搜档网
当前位置:搜档网 › 隐马尔科夫模型分词器

隐马尔科夫模型分词器

隐马尔科夫模型分词器
隐马尔科夫模型分词器

隐马尔科夫模型

中文分词工程报告

一,研究背景

随着互联网技术的发展,计算机在人们的生产生活当中起着不可或缺的作用,而计算机对中文的分词,理解,以及翻译也随着社会生产力的发展,需求量也越来越大,而中文词汇多,语义繁杂,语法不清晰的问题也随之暴露出来,所以一个好的中文分词模型对建立中文分词系统起着至关重要的作用。

二,模型方法

本工程主要采用了隐马尔科夫模型。

隐马尔可夫模型可以表示为一个五元组( S, O, A, B,)

S 是一组状态的集合。

S = {‘S’, ‘I’, ‘B’, ‘E’}

O是一组输出符号的集合。

A 是状态转移矩阵。

符号B 输出概是率分布

B = {P( vk | j )} P( vk | j )表示在状态j时输出符号vk的概率

π是初始状态概率分布π={ i }

πi = P( q1 = i ) 表示初始选择某个状态的概率。

首先,在A矩阵中求出各个状态之间转移的概率,再算出B中在状态J时输出符号vk的概率,然后算出各种情况下的概率情况,最后所得的最大概率的序列就是中文分词的序列

例如:

模型的参数已知,评价某个分词结果

我爱你程序员

S S S B I E

Value=?*P(S->S)*P(S->S)*P(S->B)*P(B->I)*P(I->E)*

P(我|S)* P(爱|S)* P(你|S)* P(程|B)* P(序|I)* P(员|S) 求得最佳的转换序列,再进行相应的匹配,就能得到所求的中文分词了三,系统设计

首先,我们需要统计很多词语来用程序训练。选取人民日报上的语料库的格式如下:

我们在一个单独的程序里一行一行的读入这些语料,并依据JA V A中String 包的split()函数对这一行的许多元组按照”\\s+”来拆分成一个个小元组,例如:迈向/vt,充满/vt.然后对单个的小元组按照”/”来拆分,并统计重复的词的个数。最终在新的文件里形成:词组词性词出现的个数,这样的形式。

所用到的源代码如下:

Vector all = new Vector();

Vector vocabu = new Vector();

Vector grammar= new Vector();

Vector num= new Vector();

File s = new File("D:\\we.txt");

File w = new File("D:\\result.txt");

FileWriter fw = new FileWriter(w);

FileReader fr = null;

fr = new FileReader(s);

@SuppressWarnings("resource")

BufferedReader fis=new BufferedReader(fr);

String str = null;

int i,j;

while((str=fis.readLine())!=null)

{

i=0;

j=1;

String[] sp= str.split("\\s+");

for(i=0;i

{

all.add(i,sp[i]);

}

if(!all.isEmpty())

{

for(j=0;j

{

String cizu = all.elementAt(j);

String[] sic = cizu.split("/");

// System.out.println(sic[0]+" ");

if(sic[0].length()<15&&sic[0].length()>0&&sic.length==2)

{

int weizhi=vocabu.indexOf(sic[0]);

// System.out.println(sic[0]);

if(weizhi==-1)

{

vocabu.add(sic[0]);

grammar.add(sic[1]);

num.add(1);

}

else{

int count = num.remove(weizhi);

count=count+1;

num.add(weizhi,count);

}

}

}

}

//System.out.println(all);

all.removeAllElements();

//str = fis.readLine();

}

// System.out.println(vocabu);

// System.out.println(grammar);

// System.out.println(num);

long number = 0;

for(int as=0;as

{

number=number+num.get(as);

}

System.out.println(number);

for(int e=0;e

{

String a0 = String.valueOf(e+1);

String a1=vocabu.get(e);

String a2=grammar.get(e);

String a3=String.valueOf(num.get(e));

String a=a1+"\t"+a2+"\t"+a3+"\r\n";

char[] buffer1=new char[a.length()];

buffer1=a.toCharArray();

fw.write(buffer1);

}

fw.close();

fr.close();

结果如下图所示:

然后对每个词分析,如果是单字,则用S表示,如果是一个词,则词首用B表示,词尾用W表示,词中用E表示,并统计次数。例如迈向===BW 中共中央===BEEW

程序源代码如下:

Vector vocabu = new Vector();

Vector num= new Vector();

File w = new File("D:\\result.txt");

File s = new File("D:\\Aun.txt");

FileWriter fs2=new FileWriter(s);

FileReader fr = new FileReader(w);

@SuppressWarnings("resource")

BufferedReader fis=new BufferedReader(fr);

String str =null;

while((str=fis.readLine())!=null)

{

String[] spr = str.split("\t");

if(spr[0].length()==1)

{

if(vocabu.contains(spr[0]+" "+"S"))

{

int i=vocabu.indexOf(spr[0]+" "+"S");

int j= num.remove(i);

int m = j+Integer.parseInt(spr[2]);

num.add(i,m);

}

else {

vocabu.add(spr[0]+" "+"S");

num.add(Integer.parseInt(spr[2]));

}

}

else{

if(vocabu.contains(String.valueOf(spr[0].charAt(0))+" "+"B"))

{

int

i=vocabu.indexOf(String.valueOf(spr[0].charAt(0))+" "+"B");

int j= num.remove(i);

int m = j+Integer.parseInt(spr[2]);

num.add(i,m);

}

else {

vocabu.add(String.valueOf(spr[0].charAt(0))+" "+"B");

num.add(Integer.parseInt(spr[2]));

}

if(vocabu.contains(String.valueOf(spr[0].charAt(spr[0].length()-1))+" "+"W"))

{

int

i=vocabu.indexOf(String.valueOf(spr[0].charAt(spr[0].length()-1))+" "+"W");

int j= num.remove(i);

int m = j+Integer.parseInt(spr[2]);

num.add(i,m);

}

else {

vocabu.add(String.valueOf(String.valueOf(spr[0].charAt(spr[0].length()-1))+" "+"W"));

num.add(Integer.parseInt(spr[2]));

}

if(spr.length>2){

for(int e=1;e

{

if(vocabu.contains(String.valueOf(spr[0].charAt(e))+" "+"E"))

{

int

i=vocabu.indexOf(String.valueOf(spr[0].charAt(e))+" "+"E");

int j= num.remove(i);

int m = j+Integer.parseInt(spr[2]);

num.add(i,m);

}

else {

vocabu.add(String.valueOf(spr[0].charAt(e))+" "+"E");

num.add(Integer.parseInt(spr[2]));

}

}

}

}

}

for(int e=0;e

String a1=vocabu.get(e);

String a3=String.valueOf(num.get(e));

String a=a1+"\t"+a3+"\r\n";

char[] buffer1=new char[a.length()];

buffer1=a.toCharArray();

fs2.write(buffer1);

}

fs2.close();

//

并形成新的文件如下:

根据这些SWEB来分析S->B B->E S->S B->W E->E E->W W->S W->B的次数,并得到A矩阵,A矩阵分别是以上SWEB的概率次数。

A矩阵的代码如下:

double[][] anun = new double[4][4];

for(int i=0;i

{

String a = sweb.get(i);

String b = sweb.get(i+1);

if(a.equalsIgnoreCase("S")&&b.equalsIgnoreCase("S"))

{

anun[0][0]+=1;

}

if(a.equalsIgnoreCase("S")&&b.equalsIgnoreCase("B"))

{

anun[0][1]+=1;

}

if(a.equalsIgnoreCase("B")&&b.equalsIgnoreCase("E"))

{

anun[1][2]+=1;

}

if(a.equalsIgnoreCase("B")&&b.equalsIgnoreCase("W"))

{

anun[1][3]+=1;

}

if(a.equalsIgnoreCase("E")&&b.equalsIgnoreCase("W"))

{

anun[2][3]+=1;

}

if(a.equalsIgnoreCase("W")&&b.equalsIgnoreCase("S"))

{

anun[3][0]+=1;

}

if(a.equalsIgnoreCase("W")&&b.equalsIgnoreCase("B"))

{

anun[3][1]+=1;

}

if(a.equalsIgnoreCase("E")&&b.equalsIgnoreCase("E"))

{

anun[2][2]+=1;

}

}

其中sweb为一个Vector向量,存储SWEB的序列。

求得A矩阵后,我们输入一串中文字符,以每个字出现SWEB的次数来代替其概率构造出B矩阵。在B矩阵中,用魏特碧算法,从第二个字开始,计算前一个字的每一种状态的概率乘上后一个的某一种状态的概率再乘上A矩阵中对应的两中状态之间的概率。比较并取得最大值,依次计算存储并获得一个矩阵,

定义为T1,然后将每种状态概率最大值对应的前一种状态记录(SWEB分别用0123代替)并存储为新的矩阵T2,最后在T1矩阵的最后一列中找到最大值,并在T2矩阵中找到对应的位置,依次向前取相应位置的值并记录,得到一个和输入的中文字符串长度一样的数字串。

源代码如下:

int j=zhongwen.length();

double ps[][] = new double[4][j];

for(int i=0;i<4;i++)

{

for(int m=0;m

{

ps[i][m]=0;

}

}

for(int q=0;q

{

if(vocabu.contains(String.valueOf(zhongwen.charAt(q))+" "+"S")){ int strw=vocabu.indexOf(String.valueOf(zhongwen.charAt(q))+" "+"S");

ps[0][q]=Math.pow(num.get(strw),0.1);

}

if(vocabu.contains(String.valueOf(zhongwen.charAt(q))+" "+"B")){ int strw=vocabu.indexOf(String.valueOf(zhongwen.charAt(q))+" "+"B");

ps[1][q]=Math.pow(num.get(strw),0.1);

}

if(vocabu.contains(String.valueOf(zhongwen.charAt(q))+" "+"E")){ int strw=vocabu.indexOf(String.valueOf(zhongwen.charAt(q))+" "+"E");

ps[2][q]=Math.pow(num.get(strw),0.1);

}

if(vocabu.contains(String.valueOf(zhongwen.charAt(q))+" "+"W")){ int strw=vocabu.indexOf(String.valueOf(zhongwen.charAt(q))+" "+"W");

ps[3][q]=Math.pow(num.get(strw),0.1);

}

}

int location[][] = new int[4][j];

double juli[][] = new double[4][j];

juli[0][0]=ps[0][0];

juli[1][0]=ps[1][0];

for(int we = 1;we

{

for(int er = 0;er<4;er++)

{

for(int rt=0;rt<4;rt++)

{

if(juli[rt][we-1]*ps[er][we]*anun[rt][er]>juli[er][we])

{

juli[er][we]=juli[rt][we-1]*ps[er][we]*anun[rt][er];

location[er][we]=rt;

}

}

}

}

double temp=0;

for (int i=0;i<4;i++)

{

if(juli[i][j-1]>temp)

{

temp=juli[i][j-1];

}

}

int jer=0;

// for (int i=0;i<4;i++)

// {

// if(juli[i][j-1]==temp)

// {

// break;

// }

// }

while(juli[jer][j-1]!=temp)

{

jer++;

}

// System.out.println(jer);

String sptr=String.valueOf(3);

for (int sd =j-1;sd>0;sd--)

{

int js=location[jer][sd];

sptr = String.valueOf(js)+sptr;

jer=js;

}

System.out.println(sptr);

由于次数过大可能超出INT的范围,所以我用MATH的方法对其进行了等比缩小。

最后得出的数字串中,与中文相对应的,0或3对应的中文字后被拆分。就完成了隐马尔科夫模型对中文的分词,将被分的词与之前的词相对应的词比较并取得词性(同词不同性暂不能考虑)最后我用JA V A创建了一个简单的GUI,可以多次输入与分析中文分词:

四,系统演示与分析

如三中事例的那样,对于“结婚的和尚未结婚的”这一有歧义的中文字符串成功地避免了“和尚”一词的出现,但对于像“欢迎新老师生前来就餐”,“大学生前来应聘”等,并不能把“生前”给分开:

还有一些其他的语法语义有歧义的地方不能很好的解决句式杂糅和歧义的问题。另外,对于三个字,四个字词的分析还不够好,例如“中国人”只能拆分成“中”“国人”,“中共中央”拆成“中”“,共”和“中央”,目前测试成功的只有“干什么”不会被拆分开。

究其原因,我想是首先是语料库的不充分,对于一些词在不同位置出现的概率并没有很好地统计,导致所求出来的结果出现误差。其次是运用词在不同位置的概率来分词,本身具有一定的局限性,不可能做到太完美。但相比最长路径,已经好太多。

五,对本门课的感想、意见和建议

学习了这门课,让我掌握了对中文分词的基本概念的理解。中文不比英文,德文,有着良好的语法系统,不如拉丁文只有26个字母。它个数众多,每个字的意思不尽相同,语法比较杂乱无章。古代汉语和现代汉语的语法又不相同。同时伴随着时代的发展,中文的语法也在日新月异地变化着。我觉得解决中文词法分析是一种比较困难的工程,需要长时间的探索与研究,并能跟上时代的步伐。如果形成一套完善的系统,既能处理好中文分词,又能对新词,新意词进行同步地学习并完善系统,中文在计算机系统中的地位将提高很大一步。

隐马尔科夫模型

隐马尔科夫模型 一、引入 二、定义 三、隐马尔科夫模型的计算 (1)估值问题 (2)解码问题 (3)训练问题 四、隐马尔科夫各种结构 H M M的由来 ?1870年,俄国有机化学家V l a d i m i r V.M a r k o v n i k o v第一次提出马尔科夫模型 ?马尔可夫模型和马尔可夫链

? 隐式马尔可夫模型(H M M ) 马尔可夫性 ? 如果一个过程的“将来”仅依赖“现在”而不依赖“过去”,则此过程具有马尔可夫性,或称此过程为马尔可夫过程 ? X (t+1) = f(X(t)) 马尔可夫链 ? 时间和状态都离散的马尔科夫过程称为马尔科夫链。 设在时刻t 的随机变量用t S 表示,其观察值用t s 表示,则如果当11s S ,

22s S =,……,t t s S =的前提下,11++=t t s S 的概率是如下式所示,则称为n 阶Markov 过程。 )|()|(1 1 111111t n t t n t t t t t t t s S s S P s S s S P +-+-++++===== (1) 这里t S 1 表示1S ,2S ,……,t S ,t s 1 表示1s ,2s ,……,t s ,t t s S 11=表示11s S =, 22s S =,……,t t s S =。特别的当如下式成立时,则称其为1阶Markov 过程, 又叫单纯马尔可夫过程。 )|()|(111 111t t t t t t t t s S s S P s S s S P =====++++ (2) 即:系统在任一时刻所处的状态只与此时刻的前一时刻所处的状态有关。而且,为了处理问题方便,考虑式(2)右边的概率与时间无关的情况,即: )|[)1,(1i t j t ij s S s S P t t P ===++ (3)

基于离散隐马尔科夫模型的语音识别技术

第24卷 第2期 2007年6月 河 北 省 科 学 院 学 报Journal of the Hebei Academy of Sciences Vol .24No .2June 2007 文章编号:1001-9383(2007)02-0008-04 基于离散隐马尔科夫模型的语音识别技术 高清伦,谭月辉,王嘉祯 (军械工程学院计算机工程系,河北石家庄 050003) 摘要:概述语音识别技术的基本原理,对当前三种主要识别技术———动态时间规整技术、隐含马尔科夫模型 技术及人工神经网络技术进行比较,重点介绍基于离散隐马尔科夫模型(DH MM )的语音识别系统的实现。关键词:语音识别;隐马尔科夫模型;动态时间规整;人工神经网络中图分类号:T N912.34 文献标识码:A Speech recogn iti on technology ba sed on d iscrete H MM GAO Q ing 2l un,TAN Yue 2hu i,WAN G J i a 2zhen (D epart m ent of Co m puter Engineering,O rdnance Engineering College,Shijiazhuang Hebei 050003,China ) Abstract:The conditi on and the basic p rinci p le of s peech recogniti on technol ogy are intr oduced,three differ 2ent kinds of s peech recogniti on syste m s such as DT W ,H MM ,ASR are compared,and p lace e mphasis on how t o realize DH MM in s peech recogniti on syste m is p resented e mphatically . Keywords:Speech recogniti on;H idden Markov Model (H MM );Dyna m ic Ti m e W ar p ing (DT W );A rtificial Neural Net w ork (ANN ) 语音识别技术是语音信号处理技术一个重要的研究方向,是让机器通过识别和理解过程把人 类的语音信号转变为相应的文本或命令的技术,它属于多维模式识别和智能计算机接口的范畴,涉及到声学、语音学、语言学、计算机科学、信号与信息处理和人工智能等诸多学科,是21世纪衡量一个国家信息科学技术发展水平的重要标准之一。 1语音识别技术概述 语音识别系统本质上是一种模式识别系统, 目前有很多语音识别算法,但其基本原理和基本 技术相似。一个完整的语音识别系统一般都包括有特征提取、模式匹配和参考模式库3个基本单元,它的基本结构如图1所示。 (1)特征提取 所谓特征提取就是从语音信号中提取用于语 音识别的有用信息,其基本思想是将预处理过的信号通过一次变换,去掉冗余部分,而把代表语音本质特征的参数抽取出来,如平均能量、平均跨零率、共振峰、LPC 系数、MFCC 系数等。 图1语音识别系统基本结构 (2)模式匹配 这是整个语音识别系统的核心,它是根据一定规则(如H MM )以及专家知识(如构词规则、语法规则、语义规则等),计算输入特征与参考模式 3收稿日期:2007-01-26 作者简介:高清伦(1976-),男,河北沧州人,硕士,主要从事信息工程理论应用方面的研究.

基于隐马尔科夫模型的股指预测

基于隐马尔科夫模型的股指预测和股指期货模拟交易研究 张莎莎河南大学在读研究生商学院 引言 计算标的股票价格的加权值得到的结果,即是股票指数。股指期货也可称为股价指数期货、期指,是指以股价指数为标的物的标准化期货合约,双方约定在未来的某个特定日期,可以按照事先确定的股价指数的大小,进行标的指数的买卖,到期后通过现金结算差价来进行交割。2010年2月20日,中国金融期货交易所沪深300股指期货合约,以及详细的业务规程,由中国证监会正式批准施行。自2010年4月16日以来,在上海和深圳将近有300个股票指数期货合约正式开始交易。与股指期货相对应的是套期保值、组合风险管理和风险套利。对股票指数的预测,如果投资者判断的方向正确,那么就可以获得高回报,否则他们将遭受巨大损失。无论是在哪个或者领域,人们都希望找到一种能够预测股票走势的定量方法,以达到获得超额收益的目的。所谓的市场时机,就是要选择购买(做多)和卖出(做空)的时间,创造一套模拟程序来预测指数走势。根据时间和方法的选择,可划分为基本的定时和定时技术。基于时机的宏观经济,能够影响资产价格或行业预测的资产价格,一般适用于长期市场,决定未来发展趋势;而定时技术的选择,即使是在重复类似的交易价格的前提下,来确定资产价格的趋势,只要有足够的自由裁量权的赢家还是可以获得超额收益,主要适用于短期市场甚至高频市场。早在上世纪八十年代末,就有国外学者把隐马尔可夫模型定义为一个双重嵌套的随机过程。而国内金融工程领域对该模型的研究尚处于不成熟阶段。罗军2009年做出的广发证券研究报告表明,在国内,该模型在周择时的应用上还是卓有成效的。 一、相关理论 (一)马尔科夫过程 马尔科夫过程,指的是一类具有马尔科夫性的随机过程,因安德烈·马尔可夫(A.A.Markov,1856-1922)而得名。对于这个过程,如果该过程当前的状态是确定的,那么与之相应的过去的历史状态和以后的未来状态是不相关的。可将其定义如下:

基于隐马尔可夫模型(hmm)的模式识别理论

基于隐马尔可夫模型(hmm)的模式 识别理论 报告人: 时间:2020年4月21日 地点:实验室

概述 基于隐马尔可夫模型(hmm)的模式识别方法在模式识别中有着广泛的应用。如语音识别、手写字识别、图想纹理建模与分类。hmm还被引入移动通信核心技术“多用户的检测”。近年来,另外在生物信息可学、故障诊断等领域也开始得到应用。 近几年已经已被学者用于人脸识别的研究之中,是今年来涌现出来的优秀人脸识别方法之一。 经过不断改进,尤其是最近的嵌入式隐马尔可夫模型(ehmm)已经在人脸识别方面取得很大的进展,经过实验,识别率较高,有很好的鲁棒性等优点。 隐马尔可夫模型基本理论依据来源于随机过程中马尔可夫过程理论。

马尔可夫及其马尔可夫过程 马尔可夫(A. Markov ,1856—1922)俄国数学家. 他开创了一种无后效性随机过程的研究,即在已知当前状态的情况下,过程的未来状态与其过去状态无关,这就是现在大家熟悉的马尔可夫过程.马尔可夫的工作极 大的丰富了概率论的内容,促使它成为自然科学和技术直接有关的最重要的数学领域之一. 在工程技术方面目前已被广泛用于通信,模式识别方面。

x(t) 与马尔可夫过程相关的概念. 随机变量与随机过程把随机现象的每个结果对应一个数,这种对应关系 称为随机变量.例如某一时间内公共汽车站等车乘客的人数,电话交换台 在一定时间内收到的呼叫次数等等,都是随机变量的实例. 随机过程随机过程是一连串随机事件动态关系的定量描述.即和“时间” 相关的随机变量。一般记为x(t)。比如在一天24小时,在每个整点时刻徐 州火车站的旅客数量。 马尔可夫过程与马尔可夫链设x(t)是一随机过程,过程在时刻t0+1所处 的状态与时刻t0所处的状态相关,而与过程在时刻t0之前的状态无关,这 个特性成为无后效性.无后效的随机过程称为马尔可夫过程(Markov Process). 举例:比如在万恶的旧社会流离失所的百姓在每天的饥饿程度是一个随机 过程。假如他们在t0时刻(今天)的饥饿状态是五分饱,他们在t0+1所 (明天)的饥饿状态的概率取决于t0时刻(今天),而和t0时刻(今天) 之前(昨天、前天。。。)无关。这样的一个随机过程就是一个马尔可 夫过程。

基于隐马尔科夫模型的移动应用端行为模式识别

摘要:随着移动应用的普及,作为恶意行为识别的基础,移动应用端的行为模式分析也成为当前研究热点。本文创新地从系统环境数据入手,通过对系统多方面数据的监控,建立隐马尔可夫模型,使用该模型对后续行为产生的系统环境数据进行隐马尔科夫估值计算,从而实现对后续行为模式的识别,同时在后续识别过程中不断优化模型。本文通过实验证明该方式具有一定有效性,为移动应用端行为模式识别提供了更多可能。 关键词:移动应用端;隐马尔可夫模型;行为模式 中图分类号:tp311.5 文献标识码:a 文章编号:1006-4311(2016)19-0173-03 0 引言 在移动设备迅速普及的今天,开展移动安全性研究势在必行。目前针对移动应用端恶意行为检测的方式主要是对移动应用端的应用程序进行反编译,分析其源码是否存在于恶意行为代码特征库,以此作为评判标准。但随着恶意行为代码特征库的不断增加会导致系统开销增大,检测速度变慢。另外,随着黑客们使用的代码混淆技术的发展,也使之能够逃避这种静态分析手段[1]。 因为程序的运行会造成系统环境数据变化,所以系统环境数据可以反映系统运行情况。本文提出一种基于隐马尔可夫模型的行为模式识别方式,通过对移动应用端系统运行环境的cpu使用率、内存使用率、进程数、服务数、流量数监测获得时间序列数据,对特定行为进行隐马尔科夫建模,以待测行为的时间序列与特定的模型之间相似度为评判标准,并在每次评判之后优化模型[2]。该方法目的在于有效识别行为模式,对移动端恶意行为分析的后续研究提供前提,丰富了行为检测的手段,具有一定的实用价值。 1 马尔可夫模型介绍 2 隐马尔可夫模型介绍 2.1 隐马尔可夫模型 在马尔可夫模型中,每一个状态代表一个可观察的事件。而在隐马尔科夫模型中观察到的事件是状态的随机函数,因此隐马尔科夫模型是一双重随机过程,其中状态转移过程是不可观察的,而可观察的事件的随机过程是隐蔽的状态转换过程的随机函数(一般随机过程)[3]。对于一个随机事件,有一观察值序列:o=o1,o2,…ot,该事件隐含着一个状态序列:q=q1,q2,…qt。 2.2 隐马尔科夫模型使用前提 假设1:马尔可夫性假设(状态构成一阶马尔可夫链)p(qi|qi-1…q1)=p(qi|qi-1)假设2:不动性假设(状态与具体时间无关)p(qi+1|qi)=p(qj+1|qj),对任意i,j 成立。 假设3:输出独立性假设(输出仅与当前状态有关)p(o1,…ot|q1,…,qt)=∏p(ot|qt)隐马尔科夫模型在解决实际问题的过程中,需要事先知道从前一个状态st-1,进入当前状态st的概率p(st|st-1),也称为转移概率,和每个状态st产生相应输出符号ot的概率p(ot|st),也称为发射概率。描述它的数学表达式为:λ={n,m,a,b,∏},下面对各个参数逐一描述: n表示隐状态s的个数,其取值为{s1,s2,…,sn}, m表示显状态o的个数,其取值为{o1,o2,…,on}, 2.3 隐马尔科夫可以解决的三个问题 ①评估问题:已知一个显状态序列o={o1,o2,…,on},并且有确定的λ={n,m,a,b,∏}组成的hmm参数,求发生此显状态的概率p(o|hmm)有效的解决算法是前向算法。 3 基于隐马尔科夫的移动应用端行为模式识别 3.1 获取时间序列

基于隐马尔可夫模型的入侵检测方法

基于隐马尔可夫模型的入侵检测方法 赵婧,魏彬,罗鹏 摘要:针对当前网络安全事件频发以及异常检测方法大多集中在对系统调用数据的建模研究上等问题,提出一种基于隐马尔可夫模型的入侵检测方法。该算法基于系统调用和函数返回地址链的联合信息来建立主机进程的隐马尔可夫模型。此外,针对常用训练方法存在的不足,设计了一种快速算法用以训练模型的各个参数。实验结果表明:基于系统调用和函数返回地址链的联合信息的引入能够有效区分进程的正常行为和异常行为,大幅度降低训练时间,取得了良好的运算效果。 关键词:入侵检测;隐马尔可夫模型;系统调用序列 入侵检测作为一种网络安全防卫技术,可以有效地发现来自外部或内部的非法入侵,因此针对入侵检测算法的研究具有重要的理论和很强的实际应用价值。 基于动态调用序列对系统的入侵行为进行发掘是入侵检测领域主要的检测方法之一。自Forrest在1996年首次提出使用系统调用进行异常检测的思路和方法以来,有很多基于此的改进算法被提出。 文献提出一种基于频率特征向量的系统调用入侵检测方法,将正常系统调用序列抽取出的子序列的频率特征转换为频率特征向量。文献提出基于枚举序列、隐马尔科夫2种方法建立系统行为的层次化模型。然而,这类方法在误报率以及漏报率方面仍与实际需求有着一定的差距。 此外,由于隐马尔可夫模型(hiddenmarkovmodel,HMM)是一种描述离散时间内观察数据非常强大的统计工具,因此在基于主机的入侵检测研究中,HMM方法是目前重要的研究方向之一。 美国新墨西哥大学的Warrender等首次于1999年在IEEESymposiumonSecurityandPrivacy 会议上提出将HMM应用于基于系统调用的入侵检测中。2002年,Qiao等提出使用HMM对系统调用序列进行建模,利用TIDE方法划分状态序列的短序列,建立正常数据的状态短序列库来进行检测。2003年,Cho等提出用HMM对关键的系统调用序列进行建模。文献设计了一种双层HMM模型进行入侵检测,而其中所用到的训练方法存在局部最优以及时间效率较低等问题限制了其在实际中的应用。文献依据在网络数据包中发现的频繁情节,设计了基于HMM的误用检测模型。文献设计了一种基于节点生长马氏距离K均值和HMM的网络入侵检测方法。近些年,针对此方面的研究热度依然不减。然而,从目前的研究情况看,虽然基于隐马尔可夫模型的入侵检测技术能取得较好的检测效果,但是也存在着如下几个问题: 1)基于HMM的入侵检测技术主要集中在对主机的命令序列或者系统调用序列进行建模,单一的数据源提供的信息较少,因此检测效果仍然不够理想。 2)在线学习问题,隐马尔可夫模型的建立需要消耗大量的时间和空间对参数进行调整学习,这导致了HMM难以得到有效的利用。综上所述,为克服现有模型算法所存在的问题,提出一种新的基于系统调用和进程堆栈信息的HMM入侵检测方法,该方法的主要思想是将系统调用和函数返回地址信息作为检测数据源,并利用HMM来构建主机特权进程的正常行为模型。其次,针对经典模型训练法存在局部最优且算法的复杂度较高等问题,设计一个更为简单的训练算法来计算HMM的参数,进而提升算法效率。最后,设计了附加观察值和附加状态等参数,用以消除非完备的数据以及零概率对模型的影响。 1、隐马尔可夫模型 马尔可夫模型中的每个状态都与一个具体的观察事件相互对应,但实际问题可能会比Markov链模型所描述的情况更复杂,人们所能观察到的事件一般情况下并不是与状态完全

隐马尔科夫

隐马尔科夫模型 1.隐马尔科夫模型的定义及相关术语 定义:隐马尔科夫模型是关于时序的模型,其描述一个隐藏的马尔科夫链随机生成不可观测的随机状态序列,再由各个状态生成一个观测,从而生成可观测的随机序列的过程。 状态序列:隐藏的马尔科夫链随机生成状态序列; 观测序列:每一个状态可以生成一个观测,则状态序列可以生成观测序列。 模型参数:隐马尔科夫模型有三个参数:初始概率分布π,状态转移概率分布A,观测概率分布B。 2隐马尔科夫模型建立基于的假设 (1)齐次马尔科夫性假设。 隐藏的马尔科夫链在任意时刻t的状态只依赖于其前一刻的状态,与其他时刻的状态和观测无关,也与t时刻无关。 (2)观测独立性假设。 任意时刻的观测只与本时刻的状态有关,与其他状态及观测无关。 3隐马尔科夫的三个问题 (1)概率计算问题。给定隐马尔科夫模型λ=(π,A,B)和观测序列O,计算在该模型下,该观测序列出现的概率。 (2)学习问题。隐马尔科夫模型参数的学习。给定观测序列,估计模型λ=(π,A,B)的参数,使得在该模型下该观测序列出现的概率最大。 (3)预测问题。给定模型参数和观测序列,求最有可能的状态序列。 4.概率计算 前向计算和后向计算。<统计学习方法>P177有例子。 5.学习算法 (1)监督学习。 根据观测序列和状态序列组合。采用极大似然的思想估计状态转移概率:

^1a =ij ij N j A Aij =∑ 其中,ij A 表示训练集中状态i 转移到状态j 中频数。 同样可以得到,状态为j 观测为k 的概率: ^1jk ij M jk k B b A ==∑ (2)非监督学习方法。 当我们只知道观测序列O 而不知道状态序列I 时,可以将状态序列I 看做隐变量,从而采用EM 算法进行求解,则我们要求解的目标是: (|)(|,)(|)I P O P O I P I λλλ=∑ EM 算法的E 步: Q 函数: 其中(,|)(|,)|P I O P I O P λλλ---= (O ),因为分母为常数,所以省略。即上式仍符合: (,)=(log (,|)|,)I Q E P O I O λλλλ--的形式。 有: i11112221(,|)=()()...()i i i i iT iT iT T P O I b o a b o a b o λπ- 则: i1()(1)()11(,)log (,|)(log())(,|)(log(()))(,|) T T i t i t i t t I I t I t Q P O I a P O I b o P O I λλπλλλ---- +===++∑∑∑∑∑ 上式,右侧的三项分别独自包含了模型参数的一项,下面分别对每一项进行分析。 对第一项运用朗格朗日乘子法计算: 首先写出拉格朗日函数: i 1i 11log (,|)(()1)N N i i P O i i r πλπ-===+-∑∑ s.t. i 1)1)N i π=-∑=0; 对i π求偏导并令结果为0得到: 1i (,|)0P O i i r λπ- =+= (2)

基于隐马尔科夫模型的命名实体识别

基于马尔科夫模型的命名实体识别 NE识别的数学描述 利用HMM解决序列标注问题,即给定一个观察值的序列,要寻找一个最优的标记序列,使得条件概率最大。根据贝叶斯公式可得: 在NE识别问题中,X是给定的句子,观察值为词性或词,则上式中P(X)对所有的类别都是一样的,因此可以忽略不考虑。则上面的公式可以转化为下面的形式: 即HMM实质式求解一个联合概率。上式中的标记序列Y可以看做是一个马尔科夫链,则对上式利用乘法公式有: 基于HMM的NE识别的问题就是如何在给定的模型下,从一定观察值序列的所有可能的状态下,选取最有的标记序列。常用的方法是viterbi算法,它属于动态规划算法,动态规划的思想是把问题分解,先解决最基本的子问题,再逐步外推寻找更大的子问题的最优解,在有限步后达到整个问题的最优解,即得到最有的NE标记序列 隐马尔科夫模型 观察到的事件是状态的随机函数,该模型是一个双重的随机过程,其中模型的状态转换过程是不可观察的。可观察的事件的随机过程是隐藏的状态转换过程的随机函数。形式化的描述为一个五元组。 1. S表示模型中的状态,N是模型的状态数。所有独立的状态定义为,且用来表示t时刻的状态。 2. O表示每个状态的观察值,M表示每个状态上对应的可能的观察值的数目。观察值对应于模型系统的实际输出,观察值记为: 3. 状态转移概率矩阵,其中,1<=i,j<=N,表示从状态i转移到状态j的概率,满足:>=0,;且。 4. 输出观察值概率分布矩阵,其中表示在状态下,t时刻出现的概率,即,1<=j<=N,1<=k<=M. 5. 初始状态分布向量,其中,即在t=1时刻处于状态的概率,满足:。 HMM模型需解决的三个问题: (1)评估问题。给定一个观察序列,以及模型,如何有效的计算,也就是这个观测序列有多大可能是由该模型产生的; (2)解码问题。给定观测序列以及模型,如何选择一个状态序列,使得观测序列O式最具可能的,即求解; (3)学习问题。如何能够通过调整参数以最大化 ICTCLAS分词的词性列表 名词(1个一类,7个二类,5个三类) 名词分为以下子类: n 名词 nr 人名 nr1 汉语姓氏 nr2 汉语名字 nrj 日语人名 nrf 音译人名 ns 地名

基于隐马尔科夫模型的人脸识别

基于隐马尔科夫的人脸识别 1人脸检测及常用算法 人脸检测,指的是从输入的图像(或者视频)中确定人脸的位置、大小和姿态的过程, 是进行人脸识别的基础,也是实现人脸识别功能的一个关键环节。 人脸检测是一种计算机视觉中的模式识别问题,就是将所有的人脸作为一个模式,而非人脸作为另一种模式,人脸检测的核心问题就是将人脸模式和非人脸模式区别开来。人脸检测的算法主要分为两大类,基于先验知识的和基于后验知识的学习和训练的算法。 常见人脸检测的算法有:基于特征子脸人脸检测算法:该算法将所有人脸的集合视作一个人脸子空间,通过检测样本与子空间之间的投影距离检测样本中是否存在人脸;基于模板匹配的人脸检测算法:该算法先设计一个代表标准人脸的模板,将进行检测的样本与标准模板进行比对,通过考察样本与标准模板的匹配程度,设置合理的阈值来检测样本中是否存在人脸;神经网络人脸检测算法:该算法是一种学习算法,用于学习的训练集分为属于人脸图像的训练集和非人脸图像的训练集两类,通过学习从而产生分类器进行人脸检测;基于纹理模型的算法,对于人脸图像的灰度共生矩阵进行计算可以获得倒数分差、惯量相关特征这三个特征矩阵,然后通过迭代计算求得人脸图像矩阵中的参数。使用这种方法取得的模型就被称为人脸纹理模型。若人脸姿态有旋转,通过对眼睛进行定位可以计算出人脸的旋转角度或者使用投影直方图FFT 变换等方法确定人脸旋转的方向,再进行人脸检测。 1.1Haar 特征 Harr 特征是一种矩形特征,在特征提取时由四类特征组成特征模板—边缘特征、圆心环绕特征、线性特征和特定方向的特征。特征模板包括白色矩形和黑色矩形两种。白色矩形内像素和(Sum 白)减去黑色矩形像素和(Sum 黑)就是模板的特征值。Haar 特征反映的是图像中相邻矩形区域的灰度变化。 Haar 特征的每一个特征值feature 可以表示为: ()i N i i r rectsum feature ?=∑=1 ω 其中i ω表示矩形的权重,()i r rectsum 表示矩形所包围图像的灰度值之和。Paul Viola 和Michacl Joncs 提出积分图算法提高图像举行特征的计算速度。 对于对象中的任意一点()y x ,A ,其灰度值为()y x i ,,积分图()()∑' ≤≤'''=y y x x y x i y x ii ,,,, 经过对图片的一次遍历,就可以得到图像中每一个点的积分图的值。 假设需要计算矩形 D 的特征,其顶点为点 1、2、3、4。这样,矩形 D 的

连续隐马尔科夫链模型简介

4.1 连续隐马尔科夫链模型(CHMM) 在交通规划和决策的角度估计特定出行者的确切的出行目的没有必要,推测出行者在一定条件下会有某种目的的概率就能够满足要求。因此本文提出一种基于无监督机器学习的连续隐马尔科夫链模型(CHMM)来识别公共自行车出行链借还车出行目的,根据个人属性、出行时间和站点土地利用属性数据,得到每次借还车活动属于某种出行目的的概率,进一步识别公共自行车出行链最可能的出行目的活动链。 4.1.1连续隐马尔科夫链模型概述 隐马尔可夫链模型(Hidden Markov Model,HMM)是一种统计模型,它被用来描述一个含有隐含未知状态的马尔可夫链。隐马尔可夫链模型是马尔可夫链的一种,其隐藏状态不能被直接观察到,但能通过观测向量序列推断出来,每个观测向量都是通过状态成员的概率密度分布表现,每一个观测向量是由一个具有相应概率密度分布的状态序列产生。 本文将隐马尔科夫链和混合高斯融合在一起,形成一个连续的隐马尔科夫链模型(CHMM),并应用该模型来识别公共自行车出行链借还车活动目的。连续隐马尔科夫链模型采用无监督的机器学习技术,用于训练的数据无需是标记的数据,该模型既不需要标记训练数据,也没有后续的样本测试,如提示-回忆调查。相反,该模型仅利用智能卡和总的土地利用数据。后者为隐藏活动提供额外的解释变量。出行链内各活动的时间和空间信息是从IC卡数据获得,相关土地利用数据是根据南京土地利用规划图和百度地图POI数据获得。 在本文的研究中,一个马尔可夫链可以解释为出行者在两个连续活动状态之间的状态转换,确定一个状态只取决于它之前的状态,一个状态对应一个出行者未知的借还车活动[48-50]。本研究坚持传统的马尔可夫过程的假设,将它包含进无监督的机器学习模型。“隐藏马尔可夫”源于一个事实,即一系列出行链的活动是不可观察的。 对于CHMM,高斯混合模型负责的是马尔可夫链的输入端,每一个活动模式下的隐藏状态都有属于一个特征空间的集群输出概率,每个集群是观察不到的,隐藏状态集群的数量必须事先给出。一些研究者称这些集群为二级隐状态[51]。

隐马尔科夫模型HMM自学

隐马尔科夫模型HMM自学(1) 介绍 崔晓源翻译 我们通常都习惯寻找一个事物在一段时间里的变化规律。在很多领域我们都希望找到这个规律,比如计算机中的指令顺序,句子中的词顺序和语音中的词顺序等等。一个最适用的例子就是天气的预测。 首先,本文会介绍声称概率模式的系统,用来预测天气的变化 然后,我们会分析这样一个系统,我们希望预测的状态是隐藏在表象之后的,并不是我们观察到的现象。比如,我们会根据观察到的植物海藻的表象来预测天气的状态变化。 最后,我们会利用已经建立的模型解决一些实际的问题,比如根据一些列海藻的观察记录,分析出这几天的天气状态。 Generating Patterns 有两种生成模式:确定性的和非确定性的。 确定性的生成模式:就好比日常生活中的红绿灯,我们知道每个灯的变化规律是固定的。我们可以轻松的根据当前的灯的状态,判断出下一状态。 非确定性的生成模式:比如说天气晴、多云、和雨。与红绿灯不同,我们不能确定下一时刻的天气状态,但是我们希望能够生成一个模式来得出天气的变化规律。我们可以简单的假设当前的天气只与以前的天气情况有关,这被称为马尔科夫假设。虽然这是一个大概的估计,会丢失一些信息。但是这个方法非常适于分析。 马尔科夫过程就是当前的状态只与前n个状态有关。这被称作n阶马尔科夫模型。最简单的模型就当n=1时的一阶模型。就当前的状态只与前一状态有关。(这里要注意它和确定性生成模式的区别,这里我们得到的是一个概率模型)。下图是所有可能的天气转变情况:

对于有M个状态的一阶马尔科夫模型,共有M*M个状态转移。每一个状态转移都有其一定的概率,我们叫做转移概率,所有的转移概率可以用一个矩阵表示。在整个建模的过程中,我们假设这个转移矩阵是不变的。 该矩阵的意义是:如果昨天是晴,那么今天是晴的概率为0.5,多云的概率是0.25,雨的概率是0.25。注意每一行和每一列的概率之和为1。 另外,在一个系统开始的时候,我们需要知道一个初始概率,称为向量。 到现在,我们定义了一个一阶马尔科夫模型,包括如下概念: 状态:晴、多云、雨 状态转移概率 初始概率 (待续) 隐马尔科夫模型HMM自学(2) 马尔科夫模型也需要改进!

隐马尔科夫模型学习总结.pdf

隐马尔科夫模型学习总结 by terry__feng 隐马尔科夫模型,这个久违的老朋友。大三上学期在实验室的时候,由于实验室项目需用到语音识别,所以就使用了微软的Microsoft Speech SDK,也关注了一下语音识别的原理,其中有以HMM作为模型进行识别的。后来实验室的机器人项目中上位机的软件使用到了人脸识别的功能。实验室有关于识别的工程源代码,但是工程庞大,结构复杂,并且里面有很多没有用到的功能,并且程序经常莫名其妙的跑飞,还存在严重的内存泄露问题。所以就自己另起炉灶,重新编写上位机软件。其中的人脸识别用到的核心算法的代码就来源于这个工程。它使用到的技术不是PCA和LDA,而是HMM和DCT。那时候为了看明白HMM实现的原理,在图书馆看了关于模式识别的书,但有基本都是工程相关的,所以说原理性的知识牵扯的不多,自己也就是学习了大概,只是摸熟了里面使用到的各种牛逼的算法,比如Forward-backward,Viterbi,Baum-Welch。但是各种算法原理的理解上就差得远了。没有什么理论的基础,也不知如何学起,最终未能继续。后来又通过吴军老师的《数学之美》了解到隐马尔科夫模型在语音识别中的重要作用。 时隔快两年了,从李航博士的《统计学习方法》中又看到了HMM模型的魅影,里面对其原理进行了深刻的剖析,能够学习之内心自是欣慰至极。于是便花了几天的时间读了关于HMM的几章,现在算是有点收获,总结一下(大部分内容来自对吴军老师的《数学之美》和李航博士的《统计学习方法》的总结)。 文章主要包括信息传递模型、HMM模型简介,和对所使用的三个主要算法:前向后向算法、Baum-Welch算法和维特比算法进行了总结。由于公式比较的多……所以生成pdf版的了。 1、信息传递的模型 任何信息都是通过一定的媒介从一端传递到另一端。对于信息源的传输者 来说,其所需传输的序列可假设为S={s 1,s 2 ,s 3 ,…,s n },而处于媒介另一端的观 测者观测到的序列是O={o 1,o 2 ,o 3 ,…,o m }。对于观测者来说,他接收到序列O的 目的是为了明白传输者的意图,这样才能达到信息交流的目的。也就是说,观测者能够做的事情就是使用观测到的数据(即序列O)去揣测传输者要传输的数据(即序列S)。但是仅仅根据序列O能够揣测出来的序列S的可能性太多了,哪一个猜到的序列S是我们想要的呢? 按照概率论的观点,我们可以把上面的问题建立数学模型。 P(S|O)=P(s1,s2,s3,…,s n|o1,o2,o3,…,o m) 上式的意思是:对于一个给定的观测序列o1,o2,o3,…,o m,它的原序列是 s1,s2,s3,…,s n的概率。然而s1,s2,s3,…,s n的可能取值有很多,究竟哪一个才是自己想要的呢?所以便有了下面的式子: s1,s2,s3,…,s n=argmax all s1,s2,s3,…,s n P(S|O)(1.1)也就是说找到概率最大的原序列,或者说是最有可能的原序列。利用贝叶斯定理可以把上式转化得:

隐马尔科夫模型(HMM)详解

马尔科夫过程 马尔科夫过程可以看做是一个自动机,以一定的概率在各个状态之间跳转。 考虑一个系统,在每个时刻都可能处于N个状态中的一个,N个状态集合是{S1,S2,S3,...S N}。我们现在用q1,q2,q3,…q n来表示系统在t=1,2,3,…n时刻下的状态。在t=1时,系统所在的状态q取决于一个初始概率分布PI,PI(S N)表示t=1时系统状态为S N的概率。 马尔科夫模型有两个假设: 1. 系统在时刻t的状态只与时刻t-1处的状态相关;(也称为无后效性) 2. 状态转移概率与时间无关;(也称为齐次性或时齐性) 第一条具体可以用如下公式表示: P(q t=S j|q t-1=S i,q t-2=S k,…)= P(q t=S j|q t-1=S i) 其中,t为大于1的任意数值,S k为任意状态 第二个假设则可以用如下公式表示: P(q t=S j|q t-1=S i)= P(q k=S j|q k-1=S i) 其中,k为任意时刻。 下图是一个马尔科夫过程的样例图: 可以把状态转移概率用矩阵A表示,矩阵的行列长度均为状态数目,a ij表示P(S i|S i-1)。

隐马尔科夫过程 与马尔科夫相比,隐马尔科夫模型则是双重随机过程,不仅状态转移之间是个随机事件,状态和输出之间也是一个随机过程,如下图所示: 此图是从别处找来的,可能符号与我之前描述马尔科夫时不同,相信大家也能理解。 该图分为上下两行,上面那行就是一个马尔科夫转移过程,下面这一行则是输出,即我们可以观察到的值,现在,我们将上面那行的马尔科夫转移过程中的状态称为隐藏状态,下面的观察到的值称为观察状态,观察状态的集合表示为 O={O1,O2,O3,…O M}。 相应的,隐马尔科夫也比马尔科夫多了一个假设,即输出仅与当前状态有关,可以用如下公式表示: P(O1,O2,…,O t|S1,S2,…,S t)=P(O1|S1)*P(O2|S2)*...*P(O t|S t) 其中,O1,O2,…,O t为从时刻1到时刻t的观测状态序列,S1,S2,…,S t则为隐藏状态序列。 另外,该假设又称为输出独立性假设。 举个例子 举个常见的例子来引出下文,同时方便大家理解!比如我在不同天气状态下去做一些事情的概率不同,天气状态集合为{下雨,阴天,晴天},事情集合为{宅着,自习,游玩}。假如我们已经有了转移概率和输出概率,即P(天气A|天气B)和P(事情a|天气A)的概率都已知道,那么则有几个问题要问(注意,假设一天我那几件事情中的一件), 1. 假如一周内的天气变化是下雨->晴天->阴天->下雨->阴天->晴天->阴天,那么我这一周自习->宅着->游玩->自习->游玩->宅着->自习的概率是多大? 2. 假如我这一周做事序列是自习->宅着->游玩->自习->游玩->宅着->自习,

【原创附代码数据】R语言隐马尔科夫模型(HMM)模型股指预测代码

R语言隐马尔科夫模型(HMM)模型股指预测代码 了解不同的股市状况,改变交易策略,对股市收益有很大的影响。有些策略在波澜不惊的股市中表现良好,而有些策略可能适合强劲增长或长期下跌的情况。弄清楚何时开始或合适止损,调整风险和资金管理技巧,都取决于股市的当前状况。 在本文中,我们将通过使用一类强大的机器学习算法“隐马尔可夫模型”(HMM)来探索如何识别不同的股市状况。 ▍隐马尔可夫模型 马尔科夫模型是一个概率过程,查看当前状态来预测下一个状态。一个简单的例子就是看天气。假设我们有三种天气情况:下雨、多云、阳光明媚。如果今天下雨,马尔科夫模型就会寻找每种不同天气的概率。例如,明天可能会持续下雨的可能性较高,变得多云的可能性略低,而会变得晴朗的几率很小。 ▍构建模型 基于以上背景,然后我们可以用来找到不同的股市状况优化我们的交易策略。我们使用2004年至今的上证指数(000001.ss)来构建模型。 首先,我们得到上证指数的收盘价数据,计算得到收益率数据,并建立HMM模型比较模型的预测结果。 library(depmixS4) library(TTR) library(ggplot2) library(reshape2) library(plotly) # create the returns stream from this shdata<-getSymbols( "000001.ss", from="2004-01-01",auto.assign=F ) gspcRets = diff( log( Cl( shdata ) ) ) returns = as.numeric(gspcRets) write.csv(as.data.frame(gspcRets),"gspcRets.csv") shdata=na.omit(shdata) df <- data.frame(Date=index(shdata),coredata(shdata)) p <- df %>% plot_ly(x = ~Date, type="candlestick", open = ~X000001.SS.Open, close = ~X000001.SS.Close, high = ~X000001.SS.High, low = ~X000001.SS.Low, name = "000001.SS",

基于隐马尔科夫模型和卷积神经网络的图像标注方法

Computer Science and Application 计算机科学与应用, 2018, 8(9), 1309-1316 Published Online September 2018 in Hans. https://www.sodocs.net/doc/2413968986.html,/journal/csa https://https://www.sodocs.net/doc/2413968986.html,/10.12677/csa.2018.89141 Automatic Image Annotation Based on Hidden Markov Model and Convolutional Neural Network Haijiao Xu, Qionghao Huang, Fan Wang, Yao Wen, Meihua Zhao School of Information Technology in Education, South China Normal University, Guangzhou Guangdong Received: Aug. 6th, 2018; accepted: Aug. 21st, 2018; published: Aug. 28th, 2018 Abstract Automatic image annotation is becoming increasingly important in order to develop algorithms that are able to search and browse large-scale image databases. In this paper, we propose a novel annotation approach termed HMM + CNN, which is based on Hidden Markov Model (HMM) and Convolutional Neural Network (CNN). First, a multi-label CNN is trained as a concept classifier. Then, through a first-order HMM, image content and semantics correlation is combined to refine the predicted semantic scores. Finally, to improve the performance of labeling rare concepts, the gradient descent algorithm is applied for compensating the varying frequencies of concepts de-rived from imbalanced image datasets. Experiments have been carried out on IAPR TC-12 image annotation database. The results show that our proposed approach performs favorably compared with several conventional methods. Keywords Automatic Image Annotation, Hidden Markov Model, Convolutional Neural Network, Multi-Label Learning 基于隐马尔科夫模型和卷积神经网络的 图像标注方法 徐海蛟,黄琼浩,汪凡,文瑶,赵美华 华南师范大学教育信息技术学院,广东广州

相关主题