搜档网
当前位置:搜档网 › Combustion and inorganic bromine emission of waste printed circuit boards i

Combustion and inorganic bromine emission of waste printed circuit boards i

Combustion and inorganic bromine emission of waste printed circuit boards i
Combustion and inorganic bromine emission of waste printed circuit boards i

Combustion and inorganic bromine emission of waste printed circuit boards in a high temperature furnace

Mingjiang Ni a ,?,Hanxi Xiao a ,b ,Yong Chi a ,Jianhua Yan a ,Alfons Buekens a ,Yuqi Jin a ,Shengyong Lu a

a State Key Laboratory of Clean Energy Utilization,Institute for Thermal Power Engineering,Zhejiang University,Hangzhou 310027,PR China b

Chemistry &Chemical Engineering School,Hunan University of Science &Technology,Xiangtan,PR China

a r t i c l e i n f o Article history:

Received 22January 2011Accepted 19October 2011

Available online 1December 2011Keywords:

Waste printed circuit boards Combustion

Inorganic bromine Emission

a b s t r a c t

High temperature combustion experiments of waste printed circuit boards (PCBs)were conducted using a lab-scale system featuring a continuously-fed drop tube https://www.sodocs.net/doc/2414555723.html,bustion ef?ciency and the occur-rence of inorganic bromine (HBr and Br 2)were systematically studied by monitoring the main combus-tion products continuously.The in?uence of furnace temperature (T )was studied from 800to 1400°C,the excess air factor (EAF)was varied from 1.2to 1.9and the residence time in the high temperature zone (RT HT )was set at 0.25,0.5,or 0.75s.

Combustion ef?ciency depends on temperature,EAF and RT HT ;temperature has the most signi?cant effect.Conversion of organic bromine from ?ame retardants into HBr and Br 2depends on temperature and EAF.Temperature has crucial in?uence over the ratio of HBr to Br 2,whereas oxygen partial pressure plays a minor role.The two forms of inorganic bromine seem substantially to reach thermodynamic equi-librium within 0.25s.High temperature is required to improve the combustion performance:at 1200°C or higher,an EAF of 1.3or more,and a RT HT exceeding 0.75s,combustion is quite complete,the CO concentration in ?ue gas and remained carbon in ash are suf?ciently low,and organobrominated com-pounds are successfully decomposed (more than 99.9%).

According to these results,incineration of waste PCBs without preliminary separation and without additives would perform very well under certain conditions;the potential precursors for brominated dioxins formation could be destroyed ef?ciently.Increasing temperature could decrease the volume per-centage ratio of Br 2/HBr in ?ue gas greatly.

ó2011Elsevier Ltd.All rights reserved.

1.Introduction

Recycling and disposal of waste electrical and electronic equip-ment (WEEE)attract much attention from government,scholars and citizens at large.It is estimated that current global e-waste are around 40million tonnes per year (United Nations University,2008;United Nations Environment Programme,2009).Printed cir-cuit boards (PCBs)are found in virtually all electronics products,representing an estimated 3%by weight of total electronic scrap on average (Berbardes et al.,1997;Theo,1998;Li et al.,2007).Among the present treatment methods of waste PCBs,pyrometal-lurgical processing featuring high temperature combustion is most promising due to its high recycling ratio of resources contained in waste PCBs (Cui and Forssberg,2003;Guo et al.,2009;Huang et al.,2009;United Nations Environment Programme,2009;Long et al.,2010).Industrial enterprise following that route comprehends,e.g.,for the European Union,the Hoboken smelter of Umicore,the Ronsk?rr smelter of Boliden,and the Lünen smelter of Aurubis.African countries,China,and India,on the other hand,are con-fronted with numerous small entrepreneurs treating WEEE in a manner releasing hazardous substances without much control,if any at all.Moreover,resources lost turn into pollutants.Due to the low cost and straightforward operation,open burning in back-yards or small workshops is adopted to process waste PCBs and to recycle copper and other precious metal in many places.This has caused serious pollution related with dioxins and heavy metals,and more importantly,potential health effects on workers (Deng et al.,2006;Sheng and Etsell,2007).

During high temperature treatment of waste PCBs,both resin binding the ?ber glass (epoxy and phenolic resin mainly)and me-tal bearing electronic components are loaded into the smelter.The combustibles (resins and paper)are burned out,providing a frac-tion,if not all,of the heat demand of the furnace,typically operat-ing at more than 1000°C.Glass ?ber and added chemicals act as ?uxing agents,thus forming a slag ?oating on top of the metal and at the same time preserving it from excessive oxidation and slagging.The various metals undergo complex transformations

0956-053X/$-see front matter ó2011Elsevier Ltd.All rights reserved.doi:10.1016/j.wasman.2011.10.016

Corresponding author.Tel.:+8657187951369;fax:+8657187952438.

E-mail address:xiaohanxi_2@https://www.sodocs.net/doc/2414555723.html, (M.Ni).

while distributing between molten copper and slag.Eventually,the copper and precious metals can be ef?ciently recovered by conven-tional treatment(Pen,2004;Chancerel et al.,2009).

To recycle the precious metals and copper as much as possible, it seems better to load all fractions of raw material(including or-ganic and mineral matter etc.)into the smelter.In practice,how-ever,most of presumably sterile material is separated prior to metallurgical treatment,since it consumes too much of plant capacity;there are strict limits to the amounts of organics that can be charged to the plant,because its post-combustion chamber is limited in size and capacity.Meantime,in order to control the process,the input of combustibles must be limited.Otherwise, rather than releasing their heat during metallurgical treatment, volatiles tends to burn out during post-combustion.The proportion of WEEE in raw material put into the smelter of the Umicore plant is less than10%,otherwise the products of incomplete combustion in off-gas would exceed the emission limits(Meskers et al.,2009; United Nations Environment Programme,2009).

High temperature combustion is thus a key process during this PCBs recycling.Former researches relating to thermal treatment concentrated on PCBs thermal decomposition by pyrolysis and oxi-dation,using thermogravimetric analysis(TGA)or lab-scale batch-fed furnaces as well as the identi?cation of organic pollutants spe-cies,in particular those that may serve as precursors or surrogates of dioxins(Tsytsik et al.,2010).Temperature normally remains be-low1000°C(Wichmann et al.,2002;Barontini and Cozzani,2006; Moltóet al.,2009).Little was published on completing combustion and emission characteristics of PCBs at higher temperature.

Among potential pollutants,dioxins attract most attention. Destruction of the potential precursors is an effective measure to inhibit the formation of polychlorinated dibenzo-p-dixoins/dib-enzofurans(PCDD/Fs)by low temperature heterogeneous catalytic synthesis in post-combustion area.Moreover,it is commonly ac-cepted that Cl2is more active than HCl during the formation of polychlorinated dibenzo-p-dioxins/dibenzofurans(PCDD/Fs)by ?y ash catalyzed de novo synthesis.As a method,co-combustion wastes(such as municipal solid wastes)with coal containing S has been adopted in order to reduce the formation of PCDD/Fs through inhibiting the conversion of HCl to Cl2,which can be ex-plained by the Cl2reduction reaction:Cl2+SO2+H2O=SO3+2HCl. Yet,products of S oxidation are pollutants too.SO x are the major contributors to acid rain and hard to be removed from?ue gas with lower concentration.

Brominated dioxin-like compounds have formation mecha-nisms similar to those of chlorinated dioxin-like compounds due to the similar chemical properties of chlorine and bromine(Weber and Kuch,2003;Wang et al.,2007).Meantime compared with Br2, HBr is easier to remove by the usual neutralizing agents.Hence, destruction of potential precursors seems effective to reduce the formation of polybrominated dibenzo-p-dioxins/dibenzofurans (PBDD/Fs)by low temperature heterogeneous catalytic synthesis in the post-combustion area;it could help to reduce to the forma-tion of PBDD/Fs with a cleaner method by inhibiting the conversion of HBr to Br2with no addition agent of S.The emission of HBr and of organobrominated compounds was studied during the combus-tion at about900°C of electronic wastes(Sakai et al.,2001)and the pyrolysis of PCBs(Chien et al.,2000).Bientinesi analyzed the par-tition of bromine between ashes(or char)and?ue gas(or syngas) upon waste co-combustion(or staged-gasi?cation)from a view of bromine recovery(Bientinesi and Petarca,2009).

Scarce research investigated the partition and speciation of bro-mine(halogen)in the reaction system under different thermal treatment conditions by using thermodynamic equilibrium analysis.

The present work attempts to achieve complete combustion of the combustible fraction within the limited space of furnace when incinerating the waste PCBs without preliminary sterile material separation and addition agents,inhibiting the formation of PBDD/ Fs.The effects of operating conditions,https://www.sodocs.net/doc/2414555723.html,bustion tempera-ture,excess air factor(EAF)and residence time at high temperature zone(RT HT)on combustion quality and on transfer and conversion of Br is systematically investigated.Experiments are conducted in the continuously-fed drop tube furnace system,hence,combustion proceeds under comparable conditions and the emitted?ue gas is steady and uniform.Furthermore,the partial pressure or volume percentage of O2,HBr,Br2and H2O could be either monitored or calculated,and thus the thermodynamic equilibrium approach could be investigated.

2.Materials and methods

2.1.Sample origin and analysis

Scrapped PCBs were collected from different PCBs manufactur-ing shops.In total,six batches(FR-4,TBBA brominated?ame retar-dants)were collected,each of more than10kg.These were blended,pulverized and screened.The fraction passed through a 60-mesh screen but retained at100-mesh was taken as sample in the entire testing program.Its proximate and ultimate analysis is given in Table1.All data are expressed on an air-dried basis.

The analysis of total bromine content and the bromine re-mained in the residues uses the pyrohydrolytic-ion chromatogra-phy method(ASTM WK25,458)for reference.The bromine(HBr, Br2)analysis in?ue gas uses EPA method26(determination of hydrogen halide and halogen emissions from stationary sources) for reference.The principle of this method is to absorb HBr by 0.05M H2SO4solution and absorb Br2by0.1M NaOH solution; then the concentration of bromine ions in each solution is mea-sured by IC(ion chromatography).

2.2.Experimental set-up

The experimental system,featuring a continuous feed drop tube furnace,is shown in Fig.1,together with the?ue gas analysis unit. The feeding rate is set through adjusting the vibration frequency (3–26<±à0.1g>g minà1,depending on operating conditions). Raw material is fed pneumatically into the furnace;to increase the EAF the raw material feed rate is reduced.The air?ow rate is controlled by a mass?ow controller.Thus,the mean residence time of?ue gas in the furnace could be controlled by adjusting the air?ow.The RT HT is estimated as the mean?ue gas retention time in the heated furnace tube,and inversely proportional to the feeding rate of air.Temperature,RT HT and air?ow to the fur-nace greatly alter with different operating conditions,yet,the?ow regime always remains laminar,with Reynolds number varying be-tween200and1200.

The furnace tube with inner diameter of50mm and length of 800mm,is made of corundum(Al2O3).An electric heater,con-trolled by an electronic temperature controller,heats it and main-tains the temperature in furnace with?uctuation less than±10°C

Table1

Composition of the tested sample–air dried basis.

Proximate analysis M A V Fc Total

1.23%53.01%37.17%8.59%100%

Ultimate analysis C%H%N%S%O%

26.36 2.80 1.00.0215.58

Al Cu Si Ca others

6.8%11.09%11.3% 6.7%11.85%

Qb(J/g)11,368Total bromine 6.5% (V,volatile matter;M,moisture;Fc,?xed carbon;A,ash;Qb,heating value).

M.Ni et al./Waste Management32(2012)568–574569

according to the set value required by the series tests.The temper-ature is measured by means of the thermocouple in the furnace.The main gaseous pollutants,CO,NO x ,SO x ,are analyzed by a non-dispersive infra-red (NDIR)?ue gas analyzer (MGA-5,Maru,Germany);O 2is analyzed by electrochemistry sensors in the same MGA-5?ue gas analyzer (Maru,Germany).2.3.Experimental program

The experimental program monitoring CO total 60tests,or 20tests at each of the three residence times tested (RT HT ).Table 2shows the test matrix for RT HT =0.25s.A similar matrix is used for RT HT values of 0.5and 0.75s.2.4.Bromine speciation

The transfer and conversion level of brominated ?ame retardant into HBr or is de?ned as:

R HBr %?

C HBr ?v HBr

V s

?V T

m s ?c TBr

?10à3

The transfer and conversion level of brominated ?ame retardant into Br 2is similarly de?ned as:

R Br 2%?

0:5?C Br 2?v Br

2

V s

?V T

s TBr

?10à3

where,C HBr means concentration of Br àin the absorption solution (mg L à1);V HBr means volume of absorption solution (0.05M H 2SO 4)(L);C Br 2means concentration of Br àin the absorption solu-tion (mg L à1);V Br 2means volume of the absorption solution (0.1M NaOH)(L);V s means sampling volume of ?ue gas,corrected to stan-dard conditions (L);V T means total volume of ?ue gas generated by incineration of the sample,corrected to standard conditions (L);m s

means mass of the combusted sample (g);C TBr means content of to-tal bromine in sample (%)=6.5%.

The total conversion of Br is de?ned as R HBr +2RBr 2.3.Results and discussion

3.1.Effects of operating conditions on the CO,NO x and SO x emissions The effects on CO emissions are shown in following Fig.2,all concentrations are recalculated to the standard 11%O 2in the ?ue gas.The recalculation formula is as follow:

C s i

?

e21à11TC 0i 21àO i 2

where,C 0i means concentration of i in ?ue gas measured by ana-lyzer;O i

2means concentration of O 2in ?ue gas measured by ana-lyzer under various operation conditions;C s i means concentration of i in ?ue gas corresponding to state of ?ue gas contained 11%O 2;i stands for CO,NO x ,SO x .

The CO concentration reaches extremely high values both at 800and at 1000°C,and then dramatically decreases in between the two test temperatures of 1000and 1200°C (Fig.2).

Above 1200°C,the curve levels off and the concentration of CO is quite low (about 40mg/Nm 3).

Excess air factor also has strong effect on CO emission,when temperature rises to 1200or to 1400°C the concentration of CO is always very low as far as the EAF is 1.3or more.

Table 2

Operating conditions (for high temperature zone residence time =0.25s).Temperature (°C)

Excess air factor 800 1.2 1.3 1.5 1.7 1.91000 1.2 1.3 1.5 1.7 1.91200 1.2 1.3 1.5 1.7 1.91400

1.2 1.3 1.5 1.7 1.9Corresponding partial pressure of O 2

3.1%

4.4%

6.4%

8%

9.2%

570M.Ni et al./Waste Management 32(2012)568–574

No distinctions have been observed between the three RT HT .It may suggest that the conversion reaction of CO to CO 2reaches chemical equilibrium at a certain temperature within the ?rst 0.25s.

Furthermore,an interesting fact is observed (see Fig.2)when comparing CO emissions while burning PCBs and pulverized coal.When PCBs are burned at low temperature (800,1000°C),CO emissions are much higher than with pulverized coal;at high tem-perature (1200,1400°C)these CO emission levels are close.This suggests that maintaining high temperature (1200°C or higher)is very important for CO emission control.

The above-mentioned fact can be explained by the in?uence of bromine inhibition on CO conversion,when PCBs are burned.

Halide-containing species inhibit the oxidation of CO to CO 2through interaction with the hydrogen–oxygen radical pool (Julien et al.,1996;Wang and Anthony,2009):it is commonly accepted that when a polymer is heated to a certain temperature,chemical chains are broken,the resin degrades,chemical bonds linking H to other elements (C,O)are broken,and H radicals are generated;meantime,also the bonds linking Br and the main part of the TBBA molecule are also broken,generating Br ?radicals.Then

H átH á!H 2e1T2Br á!Br 2e2TBr á!tRH

àR áHBr

e3TH átBr á!HBr

e4T

Among these reactions,(3)and (4)is the most important since it converts the bromine radical into HBr mainly (Noto and Babushok,1998;Barontini and Cozzani,2006).

Simultaneously,in the presence of oxygen,

H átO 2!OH átO áe5TO átHBr !OH átBr á

e6T

There are other reactions producing OH ?,yet,reaction (5)is the most important generator of OH radicals (Barnard and Bradley,1985;Kuo,1986;Noto and Babushok,1998).

Many elementary reactions in hydrocarbon combustion are in-volved in oxidizing CO;the dominant reaction is:

CO tOH á!CO 2tH á

e7T

In summary,the most important reaction intermediates for CO oxidation are the H and the OH radicals (Barnard and Bradley,1985;Kuo,1986).However,the presence of halogens,such as Br,decreases these radicals pool via the following sequence

H átHBr !Br átH 2e8TOH átHBr !H 2tBr á

e9T

Reaction (9)is the most important radical scavenger (Noto and Babushok,1998;Julien et al.,1996;Wang and Anthony,2009).The above mentioned reactions (1),(2),(5),(6),(8),and (9)can be summed up to the following over-all reaction:

1=2O 2t2HBr !Br 2tH 2O eg T

e10T

During the conversion of HBr to Br 2,it consumes much OH ?

and H ?

,thus inhibiting the conversion of CO.When temperature is lower,the slower conversion of CO to CO 2coupled with the inhibi-tion effect of bromine on CO conversion could result in a signi?-cantly higher concentration of CO.With temperature increasing,the conversion velocity of CO increases,when the temperature is high enough,the conversion velocity of CO increases very quickly,

Bromine remaining in the residues Inorganic bromine in flue gas

M.Ni et al./Waste Management 32(2012)568–574571

meanwhile the conversion of HBr to Br2decreases obviously(typ-ically at1200°C,see Section3.3Fig.4c),as a result,the concentra-tion of CO is very low only if there is enough oxygen.

The NO x values vary less with temperature,from690mg/Nm3 (800°C)to790mg/Nm3(1400°C).Apparently,NO x is mainly fuel-NO x.NO x concentration is somewhat higher than the Chinese limit value(500mg/Nm3,GB18484),so that additional methods needed to take to control NO x emission.

Due to the low sulfur content in the raw material,SO x remains negligible,occasionally a few(<10ppm).

3.2.Effects of operating conditions on residual carbon in ash

The carbon content in the combustion residues(residual car-bon)is also in?uenced by the same three factors(temperature, EAF,and RT HT).

Temperature again has the strong effect on the oxidation of so-lid carbon;higher temperature corresponds with lower residual carbon.Longer RT HT promotes carbon conversion.Fig.3shows the relation between RT HT and residual carbon.At800°C,carbon oxidation is still relatively slow;yet the longer RTHT,the less resid-ual carbon.At higher temperatures(1200°C),and RT HT=0.75s carbon in residue is quiet low.

Suming up,when EAF is more than1.3,temperature is higher than1200°C,and RT HT exceeds0.75s,the concentration of CO is about40mg/Nm3,the residual carbon is less than1%,therefore, the carbon converts completely.However,NO x concentration is somewhat higher than the limit.Additional steps are needed to control NO x emissions.

The mass balance of some major elements(C,O etc.)is shown in Table3.The output of the total residual matter is somewhat less than it should be,one major reason may be that some of the metals volatilize and fail to be captured by the?lter.Basically,the total oxygen input is accord with that of output.There are nearly 4.48%deviation of the total carbon between the input and output. The main losses may arise during the treatment the residues.The output N in NO x is quite less than the input fuel-N,it indicates that only small part of fuel-N convert to NO x in?ue gas.3.3.The effect of operating conditions on Br transfer and conversion

The total operating conditions applied at this stage are36tests, 12tests at each of the RT HT values0.25,5,and0.75s(only for three EAF conditions:1.3,1.6,1.9).

Fig.4a and b indicates that most of the bromine introduced by brominated?ame retardants(BFRs)in the PCBs transfers into?ue gas.The higher the temperature,the more complete the transfer of bromine.The major conversion products are HBr and Br2,in con-trast with Barontini’s study,in which no molecular bromine was detected.The concentrations of total bromine and of HBr in?ue gas increase continuously with rising temperature whereas that of Br2decreases.At800°C,Br2is still much more important than HBr,while at1400°C,HBr prevails.

EAF has only a very small effect on bromine transfer to?ue gas. When the EAF increases,the changes of total Br in?ue gas remain very small(less than0.5%).However,the EAF has some effect on the conversion of HBr to Br2:with EAF increasing,the ratio Br2/ HBr slightly raises.Its in?uence decreases,however,with rising temperature(Fig.4c).

No obvious change in this Br2/HBr ratio is observed when RT HT varies,suggesting that the Br2/HBr ratio already achieves thermo-dynamic equilibrium within0.25s.

The aforementioned changes of Br2/HBr with temperature or EAF basically correspond with the predictions of thermodynamic equilibrium for reaction:

2Br2egTt2H2OegT?4HBregTtO2egTtO2egTe11Twith thermodynamic equilibrium constant

K?

?O

2

?HBr 4

?Br

2

?H

2

O

where,[O2],[HBr],[Br2]and[H2O]stand for the partial pressure of O2,HBr,Br2and H2O,respectively.The equilibrium constant(K)in-creases with temperature(see Table4)(Barin,2003),thus according to thermodynamics equilibrium,more Br2and less HBr in the sys-tem are predicted at lower temperature.

Table3

Mass balance for some major elements(for temperature=1200°C,excess air factor=1.3,high temperature zone residence time=0.25s).

ID Elements/component Input Output(mol/h)Deviation d(%) kg/h mol/h

1C0.299924.97CO CO2C in residues 4.48

0.004923.2750.571

2O(as O2)In fuel0.1773 5.54In H2O a In CO In CO2O2in?ue gas In NO,NO2,SO2 3.875

In air 1.122035.067.90160.004923.1758.10.099 3N(as N2)in fuel0.01,1380.41In NO In NO2In N2–e

0.0990c–

4Ash0.52,920–b0.4932 6.803

a Based on calculation according to H

2

in raw material.

b–means not available.

c NO

2

,SO2remains negligible,occasionally a few(<10ppm).

d Deviation=(input–output)/input.

e the conversion o

f N in fuel to NO is about24.70%(the thermal-NO

x

is neglected).The concentration of H2O in?ue gas has not been detected,thus the balance of H2was not available.

Table4

Equilibrium Constant for idealized reaction system.

Temperature(°C)26.850326.850626.850926.8501226.8501526.8501826.850 Log Kà41.315à17.174à9.085à5.016à2.560à0.9150.263 Note:The K are calculated according to the thermochemical data of pure substances(Barin,2003).

572M.Ni et al./Waste Management32(2012)568–574

When the temperature is1200°C,EAF=1.3,RT HT=0.25s,the partial pressure(volume percentage)of HBr,Br2,H2O,O2,and the calculated reaction quotient(K p),equilibrium constant(K)of the reaction(Barin,2003)are as shown in Table5.

When the temperature is higher than1200°C,at least99.9%Br from the raw material transfers to the?ue gas as HBr and Br2,and less than0.1%Br remains in solid residues;the ratio of Br2/HBr par-tial pressures is less than0.589.Apart from the Br transferred to the?ue gas as HBr and Br2and the Br remaining in the residue, only a very small amount of Br may be lost(e.g.as deposits in some cooler pipe,or reacting with the furnace and pipes material)or re-main as brominated organics,to be con?rmed by further experiments.

So,the variable temperature shows a much more obvious in?u-ence on Br transfer to the?ue gas and the partial pressure of oxy-gen plays a less important role in the conversion of HBr to Br2. From800to1200°C,the partial pressure ratio of Br2/HBr in?ue gas decreases nearly81.7%.

4.Conclusions

High temperature combustion experiments were conducted at a lab-scale,using a continuously fed drop tube combustion system to study the high temperature incineration of waste printed circuit boards(PCBs).The in?uence of temperature(T),excess air factor (EAF)and residence time at high temperature(RT HT)on the com-bustion performance and the transfer to the?ue gas and conver-sion of organic Br was systematically investigated at temperature settings ranging from800to1400°C.The results show that the combustion ef?ciency depends on temperature,excess air factor and high temperature residence time,with temperature as the most in?uential factor.The conversion of organic bromine to inor-ganic bromine in?ue gas depends on both T and https://www.sodocs.net/doc/2414555723.html,anic bro-mine is converted largely into both HBr and Br2.Higher temperature shifts Br2further into HBr,while oxygen partial pres-sure has the reverse effect,yet its in?uence is very small.The two inorganic forms of bromine,HBr and Br2,seem substantially to reach thermodynamic equilibrium within0.25s.

Increasing treatment temperature should improve combustion performance signi?cantly.When the temperature reaches 1200°C and the excess air factor1.3,the residence time at high temperature0.75s,the CO concentration in?ue gas decreases to about40mg/Nm3(i.e.half the Chinese emission limit for hazard-ous waste incineration),the carbon content of residues is less than 1%,and99.9%bromine is emitted into?ue gas in the form of HBr and Br2.As expected,the combustion is quickly completed within the limited space of the furnace and the organobrominated com-pounds,potential precursors of PBDD/Fs,are destroyed ef?ciently. Therefore,to load more waste PCBs to the smelter without preli-minary sterile material separation before pyrometallurgical treat-ment is a promising route,and more heat could be released in the smelter rather than during post-combustion.

Moreover,increasing temperature prompts a more complete bromine release and reduces the conversion of HBr to https://www.sodocs.net/doc/2414555723.html,-pared with Br2,HBr is presumably less active during the formation of PBDD/Fs,and easier to remove by the usual neutralizing agents. Nevertheless,further studies are needed to identify the emission characteristics of PBDD/Fs,its surrogates and precursors.Acknowledgment

This project was supported by Major State Basic Research Development Program of China(2011CB201500),the Research Fund for the Doctoral Program of Higher Education of China (20070335134)and the Key Science and Technology Projects of Zhejiang Province(2008C13022-3),Zhejiang University Y.C.Tang Disciplinary Development Fund,and Program of Introducing Tal-ents of Disciplinary to University(B08026).The authors acknowl-edge useful discussions with Dr.D.Verhulst during his stay at our University.

References

Barnard,J.A.,Bradley,J.N.,1985.Flame and Combustion,second ed.Chapman and Hall Ltd.,New York.

Barin,I.,2003.Thermochemical Data of Pure Substances,third ed.Wiley-VCH Verlag GmbH,New York.

Berbardes,A.,Bohlinger,I.,Rodriguez,D.,Milbrandt,H.,Wuth,W.,1997.Recycling of printed circuit boards by melting with oxidizing/reducing top blowing process,In:EPD Congress1997,Orlando,Florida,USA,pp.363–375. Barontini,F.,Cozzani,V.,2006.Formation of hydrogen bromide and organobrominated compounds in the thermal degradation of electronic boards.Journal of Analytical and Applied Pyrolysis77,41–45.

Bientinesi,M.,Petarca,L.,https://www.sodocs.net/doc/2414555723.html,parative environmental analysis of waste brominated plastic thermal treatments.Waste Management29,1095–1102. Chien,Y.C.,Wang,H.P.,Lin,K.S.,Huang,Y.J.,Yang,Y.W.,2000.Fate of bromine in pyrolysis of printed circuit board wastes.Chemosphere40,383–387.

Cui,J.R.,Forssberg,E.,2003.Mechanical recycling of waste electric and electronic equipment:a review.Journal of Hazardous Materials99,243–263. Chancerel,P.,Meskers, C.E.M.,Hagelüken, C.,Rotter,V.S.,2009.Assessment of precious metal?ows during preprocessing of waste electrical and electronic equipment.Journal of Industrial Ecology13,791–810.

Deng,W.J.,Louie,P.K.K.,Liu,W.K.,Bi,X.H.,Fu,J.M.,Wong,M.H.,2006.Atmospheric levels and cytotoxicity of PAHs and heavy metals in TSP and PM2.5at an electronic waste recycling site in southeast China.Atmospheric Environment 40,6945–6955.

Guo,J.Y.,Guo,J.,Xu,Z.M.,2009.Recycling of non-metallic fractions from waste printed circuit boards:a review.Journal of Hazardous Materials168,567–590. Huang,K.,Guo,J.,Xu,Z.M.,2009.Recycling of waste printed circuit boards:a review of current technologies and treatment status in China.Journal of Hazardous Materials164,399–408.

Julien,S.,Brereton,C.M.H.,Lim,C.J.,Grace,J.R.,Anthony,E.J.,1996.The effect of halides on emissions from circulating?uidized bed combustion.Fuel75,1655–1663.

Kuo,K.K.,1986.Principles of Combustion.John Wileyand Sons Inc.,Canada.

Li,J.,Lu,H.Z.,Guo,J.,Xu,Z.M.,Zhou,Y.H.,2007.Recycle technology for recovering resources and products from waste printed circuit boards.Environmental Science and Technology41,1995–2000.

Long,L.S.,Sun,S.Y.,Zhong,S.,Dai,W.C.,Liu,J.Y.,Song,W.F.,https://www.sodocs.net/doc/2414555723.html,ing vacuum pyrolysis and mechanical processing for recycling waste printed circuit boards.

Journal of Hazardous Materials177,626–632.

Meskers,C.E.M.,Hagelüken,C.,Rotter,V.S.,2009.Green recycling of EEE:Special and precious metal recovery from EEE,In:EPD congress,San Francisco, California,pp.1131–1136.

Moltó,J.,Font,R.,Gálves, A.,Conesa,J.A.,2009.Pyrolysis and combustion of electronic wastes.Journal of Analytical and Applied Pyrolysis84,68–78. Noto,T.,Babushok,V.,1998.Inhibition effectiveness of halogenated compounds.

Combustion and Flame112,147–160.

Pen,R.Q.,2004.Metallurgy of Heavy Metal,Second ed.Central South University Press,Changsha(In Chinese).

Sakai,S.I.,Watanabe,J.,Honda,Y.,Takatsuki,H.,Aoki,I.,Futamatsu,M.,Shiozaki,K., https://www.sodocs.net/doc/2414555723.html,bustion of brominated?ame retardants and behavior of its byproducts.Chemosphere42,519–531.

Sheng,P.P.,Etsell,T.H.,2007.Recovery of gold from computer circuit board scrap using aqua regia.Waste Management and Research25,380–383.

Theo,L.,1998.Integrated recycling of non-ferrous metals at the Boliden Ltd.

R?nnskar Smelter,In:IEEE International Symposium on Electronics and the Environment,Oak Brook,IL,pp.42–47.

Tsytsik,P.,Czech,Jan.,Carleer,R.,Buekens,A.,2010.Thermal extraction of dioxin surrogates and precursors from?lter dust:effects of temperature,time,and matrix.Environmental Engineering Science27,657–668.

Table5

Equilibrium constant calculation for condition of temperature=1200°C,excess air factor=1.3,high temperature zone residence time=0.25s.

Br2(v%)H2O(v%)HBr(v%)O2(v%)Br2/HBr K p K

0.06759.720.115 4.40.589 1.781?10à3 1.823?10à3 Note:The concentration of H2O is determined by calculating according to water and H contained in raw materials and water contained in air.

M.Ni et al./Waste Management32(2012)568–574573

United Nations Environment Programme,2009.Recycling from E-Waste to Resource,https://www.sodocs.net/doc/2414555723.html,/PDF/PressReleases/E-Waste_publication_ screen_FINALVERSION_sml.pdf.

United Nations University,2008.Review of Directive2002/96on Waste Electrical and Electronic Equipment(WEEE)Final Report,http://ec.europa.eu/environment/ waste/weee/pdf/?nal_rep_unu.pdf.

Wichmann,H.,Dettmer,F.T.,Bahadir,M.,2002.Thermal formation of PBDD/Fs from tetrabromobis-phenol A–a comparison of polymer linked TBBP A with its additive incorporation in thermoplastics.Chemosphere47,349–355.Weber,R.,Kuch, B.,2003.Relevance of BFRs and thermal conditions on the formation pathways of brominated and brominated-chlorinated dibenzodioxins and dibenzofurans.Environment International29,699–710. Wang,L.C.,Ping,G.,Chien,C.,2007.Characterizing the emissions of polybrominated dibenzo-p-dioxins and dibenzofurans from municipal and industrial waste incinerators.Environmental Science and Technology41,1159–1165.

Wang,J.,Anthony,E.J.,2009.CO oxidation and the inhibition effects of halogen species in?uidized bed https://www.sodocs.net/doc/2414555723.html,bustion Theory and Modelling13, 105–119.

574M.Ni et al./Waste Management32(2012)568–574

化学品安全技术说明书编写规定(MSDS)

中华人民共和国要求的MSDS格式 中华人民共和国国家标准 化学品安全技术说明书 编写规定 General rules for preparation of chemical safety data sheet(CSDS) 1.范围 本标准规定了化学品安全技术说明书(CSDS)的内容和编写要求。 本标准适用于工业化学品,包括化学单质、化合物和混合物,不适用于民用受控消费品、以科学研究为目的的少量样品和国家另有规定的特殊危险化学品。 2.引用标准 下列标准包含的条文,通过在本标准中引用而构成为本标准的条文。在标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨、使用下列标准最新版本的可能性。 GB13690-92 常用危险化学品的分类及标志 GB6944-86 危险货物分类和品名编号 GB/T15098-94 危险货物运输包装类别划分原则 联合国《关于危险货物运输的建议书》(简称UN RTDG)

《危险货物运输管理规则》(铁道部颁布)1995年 3.内容 化学品安全技术说明书(CSDS)包括以下十六部分内容。 化学品及企业标识(chemical product and company identification) 主要标明化学品名称、生产企业名称、地址、邮编、电话、应急电话、传真和电子邮件地址等信息。 成分/组成信息(composition/information on ingredients) 标明该化学品是纯化学品还是混合物。纯化学品,应给出其化学品名称或商品名和通用名。混合物,应给出危害性组分的浓度或浓度范围。 无论是纯化学品还是混合物,如果其中包含有害性组分,则应给出化学文摘索引登记号(CAS号)。 危险性概述(haxards summarizing) 简要概述本化学品最重要的危害和效应,主要包括: 危害类别、侵入途径、健康危害、环境危害、燃爆危险等信息。 急救措施(first-aid measures) 指作业人员意外的受到伤害时,所需采取的现场自救或互救的简要处理方法,包括: 眼睛接触、皮肤接触、吸入、食入的急救措施。 消防措施(fire-fighting measures) 主要表示化学品的物理和化学特殊危险性,适合灭火介质,不合适的灭火介质以及消防人员个体防护等方

危险化学品技术说明书

危险化学品技术说 明书

危险化学品技术说明书 目的 对化学危险品进行管理,确保化学危险品在储存、使用搬运过程中的安全性。 2 范围 本标准适用于危险化学品的名称、健康危害、急救措施、消防措施、泄漏应急处理、操作处理与储存、储存注意事项。 3 职责 3.1 采购部负责危险化学品的采购、运输。 3.2仓储部负责危险化学品的管理、收发、日常检查。 3.3车间、质检部负责危险化学品的使用管理。 3.4安全技术部负责危险化学品的监督、检查。 4 内容和要求 1盐酸 1.1中文名称:盐酸 1.1.1危险性类别:无机腐蚀品 1.1.2危险性综述:本品具有强腐蚀性,有刺激气味,接触可致化学性灼伤,对水体、空气和土壤均可造成污染。 1.1.3侵入途径:误食、吸入、皮肤接触 1.1.4毒性与防护:吸入后出现呛咳、流泪、胸闷、呼吸加快。发现后应立即脱离现场,除去被污染的衣物,注意保持呼吸道畅

通。 1.1.5盐酸应贮存在密封的容器中,容器周围应通风、干燥,不能与其它强碱类(如氢氧化钠)、硫化物、磷化物、氰化物、已酯化合物、氟化物、硅化物、碳化物、氧化剂(如过氧化合物)共贮混运,工作时应配戴手套、工作服和工作鞋,合适的材料是天然橡胶。 1.1.6急救措施 1.1.7吸入中毒:立即脱离现场,除去被污染的衣物,注意保持呼吸道畅通,必要时给氧。 1.1.8误服中毒:严禁洗胃,也不可催吐,以免加重损伤或引起胃穿孔,可用 2.5%氧化酶溶液、牛奶、豆浆、蛋清、花生油等口服。 皮肤和眼的处理:脱去污染衣物,立即用大量清水彻底冲洗,灼伤处用5%碳酸氢钠溶液洗涤而后以2%碳酸氢钠或生理盐水冲洗。创面较大时,须用抗生素预防感染。 1.1.9消防措施及泄漏的处理 本品不燃烧,用喷水来冷却容器有助于防止爆炸、爆裂和减少蒸气。本品具有强腐蚀性,一旦泄漏尽快地切断泄漏源,使用合适的盐酸吸着物来抑制溢汇,用苏打粉或石灰中和残余物质,处理废料可在指定地点深埋、遵守环境保护法规。 2硫酸

溴甲烷用于土壤熏蒸及安全使用方法

编号:SY-AQ-09293 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 溴甲烷用于土壤熏蒸及安全使 用方法 Application of methyl bromide in soil fumigation and its safe use

溴甲烷用于土壤熏蒸及安全使用方 法 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管 理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关 系更直接,显得更为突出。 土壤消毒剂--溴甲烷为什么要进行土壤消毒? 由于温室,大棚蔬菜育苗生产、草莓、花卉等经济作物的连茬栽种,各种土传病害日趋严重。常见的植物土传病害有:瘁倒病(Damping-off)、枯萎病(Fusariumwilt)、立枯病(Rhizoctoniarot)、疫病(Phytophthorablight)、蔓枯病(Gummystemblight)、根腐病(Fusariumroorot)、根结线虫(Root-knotnematode)、各种杂草及地下害虫等等。对这类病害,目前生产上最有效的防治方法是使用溴甲烷熏蒸土壤。1994年以色列死海溴化物集团,将溴甲烷的使用技术引进中国,它具有使用安全,操作简便,易于掌握,消毒彻底等优点,特别适合于保护地生产的蔬菜、草莓、花卉的土壤和基质的消毒

什么是溴甲烷? 溴甲烷是一种高毒,无色,无味,透明的液体,当温度高于3.5度时,便可蒸发为比空气重3倍的气体。它具有强烈的扩散性和渗透性,能够在疏松的土壤中无孔不入,可杀死土壤中的各种病原菌包括:细菌、真菌、线虫、地下虫及杂草种子。为保证使用安全,98%的商品溴甲烷中已加入2%的氯化苦作催泪剂 如何正确使用溴甲烷? 为了达到满意的消毒效果,应注意以下几个影响因素: 1.土壤:消毒前,必须先清除掉所有的残存作物秸秆及根系,深翻土壤至少30公分,施好底肥,打碎大土块,为溴甲烷在土壤中扩散和渗透提供良好的条件。土壤20公分处,温度要在8度以上。土壤湿度为种子萌发的湿度。简单的做法是,抓起一把土,攥成团,离地1米松开,若土团能够散开,证明水份含量合适。 2.使用剂量:每平方米用药50-75克。 3.土壤消毒:一定要在密封的小拱棚下进行,所使用的棚膜要比消毒地块宽出1米,不能有破洞(最好事先准备一些胶带)。

推荐-溴甲烷用于土壤熏蒸及安全使用方法

溴甲烷用于土壤熏蒸及安全使用方法土壤消毒剂--溴甲烷为什么要进行土壤消毒? 由于温室,大棚蔬菜育苗生产、草莓、花卉等经济作物的连茬栽种,各种土 传病害日趋严重。常见的植物土传病害有:瘁倒病(Damping-off)、枯萎病(Fusariumwilt)、立枯病(Rhizoctoniarot)、疫病(Phytophthorablight)、蔓枯 病(Gummystemblight)、根腐病(Fusariumroorot)、根结线虫(Root-knotnematode)、各种杂草及地下害虫等等。对这类病害,目前生产上最有效的防治方法是使用溴 甲烷熏蒸土壤。1994年以色列死海溴化物集团,将溴甲烷的使用技术引进中国,它具有使用安全,操作简便,易于掌握,消毒彻底等优点,特别适合于保护地生 产的蔬菜、草莓、花卉的土壤和基质的消毒 什么是溴甲烷? 溴甲烷是一种高毒,无色,无味,透明的液体,当温度高于3.5度时,便可 蒸发为比空气重3倍的气体。它具有强烈的扩散性和渗透性,能够在疏松的土壤 中无孔不入,可杀死土壤中的各种病原菌包括:细菌、真菌、线虫、地下虫及杂 草种子。为保证使用安全,98%的商品溴甲烷中已加入2%的氯化苦作催泪剂如何正确使用溴甲烷? 为了达到满意的消毒效果,应注意以下几个影响因素: 1.土壤:消毒前,必须先清除掉所有的残存作物秸秆及根系,深翻土壤至少 30公分,施好底肥,打碎大土块,为溴甲烷在土壤中扩散和渗透提供良好的条件。土壤20公分处,温度要在8度以上。土壤湿度为种子萌发的湿度。简单的做法是,

抓起一把土,攥成团,离地1米松开,若土团能够散开,证明水份含量合适。 2.使用剂量:每平方米用药50-75克。 3.土壤消毒:一定要在密封的小拱棚下进行,所使用的棚膜要比消毒地块宽 出1米,不能有破洞(最好事先准备一些胶带)。 4.消毒以后:土壤要采取各种办法,防止再污染。所使用的农具,灌溉水,种 苗都有要注意消毒防病。 怎样进行土壤消毒? 目前市场上销售的钢瓶装溴甲烷的包装规格主要有:25、40、100公斤等,每个钢瓶压力为7-8个大气压。使用时,钢瓶中的液态溴甲烷通过的聚乙烯(POLYETHYLENE)塑料管分别充入事先放在地里的容器中(多为1升以上的玻璃瓶),使其从液态转化为气态。 具体操作步骤如下: 1.开沟:沿消毒地块四周开挖压膜沟,沟深20公分。有立柱的大棚,中间的一条沟一定要在立柱中间开挖,以利于同时压埋立柱两边的膜。 2.搭架:用竹杆在地上拱起30公分高的支架,但间隔要适中,以盖上薄膜不塌地为易。 3.布施药点:在玻璃瓶的600毫升处做好明显标记(每公斤溴甲烷等于600毫升容积),固并定在土壤中,埋放的数量取决于施药剂量,当施药剂量为50克/ 平方米时(即每20平方米用1公斤溴甲烷),则每20平方米需放置一个玻璃瓶,1

化学品安全说明书-MSDS (Material Safety Data Sheet)

化学品安全说明书-MSDS (Material Safety Data Sheet) MSDS是什么? [Material Safety Data Sheet] MSDS (Material Safety Data Sheet)即化学品安全说明书,亦可译为化学品安全技术说明书或化学品安全数据说明书。在欧洲国家,MSDS也被称为安全技术/数据说明书SDS(Safety Data sheet)。国际标准化组织(ISO)11014采用SDS术语,然而美国、加拿大,澳洲以及亚洲许多国家则采用MSDS 术语。 MSDS是化学品生产或销售企业按法律要求向客户提供的有关化学品特征的一份综合性法律文件。它提供化学品的理化参数、燃爆性能、对健康的危害、安全使用贮存、泄漏处置、急救措施以及有关的法律法规等十六项。当前,由国际化学品安全规划小组(International Programme on Chemical Safety) 编制的一份类似MSDS的文件,即国际化学品安全卡【International Chemical safety Card (ICSC)】。同MSDS类似,ICSC概述了化学品有关的健康和安全使用信息。如今,已有1,300种化学品据有ICSC。除英语以外,ICSC还被翻译为其他13种语言。然而,ICSC并无政府机构对化学品的管理条例,同时,某些警示性的标准词语(R-Phrases)在一些国家也并不适用。所以ICSC并非是一份法律性文件,它不能取代目前在国际上流通的MSDS。 MSDS (Material Safety Data Sheet)即化学品安全说明书,亦可译为化学品安全技术说明书或化学品安全数据说明书。在欧洲国家,MSDS也被称为安全技术/数据说明书SDS(Safety Data sheet)。国际标准化组织(ISO)11014采用SDS术语,然而美国、加拿大,澳洲以及亚洲许多国家则采用MSDS术语。 MSDS是化学品生产或销售企业按法律要求向客户提供的有关化学品特征的一份综合性法律文件。它提供化学品的理化参数、燃爆性能、对健康的危害、安全使用贮存、泄漏处置、急救措施以及有关的法律法规等十六项。当前,由国际化学品安全规划小组(International Programme on Chemical Safety) 编制的一份类似MSDS的文件,即国际化学品安全卡【International Chemical safety Card (ICSC)】。同MSDS类似,ICSC概述了化学品有关的健康和安全使用信息。如今,已有1,300种化学品据有ICSC。除英语以外,ICSC还被翻译为其他13种语言。然而,ICSC并无政府机构对化学品的管理条例,同时,某些警示性的标准词语(R-Phrases)在一些国家也并不适用。所以ICSC并非是一份法律性文件,它不能取代目前在国际上流通的MSDS。 化学品安全说明书(Material Safety Data Sheet)MSDS,国际上称作化学品安全信息卡,是化学品生产商和经销商按法律要求必须提供的化学品理化特性(如PH值,闪点,易燃度,反应活性等)、毒性、环境危害、以及对使用者健康(如致癌,致畸等)可能产生危害的一份综合性文件。它包括危险化学品的燃、爆性能,毒性和环境危害,以及安全使用、泄漏应急救护处置、主要理化参数、法律法规等方面信息的综合性文件。 编制高水准的MSDS难点在于:一是除化学品的理化特性外,化学品量化的毒理数据测试费用太高,数据获得成本太大,特别是化学品有的是复合品或搀有副产品,其对环境、生物、人类等毒理数据更为复杂,所以同一种化学品的MSDS不见得一样,但供应商提供的MSDS在企业使用中碰到对环境、健康等法律性的纠纷时,供应商如提供的MSDS不合格,必须要承担其相应的法律责任。二是编制的MSDS必须要按照买方所在的国家和地区的有关危险化学品的法律法规的相关规定编制,然而各国,甚至一个国家各州有关化学品管理的法律法规通常也不一样,甚至这些法律法规每月都有变化,所以编制的MSDS必须符合当时的买方所在国家或地区的法律法规要求 附诚通市场经验单: 电池类

各种花的英文名

各种花卉的英文名 iris蝴蝶花 cockscomb鸡冠花 honeysuckle金银花chrysanthemum菊花 carnation康乃馨 orchid兰花 canna美人蕉 jasmine茉莉花 daffodil水仙花 peony牡丹 begonia秋海棠 cactus仙人掌 christmas flower圣诞花/一品红poppy罂粟 tulip郁金香 chinese rose月季 violet紫罗兰 peach flower桃花 aloe芦荟 mimosa含羞草 dandelion蒲公英

plum bolssom梅花中国水仙 new year lily 石榴 pomegranate 月桂victor's laurel 报春花 polyanthus 木棉 cotton tree 紫丁香 lilac 吊钟 lady's eardrops 紫荆 Chinese redbud 百合 lily 紫罗兰 wall flower 桃花 peach 紫藤 wisteria 杜鹃 azalea 铃兰 lily-of-the-valley 牡丹 tree peony 银杏 ginkgo 芍药 peony 蝴蝶兰 moth orchid 辛夷 violet magnolia 蟹爪仙人掌 Christmas cactus 玫瑰 rose 郁金香 tulip

茶花 common camellia 千日红 common globe-amaranth 非洲堇 African violet 栀子花 cape jasmine 木槿 rose of Sharon 风信子 hyacinth 百子莲 African lily 牵牛花 morning glory 君子兰 kefir lily 荷包花 lady's pocketbook 含笑花 banana shrub 非洲菊 African daisy 含羞草 sensitive plant 茉莉 Arabian jasmine 猪笼草 pitcher plant 凌霄花 creeper 树兰 orchid tree 康乃馨coronation 鸡冠花 cockscomb 荷花lotus 鸢萝 cypress vine 菩提 botree

熏蒸&热处理

熏蒸&热处理 熏蒸(FUMIGATION)木托盘是木托盘经过熏蒸处理之后的木托盘的称呼,熏蒸的处理过程是:在处理房中用药水(主要成分是臭甲烷)对木托盘进行杀虫,在处理的过程中,周边至少50米以内杜绝人员靠近,并且要持续48个小时。国际代码是MB。 热处理(Heat treatment)木托盘重要是在热处理房经高温度对木材杀虫,木材中心温度至少要达到70摄氏度,并持续15个小时。国际代码为HT。 这两种对木材的处理方式主要的目的就是杀死可能会对木材入境国家的树木乃至生态造成伤害的生物虫。 热处理运作安全、有序、无公害,而熏蒸的就耗时、耗资金,而且不一定能够通过检验。 IPPC热处理(熏蒸)木托盘:是出口包装专用木托盘,必须由商检提供木托盘热处理(熏蒸)加施"IPPC"标识,并可根据需要提供检验检疫证书、热处理(熏蒸)消毒证书。 入境木质包装无ippc标识或ippc标识不符合要求,可能连同货物被责令退运出境 标识是IPPC确认的表明木质包装经过有效除害处理的符号,只有经检验检疫机构考核合格的出境货物木质包装生产企业才有资格使用标识。 左侧的图形是国际植物保护公约(IPPC)注册的用于按规定实施除害处理合格的木质包装上的符号; XX是国际标准化组织的2个字母国家编码;000代表国家植保机构给予木质包装生产企业的独特登记号。YY代表除害处理方法,如MB表示溴甲烷熏蒸处理,HT表示热处理;输出国官方植物检疫机构或木质包装生产企业可以根据需要增加其它信息。 标识必须加施于木质包装的显著位置,至少应在相对的两面,标识应清晰易辨、具永久性和不可改变性,避免使用红色或橙色。 对中国出口的木质包装进行熏蒸(消毒)的国家有:美国、加拿大、欧盟、日本及澳大利亚,其中对美、加必须出具官方熏蒸(消毒)证书。 木质包装一般指用于包装、铺垫、支撑、加固货物的材料,如木箱、木板条箱、木托盘、垫仓木料、木桶、木垫方、枕木、木衬板、木轴、木楔等。 熏蒸(消毒)证书的有效期为21天。

船舶货仓溴甲烷熏蒸处理操作规程

船舶货仓溴甲烷熏蒸处理操作规程 1.使用单位及适用范围 (1)使用单位 经口岸检验检疫机关考核批准,具有溴甲烷船舶熏蒸资格的熏蒸队(公司)。参加重蒸的人员必须经口岸检验检疫机关考核并发给上岗合格证的人员。检验检疫机关的监管人员应熟悉熏蒸业务,并相对固定。 (2)适用范围 适用于装载进出境植物产品的船舶熏蒸(空船、散装与袋装货物)。 2.操作程序 (1)准备工作 ①熏蒸队(公司)会同检疫机关及其他有关部门,登轮与船方联系有关熏蒸事宜(商量熏蒸方案、熏蒸安全措施、船方职责与熏蒸负责人安排等),商签有关文件《FUMIGATION NOTICE》,了解船舶情况,索取配载图等资料。对船舶结构进行详细考查了解,主要包括CO2管道、地轴道、机舱区、污水阀门、电缆线孔、高低风筒、机械通风机、人孔、桅房、桅房电缆孔、舱盖橡皮垫、锚链间、生活区等,并把调查情况记入《船体结构检查记录及处理表》。 ②在船舶熏蒸前,熏蒸队(公司)向有关单位发送《船舶熏蒸计划通知书》。 ③设备和器材。温度计、计算器、测漏灯、KX-Ⅱ气体分析仪、防毒面具、投药管、分药器、气化器、气体取样管、风扇、磅秤、打孔器(锥形导入圆尖,分解式内套接不锈钢管)、糊封材料(浆糊、牛皮纸、胶纸、易弯曲材料、聚乙烯薄膜及其制成的风筒套袋等)、杀虫剂和喷雾设备、警戒标记、药剂、急救药品等。 ④熏蒸区域的准备。贮藏室:打开所有箱柜、抽屉和仪器橱,将袋装货物摆放在托盘上。货仓:对于空仓,货仓内所有空间和部位都必须熏蒸;对袋装货物应打开甲板之间舱盖(部分)与入孔,并保留一定空间安装风扇;散装货物,应确保便于打管。 ⑤风扇的设置。贮藏室应安装2个50立方米/分钟的风扇,一个在较高位置,另一个放在较低位置,空仓与袋装货物货仓的风扇数量由货仓体积而定,其排风量与仓容相等,面朝内,呈对角线排列。 ⑥气体取样管和投药管设置。贮藏室在空间放2个取样管,在货物中放一个取样管。货仓:空仓每层放2个取样管(以3500立方米为标准,每增加500立方米增设一个取样管);袋装货物,每层货舱的货物中以空仓为基础增设1~2个取样管;对散装货物,特别是药剂不易穿透的货物,在袋装货物基础上增设1~2个取样管,并插入货物中间(方法同投药管设置)。放置部位参看船舱载图,每仓所用取样管应在舱外汇于一处,并作好标记,距熏蒸区10米处检测。 贮藏室投药管通过门、窗穿入放在风扇前方并固定,并在投药管下方与前方放一层不透气衬垫材料。货仓:空仓每层放1~2个投药管于风扇前方并固定,并在投药管的前方与下方放入一层不透气的衬垫材料。对散装货物,按货仓的长度与宽度,每隔5米并列打管,深度为3米、6米、9米,同时在表层放一根投药管,然后将这些管连接到分药器上,再连接至气化器上,通过气化器与钢瓶相连。

危险化学品安全使用说明书(MSDS)

危险化学品安全使用说明书(MSDS) 危险化学品安全使用说明书(MSDS ) 目录 第一章 2K稀释 剂 (1) 第二章 2K3油 漆 (4) 危险化学品安全使用说明书(MSDS ) 编号:SC-019 第一章 2K稀释剂 1. 物理化学特性 外观与性状:无色透明液体,有特殊气味。 熔点(℃): 沸点(℃):78-192℃ 相对蒸气密度(空气=1):比空气重 爆炸上限%(V/V):1.0(基于二甲苯) 爆炸下限%(V/V):7.0(基于二甲苯) 溶解性:微溶于水,可与酯、酮、醇醚类、芳香烃等溶剂混溶。 主要用途:用于溶剂型涂料稀释剂和冲淡剂,用来调节涂料产品粘度,以便于施工。 2. 危害性知识 侵入途径:吸入食入皮肤接触眼睛接触 健康危害:本产品会刺激皮肤和眼睛并造成伤害。其蒸气会刺激眼睛和呼吸道,对神经系统有麻痹作用,长期处于高浓度环境中,会有害健康。长时间过度吸入高浓度蒸气会导致晕厥甚至死亡。 主要症状:过度吸入其蒸气或喷漆漆雾会导致头痛、头晕、恶心、动作不协调;眼睛和皮肤接触会导致充血、骚痒、有灼痛感。 环境危害:该物质对环境有危害,应特别注意对水体的污染。燃爆危险:易燃,遇明火、高温有燃烧危险,在密封的容器中遇高温会发生爆炸。

3. 应急措施 皮肤接触:脱去污染的衣着,用肥皂水及清水彻底冲洗皮肤。眼睛接触:立即翻开 上下眼睑,用流动清水或生理盐水冲洗至少15min ,就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。吸呼 1 /6 困难时给输氧。如呼吸及心跳停止,立即进行人工呼吸和心脏按摩术。立即就医。 食入:若患者即将丧失意识、已失去意识或痉挛,不可经口喂食任何东西;若患者意 识清楚,让其用水彻底漱口,不可强制催吐,并给患者喝下足量温水;若患者自发性呕吐,让其身体向前倾以减轻吸入危险,并让其漱口及反复给水。立即就医。. 4. 消防措施 危险特性:本品易燃,遇明火、高热能引起燃烧。其蒸气比空气重,能在较低处扩散 到相当远的地方,遇火源引着回燃。若遇高热,容器内压增大,有开裂和爆炸的危险。 有害燃烧产物:CO 、CO2 灭火方法及灭火剂:可用泡沫、二氧化碳、干粉、砂土扑救。不适宜灭火剂:水喷射。 灭火注意事项:消防人员应佩戴自供气呼吸器,消防衣及防护手套;喷水灭火无效; 喷雾状水可用来冷却密封的容器外壁,以防容器内压力过高而爆炸或因高温而自燃甚至燃爆。 5. 事故泄露 应急处理:切断火源,现场足量通风。建议应急处理人员戴自给正压式呼吸器。尽可 能切断泄漏源。防止进入下水道、排洪沟等限制性空间。 消除方法:用砂土、活性碳或其它惰性材料吸收后,收集在加盖有标识容器内。 6. 处理和储存 操作处臵注意事项:远离热源、明火。避免眼睛、皮肤接触。保持容器密闭。现场采 用足够通风设备。采用经认可的接地装臵。使用后彻底清洗。 储存注意事项:储存于阴凉、通风库房。保持容器密封。储存区禁止吸烟,远离火种、热源,避免阳光直射。采用防爆型照明、通风设施。禁止使用易产生火花的机械设备和工具。 2 /6

植物花卉中英文对照

植物花卉中英文对照、花卉英文名大全 金橘--------------kumquat 米仔兰(米兰)--------- milan tree 变叶木-------------croton 一品红-------------poinsettia 扶桑--------------Chinese hibiscus 吊灯花-------------fringed hibiscus 马拉巴栗(发财树)------- Guiana chestnut 山茶--------------camellia 云南山茶------------Yunnan camellia 金花茶-------------golden camellia 瑞香--------------daphne 结香--------------paper bush 倒挂金钟------------fuchsia 八角金盘------------Japan fatsia 常春藤-------------ivy 鹅掌柴-------------umbrella tree 杜鹃花-------------rhododendron 茉莉花-------------jasmine 桂花--------------sweet osmanthus 夹竹桃-------------sweet-scented oleander 黄花夹竹桃-----------lucky-nut-thevetia 鸡蛋花-------------frangipani 龙吐珠-------------bleeding-heart glorybower 夜香树(木本夜来香)------night jasmine 鸳鸯茉莉------------broadleaf raintree 栀子花-------------cape jasmine 蝴蝶兰-------------moth orchid 卡特兰-------------cattleya 石斛--------------dendrobium 兜兰--------------lady slipper 兰花--------------orchid 春兰--------------goering cymbidium

溴甲烷的制备新工艺与应用

溴甲烷的制备新工艺与应用 22 f术第8期适用技术市场1993年第期 溴甲烷(MB),又称甲基溴,是一种刺激性 和渗透性强的熏蒸剂.它最重要的特性是能在 常压下快速渗透到被熏蒸物品的深处,而且在 熏蒸之后,散毒快}许多有生命的植物能经受住 它熏蒸害虫的肓效浓度.此外,它不易燃烧和爆 炸,使用时不必采取特殊的防火措施,并且沸点 又较低,可用于其它许多熏蒸荆所办不到的低 温处理.因此,近年来MB长盛不衰.至今仍不 愧为一种较好的多用途广谱性杀虫熏蒸荆. 】制备新工艺 生产MB的传统工艺是在沸腾的甲醇和硫 磺悬浮液中,逐渐加入溴,生成的MB气体经碱 应用 r.一 洗,酸洗,干燥,压缩液化,得到产品.反应式如 下: 2Br2+S+4CH3OH一4CH3Br+SOz+

2H2o 这种传统工艺.由于反应只能保持在58~ 65℃的温度下进行,因此,MB的生成速度较慢,反应也不稳定,较难控制,而且反应过程中 产生的SO:,需碱洗进行无害化处理. 为了克服上述缺点,笔者在传统工艺的基 础上作了改进,即在系统中加入水,使硫磺与溴反应生成的溴化硫水解成氢溴酸和硫酸,然后与甲醇反应制得MB.控制一定的反应条件.MB 的收率可达95以上,纯度可达99.其反应 杂质,并按毛发质量分级提取,对降低原材料消耗,提高胱氨酸得率也有重要意义. 3.2采用专用盐酸 胱氨酸精制采用比学纯盐酸成本太高,采 用专用盐酸可大大降低成本.专用盐酸可根据产品的标准定制,其主要指标是色度和重金属含量 4粗提母液的进一步利用 胱氨酸粗提母液中.除已提去的胱氨酸外, 还含有其它16种氨基酸.其中精氨酸,丝氮酸, 谷氨酸,亮氨酸,缬氨酸的含量均在5以上. 他们都是重要的生化制品或化工原料,可分别

异丙醇化学品安全技术说明书 (MSDS)

异丙醇化学品安全技术说明书(MSDS) 第一部分:化学品名称 1.1 化学品中文名称:2-丙醇 1.2 化学品英文名称:2-propanol 1.3中文名称2: 异丙醇 1.4 分子式:C3H8O 1.5 分子量:60.10 第二部分:成分/组成信息 2.1 主要成分:2-丙醇 2.2 含量: 2.3 CAS No. 67-63-0 第三部分:危险性概述 3.1 危险性类别: 3.2 侵入途径: 3.3 健康危害:接触高浓度蒸气出现头痛、倦睡、共济失调以及眼、鼻、喉刺激症状。口服可致恶心、呕吐、腹痛、腹泻、倦睡、昏迷甚至死亡。长期皮肤接触可致皮肤干燥、皲裂。 第四部分:急救措施 4.1 皮肤接触:脱去污染的衣着,用肥皂水和清水彻底冲洗皮肤。 4.2 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医 4.3 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 4.4 食入:饮足量温水,催吐。洗胃。就医。 第五部分:消防措施 5.1 危险特性:易燃,其蒸气与空气可形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。与氧化剂接触猛烈反应。在火场中,受热的容器有爆炸危险。其蒸气比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃。 5.2 有害燃烧产物:一氧化碳、二氧化碳。 5.3 灭火方法:尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结束。处在火场中的容器若已变色或从安全泄压装置中产生声音,必须马上撤离。灭火剂:抗溶性泡沫、干粉、二氧化碳、砂土。 第六部分:泄漏应急处理 6.1 应急处理:迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿防静电工作服。尽可能切断泄漏源。防止流入下水道、排洪沟等限制性空间。小量泄漏:用砂土或其它不燃材料吸附或吸收。也可以用大量水冲洗,洗水稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容。用泡沫覆盖,降低蒸气灾害。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。 第七部分:操作处置与储存 7.1 操作注意事项:密闭操作,全面通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴过滤式防毒面具(半面罩),戴安全防护眼镜,穿防静电工作服,戴乳胶手套。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。防止蒸气泄漏到工作场所空气中。避免与氧化剂、酸类、卤素接触。灌装时应控制流速,且有接地装置,防止静电积聚。搬运时要轻装轻卸,防止包装及容器损坏。配备相应品种和数量的消防器材及泄漏应急处理设备。倒空的容器可能残留有害物。 7.2 储存注意事项:储存于阴凉、通风的库房。远离火种、热源。库温不宜超过30℃。保持

硝酸危险化学品安全使用说明书修订稿

硝酸危险化学品安全使 用说明书 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

硝酸危险化学品安全使用说明书 第一部分:化学品名称 中文名称:硝酸;漒水;硝漒水英文别名:nitricacid化学式:HNO3分子量:CAS号:7697-37-2 第二部分:成分及理化性质 有害物成分:硝酸含量≧% 外观与特性:纯品为无色透明发烟液体,有酸味。 主要用途:用途极广。主要用于化肥、染料、国防、炸药、冶金、医药等工业。熔点℃:-42(无水)沸点℃:86(无水) 溶解性:与水混溶相对蒸气密度(空气=1)相对密度(水=1):(无水)饱和蒸汽压(kpa)(20℃) 第三部分:危险性概述 危险特性:具有强氧化性。与易燃物(如苯)和有机物(如糖、纤维素等)接触会发生剧烈反应,甚至引起燃烧。与碱金属能发生剧烈反应。具有强腐蚀性。腐蚀某些塑料、橡胶和涂料。腐蚀绝大多数金属,并释放出高度可燃的氢气。燃烧(分解)产物:氧化氮。稳定性:稳定聚合危害:不能出现 禁忌物:强还原剂、碱类、醇类、碱金属、铜、胺类。

健康危害:其蒸气有刺激作用,引起眼和上呼吸道刺激症状,如流泪、咽喉刺激感、呛咳,并伴有头痛、头晕、胸闷等,口服引起腹部剧痛,严重者可有胃穿孔、腹膜炎、喉痉挛、肾损伤、休克以及窒息,皮肤接触引起灼伤。慢性影响:长期接触可引起牙齿酸腐蚀。 环境危害:对环境有危害,对水体和土壤造成污染。 灭火方法:砂土、二氧化碳、雾状水、火场周围可用的灭火介质。若不小心接触,立即撤离现场,隔离器具,对人员彻底清污。蒸气比空气重,易在低处聚集。封闭区域内的蒸气遇火能爆炸。储存容器及其部件可能向四面八方飞射很远。如果该物质或被污染的流体进入水路,通知有潜在水体污染的下游用户,通知地方卫生、消防官员和污染控制部门。在安全防爆距离以外,使用雾状水冷却暴露的容器。 硝酸危险化学品安全使用说明书 第四部分:急救措施 皮肤接触:立即脱去污染的衣着,用大量流动清水冲洗至少15分钟或用2%碳酸氢钠溶液,若有灼伤,就医治疗。

各种花的英文名

iris 蝴蝶花hon eysuckle 金银花 chrysanthemum 菊花 carnation 康乃馨 orchid 兰花 canna 美人蕉 jasmine 茉莉花 daffodil 水仙花 peony 牡丹 begonia 秋海棠 cactus 仙人掌 christmas flower 圣诞花/一品红 poppy 罂粟 tulip 郁金香 chi nese rose 月 季 violet 紫罗兰 peach flower 桃花 aloe 芦荟 mimosa 含羞草 dandelion 蒲公英 plum bolssom 梅花中国水仙new year lily

石榴pomegranate 月桂victor's laurel 报春花polyanthus 木棉cotton tree 紫丁香lilac 吊钟lady's eardrops 紫荆Chinese redbud 百合lily 紫罗兰wall flower 桃花peach 紫藤wisteria 杜鹃azalea 铃兰lily-of-the-valley 牡丹tree peony 银杏ginkgo 芍药peony 蝴蝶兰moth orchid 辛夷violet magnolia 蟹爪仙人掌Christmas cactus 玫瑰rose 郁金香tulip

非洲堇African violet 栀子花cape jasmine 木槿rose of Sharon 风信子hyacinth 百子莲African lily 牵牛花morning glory 君子兰kefir lily 荷包花lady's pocketbook 含笑花bana shrub 非洲菊African daisy 含羞草sensitive plant 茉莉Arabian jasmine 猪笼草pitcher plant 凌霄花creeper 树兰orchid tree 康乃馨coronation 荷花lotus 鸢萝cypress vine 菩提botree 大理花dahlia

IPPC熏蒸及热处理

I P P C熏蒸及热处理 Prepared on 22 November 2020

熏蒸 熏蒸 所谓熏蒸就是采用熏蒸剂这类化合物在能密闭的场所杀死害虫、病菌或其它有害生物的技术措施。熏蒸剂是指在所要求的温度和压力下能产生使有害生物致死的气体浓度的一种化学药剂。这种分子态的气体,能够渗透到被熏蒸的物质中去,熏蒸后通风散气,非常容易扩散出去。 简介 熏蒸,有木制品生产加工熏蒸与两个不同的概念。 一。木制品生产加工熏蒸 英文名称:FUMIGATION 现在的熏蒸普遍采用两种方式进行,一是化学制剂法,二是热处理法。 化学制剂一般采用(Methylbromide),俗名溴代甲烷(Bromomethane)。化学制剂法要求室外温度要达到10℃以上,如果室外温度低于10℃以下就必须采用热处理法。 说明 熏蒸(消毒)说明

1、木质包装熏蒸(消毒)的目的和意义 在国际贸易中,各国为保护该国的资源,对有的进口商品实行强制的检疫制度。木质包装熏蒸(消毒)就是为了防止有害病虫危害进口国森林资源所采取的一种强制措施。因此,含有木质包装的出口,就必须在出运前对木质包装物进行除害处理,熏蒸(消毒)是除害处理中的一种方式。 2、木质包装熏蒸(消毒)的范围 对中国出口的木质包装物进行熏蒸(消毒)的国家有:、加拿大、欧盟、及澳大利亚,其中对美、加必须出具官方熏蒸(消毒)证书。 木质包装一般指用于包装、铺垫、支撑、加固货物的材料,如木箱、木板条箱、木托盘、垫仓木料、木桶、木垫方、枕木、木衬板、木轴、木稧等。 3、熏蒸(消毒)程序 .如果输往的货物为针叶木包装,则须提供熏蒸(消毒)证明书。 1)工厂所在地不在出口港口所在城市,则熏蒸(消毒)须在当地工厂进行。 A提前7-8天向当地商检局申请报检; B提供箱单、、合同、报检委托书给商检局; C与商检局约定时间进行商检; D工厂须提供熏蒸(消毒)的场地,如温度低须在室内进行; F熏蒸(消毒)完毕后,向商检局索要熏蒸(消毒)证明书;

PPO 日本旭化成 MSDS 物质安全说明书

First Issue : Oct. 01. 2003 Revised : Sep. 01. 2009 XYRON FR/non-Filler MATERIAL SAFETY DATA SHEET 1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION PRODUCT NAME : XYRON TM See Appendix for grades applicable to this data sheet. GENERAL USE : For producing molded or extruded articles or as a component of other industrial prod- ucts. PRODUCT DESCRIPTION : PPE (Poly(2,6-dimethyl-1,4-phenylene ether) / HIPS ( Poly(Butadiene-styrene) CHEMICAL NAMES : Poly(2,6-dimethyl-1,4-phenylene ether) ( PPE ) Poly(Butadiene-styrene) ( HIPS ) Aromatic phosphate as flame retardant MANUFACTURER : COMPANY NAME : ASAHI KASEI CHEMICALS CORPORATION ADDRESS : 1-105 Kanda Jinbocho, Chiyoda-ku, Tokyo 101-8101 Japan EMERGENCY TELEPHONE NUMBER CHEMTREC Telephone United States : (800) 424 - 9300 24hours Everyday International : +1- (703) 527 – 3887 (collect) 24hours Everyday Asahi Kasei Plastics North America, Inc. 900 E. Van Riper Rd., Fowlerville, MI 48836 Telephone : ( 517 ) 223 – 2000 ASAHI KASEI CHEMICALS CORPORATION (JAPAN) New Business Development & Marketing Dept. “XYRON” Telephone +81-44-271-2561, Fax. + 81-44-271-2166 2. COMPOSITION / INFORMATION ON INGREDIENTS COMPOSITION : Poly(2,6-dimethyl-1,4-phenylene ether) , Poly-styrene & Poly(Butadiene-styrene) > 45 wt% Hydrogenated Poly(Butadiene styrene) < 20 wt% Aromatic phosphate < 25 wt% Additives < 10 wt% Total 100 wt% CAS REGISTRY NO. : Poly(2,6-dimethyl-1,4-phenylene ether) 25134-01-4 Poly-styrene 9003-53-6 Poly(Butadiene-styrene) 9003-55-8 Aromatic phosphate 115-86-6,181028-79-5,5945-33-5 Hydrogenated Poly(Butadiene styrene) 66070-58-4 *These products don’t contain any new chemicals, toxic chemicals and observational substances. All of ingredients are listed on TSCA inventories.

常见花的英文单词新选

常见花的英文单词 中国水仙new year lily 石榴pomegranate 月桂victor's laurel 报春花polyanthus 木棉cotton tree 紫丁香lilac 吊钟lady's eardrops 紫荆Chinese redbud 百合lily 紫罗兰wall flower 桃花peach 紫藤wisteria 杜鹃azalea 铃兰lily-of-the-valley 牡丹tree peony 银杏ginkgo 芍药peony 蝴蝶兰moth orchid 辛夷violet magnolia 蟹爪仙人掌Christmas cactus 玫瑰rose 郁金香tulip 茶花common camellia 千日红common globe-amaranth 非洲堇African violet 栀子花cape jasmine 木槿rose of Sharon 风信子hyacinth 百子莲African lily 牵牛花morning glory 君子兰kefir lily 荷包花lady's pocketbook 含笑花banana shrub 非洲菊African daisy 含羞草sensitive plant 茉莉Arabian jasmine 猪笼草pitcher plant 凌霄花creeper 树兰orchid tree 康乃馨coronation 鸡冠花cockscomb

荷花lotus 鸢萝cypress vine 菩提botree 大理花dahlia 圣诞百合Christmas bell 一串红scarlet sage 紫薇crape myrtle 勿忘我forget-me-not 睡莲water lily 文心兰dancing lady 吊兰spider plant 白头翁pappy anemone 向日葵sunflower 矢车菊cornflower 竹bamboo 金鱼草snapdragon 夹竹桃oleander 金盏花pot marigold 月季花china rose 金银花honeysuckle 长春花old maid 金莲花garden nasturtium 秋海棠begonia 非洲凤仙African touch-me-not 美人蕉canna 曼陀罗angel's trumpet 晚香玉tuberose 梅花flowering apricot 野姜花ginger lily 圣诞红common poinsettia 菊花chrysanthemum 虞美人Iceland poppy 昙花epiphyllum 鸢尾iris 龙胆royal blue 腊梅winter sweet 麒麟花crown of thorns 木芙蓉cotton rose 九重葛paper flower 火鹤花flamingo flower 三色堇tricolor viola 嘉德丽亚兰cattleya

相关主题