搜档网
当前位置:搜档网 › 点动与长动控制电路图

点动与长动控制电路图

点动与长动控制电路图

点动与长动控制电路图

电气控制电路基础原理图

电气控制电路基础(电气原理图) 电气控制系统图一般有三种:电气原理图、电器布置图和电气安装接线图。 这里重点介绍电气原理图。 电气原理图目的是便于阅读和分析控制线路,应根据结构简单、层次分明清晰的原则,采用电器元件展开形式绘制。它包括所有电器元件的导电部件和接线端子,但并不按照电器元件的实际布置位置来绘制, 也不反映电器元件的实际大小。 电气原理图一般分主电路和辅助电路(控制电路)两部分。 主电路是电气控制线路中大电流通过的部分,包括从电源到电机之间相连的电器元件;一般由组合开关、主熔断器、接触器主触点、热继电器的热元件和电动机等组成。 辅助电路是控制线路中除主电路以外的电路,其流过的电流比较小和辅助电路包括控制电路、照明电路、信号电路和保护电路。其中控制电路是由按钮、接触器和继电器的线圈及辅助触点、热继电器触点、保护电器触点等组成。 电气原理图中所有电器元件都应采用国家标准中统一规定的图形符号和文字符号表示。 电气原理图中电器元件的布局 电气原理图中电器元件的布局,应根据便于阅读原则安排。主电路安排

在图面左侧或上方,辅助电路安排在图面右侧或下方。无论主电路还是辅助电路,均按功能布置,尽可能按动作顺序从上到下,从左到右排列。 电气原理图中,当同一电器元件的不同部件(如线圈、触点)分散在不同位置时,为了表示是同一元件,要在电器元件的不同部件处标注统一的文字符号。对于同类器件,要在其文字符号后加数字序号来区别。如两个接触器,可用KM、KMZ文字符号区别。 电气原理图中,所有电器的可动部分均按没有通电或没有外力作用时的状态画出。 对于继电器、接触器的触点,按其线圈不通电时的状态画出,控制器按手柄处于零位时的状态画出;对于按钮、行程开关等触点按未受外力作用时的状态画出。 电气原理图中,应尽量减少线条和避免线条交叉。各导线之间有电联系时,在导线交点处画实心圆点。根据图面布置需要,可以将图形符号旋转绘制,一般逆时针方向旋转900,但文字符号不可倒置。 图面区域的划分 图纸上方的1、2、3…等数字是图区的编号,它是为了便于检索 电气线路,方便阅读分析从而避免遗漏设置的。图区编号也可设置在图 的下方。 图区编号下方的的文字表明它对应的下方元件或电路的功能,使读者能清楚地知道某个元件或某部分电路的功能,以利于理解全部电路的工作原理。

铣床电路控制原理图

铣床控制电路:

一、铣床的结构原理: 1、铣床的工作台及夹具

2、铣床的外形 3、铣床结构: ①、主轴;②、悬梁;③、刀杆支架;④、工件工作台;⑤、(工件工作台)左右进给操作手柄; ⑥、(工件工作台)前后进给操作手柄;⑦、(工件工作台)上下操作手柄;⑧、进给变速手柄及变速盘; ⑨、升降工作台;⑩、主轴变速盘及变速手柄;⑾、主轴电动机及进给电动机等等。

4、铣床的运动形式: ①、主轴运动:主轴带动铣刀作旋转运动,由M1拖动(为减小负载波动对加工质量影响,主轴上装有飞轮); ②、进给运动:指工作台带动工件作上下、左右、前后6个方向的直线运动(由三根进给丝杆实现),及圆形工作台的旋转运动,由M2拖动; ③、辅助运动:指工作台带动工件作上下、左右、前后6个方向的快速运动,由M2与电磁离合器YC3(YC3又叫快速电磁离合器)联合拖动。 5、铣床对各运动形式的要求: ①、主轴旋转平稳,以保证加工质量(采用飞轮); ②、铣削加工时,工件同一时刻只能作某一个方向的进给运动; ③、用圆形工作台加工时,不能移动,只能旋转; ④、主轴变速、进给变速用机械变速实现,为保证变速易于齿合,应有变速冲动控制; ⑤、据工艺要求,先主轴旋转后再进给运动; ⑥、为操作方便,应有两地控制。(机械离合器) 6、机床进给运动示意图:圆形工作台旋转传动链 横向移动传动链 (电磁离合器) YC2(正常进给) 垂直移动传动链 M2——— YC3(快速进给)纵向移动传动链 7、铣床的加工功能: ①、加工平面; ②、加工斜面; ③、加工沟槽; ④、(装上分度盘)可以铣切齿轮和螺旋面; ⑤、(装上园工作台)可以铣切凸轮和弧形槽。 二、铣床电路控制原理: 1、电路图(见上)

只要一分钟,教你看懂电气控制电路图!

只要一分钟,教你看懂电气控制电路图! 看电气控制电路图一般方法是先看主电路,再看辅助电路,并用辅助电路的回路去研究主电路的控制程序。电气控制原理图一般是分为主电路和辅助电路两部分。其中的主电路是电气控制线路中大电流流过的部分,包括从电源到电机之间相连的 、“顺 除了合理地选择拖动、控制方案外,在控制线路中还设置了一系列电气保护和必要的电气联锁。在电气控制原理图的分析过程中,电气联锁与电气保护环节是一个重要内容,不能遗漏。 总体检查:经过“化整为零”,逐步分析了每一局部电路的工作原理以及各部分之间的控制关系之后,还必须用“集零为整”的方法检查整个控制线路,看是否有遗漏。

特别要从整体角度去进一步检查和理解各控制环节之间的联系,以达到正确理解原理图中每一个电气元器件的作用。 1、看主电路的步骤 第一步:看清主电路中用电设备。用电设备指消耗电能的用电器具或电气设备,看图首先要看清楚有几个用电器,它们的类别、用途、接线方式及一些不同要求等。 2 则可先排除照明、显示等与控制关系不密切的电路,以便集中精力进行分析。 第一步:看电源。首先看清电源的种类。是交流还是直流。其次。要看清辅助电路的电源是从什么地方接来的,及其电压等级。电源一般是从主电路的两条相线上接来,其电压为380V.也有从主电路的一条相线和一零线上接来,电压为单相220V;此外,也可以从专用隔离电源变压器接来,电压有140、127、36、6.3V等。辅助电

路为直流时,直流电源可从整流器、发电机组或放大器上接来,其电压一般为24、12、6、4.5、3V等。辅助电路中的一切电器元件的线圈额定电压必须与辅助电路电源电压一致。否则,电压低时电路元件不动作;电压高时,则会把电器元件线圈烧坏。 第二步:了解控制电路中所采用的各种继电器、接触器的用途。如采用了一些特殊 而是相互联系、相互制约的。这种互相控制的关系有时表现在一条回路中,有时表现在几条回路中。 第五步:研究其他电气设备和电器元件。如整流设备、照明灯等。 综上所述,电气控制电路图的查线看图法的要点为: (1)分析主电路。从主电路人手,根据每台电动机和执行电器的控制要求去分析各

常用电动机控制电路原理图.

三相异步电机启动常见方法 1、定时自动循环控制电路 说明:(技师一) 1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控 制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮SB2

串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。

空调控制电路原理图

美的KFR-26/33GW/CBPY型变频空调电路原理分析 单元电路原理简析 美的变频空调主要包括“数智星”、“数智星S”、“数智星R”挂机系列:“数智星R”、“数智星M”、“数智星F”柜机系列等。美的KFR-26/33GW/CBPY型变频空调。属“数智星”变频系列。其主要机型包括:KFR-26/33GW/CBPY、KFR-26/33GW/I1BPY等。它们的电路原理基本相似。结合图1~图6电路原理图,对整机单元电路作简要分析。 1.室内机主电源电路 电路见上图,由电源捅头L、N两端输入AC220V交流电压,经保险管FS1、压敏电阻ZNR1、电容 C1和C2、T2过流保护和高频滤波后。一路经接线柱L、N两端送到室外机主电源电路的输入端。其中N 端与通讯电路的S端组成室内、室外机的通讯传输线路;另一路经A、B两端送到电源变压器T1的初级线圈;第三路送到室内风机控制电路。 2.室内机辅助电源电路 电路见中图,由电源变压器T1次级线圈输出的两路低压交流电,一路经捕件CN5(3)、(4)脚送到整流桥堆IC6(1)、(2)脚,经IC6、C8和C35整流、滤波后,输m+13V电压,给换气风机(M2)供电;另一路经插件CN5(1)、(2)脚送到整流桥堆IC7(1)、(2)脚,经整流桥堆IC7、三端稳压块IC4(7812)和IC5(7805)、C9~C11和C32~C34整流、滤波、稳压后。输出稳定的+12V和+5V 电压,分别给继电器控制、室内风机控制、步进电机控制、蜂鸣器、主控芯片、复位、过零检测、驱动、温度传感器、通讯、存储器、按键和显示等电路供电。 3.室内风机控制电路 电路见上图、下图。在主控芯片IC3(UPD780021)内部程序的控制下,由(1)脚输出室内风机控制信号,并由三极管04和双向可控硅光耦IC11(3526)进行控制,可实现室内风机(FAN)的运转、停转及无级调速等功能。当IC3(1)脚输出高电平时,Q4导通,IC11内部发光管导通。其发光强度控制内部双向可控硅的导通程度。从而进一步控制室内风机(FAN)的工作状态和运转速度。同时室内风机(FAN)的转速还受反馈电路控制,当风机转速信号通过R23、C20反馈到IC3(53)脚后,其内部风机转速检测电路则按照风机运转状况来确定风机转速。从而准确控制风机(FAN)的转速。 4.换气风机控制电路 电路见下图,为了让用户室内保持新鲜的空气,该空调设计了换气功能。由IC3(2)脚输出换气风机控制信号,当输出高电平时,经R10送到Q1的b极,Q1导通,驱动换气风机(M2)运转。从而实现与室外空气进行交换。 5.过零检测电路 电路见中图、下图,该电路一是检测供电电压是否正常;二是为双向可控硅提供同步触发信号。南电源变压器T1次级输出低压交流电,经D7和D8整流,输出频率约为100Hz脉动电压,经R43~R45 分压后的正弦交流信号,送到三极管Q3的b极,当b极电压大于0.7V时,Q3导通,C31通过Q3进行放电,主控芯片IC3(UPD780021)(51)脚便得到一个低电平;当b极电压小于0.7V时,Q3截止,+5V 电压通过R7对C31进行充电,于是IC3(51)脚便得到周期为10ms的(高电平)过零触发信号。 6.室内机晶振电路 电路见下图,由主控芯片IC3(48)、(49)脚内部电路与晶体XT1组成晶振电路,产生4.19MHz 主振荡频率信号。

电气控制电路基础电气原理图

电气控制电路基础电气原 理图 The Standardization Office was revised on the afternoon of December 13, 2020

电宅控制电路基础(电寬原理图) 电气控制系统图一般有三种:电气原理图、电器布置图和电气安装接线图。 这里重点介绍电气原理图。 电气原理图目的是便于阅读和分析控制线路,应根据结构简单、层次分明清晰的原则,釆用电器元件展开形式绘制。它包括所有电器元件的导电部件和接线端子,但并不按照电器元件的实际布置位置来绘制,也不反映电器元件的实际大小。 电气原理图一般分主电路和辅助电路(控制电路)两部分。 主电路是电气控制线路中大电流通过的部分,包括从电源到电机之间相连的电器元件;一般由组合开关、主熔断器、接触器主触点、热继电器的热元件和电动机等组成。 辅助电路是控制线路中除主电路以外的电路,其流过的电流比较小和辅助电路包括控制电路、照明电路、信号电路和保护电路。其中控制电路是由按钮、接触器和继电器的线圈及辅助触点、热继电器触点、保护电器触点等组成。 电气原理图中所有电器元件都应采用国家标准中统一规定的图形符号和文字符号表示。 电气原理图中电器元件的布局

电气原理图中电器元件的布局,应根据便于阅读原则安排。主电路安排在图面左侧或上方,辅助电路安排在图面右侧或下方。无论主电路还是辅助电路,均按功能布置,尽可能按动作顺序从上到下,从左到右排列。 电气原理图中,当同一电器元件的不同部件(如线圈、触点)分散在不同位置时,为了表示是同一元件,要在电器元件的不同部件处标注统一的文字符号。对于同类器件,要在其文字符号后加数字序号来区别。如两个接触器,可用KMI、KMZ文字符号区别。 电气原理图中,所有电器的可动部分均按没有通电或没有外力作用时的状态画出。 对于继电器、接触器的触点,按其线圈不通电时的状态画出,控制器按手柄处于零位时的状态画出;对于按钮、行程开关等触点按未受外力作用时的状态画出。 电气原理图中,应尽量减少线条和避免线条交叉。各导线之间有电联系时,在导线交点处画实心圆点。根据图面布置需要,可以将图形符号旋转绘制,一般逆时针方向旋转90。,但文字符号不可倒置。 图面区域的划分 图纸上方的1、2、3…等数字是图区的编号,它是为了便于检索电气线路,方便阅读分析从而避免遗漏设置的。图区编号也可设置在图的下方。

继电器控制电路模块设计及原理图

继电器控制电路模块设计及原理图 能直接带动继电器工作的CMOS集成块电路 在电子爱好者认识电路知识的的习惯中,总认为CMOS集成块本身不能直接带动继电器工作,但实际上,部分CMOS集成块不仅能直接带动继电器工作,而且工作还非常稳定可靠。本实验中所用继电器的型号为JRC5M-DC12V微型密封的继电器(其线圈电阻为750Ω)。现将CD4066 CMOS集成块带动继电器的工作原理分析如下: CD4066是一个四双向模拟开关,集成块SCR1~SCR4为控制端,用于控制四双向模拟开关的通断。当SCR1接高电平时,集成块①、②脚导通,+12V→K1→集成块①、②脚→电源负极使K1吸合;反之当SCR1输入低电平时,集成块①、②脚开路,K1失电释放,SCR2~SCR4输入高电平或低电平时状态与SCR1相同。 本电路中,继电器线圈的两端均反相并联了一只二极管,它是用来保护集成电路本身的,千万不可省去,否则在继电器由吸合状态转为释放时,由于电感的作用线圈上将产生较高的反电动势,极容易导致集成块击穿。并联了二极管后,在继电器由吸合变为释放的瞬间,线圈将通过二极管形成短时间的续流回路,使线圈中的电流不致突变,从而避免了线圈中反电动势的产生,确保了集成块的安全。 低电压下继电器的吸合措施 常常因为电源电压低于继电器的吸合电压而使其不能正常工作,事实上,继电器一旦吸合,便可在额定电压的一半左右可靠地工作。因此,可以在开始时给继电器一个启动电压使其吸合,然后再让其在较低的电源电压下工作,如图所示的电路便可实现此目的。 工作原理:

如图所示。V1为单结晶体管BT33C,它与R1、R2、R3和C1组成一个张弛式振荡器,SCR 为单向可控硅,按下启动按钮AN1后,电路通电,因为SCR无触发电压,所以不导通,继电器J不动作,电源通过R4和VD1给电容C2迅速充电至接近电源电压(Vcc-VD1压降)。同时,电源经R1给电容C1充电。数秒后,C1上电压充到V1的触发电压,C1立即通过V1放电,在R3上形成一个正脉冲,该脉冲一路加到V2基极,使V2迅速饱和导通,V2集电极也即电容C2正极近于接地。由于此时C2上充有上正下负的正极性电压,所以C2负极也即J 线圈一端呈负电位。R3上的正脉冲另一路经VD2、C3去触发可控硅导通,SCR阴极也即J 线圈另一端接近电源电压。这时,J线圈实际上承受约两倍的电源电压,所以J1-1闭合,松开AN1后,J1-1自保。J1-2将V1、V2供电切断,继电器在接近电源电压下工作。图中,AN2为停止按钮,按下AN2,J失电释放,J1-1断开,整个控制电路失电。 制作本电路时,一般可取继电器的额定电压为电源电压的1.5倍左右,一般情况下,任何型号的单向可控硅(或双向可控硅)皆可满足本电路需要。V2、C1、C3的耐压视电源电压的高低选取。C2耐压最好不低于电源电压的两倍。 继电器的三种附加电路 继电器是电子电路中常用的一种元件,一般由晶体管、继电器等元器件组成的电子开关驱动电路中,往往还要加上一些附加电路以改变继电器的工作特性或起保护作用。继电器的附加电路主要有如下三种形式: 1.继电器串联RC电路: 电路形式如图1,这种形式主要应用于继电器的额定工作电压低于电源电压的电路中。当电路闭合时,继电器线圈由于自感现象会产生电动势阻碍线圈中电流的增大,从而延长了吸合时间,串联上RC电路后则可以缩短吸合时间。原理是电路闭合的瞬间,电容C两端电压不能突变可视为短路,这样就将比继电器线圈额定工作电压高的电源电压加到线圈上,从而加快了线圈中电流增大的速度,使继电器迅速吸合。电源稳定之后电容C不起作用,电阻R起限流作用。 2.继电器并联RC电路: 电路形式见图2,电路闭合后,当电流稳定时RC电路不起作用,断开电路时,继电器线圈由于自感而产生感应电动势,经RC电路放电,使线圈中电流衰减放慢,从而延长了继电器衔铁释放时间,起到延时作用。 3.继电器并联二极管电路: 电路形式见图3,主要是为了保护晶体管等驱动元器件。当图中晶体管VT由导通变为截止时,流经继电器线圈的电流将迅速减小,这时线圈会产生很高的自感电动势与电源电压叠加后加在VT的c、e两极间,会使晶体管击穿,并联上二极管后,即可将线圈的自感电动势钳位于二极管的正向导通电压,此值硅管约0.7V,锗管约0.2V,从而避免击穿晶体管等

单片机温度控制系统电路原理图

引言 在现代化的工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。例如:在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。采用MCS-51单片机来对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。因此,单片机对温度的控制问题是一个工业生产中经常会遇到的问题。本文以它为例进行介绍,希望能收到举一反三和触类旁通的效果。 1硬件电路设计 以热电偶为检测元件的单片机温度控制系统电路原理图如图1所示。 温度检测和变送器 温度检测元件和变送器的类型选择与被控温度的范围和精度等级有关。镍铬/镍铝热电偶适用于 0℃-1000℃的温度检测范围,相应输出电压为。 变送器由毫伏变送器和电流/电压变送器组成:毫伏变送器用于把热电偶输出的变换成4mA-20mA的电流;电流/电压变送器用于把毫伏变送器输出的4mA-20mA电流变换成0-5V的电压。 为了提高测量精度,变送器可以进行零点迁移。例如:若温度测量范围为500℃-1000℃,则热电偶输出为,毫伏变送器零点迁移后输出4mA-20mA范围电流。这样,采用8位A/D转换器就可使量化温度达到℃以内。 接口电路 接口电路采用MCS-51系列单片机8031,外围扩展并行接口8155,程序存储器EPROM2764,模数转换器ADC0809等芯片。 由图1可见,在=0和=0时,8155选中它内部的RAM工作;在=1和=0时,8155选中它内部的三个I/O端口工作。相应的地址分配为: 0000H - 00FFH 8155内部RAM 0100H 命令/状态口 0101H A 口 0102H B 口 0103H C 口 0104H 定时器低8位口 0105H 定时器高8位口

铣床电路控制原理图

铣床电路控制原理图 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

铣床控制电路: 一、铣床的结构原理: 1、铣床的工作台及夹具 2、铣床的外形 3、铣床结构: ①、主轴;②、悬梁;③、刀杆支架;④、工件工作台;⑤、(工件工作台)左右进给操作手柄; ⑥、(工件工作台)前后进给操作手柄;⑦、(工件工作台)上下操作手柄;⑧、进给变速手柄及变速盘; ⑨、升降工作台;⑩、主轴变速盘及变速手柄;⑾、主轴电动机及进给电动机等等。 4、铣床的运动形式: ①、主轴运动:主轴带动铣刀作旋转运动,由M1拖动(为减小负载波动对加工质量影响,主轴上装有飞轮); ②、进给运动:指工作台带动工件作上下、左右、前后6个方向的直线运动(由三根进给丝杆实现),及圆形工作台的旋转运动,由M2拖动; ③、辅助运动:指工作台带动工件作上下、左右、前后6个方向的快速运动,由M2与电磁离合器YC3(YC3又叫快速电磁离合器)联合拖动。 5、铣床对各运动形式的要求: ①、主轴旋转平稳,以保证加工质量(采用飞轮); ②、铣削加工时,工件同一时刻只能作某一个方向的进给运动; ③、用圆形工作台加工时,不能移动,只能旋转;

④、主轴变速、进给变速用机械变速实现,为保证变速易于齿合,应有变速冲动控制; ⑤、据工艺要求,先主轴旋转后再进给运动; ⑥、为操作方便,应有两地控制。(机械离合器) 6、机床进给运动示意图:圆形工作台旋转传动链 横向移动传动链 (电磁离合器) YC2(正常进给) 垂直移动传动链 M2——— YC3(快速进给)纵向移动传动链 7、铣床的加工功能: ①、加工平面; ②、加工斜面; ③、加工沟槽; ④、(装上分度盘)可以铣切齿轮和螺旋面; ⑤、(装上园工作台)可以铣切凸轮和弧形槽。 二、铣床电路控制原理: 1、电路图(见上) 2、原件作用: SA1——主轴上刀制动开关; SA2——工作台状态选择开关:当接通圆形工作台时SA2-2(15-13)接通;当圆形工作台不工作时SA2-1(8-15)、SA2-3(11-12)接通。

PWM控制电路的基本构成及工作原理

图 1 系统总体框图 (1)整流滤波模块:对电网输入的交流电进行整流滤波,为变换器提供波纹较小的直流电压。 (2)三相桥式逆变器模块:把直流电压变换成交流电。其中功率级采用智能型 IPM 功率模块,具有电路简单、可 靠性高等特点。 (3)LC 滤波模块:滤除干扰和无用信号,使输出信号为标准正弦波。 (4) 控制电路模块:检测输出电压、电流信号后,按照一定的控制算法和控制策略产生 SPWM 控制信号,去控制 IPM 开关管的通断从而保持输出电压稳定,同时通过 SPI 接口完成对输入电压信号、电流信号的程控调理。捕获单元完 成对输出信号的测频。 (5) 电压、电流检测模块:根据要求,需要实时检测线电压及相电流的变化,所以需要三路电压检测和三路电流 检测电路。所有的检测信号都经过电压跟随器隔离后由 TMS320F28335 的 A/D 通道输入。 基于 DSP 的三相 SPWM 变频电源的设计 变频电源作为电源系统的重要组成部分,其性能的优劣直接关系到整个系统的安全和可靠性指标。现代变频电源以低功 耗、高效率、电路简洁等显著优点而备受青睐。变频电源的整个电路由交流 -直流-交流-滤波等部分构成,输出电压和电 流波形均为纯正的正弦波,且频率和幅度在一定范围内可调。 本文实现了基于 TMS320F28335 的变频电源数字控制系统的设计, 通过有效利用 TMS320F28335 丰富的片上硬件资 源,实现了 SPWM 的不规则采样,并采用 PID 算法使系统产生高品质的正弦波,具有运算速度快、精度高、灵活性好、 系统扩展能力强等优点。 系统总体介绍 根据结构不同,变频电源可分为直接变频电源与间接变频电源两大类。本文所研究的变频电源采用间接变频结构即 交-直-交变换过程。首先通过单相全桥整流电路完成交 -直变换,然后在 DSP 控制下把直流电源转换成三相 供给后级滤波电路,形成标准的正弦波。变频系统控制器采用 SPWM 波形 TI 公司推出的业界首款浮点数字信号控制器 TMS320F28 335,它具有 150MHz 高速处理能力,具备 32 位浮点处理单元,单指令周期 32 位累加运算,可满足应用对于更快代码 开发与集成高级控制器的浮点处理器性能的要求。与上一代领先的数字信号处理器相比,最新的 F2833x 浮点控制器不 仅可将性能平均提升 50%,还具有精度更高、简化软件开发、兼容定点 图 1 所示。 C28x TM 控制器软件的特点。系统总体框图如

小车控制电路原理图

智能小车控制 在科技高速发展的当今社会,人类对于汽车的无人驾驶技术的研究热度有增无减,工程训练(电工电子)以STC系列的芯片作为主控芯片,搭配红外循迹、红外测距、超声波测距对智能小车的周边环境进行监测,保障小车可以安全正常的行驶,搭载颜色传感器用来识别物体的颜色。系统图如图1所示。 图1. 系统框图 一、芯片介绍 1、STC15系列单片机 智能小车以IAP15W4K58S4作为主控芯片,IAP15W4K58S4是属于STC15系列的单片机,芯片采用LQFP44方式封装,速度比传统8051快8-12倍,内部集成高精度R/C时钟;支持ISP/IAP(在系统/在应用可编程);7个定时器/计数器,其中5个16位可重装定时器/计数器;4路超高速完全独立的串口;8通道10位ADC;6通道15位的高精度PWM,加上2路CCP;从型号规格体现出该芯片拥有58K ROM和

4K RAM。实物图如图2所示。 图2. IAP15W4K58S4实物图 2、颜色传感器TCS3200 颜色传感器TCS3200是TAOS公司推出的可编程彩色光到频率的转换器,采用8引脚表面贴装形式封装(如图3所示),它把可配置的硅光电二极管与电流频率转换器集成在单一的CMOS电路上,同时在芯片上集成四种不同的滤光器:红、绿、蓝(RGB)三种滤光器各16个,不带任何过滤器16个。为了保证能够尽量减少入射光辐射不平衡,这64个过滤器是交叉排列,从而可以提高颜色识别率。由于可以驱动标准的TTL或CMOS逻辑输入,所以可直接与MCU或其他逻辑电路相连接,并且可以直接输出数字量,并且能够实现每个彩色信道10位以上的转换精度,因而不再需要A/D转换电路,使电路变得更简单。

电动机正反转控制电路图及其原理分析

正反转控制电路图及其原理分析 要实现电动机的正反转,只要将接至电动机三相电源进线中的任意两相对调接线,即可达到反转的目的。下面是接触器联锁的正反转控制线路,如图所示

图中主回路采用两个接触器,即正转接触器KM1和反转接触器KM2。当接触器KM1的三对主触头接通时,三相电源的相序按U―V―W接入电动机。当接触器

KM1的三对主触头断开,接触器KM2的三对主触头接通时,三相电源的相序按W―V―U接入电动机,电动机就向相反方向转动。电路要求接触器KM1和接触器KM2不能同时接通电源,否则它们的主触头将同时闭合,造成U、W两相电源短路。为此在KM1和KM2线圈各自支路中相互串联对方的一对辅助常闭触头,以保证接触器KM1和KM2不会同时接通电源,KM1和KM2的这两对辅助常闭触头在线路中所起的作用称为联锁或互锁作用,这两对辅助常闭触头就叫联锁或互锁触头。 正向启动过程:按下起动按钮SB2,接触器KM1线圈通电,与SB2并联的KM1的辅助常开触点闭合,以保证KMl线圈持续通电,串联在电动机回路中的KM1的主触点持续闭合,电动机连续正向运转。 停止过程:按下停止按钮SB1,接触器KMl线圈断电,与SB2并联的KM1的辅助触点断开,以保证KMl线圈持续失电,串联在电动机回路中的KMl的主触点持续断开,切断电动机定子电源,电动机停转。 反向起动过程:按下起动按钮SB3,接触器KM2线圈通电,与SB3并联的KM2的辅助常开触点闭合,以保证KM2线圈持续通电,串联在电动机回路中的KM2的主触点持续闭合,电动机连续反向运转。 对于这种控制线路,当要改变电动机的转向时,就必须先按停止按钮SB1,再按反转按钮SB3,才能使电机反转。如果不先按SB1,而是直接按SB3,电动机是不会反转的。

相关主题