化后减压蒸馏回收溶剂,即可制得PU 水分散体系。

相关主题