搜档网
当前位置:搜档网 › 常用发酵原料的碳氮比

常用发酵原料的碳氮比

常用发酵原料的碳氮比
常用发酵原料的碳氮比

常用发酵原料的碳氮比

成分碳(%)氮(%)碳:氮

干稻草 42.0 0.63 67:1

干麦草 46.0 0.53 87:1

玉米秸 40.0 0.75 53:1树叶 41.0 1.00 41:1大豆茎 41.0 1.30 32:1

野草 14.0 0.54 26:1花生茎叶 11.0 0.59 19:1

鲜牛粪 7.3 0.29 25:1鲜马粪 10.0 0.42 24:1鲜猪粪 7.8 0.60 13:1鲜人粪 2.5 0.85 2.9:1鲜羊粪 16.0 0.55 29:1

酒精槽液 0.87 0.08 10.9:1

固体酒槽 40.04 2.49 16:1

造纸黑液 1.8 0.02 90:1

豆制品废水 0.85 0.07 12:1

杂木屑49.18 0.10 491.8

栎木屑50.4 1.10 45.8

稻草42.3 0.72 58.7

麦秸46.5 0.48 96.9

玉米粒46.7 0.48 97.3

玉米芯42.3 0.48 88.1

豆秸49.8 2.44 20.4

野草46.7 1.55 30.1

甘蔗渣53.1 0.63 84.2

棉籽壳56 2.03 27.6

麦麸44.7 2.2 20.3

米糠41.2 2.08 19.8

啤酒槽47.7 6 8

豆饼45.4 6.71 6.76

花生饼49 6.32 7.76

菜籽饼45.2 4.6 9.8

马粪12.2 0.58 21.1

黄牛粪38.6 1.78 21.7

奶牛粪31.8 1.33 24

猪粪25 2 12.6

鸡粪30 3 10

发酵原料的选择

湘祁牌微生物饲料发酵剂——发酵饲料首选品牌 发酵原料的选择https://www.sodocs.net/doc/2b14636489.html,/ 发酵饲料时应选择将一些需要蒸煮的(豆渣、潲水、木薯渣、甘薯等)有轻微霉变,不能直接作饲料使用的(严重霉变的不能制作发酵饲料)粗纤维含量高,饲料本身营养可消化吸收率极低的(米糠、统糠、玉米秸秆、花生秆、黄豆秆等)饲料原料含有毒素成份,不宜直接作饲料使用的(菜饼、棉粕、芝麻饼等)抗营养因子含量较高易引起小猪营养性腹泻的(豆粕、花生饼、血粉等)上述原料经过发酵不仅可达到免蒸煮省燃料,降解脱除饲料中的抗营养因子及毒素成份,大幅度提高饲料营养的可消化吸收率,还能生成一些只用经过发酵才能生成的特殊营养成份,如微生物菌体蛋白、生物酶、有机酸、生物多肽、B族维生素及未知生长因子等特殊营养促长和保健成份,采用发酵饲料喂养畜禽,可充分利用各类粗廉副质资源,降低养殖成本,增加养殖经济效益。 各类干物质饲料发酵操作方法https://www.sodocs.net/doc/2b14636489.html,/ 1. 发酵剂母料配制:玉米粉5斤、生态宝1包、食盐0.5公斤、磷酸氢钙2公斤(没 有可用石粉代替,也可不添加)将各种原料按量混拌均匀备用。注:1.2.后述所用干、湿饲料发酵量均以此母料发酵剂量设计 2.发酵饲料主料配方: 1) 米糠150公斤、菜饼(花生饼)25公斤 2) 统糠80公斤、油糠70公斤、杂饼25公斤 3) 玉米秸秆150公斤、杂饼30公斤 4) 黄豆秆、叶160公斤、杂饼20公斤 5) 花生秆、叶160公斤、杂饼20公斤 6) 干啤酒渣150公斤、麦麸30公斤 7) 米糠150公斤、杂饼30公斤 配料说明:https://www.sodocs.net/doc/2b14636489.html,/ 1)各类秸秆应晒干粉碎,长期雨淋霉变的原料不可采用。 2)杂粕指菜饼、棉粕、花生饼、芝麻饼、葵籽饼等含蛋白量较高的非常规蛋白饲料原料,可任选一种,也可二至三种杂饼混合按量配料,如没有杂粕可改用等量的豆粕。 3}各类粗料之所以都有一定量的杂粕配量,是因为考虑发酵饲料的能量与蛋白营养的平衡。4)按配方配制的发酵料,在投喂时,只需在干粉料补充相应量的预混料即可作全价的饲料使用。 1.发酵操作方法:https://www.sodocs.net/doc/2b14636489.html,/ 先将发酵主料倒在水泥地板上摊平,然后散入拌匀的发酵剂添加料,用拌料铲翻拌使主料与添加聊混拌均匀,随即加入130—140公斤水,边加水边翻拌,待料水充分搅拌均匀即可装入大塑料桶中(缸、池均可)装料时应逐层轻压实(不要压得太紧),料装至容器边沿抹平稍压紧用薄膜覆盖(选用无破损的厚膜,膜的长宽应超过容器边沿15公分),外用橡皮筋扎紧密封发酵2-5天后即可配料饲喂。 发酵饲料在养猪中的应用:发酵饲料宜喂15公斤以上的肉猪及20月龄后的家禽

原材料碳氮比

碳氮比是指食用菌原料配制时碳元素与氮元素的总量之比。一般用“C/N表示。如蘑菇培养料的碳氮比为30 — 33 : 1,香菇培养料的碳氮比为 64 : 1。现将食用菌培养料的一些主要原料的碳氮比列于下表,以供参考: 常用培养料碳氮比例表(干) 碳(%)氮(% )碳: 成分比培养 料 491.8 杂木屑49.18 0.10 栋木屑50.4 45.8 1.10 稻草42.3 0.72 58.7 麦秸46.5 0.48 96.9 玉米粒46.7 0.48 97.3 玉米芯42.3 0.48 88.1 豆秸49.8 2.44 20.4 野草46.7 1.55 30.1 甘蔗渣53.1 0.63 84.2 棉籽壳56 2.03 27.6 20.3 麦麸44.7 2.2 米糠41.2 2.08 19.8 啤酒槽47.7 6 8 豆饼45.4 6.71 6.76 花生饼49 6.32 7.76 菜籽饼45.2 4.6 9.8 马粪12.2 0.58 21.1 黄牛粪38.6 1.78 21.7 奶牛粪31.8 1.33 24 猪粪25 2 12.6 鸡粪30 3 10 含碳量含氮量碳氮比原料中的配比 木屑49 0.12 400 35 玉米芯42.3 0.48 88 30

原材料的碳氮比 现将有关技术介绍如下。一、主要栽培原料的选择玉米芯要求是干燥新鲜、无霉变,粉碎成玉米粒大小的颗粒,废棉从纺织工业购置干净、无雨淋霉变的工业下脚料废棉。二、栽培料的配比据资料,玉米芯的碳氮比为100 : 1左右,而适合平菇生长的碳氮比约为60 : 1,这就需要加人工业废棉和尿素来提高栽培料的含氮量。栽培料的最佳配比为:玉米芯(粉 碎成玉米粒大小)1 000 千克、工业废棉100千克、尿素3 . 5千克、磷酸二氢钾1千克、生石灰50千克、50 %的多菌灵0 . 1 %、石膏1 %。三、栽培料的配制和堆积发酵将以上配比的玉米芯和工业废棉拌均匀,再将尿素、磷酸二氢钾、多菌灵、石膏溶于水中后均匀洒 到栽培料中,最后用石灰水将栽培料拌湿。注意废棉不易吸水,加水时要踩踏使其充分吸水,栽培料总加水量为 65 %一 70 %,栽培料含水量以用手紧握栽培料指缝间有水珠渗出但不滴下为最佳。拌好的栽培料要堆积发酵,料堆高1米,一般堆积24小时后栽培料就会升温 ~1]60 — 70~C。 树木是多年生植物,它所摄取的营养成分和微量元素很丰富。锯末经过发酵处理完全可以 做畜、禽饲料。

如何计算食用菌培养料的碳氮比

如何计算食用菌培养料的碳氮比 碳氮比(C/N)是指食用菌培养料中碳源和氮源适当浓度的比值。一般在食用菌营养生长阶段碳氮比以20∶1为宜;子实体生长

发育期碳氮比以30~40∶1为佳。食用菌的种类及培养材料不同,对碳氮比的要求也不同。如蘑菇在菌丝生长阶段堆制原料时的碳氮比为33∶1,子实体分化和发育期的最适碳氮比为17∶1。若碳氮比值过大,食用菌不出菇,或虽能出菇,却往往在成熟前停止发育。因此,碳氮比对食用菌生长发育十分重要。仍以蘑菇堆料为例,配制碳氮比为33∶1的培养料1 000公斤(其中稻草400公斤、干牛粪600公斤),需补充氮量即补充尿素或硫酸铵多少公斤? 速算公式:需补充氮量=(主材料总碳量÷碳氮比-主材料总氮量)÷补充物质含氮量 经查得(已知):稻草含碳量45.58%、含氮量0.63%,干牛粪含碳量39.75%、含氮量1.27%,尿素含氮量46%,硫酸铵含氮量21%。 速算方法: (1)设需补充尿素x公斤,用速算公式得: x={〔(400×45.58%+600×39.75%〕÷33〕-(400×0.63%+600×1.27%)}÷46%≈5.7(公斤) (2)设需补充硫酸铵x公斤,用速算公式得: x={〔(400×45.58%+600×39.75%〕÷33〕-(400×0.63%+600×1.27%)}÷21%≈12.4(公斤) 经计算,需补充尿素5.7公斤或补充硫酸铵12.4公斤;也可混合补充尿素和硫酸铵各50%常用培养料碳氮比例表(干)成分比培养料碳(%)氮(%)碳:氮 杂木屑 49.18 0.10 491.8 栎木屑 50.4 1.10 45.8 稻草 42.3 0.72 58.7 麦秸 46.5 0.48 96.9 玉米粒 46.7 0.48 97.3 玉米芯 42.3 0.48 88.1 豆秸 49.8 2.44 20.4 野草 46.7 1.55 30.1 甘蔗渣 53.1 0.63 84.2 棉籽壳 56 2.03 27.6 麦麸 44.7 2.2 20.3 米糠 41.2 2.08 19.8 啤酒槽 47.7 6 8 豆饼 45.4 6.71 6.76 花生饼 49 6.32 7.76 菜籽饼 45.2 4.6 9.8 马粪 12.2 0.58 21.1 黄牛粪 38.6 1.78 21.7 奶牛粪 31.8 1.33 24 猪粪 25 2 12.6 鸡粪 30 3 10

发酵原料的制备

第三章发酵原料的制备(5月13) 为什么要对发酵原料进行选择? 1、微生物对简单的营养物质能够直接吸收利用。 2、微生物对碳源利用的选择性。 第一节淀粉质原料制备可发酵性糖技术 可发酵性糖主要包括有蔗糖、葡萄糖、麦芽糖、果糖和半乳糖等。 淀粉质原料的优点:直接将原料中的淀粉分解成可发酵糖,其中蛋白质、微量元素和矿物质也为微生物的生长提供营养。 淀粉质原料很多,主要有薯类、玉米、小麦、大米等含淀粉原料。 方法:主要有酸水解法、酶水解法和酸酶结合法。 淀粉质原料预处理通常包括蒸煮(液化)、糖化等处理。 一、淀粉质原料制备可发酵性糖的必要性 (1)多种微生物不能直接利用淀粉 发酵工业所用的碳源:玉米粉、淀粉或糖质。 例如:氨基酸和酒精发酵 (2)能利用淀粉的微生物发酵过程缓慢 (3)淀粉质原料中存在的杂质影响糖液的质量 低聚糖类、杂糖

二、淀粉质原料的种类及其组成特点 利用制备可发酵性糖的淀粉质原料有薯类、粮谷类、野生植物类和农产品加工的副产品等。 薯类原料主要有甘薯(又名红苕、地瓜、番薯)、马铃薯(又名土豆、洋芋)、木薯等。 粮谷类原料有玉米、高梁、大麦、小麦、稻谷等。 野生植物类系指橡子、金刚头、土茯苓、芭蕉芋等。农产品加工副产品主要有米糠、麸皮、各种粉渣等。 三、淀粉质原料的蒸煮 (一)蒸煮的目的:使植物组织和细胞破裂,淀粉由颗粒变成溶解状态的糊液;对原料进行了灭菌作用。 (二)蒸煮物料发生的物理和化学变化 1.淀粉糊化:淀粉的糊化是指淀粉受热后,淀粉颗粒膨胀,晶体结构消失, 互相接触变成糊状液体,即使停止搅拌,淀粉也不会再沉淀的现象。 2.不同淀粉种类的糊化差异性:直链淀粉溶解在热水中;支链淀粉 3.淀粉的糊化过程

碳氮比计算图文稿

碳氮比计算 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

食用菌培养料碳氮比的速算方法 碳氮比(C/N)是指食用菌培养料中碳源和氮源适当浓度的比值。一般在食用菌营养生长阶段碳氮比以20∶1为宜;子实体生长发育期碳氮比以30~40∶1为佳。食用菌的种类及培养材料不同,对碳氮比的要求也不同。如蘑菇在菌丝生长阶段堆制原料时的碳氮比为33∶1,子实体分化和发育期的最适碳氮比为17∶1。若碳氮比值过大,食用菌不出菇,或虽能出菇,却往往在成熟前停止发育。因此,碳氮比对食用菌生长发育十分重要。仍以蘑菇堆料为例,配制碳氮比为33∶1的培养料1 000公斤(其中稻草400公斤、干牛粪600公斤),需补充氮量即补充尿素或硫酸铵多少公斤 速算公式:需补充氮量=(主材料总碳量÷碳氮比-主材料总氮量)÷补充物质含氮量 经查得(已知):稻草含碳量45.58%、含氮量0.63%,干牛粪含碳量39.75%、含氮量1.27%,尿素含氮量46%,硫酸铵含氮量21%。? 速算方法: (1)设需补充尿素x公斤,用速算公式得: x={〔(400×45.58%+600×39.75%〕÷33〕-(400×0.63%+600×1.27%)}÷46%≈5.7(公斤) (2)设需补充硫酸铵x公斤,用速算公式得: x={〔(400×45.58%+600×39.75%〕÷33〕-(400×0.63%+600×1.27%)}÷21%≈12.4(公斤)

经计算,需补充尿素5.7公斤或补充硫酸铵12.4公斤;也可混合补充尿素和硫酸铵各50%。 碳氮比是植物生理里的名词,一般用于衡量碳元素与氮元素。 施用碳氮比高的肥料,会促进根的生长,抑制茎叶的生长 施用碳氮比低的肥料,会促进茎叶的生长,抑制根的生长 碳氮比是指食用菌原料配制时碳元素与氮元素的总量之比。一般用 “C/N”表示。如蘑菇培养料的碳氮比为30-33:1,香菇培养料的碳氮比为64:1。现将食用菌培养料的一些主要原料的碳氮比列于下表,以供参考: 常用培养料碳氮比例表(干) 成分比培养料碳(%)氮(%)碳:氮 杂木屑 49.18 0.10 491.8 栎木屑 50.41.10 45.8 稻草 42.3 0.72 58.7 麦秸 46.5 0.48 96.9 玉米粒 46.7 0.48 97.3 玉米芯 42.30.48 88.1 豆秸 49.8 2.44 20.4 野草 46.7 1.55 30.1 甘蔗渣 53.1 0.6384.2

发酵原料与产沼气量

该表显示粪便和干粪其每公斤有机干物及每立方米发酵原料的气体产量。 原料固体 物% 有机固体物 占固体物% 平均产气量 立升/每公斤固体有机物 沼气 立方/每吨原料 苹果发酵下脚料 3 95 500 14 苹果渣25 86 700 151 啤酒渣25 65 700 116 生物垃圾40 50 615 123 干血粉屑90 80 900 648 脂眆分离残余物30 95 1000 285 漂浮淤泥15 90 1000 135 饲料和甜菜叶16 79 500 63 蔬菜下脚料15 76 615 70 绿草42 90 780 295 草药提取后剩物53 55 650 189 鸡粪便15 77 465 54 椰子壳95 91 700 605 土豆茎25 79 840 166 土豆发酵下脚料14 90 420 53 污水淤泥 4 70 525 15 苜蓿植物20 80 800 128 厨房下脚料14 93 550 72 树叶85 82 650 453 猪胃内杂物14 82 420 48 庄稼下脚料37 93 800 275 玉米青贮32 91 700 204 玉米秸杆86 72 900 557 水果渣45 93 615 257 油料作物下脚料92 97 700 624 内脏(压过) 28 90 500 126 内脏(未处理过) 15 84 500 63 马粪(新鲜) 28 75 580 122 油菜籽提炼后的粉89 92 633 518 牛粪便8 81 400 26 牛粪(新鲜) 22 83 420 77 羊粪(新鲜) 27 80 750 162 猪粪便 6 81 450 22 猪粪便85 85 500 361

碳氮比的测定实验方案

碳氮比的测定 1.实验目的:测定过滤槽中碳氮比 2.实验原理和步骤 2.1测定总氮 2.1.1原理 在60℃以上水溶液中,过硫酸钾可分解产生硫酸氢鉀和原子态氧,氮污染人为来源,硫酸氢鉀在溶液中离解而产生氢离子,故在氢氧化钠的碱性介质中可促使分解过程趋于完全。氮的最低检出浓度为0.050mg/L,测定上限为4mg/L。本方法的摩尔吸光系数为 1.47×103L·mo1-1·cm-1。测定中干扰物主要是碘离子与溴离子,碘离子相对于总氮含量的2.2倍以上,溴离子相对于总氮含量的3.4倍以上有干扰。分解出的原子态氧在120~124℃条件下,可使水样中含氮化合物的氮元素转化为硝酸盐,并且在此过程中有机物同时被氧化分解,可用紫外分光 光度法于波长220和275nm处,分别测出吸光度A 220及A 275 按下式求出校正吸光 度A:A = A 220 - A 275 按A的值查校准曲线并计算总氮的含量。 2.1.2 试剂 (1)碱性过硫酸钾溶液:称取40g过硫酸钾,另称取15g氢氧化钠,溶于水中,稀释至1000mL,因为过硫酸钾固体较难溶解,可在电热加热器中加热,并不断搅拌以加速其快速溶解。待全部溶解后将其冷却至室温,再碱性过硫酸钾溶液存放在聚乙烯瓶内。 (2)硝酸钾标准储备液,C N =100mg/L:硝酸钾在105~110℃烘箱中干燥3小时,在干燥器中冷却后,称取0.7218g,溶于蒸馏水中,移至1000mL容量瓶中,用水稀释至标线在1~10℃暗处保存,(硝酸钾溶液见光易分解)或加入1~2mL三氯甲烷保存,可稳定6个月。 2.1.3 实验仪器 (1)T6紫外分光光度计及10mm石英比色皿 (2)具玻璃磨口塞比色管,25ml (3)立式高压灭菌器 2.1.4 实验过程 2.1.4.1水样预处理 采样:在金湖各个不同地点才金湖水样,在水样采集后立即放于低于4℃的条件下保存,保存时间不得超过24小时。当水样放置时间较长时,可在1000mL水样中加入约0.5mL硫酸 密度为1.84g/mL),酸化到pH小于2,并尽快测定。样品可储存在玻璃瓶中。2.1.4.2水样的测定

A2O工艺计算--例题

其中用到的公式

例题2.A2/O工艺的设计 1.1 A2/O工艺说明 根据处理要求,我们需计算二级处理进水碳氮比值和总磷与生化需氧量的比值,来判断A2/O工艺是否适合本污水处理方案。 1. 设计流量:Q=54000m3/d=2250 m3/h 原污水水质:COD=330mg/L BOD=200 mg/L SS=260 mg/L TN=25 mg/L TP=5 mg/L

一级处理出水水质:COD =330×(1-20%)=264mg/L BOD =200×(1-10%)=180mg/L SS =260×(1-50%)=130 mg/L 二级处理出水水质:BOD =10mg/L SS =10 mg/L NH3-N =5mg/L TP ≤1 mg/L TN =15 mg/L COD=50 mg/L 其中: 2.1325330==TN COD >8 025.0200 5 ==BOD TP <0.06 符合A 2/O 工艺要求,故可用此法。 1.2 A 2/O 工艺设计参数 BOD5污泥负荷N =0.15KgBOD5/(KgMLSS ?d) 好氧段DO =2 缺氧段DO ≤0.5 厌氧段DO ≤0.2 回流污泥浓度Xr = 100001100 1000000 =?mg/L 污泥回流比R =50% 混合液悬浮固体浓度 X ==+r ·1X R R 10000·5 .15 .0=3333mg/L 混合液回流比R 内:TN 去除率yTN =%10025 8 25?-=68% R 内= TN TN y 1y -×100%=212.5% 取R 内=200% 1.3设计计算(污泥负荷法) 硝化池计算 (1) 硝化细菌最大比增长速率 m ax μ=0.47e 0.098(T-15) m ax μ =0.47?e 0.098?(T-15) =0.3176d -1 (2) 稳定运行状态下硝化菌的比增长速率 μN = ,max 1 1 N z N K N μ+

工艺计算例题

其中用到的公式 例题2.A 2/O 工艺的设计 1.1 A 2/O 工艺说明 根据处理要求,我们需计算二级处理进水碳氮比值和总磷与生化需氧量的 比值,来判断A 2/O 工艺是否适合本污水处理方案。 1. 设计流量:Q =54000m3/d=2250 m3/h 原污水水质:COD =330mg/L BOD =200 mg/L SS =260 mg/L TN =25 mg/L TP =5 mg/L 一级处理出水水质:COD =330×(1-20%)=264mg/L BOD =200×(1-10%)=180mg/L SS =260×(1-50%)=130 mg/L 二级处理出水水质:BOD =10mg/L SS =10 mg/L NH3-N =5mg/L TP ≤1 mg/L TN =15 mg/L COD=50 mg/L 其中: 2.1325330==TN COD >8 025.0200 5 ==BOD TP <0.06 符合A 2/O 工艺要求,故可用此法。 1.2 A 2/O 工艺设计参数 BOD5污泥负荷N =0.15KgBOD5/(KgMLSS ?d) 好氧段DO =2 缺氧段DO ≤0.5 厌氧段DO ≤0.2 回流污泥浓度Xr = 100001100 1000000 =?mg/L 污泥回流比R =50% 混合液悬浮固体浓度 X ==+r ·1X R R 10000·5 .15 .0=3333mg/L

混合液回流比R 内:TN 去除率yTN =%10025 8 25?-=68% R 内= TN TN y 1y -×100%=212.5% 取R 内=200% 1.3设计计算(污泥负荷法) 硝化池计算 (1) 硝化细菌最大比增长速率 m ax μ=0.47e 0.098(T-15) m ax μ =0.47?e 0.098?(T-15) =0.3176d -1 (2) 稳定运行状态下硝化菌的比增长速率 μN = ,max 1 1 N z N K N μ+ =0.42615151 ?+=0.399d -1 (3) 最小污泥龄 θc m θc m =1/μN = 1 0.399 =2.51d (4) 设计污泥龄 d c θ d c θ=m C F D θ? 为保证污泥稳定 , d c θ取20d 。 式中: D F —设计因数,为S F ?P F 其中S F 为安全因数, 取3,P F 为峰值因数取1--2 θc m —最小污泥龄 ,为2.51d 反应池计算 (1) 反应池容积V =X N S Q ·o ·= 3333 15.0180 225024???=19441.94m3 (2) 反应池总水力停留时间 t =Q V =225094.19441=8.64(h)

最新原料药发酵知识

原料药发酵知识

生物发酵相关知识 随着我国生物医药技术的蓬勃发展,生物发酵系统(也称为生物培养) 项目越来越多,无论是工业化大发酵,如抗生素原料药的发酵、氨基酸和有机 酸(柠檬酸,乳酸)的发酵、酶制剂、酵母或淀粉糖的发酵,还是各种生物疫苗、动植物细胞的发酵等。品种众多,生产规模大小也不一,大到几百立方米容积,小到几千升容积的发酵罐,在项目的实施过程中都要系统或设备的需求 标准的建立。对URS而言,生物发酵系统设备的URS编写就越显其重要性。 因此,如何切合生产实际、结合发酵的品种和培养工艺的要求,编写出 既合理又实用的URS是生物发酵系统项目能够顺利实施的第一步,这也是生物 发酵项目的招投标、设备制造、工程系统安装调试的基本依据条件。 1 生物发酵系统设备URS的范围 生物发酵系统设备的URS文件可以分两个部分,即生物发酵主系统设备 和与之配套的辅助系统设备(亦称发酵支持系统)组成。其中,生物发酵主系统由菌种保存、解冻复活、移种、生物培养器(发酵罐)及其支持控制系统、 培养基的配制与灭菌以及输送系统组成;生物发酵的辅助系统是由与之相关联的工艺用水系统(纯化用水及注射用水)、无菌压缩气体系统(空气,氮气,CO 气体等)、固液分离系统(如离心分离、膜过滤、板框过滤等)、发酵液的2 收集系统、发酵液的贮存与冷藏等组成。 2生物发酵主系统设备URS的编制依据 2.1发酵流程 生物发酵的过程是一组涉及多相、多组分、非线性的生物化学反应,也 是一组群体性的生物生长过程,是人们把预先选定的微生物或动植物细胞在一组密闭的系统中按其生长规律与生长发育条件的代谢过程,常见的流程见图 1 。

原料药发酵知识

生物发酵相关知识 随着我国生物医药技术的蓬勃发展,生物发酵系统(也称为生物培养)项目越来越多,无论是工业化大发酵,如抗生素原料药的发酵、氨基酸和有机酸(柠檬酸,乳酸)的发酵、酶制剂、酵母或淀粉糖的发酵,还是各种生物疫苗、动植物细胞的发酵等。品种众多,生产规模大小也不一,大到几百立方米容积,小到几千升容积的发酵罐,在项目的实施过程中都要系统或设备的需求标准的建立。对URS而言,生物发酵系统设备的URS编写就越显其重要性。 因此,如何切合生产实际、结合发酵的品种和培养工艺的要求,编写出既合理又实用的URS是生物发酵系统项目能够顺利实施的第一步,这也是生物发酵项目的招投标、设备制造、工程系统安装调试的基本依据条件。 1 生物发酵系统设备URS的范围 生物发酵系统设备的URS文件可以分两个部分,即生物发酵主系统设备和与之配套的辅助系统设备(亦称发酵支持系统)组成。其中,生物发酵主系统由菌种保存、解冻复活、移种、生物培养器(发酵罐)及其支持控制系统、培养基的配制与灭菌以及输送系统组成;生物发酵的辅助系统是由与之相关联的工艺用水 气体等)、系统(纯化用水及注射用水)、无菌压缩气体系统(空气,氮气,CO 2 固液分离系统(如离心分离、膜过滤、板框过滤等)、发酵液的收集系统、发酵液的贮存与冷藏等组成。 2生物发酵主系统设备URS的编制依据 2.1发酵流程 生物发酵的过程是一组涉及多相、多组分、非线性的生物化学反应,也是一组群体性的生物生长过程,是人们把预先选定的微生物或动植物细胞在一组密闭的系统中按其生长规律与生长发育条件的代谢过程,常见的流程见图1 。

2.2 GMP对生物发酵设备的要求 结合GMP对设备的要求以及生物发酵本身的特点,在编制生物发酵系统设备URS文件时应具备下列几个条件: (1)设备(发酵罐)的材质要求。与培养基(包括补料物质) 、发酵液(微生物、细菌、疫苗、细胞等)相接触的材质必须是无毒性、耐腐蚀、不吸收上述物质、不与上述物质发生化学反应的材料制成。经常选用的材料是316L、304L、304、316; (2)生物发酵罐因整个生物培养需在无菌条件下进行,罐体要有SIP过程,所以在制作过程中应符合《钢制压力容器》(150-1998)、《钢制压力容器焊接规程》(JB/T4709-2000)、《承压设备无损检测》(JB/T4730-2005)以及《压力容器安全技术监察规程》等标准。同时,发酵罐的内表面应光滑、无死角,防止积沉物料,发酵结束后易清洗灭菌; (3)生物发酵罐的外接件应坚持三个方便,即安装拆卸、清洗灭菌与操作维修方便,并能承受高压蒸汽灭菌;

有机肥发酵时的碳氮比

在各类有机肥中,鸡粪、猪粪、牛粪发酵的有机肥,以鸡粪发酵的CN比最高,这也导致施肥后,鸡粪有机肥矿化率最高最快。 碳氮比对微生物的生长代谢起着重要的作用。若碳氮比低,则微生物分解速度快,温度上升迅速,堆肥周期短;碳氮比过高则微生物分解速度缓慢,温度上升慢,堆肥周期长。不同碳氮比对猪粪堆肥NH挥发和腐熟度的影响:低碳氮比的NH挥发明显大于高碳氮比处理,说明碳氮比越低,其氮素损失越大;低碳氮比堆肥盐分过高,会抑制种子发芽率,而高碳氮比会导致堆肥肥料养分含量不达标。相比之下,碳氮比为24.0 和32.4 的处理较有利于减小氮素的损失和促进 堆肥的腐熟。因此,综合考虑各方面因素,堆肥的碳氮比控制在25?30为宜。 在禽畜粪便堆肥过程中,碳源被消耗,转化为C0和腐殖质物质,氮则主要以NH的形态散失,或者转化为硝酸盐和亚硝酸盐,或为微生物生长代谢所吸收。 因此,碳和氮的变化是反映堆肥发酵过程变化的重要特征,总碳含量和总氮含量均呈下降趋势,且总碳含量下降速度大于总氮含量。而碳氮比,则是用来判断堆肥反应是否达到腐熟的重要指标,C/N变化为总体上呈现出缓慢下降趋势。赵由才认为,腐熟堆肥理论上讲应趋于微生物菌体的碳氮比,即16 左右。一般认为,C/N 从最初的25?30或更高降低到15?20,表示堆肥已经腐熟,达到稳定程度。 碳/氮(C/N)比计算方法举例: 麦秸的含碳量为47.03%,含氮量为0.48%,通过计算可得出:1000kg 的麦秸中的含碳量=1000X 0.4703=470.3kg ,1000kg的麦秸中的含氮量 =1000X 0.0048=4.8kg。如果按要求物料堆的碳氮比为30: 1,则物料堆应有总氮量=470.3/30=15.68kg,尚需补充氮量=15.68-4.8=10.88kg,如用尿素来补充不足的氮素,尿素用量应是:10.88/46%=23.65kg 。 玉米秸的含碳量为42.3%,含氮量为0.48%,通过计算可得出:1000kg的玉米秸中的含碳量=1000X0.423=423kg ,1000kg 的玉米秸中的含氮量 =1000X0.0048=4.8kg 。如果按要求物料堆的碳氮比为30:1,则物料堆应有总氮量=423/30=14.1kg,尚需补充氮量=14.1-4.8=9.3kg,如用尿素来补充不足的氮素,尿素用量应是:9.3/46%=20.22kg 。 一般禾本科作物的茎秆如水稻秆、玉米秆和杂草的碳氮比都很高,可以达到

碳氮比计算

食用菌培养料碳氮比的速算方法 碳氮比(C/N)是指食用菌培养料中碳源和氮源适当浓度的比值。一般在食用菌营养生长阶段碳氮比以20∶1为宜;子实体生长发育期碳氮比以30~40∶1为佳。食用菌的种类及培养材料不同,对碳氮比的要求也不同。如蘑菇在菌丝生长阶段堆制原料时的碳氮比为33∶1,子实体分化和发育期的最适碳氮比为17∶1。若碳氮比值过大,食用菌不出菇,或虽能出菇,却往往在成熟前停止发育。因此,碳氮比对食用菌生长发育十分重要。仍以蘑菇堆料为例,配制碳氮比为33∶1的培养料1 000公斤(其中稻草400公斤、干牛粪600公斤),需补充氮量即补充尿素或硫酸铵多少公斤? 速算公式:需补充氮量=(主材料总碳量÷碳氮比-主材料总氮量)÷补充物质含氮量 经查得(已知):稻草含碳量45.58%、含氮量0.63%,干牛粪含碳量39.75%、含氮量1.27%,尿素含氮量46%,硫酸铵含氮量21%。 速算方法: (1)设需补充尿素x公斤,用速算公式得: x={〔(400×45.58%+600×39.75%〕÷33〕-(400×0.63%+600×1.27%)}÷46%≈5.7(公斤) (2)设需补充硫酸铵x公斤,用速算公式得: x={〔(400×45.58%+600×39.75%〕÷33〕-(400×0.63%+600×1.27%)}÷21%≈12.4(公斤)

经计算,需补充尿素5.7公斤或补充硫酸铵12.4公斤;也可混合补充尿素和硫酸铵各50%。 碳氮比是植物生理里的名词,一般用于衡量碳元素与氮元素。 施用碳氮比高的肥料,会促进根的生长,抑制茎叶的生长 施用碳氮比低的肥料,会促进茎叶的生长,抑制根的生长 碳氮比是指食用菌原料配制时碳元素与氮元素的总量之比。一般用“C/N”表示。如蘑菇培养料的碳氮比为30-33:1,香菇培养料的碳氮比为64:1。现将食用菌培养料的一些主要原料的碳氮比列于下表,以供参考: 常用培养料碳氮比例表(干) 成分比培养料碳(%)氮(%)碳:氮 杂木屑 49.18 0.10 491.8 栎木屑 50.4 1.10 45.8 稻草 42.3 0.72 58.7 麦秸 46.5 0.48 96.9 玉米粒 46.7 0.48 97.3 玉米芯 42.3 0.48 88.1 豆秸 49.8 2.44 20.4 野草 46.7 1.55 30.1 甘蔗渣 53.1 0.63 84.2

堆肥原料配合比设计

堆肥生产中,如果仅仅通过感官或经验来判断原料搭配是否合理、水分调节是否适宜,往往偏差较大,特别是当原料或工艺发生变化时,差异会更大,这也是造成产品质量不稳定的重要原因。要优化堆肥条件和配方,必须按照原料理化参数,通过科学的计算来确定。堆肥配方的形成就是对C/N和水分的平衡过程,目的是使它们均处于合理的范围内。 通常一个指标先调整合适后,堆肥的配方就可基本确定下来,若需要进一步调整比例,则一般要在不明显影响第一个指标的情形下对第二个指标进行优化。 一、C/N 堆肥化过程中,碳素是堆肥微生物的基本能量来源,也是微生物细胞构成的基本材料。堆肥微生物在分解含碳有机物的同时,利用部分氮素来构建自身细胞体,氮还是构成细胞中蛋白质、核酸、氨基酸、酶、辅酶的重要成分。 据研究,一般情况下,微生物每消耗25g有机碳,需要吸收1g氮素,微生物分解有机物较适宜的C/N为25左右。C/N过高,微生物生长繁殖所需的氮素来源受到限制,微生物繁殖速度低,有机物分解速度慢,发酵时间长;有机原料损失大,腐殖质化系数低;并且还会导致堆肥产品C/N高,施入土壤后易造成土壤缺氮,从而影响作物生长发育。C/N过低,微生物生长繁殖所需的能量来源受到限制,发酵温度上升缓慢,氮过量并以氨气的形式释放,有机氮损失大,还会散发难闻的气味。合理调节堆肥原料中的碳氮比,是加速堆肥腐熟,提高腐殖化系数的有效途径。 常见的有机固体废物含碳量一般为40~55%,但氮的含量变化却很大,因此C/N的变幅也较大。一般禾本科植物的C/N较高,大约在40~60之间,畜禽粪便、城市污泥C/N较低,大约为10~30。为达到理想的堆肥有机物分解速度,通常用C/N较高的秸杆粉、草炭、蘑菇渣等与C/N较低的畜禽粪便、城市污泥等进行混合调整。在堆肥化过程中,由于微生物的作用,有近2/3的碳素会以CO2的形式释放出来,剩余部分与氮素一起合成细胞生物体,所以堆肥化过程是一个C/N逐渐下降并趋于稳定的过程,腐熟堆肥的C/N一般为15:1左右。此外,不同的堆肥原料其适宜的C/N也存在差异,这种差异主要有两方面构成,一方面为取决于堆肥原料中有机物的生物有效性(或可降解性,表3-3),另一方面取决于堆肥原料粒度。虽然从理论上讲堆肥物质中的大多数碳是可以利用的,但也存在一些很难生物降解的有机化合物,如木材中的木质纤维素,因此,当这类物质含量较高时,应设置一个较高的C/N值;相同原料由于粒度不同,比表面积存在差异,可被微生物利用的碳或者说其被微生物分解的速度也存在差异,这些都是进行堆肥C/N设计时应考虑的。 表3-3 某些有机基质的可降解性 二、水分 堆制过程中保持适宜的水分含量,是堆肥制作成功的首要条件。由于微生物大都缺乏保水机制,所以对水分极为敏感。当含水量在35%~40%之间时,堆肥微生物的降解速率会显著下降,但水分下降到30%以下时,降解过程会完全停止。通常有机物吸水后会膨胀软化,有利于微生物分解;水分在堆肥中移动时,所带菌体也会向四周移动和扩散,并使堆肥分解

有机肥原料发酵工艺的制作方法

本技术涉及有机肥技术领域,具体涉及一种有机肥原料发酵工艺,包括往发酵池中加入酸碱调节剂,并每隔2小时,对发酵池中通入空气,并持续搅动有机肥,降低有机肥中的厌氧微生物总量;发酵池中通入温度为6075℃的气流,加速有机肥的熟化,熟化周期为710天;熟化后的有机肥倒入反应釜中,反应釜温度为150200℃,搅拌混合至均匀,搅拌时间不低于5小时;处理后的有机肥进行常温发酵,发酵时间57天。本技术的有益效果:通过步骤1),降低有机肥中的厌氧微生物含量,进而使得发酵过程中,厌氧微生物群落数量减少,而好氧微生物群落数量得到提升,加快发酵效率;酸碱调节剂对有机物的酸碱度进行中和,进而避免有机物酸碱不平衡,对发酵过程产生影响。 权利要求书 1.一种有机肥原料发酵工艺,所述有机肥是以动物粪便、厨余垃圾、农作物秸秆作为原料,其放入发酵池中进行发酵,其特征在于,包括如下步骤: 1)往发酵池中加入酸碱调节剂,并每隔2小时,对发酵池中通入空气,并持续搅动有机肥,降低有机肥中的厌氧微生物总量; 2)发酵池中通入温度为60-75℃的气流,加速有机肥的熟化,熟化周期为7-10天; 3)熟化后的有机肥倒入反应釜中,反应釜温度为150-200℃,搅拌混合至均匀,搅拌时间不低于5小时; 4)上述步骤处理后的有机肥进行常温发酵,发酵时间5-7天。 2.根据权利要求1所述的一种有机肥原料发酵工艺,其特征在于,所述步骤1)中,在加入酸碱调节剂前,往发酵池中加入除臭剂,除臭剂的重量为0.001倍于有机肥重量。 3.根据权利要求1所述的一种有机肥原料发酵工艺,其特征在于,所述步骤2)中,在通入气流

后,再往发酵池内加入益生菌,益生菌重量为0.0008-0.0001倍于有机肥重量。 4.根据权利要求1所述的一种有机肥原料发酵工艺,其特征在于,所述步骤2)中,气流的流速为25-35米\秒。 5.根据权利要求1所述的一种有机肥原料发酵工艺,其特征在于,所述步骤3)在搅拌过程中,持续往反应釜内加入醋酸溶液,加入的醋酸溶液总重量为有机肥重量的0.05倍。 技术说明书 一种有机肥原料发酵工艺 技术领域 本技术涉及有机肥技术领域,具体涉及一种有机肥原料发酵工艺。 背景技术 生物有机肥是指特定功能微生物与主要以动植物残体(如畜禽粪便、农作物秸秆等)为来源并经无害化处理、腐熟的有机物料复合而成的一类兼具微生物肥料和有机肥效应的肥料。 生物有机肥相比化肥的优势: 1)生物有机肥营养元素齐全;化肥营养元素只有一种或几种; 2)生物有机肥能够改良土壤;化肥经常使用会造成土壤板结;

发酵鸡粪注意碳氮比

培旺生物原创(鸡粪发酵注意碳氮比)鸡在喂养过程中,所摄入的饲料是没有完全消化吸收的,大约有40%-70%的营养物被排出体外,因此鸡粪在所有禽畜粪便当中的养分是最高的,是一种比较优质的有机肥原料,其含纯氮、磷(P2O5)、钾(K2O)约为 1.63%、1.54%、0.085%。但是,鸡粪如果未经处理或腐熟,而直接施用到作物上,则存在很大的害处及隐患,因为,鸡粪如果直接施入土壤,合适的条件下它会发酵并产生大量热量,而烧毁作物的根系。同时,鸡粪本身还带有大量病菌,大肠杆菌和蛔虫卵也会给作物带来病害隐患。因此,必须先将鸡粪进行无害化处理和完全腐熟后才能施用于作物。 鸡粪在施用前必须经过充分的腐熟,将存在鸡粪中的寄生虫及其卵,以及传染性的一些病菌通过腐熟(沤制)的过程得到灭活。由于鸡粪在腐熟的过程中产生高温,容易造成氮素损失,因此,鸡粪腐熟前应控制好水分,并加入5%的过磷酸钙,去除臭味且肥效会更好。鸡粪经充分腐熟后成为种植作物的优质基肥,或在种植果树中作为冬季施下全年利用的基肥也可加入“培旺生物菌剂”制成生物菌肥做底肥和追肥均可。 腐熟的方法:传统的方法是将鸡粪密封堆沤,进行厌氧发酵,一般要3-4个月才能腐熟。现在,可以通过加入“培旺生物发酵剂”生物发酵技术,采用好氧发酵,腐熟速度比传统方法可以快10-20倍;并且,可以将鸡粪的蛋白质等大分子分解成小分子,以利于作物的直接吸收。经过完全腐熟处理后,鸡粪就已基本闻不到臭味了。用培旺生物粪便发酵剂发酵鸡粪用量少、效果好、速度快,7-10天就可以腐熟完全。 如果发酵物料是纯粹的鸡粪粪便,正常情况下碳氮比一般小于20,应该向其中加入适量粉碎的秸秆或锯末等碳氮比高的物料。可加入重量比10-20%左右秸秆用于调解碳氮比,且因为堆肥发酵为有氧发酵,秸秆或锯末可增强鸡粪的疏松透气性,更利于提升发酵速度和时间。 注意: 碳氮比的要求:理论上要求碳氮比25~35︰1,发酵效果才比较好,如果单是使用农作物秸秆发酵有机肥,例如玉米秸秆锯末蘑菇扎糠醛渣等,碳素过高,不利于发酵,即使发酵完成,所生产的有机肥仍然碳氮比过高,如果施于农田,则可能产生土壤中的微生物与农作物争夺氮素的现象,造成农作物幼苗生长不好的缺点,例如麦苗会因缺氮而黄化、瘦弱,生长不良。这时,可在每2立方米秸秆中加入6~10公斤尿素一起发酵,尿素先溶解于水中加入;或加入10公斤磷酸二铵;或者加入200公斤一周内的动物粪尿都可以达到很好的调节碳氮比的效果,然后物料调制水分在50%--60%之间,再加入培旺生物发酵剂发酵。

哪些物质可以作为沼气发酵原料

1、哪些物质可以作为沼气发酵原料?可作为沼气发酵原料的很多,最常用的是:人、畜粪便,各种农作物秸秆,以及大型酒厂、味精厂,柠檬酸厂、屠宰场排出的有机废水,前者是户用沼气池使用的原料,后者是大型沼气工程使用的原料。 2、如何准备沼气发酵菌种?沼气发酵菌种的质量和数量是启动沼气池成败的关键,一般应按照沼气池装料容积的10%备好菌种。新建沼气池在启动时,应在投料前15天左右备好菌种(老料),最好是用老沼气池排出的沼液,没有老料的地方,猪舍、牛栏排出的陈年粪便污水,都是良好的活性污泥,均可作为沼气发酵菌种。 3、新沼气池第一次如何进料? 沼气池建成以后,首次进料应以人畜粪便为主,必须是新料、老料混合物,老料至少占1/3,新料指产出不久无微生物的人畜粪便,老料是指存放2个月以上已腐熟有微生物的人畜粪便。一般来说,家用10m3沼气池,首次进料约屡箕40-60担。15m3沼气池,首次进料约80-100担。20m3沼气池,首次进料120-140担。 4、新建沼气池如何启动? 沼气池启动分两种原料,两种方法进行: (1)用人、畜粪便为原料的沼气池启动:初次投料,应将备好的菌种先投入池内,再将原料投入池内,敞开1-2天,让其充分好氧,适应环境,然后加水封盖,上流式浮罩沼气池投料至溢流口溢料为止。料液浓度控制在6%-8%。夏季待3-4天后可放气试火,冬季10天后放气试火。 (2)以农作物秸秆为原料的沼气池启动:先将秸秆切断至10厘米长,用水泡湿,堆沤3-5天分层装入沼气池,按发酵池容积加入30%的猪粪水,加水封盖,在有大型沼气池的地方,可取大型沼气池排出来的沼液作为菌种加入池内,一般5天后可放气试火。注间:①冬季气温较低季节不宜投料启动。②进料口直径要加大到300毫米,从天窗口出料。 5、如何进行日常添加新料和出老料? 一般新池投料或老池大换料后30天左右,当产气率明显下降时,应及时添加新鲜原料,要求3-5天加料一次,如果沼气池与栏相连,则随时可进料。进料时料、水比为1:2(即加1桶料加2桶水)。新池投料3个月以后,要求每星期抽料一次,每次抽料约200-500公斤。严禁在不开盖的情况下大出料或大进料,在这种情况下,大出料会造成池内产生负压,损坏池体,大进料会造成导气管堵塞,沼气无法送出,压力增大可能炸池。 6、对发酵池如何进行越冬管理? 冬季气温降低,发酵池内的料液温度下降,沼气产量也明显下降,为了保持冬季产气好,必须做好发酵池的越冬管理。主要措施如下: ①加大发酵池的进料量,提高沼气池的发酵浓度,有条件的可加一些热性原料(如牛粪、马粪、羊粪、酒槽等),拌入适量温水。 ②发酵池的进、出料口要盖好,防止雪风、雨水的侵袭而降低池温。 ③发酵池建在室外的,可在池子的上面堆放一些柴草。有条件的可以在发酵池上搭塑料大棚,棚内种菜,既保温又可综合利用。 7、如何判断发酵池产气是否正常? 观察出料口抽的料液是否呈酱油色,液面是否有泡沫层,酸碱度(PH值)是否在6.5-7.5之间,这是判断发酵产气正常的关键,是表示沼气池处于运转最佳状态。只要加强管理,勤出料、勤搅拌,发酵产气可长期保持旺盛。 8、如何做好沼气池的发酵装置、贮气装置日常管理? ①发酵池与浮罩的蓄水圈必须保证装满水,以免太阳曝晒或冰冻损坏,造成发酵池或浮罩漏气。 ②要在发酵池与浮罩之间最低管道处安装排水装置,以排除管道中的积水。在适当位置安装脱硫器,以去除沼气中所含的硫化氢(H2S)气体,避免对沼气灶具、灯具和开关的腐蚀。 ③发酵池周围要做好排水措施,以免地表水流入池内,导致料液水份过多降低池温;避免有毒废水入池,影响产气;避免污水淹没发酵池,造成池体受压破裂。 ④发酵池的进料口、天窗口和贮粪池等都要用盖板覆盖,以免人、畜或杂物掉入造成安全事故,同时也使沼气池整洁美观。 ⑤打开天窗口盖板,进行大进料、大出料或破壳搅拌工作时,一定要避免对发酵池拱造成破损而漏气。 ⑥发酵池尽可能与猪栏和厕所建在一起,便于进料且干净卫生。气罐宜建在橱房附近25米以内,便于管理气罐和观察气压是否稳定。

食用菌培养料碳氮比计算

食用菌培养料碳氮比计算 碳氮比(C/N)是指食用菌培养料中碳源和氮源适当浓度的比值。一般在食用菌营养生长阶段碳氮比以20∶1为宜;子实体生长发育期碳氮比以30~40∶1为佳。食用菌的种类及培养材料不同,对碳氮比的要求也不同。如蘑菇在菌丝生长阶段堆制原料时的碳氮比为33∶1,子实体分化和发育期的最适碳氮比为17∶1。若碳氮比值过大,食用菌不出菇,或虽能出菇,却往往在成熟前停止发育。因此,碳氮比对食用菌生长发育十分重要。仍以蘑菇堆料为例,配制碳氮比为33∶1的培养料1 000公斤(其中稻草400公斤、干牛粪600公斤),需补充氮量即补充尿素或硫酸铵多少公斤? 速算公式:需补充氮量=(主材料总碳量÷碳氮比-主材料总氮量)÷补充物质含氮量 经查得(已知):稻草含碳量45.58%、含氮量0.63%,干牛粪含碳量39.75%、含氮量1.27%,尿素含氮量46%,硫酸铵含氮量21%。 速算方法: (1)设需补充尿素x公斤,用速算公式得: x={〔(400×45.58%+600×39.75%〕÷33〕-(400×0.63%+600×1.27%)}÷46%≈5.7(公斤) (2)设需补充硫酸铵x公斤,用速算公式得: x={〔(400×45.58%+600×39.75%〕÷33〕-(400×0.63%+600×1.27%)}÷21%≈12.4(公斤) 经计算,需补充尿素5.7公斤或补充硫酸铵12.4公斤;也可混合补充尿素和硫酸铵各50%常用培养料碳氮比例表(干) ]

成分比培养料碳(%)氮(%)碳:氮杂木屑 49.18 0.10 491.8 栎木屑 50.4 1.10 45.8 稻草 42.3 0.72 58.7 麦秸 46.5 0.48 96.9 玉米粒 46.7 0.48 97.3 玉米芯 42.3 0.48 88.1 豆秸 49.8 2.44 20.4 野草 46.7 1.55 30.1 甘蔗渣 53.1 0.63 84.2 棉籽壳 56 2.03 27.6 麦麸 44.7 2.2 20.3 米糠 41.2 2.08 19.8 啤酒槽 47.7 6 8 豆饼 45.4 6.71 6.76 花生饼 49 6.32 7.76 菜籽饼 45.2 4.6 9.8 马粪 12.2 0.58 21.1 黄牛粪 38.6 1.78 21.7 奶牛粪 31.8 1.33 24 猪粪 25 2 12.6 鸡粪 30 3 10

相关主题