搜档网
当前位置:搜档网 › 初高中物理图形汇总

初高中物理图形汇总

初高中物理图形汇总
初高中物理图形汇总

高中物理力学部分知识点归纳

高中物理力学部分知识点归纳 1、基本概念:力、合力、分力、力的平行四边形法则、三种常见类型的力、力的三要素、时间、时刻、位移、路程、速度、速率、瞬时速度、平均速度、平均速率、加速度、共点力平衡(平衡条件)、线速度、角速度、周期、频率、向心加速度、向心力、动量、冲量、动量变化、功、功率、能、动能、重力势能、弹性势能、机械能、简谐运动的位移、回复力、受迫振动、共振、机械波、振幅、波长、波速 2、基本规律:匀变速直线运动的基本规律(12个方程);三力共点平衡的特点;牛顿运动定律(牛顿第一、第二、第三定律);万有引力定律;天体运动的基本规律(行星、人造地球卫星、万有引力完全充当向心力、近地极地同步三颗特殊卫星、变轨问题);动量定理与动能定理(力与物体速度变化的关系—冲量与动量变化的关系—功与能量变 化的关系);动量守恒定律(四类守恒条件、方程、应用过程);功能基本关系(功是能量转化的量度)重力做功与重力势能变化的关系(重力、分子力、电场力、引力做功的特点);功能原理(非重力做功与物体机械能变化之间的关系);机械能守恒定律(守恒条件、方程、应用步骤);简谐运动的基本规律(两个理想化模型一次全振动四个过程五个物理量、简谐运动的对称性、单摆的振动周期公式);简谐运动的图像应用;简谐波的传播特点;波长、波速、周期的关系;简谐波的图像应用;

3、基本运动类型:运动类型受力特点备注直线运动所受合外力与物体速度方向在一条直线上一般变速直线运动的受力分析匀变速直线运动同上且所受合外力为恒力 1. 匀加速直线运动 2. 匀减速直线运动曲线运动所受合外力与物体速度方向不在一条直线上速度方向沿轨迹的切线方向合外力指向轨迹内侧(类)平抛运动所受合外力为恒力且与物体初速度方向垂直运动的合成与分解匀速圆周运动所受合外力大小恒定、方向始终沿半径指向圆心(合外力充当向心力)一般圆周运动的受力特点向心力的受力分析简谐运动所受合外力大小与位移大小成正比,方向始终指向平衡位置回复力的受力分析 4、基本方法:力的合成与分解(平行四边形、三角形、多边形、正交分解);三力平衡问题的处理方法(封闭三角形法、相似三角形法、多力平衡问题—正交分解法);对物体的受力分析(隔离体法、依据:力的产生条件、物体的运动状态、注意静摩擦力的分析方法—假设法);处理匀变速直线运动的解析法(解方程或方程组)、图像法(匀变速直线运动的s-t图像、v-t图像);解决动力学问题的三大类方法:牛顿运动定律结合运动学方程(恒力作用下的宏观低速运动问题)、动量、能量(可处理变力作用的问题、不需考虑中间过程、注意运用守恒观点);针对简谐运动的对称法、针对简谐波图像的描点法、平移法 5、常见题型:合力与分力的关系:两个分力及其合力的大小、方向六个量中已知其中四个量求另外两个量。斜面类问题:(1)斜面上静止物体的受力分析;(2)斜面上运动物体的受力情况和运动情况的分析(包括

高中物理-动量守恒常见模型练习

高中物理-动量守恒常见模型练习 一、弹性碰撞 1.如图,一条滑道由一段半径R =0.8 m 的14 圆弧轨道和一段长为L =3.2 m 水平轨道MN 组成,在M 点处放置一质量为m 的滑块B ,另一个质量也为m 的滑块A 从左侧最高点无初速度释放,A 、B 均可视为质点.已知圆弧轨道光滑,且A 与B 之间的碰撞无机械能损失(取g =10 m/s 2). (1)求A 滑块与B 滑块碰撞后的速度v A ′和v B ′; (2)若A 滑块与B 滑块碰撞后,B 滑块恰能达到N 点,则MN 段与B 滑块间的动摩擦因数 μ的大小为多少? 二、非弹性碰撞 2.如图所示,质量m =1.0 kg 的小球B 静止在光滑平台上,平台高h =0.80 m .一个质量为M =2.0 kg 的小球A 沿平台自左向右运动,与小球B 发生正碰,碰后小球B 的速度v B =6.0 m/s,小球A 落在水平地面的C 点,DC 间距离s =1.2 m .求: (1)碰撞结束时小球A 的速度v A ; (2)小球A 与小球B 碰撞前的速度v 0的大小. 三、完全非弹性碰撞 3.如图所示,圆管构成的半圆形轨道竖直固定在水平地面上,轨道半径为R,MN 为直径且与水 平面垂直,直径略小于圆管内径的小球A 以某一速度冲进轨道,到达半圆轨道最高点M 时与静止于该处的质量与A 相同的小球B 发生碰撞,碰后两球粘在一起飞出轨道,落地点距N 为2R.重力加速度为g,忽略圆管内径,空气阻力及各处摩擦均不计,求: (1)粘合后的两球从飞出轨道到落地的时间t ; (2)小球A 冲进轨道时速度v 的大小. 2、爆炸 1、碰撞

最详细的高中物理知识点总结(最全版)

高中物理知识点总结(经典版)

第一章、力 一、力F:物体对物体的作用。 1、单位:牛(N) 2、力的三要素:大小、方向、作用点。 3、物体间力的作用是相互的。即作用力与反作用力,但它们不在同一物体上,不是平衡力。作用力与 反作用力是同性质的力,有同时性。 二、力的分类: 1、按按性质分:重力G、弹力N、摩擦力f 按效果分:压力、支持力、动力、阻力、向心力、回复力。 按研究对象分:外力、内力。 2、重力G:由于受地球吸引而产生,竖直向下。G=mg 重心的位置与物体的质量分布与形状有关。质量均匀、形状规则的物体重心在几何中心上,不一定在物体上。 弹力:由于接触形变而产生,与形变方向相反或垂直接触面。F=k×Δx 摩擦力f:阻碍相对运动的力,方向与相对运动方向相反。 滑动摩擦力:f=μN(N不是G,μ表示接触面的粗糙程度,只与材料有关,与重力、压力无关。) 相同条件下,滚动摩擦<滑动摩擦。 静摩擦力:用二力平衡来计算。 用一水平力推一静止的物体并使它匀速直线运动,推力F与摩擦力f的关系如图所示。 力的合成与分解:遵循平行四边形定则。以分力F1、F2为邻边作平行四边形,合力F的大小和方向可用这两个邻边之间的对角线表示。 |F1-F2|≤F合≤F1+F2 F合2=F12+F22+ 2F1F2cosQ 平动平衡:共点力使物体保持匀速直线运动状态或静止状态。 解题方法:先受力分析,然后根据题意建立坐标 系,将不在坐标系上的力分解。如受力在三个以 内,可用力的合成。 利用平衡力来解题。 F x合力=0 F y合力=0 注:已知一个合力的大小与方向,当一个分力的 方向确定,另一个分力与这个分力垂直是最小 值。 转动平衡:物体保持静止或匀速转动状态。 解题方法:先受力分析,然后作出对应力的力臂(最长力臂是指转轴到力的作用点的直线距离)。分析正、负力矩。 利用力矩来解题:M合力矩=FL合力矩=0 或M正力矩= M负力矩 第二章、直线运动

(完整版)高中物理知识点总结和知识网络图(大全)

力学知识结构图

匀变速直线运动 基本公式:V t =V 0+at S=V 0t+21 at 2 as V V t 22 02 += 2 0t V V V += 运动的合成与分解 已知分运动求合运动叫运动的合成,已知合运动求分运动叫运动的分解。运动的合成与分解遵守平行四边形定则 平抛物体的运动 特点:初速度水平,只受重力。 分析:水平匀速直线运动与竖直方向自由落体的合运动。 规律:水平方向 Vx = V 0,X=V 0t 竖直方向 Vy = gt ,y = 22 1gt 合 速 度 V t = ,2 2y x V V +与x 正向夹角tg θ= x y V v 匀速率圆周运动 特点:合外力总指向圆心(又称向心力)。 描述量:线速度V ,角速度ω,向心加速度α,圆轨道半径r ,圆运动周期T 。 规律:F= m r V 2=m ω2r = m r T 2 2 4π 物 体 的 运 动 A 0 t/s X/cm T λx/cm y/cm A 0 V 天体运动问题分析 1、行星与卫星的运动近似看作匀速圆周运动 遵循万有引力提供向心力,即 =m =m ω2R=m( )R 2、在不考虑天体自转的情况下,在天体表面附近的物体所受万有引力近似等于物体的重力,F 引=mg,即?=mg,整理得GM=gR 2。 3、考虑天体自传时:(1)两极 (2)赤道 平均位移:02 t v v s vt t +== 模 型题 2.非弹性碰撞:碰撞过程中所产生的形变不能够完全恢复的碰撞;碰撞过程中有机械能损失. 非弹性碰撞遵守动量守恒,能量关系为: 12m 1v 21+12m 2v 22>12m 1v 1′2+1 2 m 2v 2′2 3.完全非弹性碰撞:碰撞过程中所产生的形变完全不能够恢复的碰撞;碰撞过程中机械能损失最多.此种情况m 1与m 2碰后速 度相同,设为v ,则:m 1v 1+m 2v 2=(m 1+m 2)v 系统损失的动能最多,损失动能为 ΔE km =12m 1v 21+12m 2v 22-12 (m 1+m 2)v 2 1 .弹性碰撞:碰撞过程中所产生的形变能够完全恢复的碰撞;碰撞过程中没有机械能损失.弹性碰撞除了遵从动量守恒定律外,还具备:碰前、碰后系统的总动能相等,即 12m 1v 21+12m 2v 22=12m 1v 1′2+1 2 m 2v 2′2 特殊情况:质量m 1的小球以速度v 1与质量m 2的静止小球发生弹性正碰,根据动量守恒和动能守恒有m 1v 1=m 1v 1′+m 2v 2′,1 2m 1v 21= 12m 1v 1′2+1 2m 2v 2′2.碰后两个小球的速度分别为: v 1′=m 1-m 2m 1+m 2v 1,v 2′=2m 1 m 1+m 2v 1 动 量碰撞 如图所示,在水平光滑直导轨上,静止着三个质量为m =1 kg 的相同的小球A 、B 、C 。现让A 球以v 0=2 m/s 的速 度向B 球运动, A 、 B 两球碰撞后粘在一起继续向右运动并与 C 球碰撞,C 球的最终速度v C =1 m/s 。问: om (1)A 、B 两球与C 球相碰前的共同速度多大? (2)两次碰撞过程中一共损失了多少动能? 【答案】(1)1 m/s (2)1.25 J .线球模型与杆球模型:前面是没有支撑的小球,后两幅图是 有支撑的小球 过最高点的临界条件 由mg=mv 2/r 得v 临=? 由小球恰能做圆周运动即可 得 v 临=0 .车过拱桥问题分析 对甲分析,因为汽车对桥面的压力F N'=mg-?,所以(1)当v=?时,汽车对桥面的压力F N'=0; (2)当0≤v?时,汽车将脱离桥面危险。 对乙分析则:F N-mg=m , 甲 1.做平抛(或类平抛)运动的物体 任意时刻的瞬时速度的反向延长线一定通过此时水平位移的中点 2. 自由落体

最新最全高中物理所有知识点总结(精华)

高考物理基本知识点总结 一. 教学内容: 知识点总结 1. 摩擦力方向:与相对运动方向相反,或与相对运动趋势方向相反 静摩擦力:0 注意:若到最高点速度从零开始增加,杆对球的作用力先减小后变大。 = 相同,,轮上边缘各点v 相同,v A =v B 3. 传动装置中,特点是:同轴上各点C A 4. 同步地球卫星特点是:①,② ①卫星的运行周期与地球的自转周期相同,角速度也相同; ②卫星轨道平面必定与地球赤道平面重合,卫星定点在赤道上空36000km 处,运行速度 3.1km/s。 m1m2 2 r F=G ,卡文迪许扭秤实验。 5. 万有引力定律:万有引力常量首先由什么实验测出: g' =GM/r 2 6. 重力加速度随高度变化关系: GM 说明:r为某位置到星体中心的距离。某星体表面的重力加速 度。 g 02 R

2 g' g R R ——某星体半径 h 为某位置到星体表面的距离 2 (R h) 7. 地球表面物体受重力加速度随纬度变化关系:在赤道上重力加速度较小,在两极,重力加速度较大。 2 2 GM r GM GMm mv r GMm mv r 2 2 2 g' = r r r 、v = 、 、 8. 人造地球卫星环绕运动的环绕速度、周期、向心加速度 = m ω 2R =m ( 2π /T ) 2 R GM r gR gR 2 = GM r =R ,为第一宇宙速度 v 1= = 当 r 增大, v 变小;当 应用:地球同步通讯卫星、知道宇宙速度的概念 9. 平抛运动特点: ①水平方向 ②竖直方向 ③合运动 ④应用:闪光照 ⑤建立空间关系即两个矢量三角形的分解:速度分解、位移分解 S ,求 v T gT 2 相位 v y 0 t x v 0 t v x v 0 1 2 2 y gt v y gt 1 4 2 2 2 2 4 2 2 S v 0 t g t v t v g t gt 2v 0 1 2 gt v 0 tg tg tg tg ⑥在任何两个时刻的速度变化量为△ v =g △ t ,△ p = mgt x 2 处,在电场中也有应用 ⑦v 的反向延长线交于 x 轴上的 10. 从倾角为 α的斜面 上 A 点以速度 v 0 平抛的小球,落到了斜面上的 B 点,求: S AB

高中物理-动量守恒常见模型练习

高中物理-动量守恒常见模型练习一、弹性碰撞 1.如图,一条滑道由一段半径R=0.8 m的1 4圆弧轨道和一段长为L=3.2 m水平轨道MN组 成,在M点处放置一质量为m的滑块B,另一个质量也为m的滑块A从左侧最高点无初速度释放,A、B均可视为质点.已知圆弧轨道光滑,且A与B之间的碰撞无机械能损失(取g=10 m/s2). (1)求A滑块与B滑块碰撞后的速度v A′和v B′; (2)若A滑块与B滑块碰撞后,B滑块恰能达到N点,则MN段与B滑块间的动摩擦因数μ的大小为多少? 二、非弹性碰撞 2.如图所示,质量m=1.0 kg的小球B静止在光滑平台上,平台高h=0.80 m.一个质量为M=2.0 kg的小球A沿平台自左向右运动,与小球B发生正碰,碰后小球B的速度v B= 6.0 m/s,小球A落在水平地面的C点,DC间距离s=1.2 m.求: (1)碰撞结束时小球A的速度v A; (2)小球A与小球B碰撞前的速度v0的大小. 三、完全非弹性碰撞 3.如图所示,圆管构成的半圆形轨道竖直固定在水平地面上,轨道半径为R,MN为直径且与水平面垂直,直径略小于圆管内径的小球A以某一速度冲进轨道,到达半圆轨道最高点M时与静止于该处的质量与A相同的小球B发生碰撞,碰后两球粘在一起飞出轨道,落地点距N为2R.重力加速度为g,忽略圆管内径,空气阻力及各处摩擦均不计,求: (1)粘合后的两球从飞出轨道到落地的时间t; (2)小球A冲进轨道时速度v的大小. 1、碰撞

2、爆炸 4.如图所示,设质量为M=2kg的炮弹运动到空中最高点时速度为v0,突然炸成两块,质量为m=0.5kg的弹头以速度v1=100m/s沿v0的方向飞去,另一块以速度v1=20m/s沿v0的反方向飞去。求: (1) v0的大小 (2)爆炸过程炮弹所增加的动能 5.(单选)如图所示,设质量为M的导弹运动到空中最高点时速度为v0,突然炸成两块,质量为m的一块以速度v沿v0的方向飞去,则另一块的运动() A.一定沿v0的方向飞去 B.一定沿v0的反方向飞去 C.可能做自由落体运动 D.以上说法都不对 3、反冲 6.一船质量为M=120kg,静止在静水中,当一个质量为m=30kg 的小孩以相对于地面v1=6 m/s的水平速度从船跳上岸时,不计阻力,求船速度大小v2 7.如图所示,一个质量为m 的玩具青蛙,蹲在质量为M 的小车的细杆上,小车放在光滑的水平桌面上.若车长为L,细杆高为h,且位于小车的中点,试求玩具青蛙至多以多大的水平速度跳出,才能落到车面上?

特级教师整理:高中物理必修一图像知识点整理

第1讲描述运动的基本概念 一、质点,参考系 1.质点 (1)定义:用来代替物体的有质量的点. (2)物体可被看做质点的条件:若物体的形状和大小对所研究的问题没有影响,或者其 影响可以忽略时,该物体可被看做质点. 2.参考系 (1)参考系定义:在描述物体运动时,需要选定另外一个物体做参考,这种用来做参考 的物体称为参考系. (2)参考系选取 ①对同一物体的运动,选择不同的参考系,其结果可能会不同. ②参考系可以任意选取,但选择的原则是要使运动的描述尽可能简单. ③要比较两个物体的运动情况时,必须选择同一个参考系. ④通常以地面或相对地面静止的物体作为参考系. 二、位移、速度和加速度 1.时刻和时间间隔 时刻时间间隔意义一瞬间一段时间 在时间轴上的表示对应一个点一段线段 运动量位置、瞬时速度、瞬时加速度位移、位移的变化、速度的变化、平均速度 联系若用t1和t2分别表示两个时刻,Δt表示两时刻之间的时间,则Δt=t2-t1 2.位移和路程 定义区别联系 位移位移表示物体(质点)的位置变化,它是位移是矢量,方向由初位(1)在单向直线运动

一条从初位置指向末位置的有向线段 置指向末位置 中,位移的大小等于路程;(2)一般情况下,位移的大小小于路程 路程 路程是物体(质点)运动轨迹的长度 路程是标量,没有方向 物理学中用位移与发生这段位移所用时间的比值表示物体运动的快慢,即v =Δx Δt ,是描 述物体运动的快慢的物理量. (1)平均速度:在运动中,物体在某段时间内的位移与发生这段位移所用时间的比值叫做这段时间内的平均速度, 即v =x t ,其方向与位移的方向相同. (2)瞬时速度:运动物体在某一时刻(或某一位置)的速度,方向沿轨迹上物体所在点的切线方向,是矢量. (3)速率:瞬时速度的大小叫做瞬时速率,简称速率,是标量. 4.加速度 (1)定义:在变速运动中,物体速度的变化量跟所用时间的比值. (2)定义式:a =Δv Δt . (3)物理意义:描述物体速度变化快慢的物理量. (4)方向:a 的方向与Δv 的方向相同.(从加速度的产生上来说,加速度的方向与合外力的方向相同) 1.下列几种奥运比赛项目中的研究对象可视为质点的是( ) A .在撑竿跳高比赛中研究运动员手中的支撑竿在支撑地面过程中的转动情况时 B .帆船比赛中确定帆船在大海中的位置时 C .跆拳道比赛中研究运动员的动作时 D .铅球比赛中研究铅球被掷出后在空中的飞行时间时 解析: 撑竿跳高中的运动员的动作和支撑竿的转动情况对比赛结果影响极大,不能视为质点,同理,跆拳道比赛中运动员的动作对比赛结果影响也很大,不能视为质点.其余两项可视为质点. 答案: BD 2.关于时刻和时间间隔,下列说法中正确的是( ) A .1秒很短,所以1秒表示时刻 B .第3秒是指一个时刻

高中物理力学知识点总结与归纳

高中物理力学知识点总结与归纳(1) 1.力的作用、分类及图示 ⑴力是物体对物体的作用,其特点有一下三点:①成对出现,力不能离开物体而独立存在;②力能改变物体的运动状态(产生加速度)和引起形变;③力是矢量,力的大小、方向、作用点是力的三要素。 ⑵力的分类:①按力的性质分类;②按力的效果分类。 ⑶力的图示:画图的几个关键点①作用点,即物体的受力点;②力的方向,在线的末端用箭头标出;③选定标度,并按大小结合标度分段。 2.重力 ⑴产生:①由于地球吸引而产生(但不等于万有引力)。②方向竖直向下。③作用点在重心。 ⑵大小:①G=mg,在地球上不同地点g不同。②重力的大小可用弹簧秤测出。 ⑶重心:①质量分布均匀的有规则形状物体的重心,在它的几何中心。②质量分布不均匀或不规则形状物体的重心,除与物体的形状有关外,还与质量的分布有关。③重心可用悬挂法测定。④物体的重心不一定在物体上。 3.弹力 ⑴产生:①物体直接接触且产生弹性形变时产生。②压力或支持力的方向垂直于支持面而指向被压或被支持的物体;③绳的拉力方向沿着绳而指向绳收缩的方向。 有接触的物体间不一定有弹力,弹力是否存在可用假设法判断,即假设弹力存在,通过分析物体的合力和运动状态判断。 ⑵胡克定律:在弹性限度内,F=KX,X-是弹簧的伸长量或缩短量。 4.摩擦力 ⑴静摩擦力:①物接触、相互挤压(即存在弹力)、有相对运动趋势且相对静止时产生。 ②方向与接触面相切,且与相对运动趋势方向相反。③除最大静摩擦力外,静摩擦力没有一定的计算式,只能根据物体的运动状态按力的平衡或F=ma方法求。 判断它的方向可采用“假设法”,即如无静摩擦力时物体发生怎样的相对运动。 ⑵滑动摩擦力:①物接触、相互挤压且在粗糙面上有相对运动时产生。②方向与接触面相切且与相对运动方向相反(不一定与物的运动方向相反)②大小f=μF N。(F N不一定等于重力)。 滑动摩擦力阻碍物体间的相对运动,但不一定阻碍物体的运动。 摩擦力既可能起动力作用,也可能起阻力作用。 5.力的合成与分解 ⑴合成与分解:①合力与分力的效果相同,可以根据需要互相替代。①力的合成和分解遵循平行四边形法则,平行四边形法则对任何矢量的合成都适用,力的合成与分解也可用正交分解法。③两固定力只能合成一个合力,一个力可分解成无数对分力,但力的分解要根据实际情况决定。 ⑵合力与分力关系:①两分力与合力F1+F2≥F≥F1-F2,但合力不一定大于某一分力。 ②对于三个分力与合力的关系,它们同向时为最大合力,但最小合力则要考虑其中两力的合力与第三个力的关系,例如3N、4N、5N三个力,其最大合力F=3+4+5=12N,但最小合

高中物理力学经典例题集锦

高中物理典型例题集锦 力学部分 1、如图9-1所示,质量为M=3kg的木板静止在光滑水平面上,板的右端放一质量为m=1kg 的小铁块,现给铁块一个水平向左速度V0=4m/s,铁块在木板上滑行,与固定在木板左端的水平轻弹簧相碰后又返回,且恰好停在木板右端,求铁块与弹簧相碰过程中,弹性势能的最大值E P。 分析与解:在铁块运动的整个过程中,系统的动量守恒,因此弹簧压缩最大时和铁块停在木板右端时系统的共同速度(铁块与木板的速度相同)可用动量守恒定律求出。在铁块相对于木板往返运动过程中,系统总机械能损失等于摩擦力和相对运动距离的乘积,可利用能量关系分别对两过程列方程解出结果。 设弹簧压缩量最大时和铁块停在木板右端时系统速度分别为V和V’,由动量守恒得:mV0=(M+m)V=(M+m)V’ 所以,V=V’=mV0/(M+m)=1X4/(3+1)=1m/s 铁块刚在木板上运动时系统总动能为:EK=mV02==8J 弹簧压缩量最大时和铁块最后停在木板右端时,系统总动能都为: E K’=(M+m)V2=(3+1)X1=2J 铁块在相对于木板往返运过程中,克服摩擦力f所做的功为: W f=f2L=E K-E K’=8-2=6J 铁块由开始运动到弹簧压缩量最大的过程中,系统机械能损失为:fs=3J 由能量关系得出弹性势能最大值为:E P=E K-E K‘-fs=8-2-3=3J 说明:由于木板在水平光滑平面上运动,整个系统动量守恒,题中所求的是弹簧的最大弹性势能,解题时必须要用到能量关系。在解本题时要注意两个方面:①是要知道只有当铁块和木板相对静止时(即速度相同时),弹簧的弹性势能才最大;弹性势能量大时,铁块和木板的速度都不为零;铁块停在木板右端时,系统速度也不为零。 ②是系统机械能损失并不等于铁块克服摩擦力所做的功,而等于铁块克服摩擦力所做的功和摩擦力对木板所做功的差值,故在计算中用摩擦力乘上铁块在木板上相对滑动的距离。 2、如图8-1所示,质量为m=0.4kg的滑块,在水平外力F作用下,在光滑水平面上从A

高中物理力学知识点总结

高中物理力学知识点总结 知识要点: 1、本专题知识点及基本技能要求 (1)力的本质 (2)重力、物体的重心 (3)弹力、胡克定律 (4)摩擦力 (5)物体受力情况分析 1、力的本质:(参看例1、 2、3) (1)力是物体对物体的作用。 ※脱离物体的力是不存在的,对应一个力,有受力物体同时有施力物体。找不到施力物体的力是无中生有。(例如:脱离枪筒的子弹所谓向前的冲力,沿光滑平面匀速向前运动的小球受到的向前运动的力等) (2)力作用的相互性决定了力总是成对出现: ※甲乙两物体相互作用,甲受到乙施予的作用力的同时,甲给乙一个反作用力。作用力和反作用力,大小相等、方向相反,分别作用在两个物体上,它们总是同种性质的力。(例如:图中N与N 均属弹力,均属静摩擦力) (3)力使物体发生形变,力改变物体的运动状态(速度大小或速度方向改变)使物体获得加速度。 ※这里的力指的是合外力。合外力是产生加速度的原因,而

不是产生运动的原因。对于力的作用效果的理解,结合上定律就更明确了。 (4)力是矢量。 ※矢量:既有大小又有方向的量,标量只有大小。 力的作用效果决定于它的大小、方向和作用点(三要素)。大小和方向有一个不确定作用效果就无法确定,这就是既有大小又有方向的物理含意。 (5)常见的力:根据性质命名的力有重力、弹力、摩擦力;根据作用效果命名的力有拉力、下滑力、支持力、阻力、动力等。 2、重力,物体的重心(参看练习题) (1)重力是由于地球的吸引而产生的力; (2)重力的大小:G=mg,同一物体质量一定,随着所处地理位置的变化,重力加速度的变化略有变化。从赤道到两极G大(变化千分之一),在极地G最大,等于地球与物体间的万有引力;随着高度的变化G小(变化万分之一)。在有限范围内,在同一问题中重力认为是恒力,运动状态发生了变化,即使在超重、失重、完全失重的状态下重力不变; (3)重力的方向永远竖直向下(与水平面垂直,而不是与支持面垂直); (4)物体的重心。

高中物理力学知识点整理

例1: 例2 : 简谐运动过程中,物体的位移.受力S 速度.加逹 度.动能.动量的变化规徨,以及能量的传递 第一章 力 物体的平衡 —、物体的受力分析:场力 弹力 摩擦力 1场力:重力 电场力 磁场力 2弹力:(1)产生条件:A 接触;B 发生形变。 (2)方向的判断:垂直接触面。b b 动 功力的积累 力学 使物体产生加速度 I 功能原理 机械能守恒定律 动量守恒定律

例1 :如图所示,AB两物体的质量均为m,求弹簧秤的示数是多少? 若B物体质量为M且M叽则弹簧秤示数为多少? 的物块。另一劲度系数为k泊勺轻弹簧,竖直的放在物块上,其下端与 物块上表面连接在一起,要想使物块在静止时下面弹簧受物重的2。 玄3应将上面弹簧的上端A竖直向上提高的距离是多少?■ 1 3摩擦力:(1)产生条件:A接触不光滑 B正压力不为零 C有相对运动或相对运动趋势 (2)方向:与相对运动趋势或相对运动方向相反 (3)分类:静摩擦力:随外力的变化而变化 滑动摩擦力:f 一I < 例1:(94)如图所示,C是水平地面,A、B是两个长方形木块, (3)大小:F =Kx (有关弹簧弹力的计算) 竖直放在桌面上,上面压一质量为m 2

是作用在物块B 上沿水平方向的力,物体A 和B 以相同的速度作匀 速直线运动。由此可知, A 、B 间的动摩擦因数闲]B 、C 间的动摩 擦因数宀有可能是 例2 :如图所示, ABC 叠放在一起放在水平面上, 水平外力F 作用于B o ABC 保持静止,贝【J ABC 所 受摩擦力的情况?若水平面光滑有怎样? 二、 物体的平衡 (平衡状态:静止或匀速) 工 = F 0 F x 0 ■ 工 = F 0 Y = X - 、 力矩平衡: M F L (L 为固定转轴到力的作用线的垂直距离) y = 平衡条件: M 0 顶二 M M 逆 四、 力的合成: 一 s S + 2 判断三力是否平衡? R F F 2 第二章直线运动总结 —、基本概念 1 .机械运动:一个物体相对于别的物体位置的改变叫机械运动。 平动:物体各部分的运动情况完全相同,这种运动叫平动。 转动:物体上各部分都绕圆心作圆周运动。 2.位移与路程 位移:物体运动由初位置指向末位置的料矢量) 路程:籾体运动所

高中物理所有公式总结

一, 质点的运动(1)----- 直线运动 1)匀变速直线运动 1.平均速度V平=S / t (定义式) 2.有用推论Vt 2 –V0 2=2as 3.中间时刻速度Vt / 2= V平=(V t + V o) / 2 4.末速度V=Vo+at 5.中间位置速度Vs / 2=[(V_o2 + V_t2) / 2] 1/2 6.位移S= V平t=V o t + at2 / 2=V t / 2 t 7.加速度a=(V_t - V_o) / t 以V_o为正方向,a与V_o同向(加速)a>0;反向则a<0 8.实验用推论ΔS=aT2 ΔS为相邻连续相等时间(T)内位移之差 9.主要物理量及单位:初速(V_o):m/ s 加速度(a):m/ s2 末速度(Vt):m/ s 时间(t):秒(s) 位移(S):米(m)路程:米 速度单位换算:1m/ s=3.6Km/ h 注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(V_t - V_o)/ t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/ 2) 自由落体 1.初速度V_o =0 2.末速度V_t = g t 3.下落高度h=gt2 / 2(从V_o 位置向下计算) 4.推论V t2 = 2gh 注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。 (2)a=g=9.8≈10m/s2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。 3) 竖直上抛 1.位移S=V_o t –gt 2 / 2 2.末速度V_t = V_o –g t (g=9.8≈10 m / s2 ) 3.有用推论V_t 2 - V_o 2 = - 2 g S 4.上升最大高度H_max=V_o 2 / (2g) (抛出点算起) 5.往返时间t=2V_o / g (从抛出落回原位置的时间) 注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。 平抛运动

高中物理常见连接体问题总结

常见连接体问题 (一)“死结”“活结” 1.如图甲所示,轻绳AD跨过固定在水 平横梁BC右端的定滑轮挂住一个质量为10 kg 的物体,∠ACB=30°;图乙中轻杆HG一端用 铰链固定在竖直墙上,另一端G通过细绳EG 拉住,EG与水平方向也成30°,轻杆的G点 用细绳GF拉住一个质量也为10 kg的物体.g 取10 m/s2,求 (1)细绳AC段的张力FAC与细绳EG的张力FEG 之比; (2)轻杆BC对C端的支持力; (3)轻杆HG对G端的支持力. (二)突变问题 2。在动摩擦因数μ=0.2的水平 质量为m=1kg的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图所示,此时小球处于静止平衡状态,且水平面对小球的弹力恰好为 零,当剪断轻绳的瞬间,取g=10m/s2,求: (1)此时轻弹簧的弹力大小 (2)小球的加速度大小和方向. (三)力的合成与分解 3.如图所示,用一根细线系住重力为、半径 为的球,其与倾角为的光滑斜面劈接触, 处于静止状态,球与斜面的接触面非常小, 当细线悬点固定不动,斜面劈缓慢水平向左 移动直至绳子与斜面平行的过程中,下述正确 的是(). A.细绳对球的拉力先减小后增大 B.细绳对球的拉力先增大后减小 C.细绳对球的拉力一直减小 D.细绳对球的拉力最小值等于G (四)整体法 4.如图所示,质量分别为m1、m2的两个物体通过轻弹簧连接。在力F的作用下一起沿水平方

向做匀速直线运动(m1在地面,m2在空中),力F与水平方向成θ角,则m1所受支持力N 和摩擦力f正确的是() A.N=m1g+m2g-Fsinθ B.N=m1g+m2g-Fcosθ C.f=Fcosθ D.f=Fsinθ (五)隔离法 5.如图所示,水平放置的木板上面放置木块,木板与木块、木板与地面间的摩擦因数分别为μ1和μ2。已知木块质量为m,木板的质量为M,用定滑轮连接如图所示,现用力F匀速拉动木块在木板上向右滑行,求力F的大小? 6.跨过定滑轮的绳的一端挂一吊板,另一端被吊板上的人拉住,已知人的质量为70 kg, 吊板的质量为10 kg,绳及定滑轮的质量,滑 轮的摩擦均可不计,取重力加速度g=10 m/s2 ,当人以440 N的力拉绳时,人与吊板的加 速度a和人对吊板的压力F分别为()A.a=1 m/s2,FN=260 N B.a=1 m/s2,FN=330 N C.a=3 m/s2,FN=110 N D.a=3 m/s2,FN=50 N 7.如图所示,静止在水平面上的三角架的质量为M,它中间用两根质量不计的轻质弹簧连着一质量为m的小球,当小球上下振动,三角架对水平面的压力为零的时刻,小球加速度的方向与大小是() A.向下,m Mg B.向上,g C.向下,g D.向下,m g m M) ( (六)综合 8. 如图所示,一夹子夹住木块,在力F作用下向上提升,夹子和木块的质量分别为m、M,夹子与木块两侧间的最大静摩擦均为f,若木块不滑动,力F的最大值是()

高中物理_力学专题知识点概念分析_试题及其答案

力学包括静力学、运动学和动力学。即:力,牛顿运动定律,物体的平衡,直线运动,曲线运动,振动和波,功和能,动量和冲量,等。 一、重要概念和规律 (一)重要概念 1.力、力矩 力是物体间的相互作用。其效果使物体发生形变和改变物体的运动状态即产生加速度。力不能脱离物体而独立存在.有力作用时,同时存在受力物体和施力物体但物体间不一定接触。力是矢量。力按性质可分重力(G=mg)、弹力(胡克定律f=kX)、摩擦力(0<f静<f最大、,f=μN)、分子力、电磁力等。按效果可分拉力、压力、支持力,力、动力、阻力、向心力、回复力等。对于各种力要弄清它的产生原因、特点、大小、方向、作用点和具体效果。 力矩是改变物体转动状态的原因。力矩M=FL通常规定使物体顺(逆)时针转动的力矩为负(正)。注意力臂L是指转轴至力的作用线的垂直距离。 2.质点、参照物 质点指有质量而不考虑大小和形状的物体。平动的物体一般视作质点。 参照物指假定不动的物体。一般以地面做参照物。 3.位置、位移(s)、速度(v)、加速度(a) 质点的位置可以用规定的坐标系中的点表示. 位移表示物体位置的变化,是由始位置引向末位置的有向线段。位移是矢量,与路径无关.而路程是标量,是物体运动轨迹的实际长度,与路径有关。 速度表示质点运动的快慢和方向,它的方向就是位移变化的方向。其大小称为速率。在S-t图象中,某点的速度即为图线在该点物线的斜率。在匀速四周运动中,用线速度v=s/t和角速度ω=φ/t,v是矢量,方向为该点的切线方向,两者的关系为v=ωR。 加速度表示速度变化的快慢,它的方向与速度变化的方向相同,但不一定限速度方向相同。在v-t图象中某点的加速度即为图线在该点切线的斜率。 在匀速圆周运动中,用向心加速度a=v2/R和a=ω2R描述,其方向始终指向圆心。 4.质量(m)、惯性 质量表示物体含有物质的多少,是一标量且为恒量.惯性指物体保持原来的匀速直线运动状态或静止状态的性质,是物体固有的属性。惯性由质量来量度,物体的质量越大,其惯性就越大,就越难改变它的运动状态。 在匀速圆周运动中,周期指物体运动一周的时间,频率指物体在单位时间转动的周数。在简谐振动中,周期指物体完成一次全振动的时间,频率指在单位时间完成的全振动防次数.波动的频率决定于波源振动的频率,它跟传播的媒质无关。周期和频率的关系;T=1/f。振幅指振动物体离开平衡位置的最大距离。振幅越大,振动能量也越大。 7.相和相差 相是决定作简谐振动的物理量在任一时刻的运动状态的物理量。相差指两个振动的相位差,即△Φ=Φ2-Φ1当△Φ=0时,称为同相;当△Φ=π时,称为反相。 8.波长(λ)、波速(v) 波长指两个相邻的、在振动过程中对平衡位置的位移总是相同的质点间均距离。波速指振动传播的速度。波长、频率和波速的关系为v=λf。同一种波当它从一种介质进入到另一种介质时,波长和波速要发生改变,但频率不变。9.波的干涉和衍射 波的干涉指两个相干波源(两个波源频率相同、相差恒定)发出的波叠加时能形成干涉图样(某些振动加强的区域和某些振动减弱的区域互相间隔的区域)。其条件:两个相干波源发出的波叠加。 波的衍射指波绕过障碍物传播的现象。发生明显衍射现象的条件:障碍物或孔的尺寸跟波长差不多。 10.音调、响度、音品 这是表征乐音三个特点的物理量,音调决定于声源的频率。响度决定于声源的振幅。音品决定于泛音的个数、泛音的频率和振幅。 11.功(W) 功是表示力作用一段位移(空间积累)效果的物理量。要深刻理解功的念:①如果物体在力的方向上发生了位移,就说这个力对物体做了功。因此,凡谈到做功,一定要明确指出是哪个力对哪个物体做了功。②做功出必须具有两个必要的因素;力和物体在力的方向上发生了位移。因此,如果力在物体发生的那段位移里做了功,则物体在发生那段位移的过程里始终受到该力的作用,力消失之时即停止做功之时。③力做功是一个物理过程,做功的多少反映了在这物

高中物理打点计时器考点大全及常见典型考题

第二讲打点计时器的使用 实验一用打点计时器测速度 1.要点概览 ⑴电磁打点计时器和电火花计时器的构造及工作原理; ⑵打点计时器的使用方法及测瞬时速度的方法; ⑶用v-t图像进行数据分析。 2.内容详解 ⑴电磁打点计时器和电火花计时器 ①用途:计时仪器,同时记录不同时刻的位置,进而可测量各点间的距离(物体位移) ②电源:交流电 ③电压:电磁打点计时器工作电压6V以下;电火花计时器工作电压220V ④打点周期:(频率50Hz) ⑵使用打点计时器的步骤 ①将纸带穿过限位孔,固定打点计时器; ②先开启电压,然后拉动纸带运动,纸带上打出一系列的点,随即关闭电源; ③取下纸带,选择比较清晰的一段,计算某两点间的时间间隔,

测量两点间距离。 ⑶瞬时速度的测量 思想方法:用某段时间内的平均速度粗略代表这段时间内的某 点的瞬时速度。所取的时间间隔越接近该点,这种描述方法越准 确。 示例:如图,测量出包括E 点在内的D 、F 两点间的位移Δx 和 时间Δt ,算出纸带在这两点间的平均速度v =t x ??,用这个平均速度代表纸带经过E 点时的瞬时速度。 t x ??可以大致表示E 点的瞬时速度,D 、F 两点离E 点越近,算出 的平均速度越接近E 点的瞬时速度。然而D 、F 两点距离过小则测量 误差增大,应该根据实际情况选取这两个点。 ⑷用v-t 图像进行数据分析 ①建立直角坐标系:横轴——时间t (s );纵轴——速度v (m/s) ②描点:利用所测数据计算瞬时速度,选择合适的单位长度,在 坐标纸上描点。 ③连线:用平滑曲线将描的点连接起来。 ④v-t 图像:描述速度随时间的变化关系。 3.例题剖析 如图所示,表示用毫米刻度尺测量打点计时器打出的一条纸带的

高一物理力学 知识点归纳

高一上物理期末知识点复习 专题一:运动学 【知识要点】 1.质点(A ) (1)没有形状、大小,而具有质量的点。 (2)质点是一个理想化的物理模型,实际并不存在。 (3)一个物体能否看成质点,并不取决于这个物体的大小,而是看在所研究的问题中物体的形状、大小和物体 上各部分运动情况的差异是否为可以忽略的次要因素,要具体问题具体分析。 2.参考系(A ) (1)物体相对于其他物体的位置变化,叫做机械运动,简称运动。 (2)在描述一个物体运动时,选来作为标准的(即假定为不动的)另外的物体,叫做参考系。 对参考系应明确以下几点: ①对同一运动物体,选取不同的物体作参考系时,对物体的观察结果往往不同的。 ②在研究实际问题时,选取参考系的基本原则是能对研究对象的运动情况的描述得到尽量的简化,能够使解题显得简捷。 ③因为今后我们主要讨论地面上的物体的运动,所以通常取地面作为参照系 3.路程和位移(A ) (1)位移是表示质点位置变化的物理量。路程是质点运动轨迹的长度。 (2)位移是矢量,可以用以初位置指向末位置的一条有向线段来表示。因此,位移的大小等于物体的初位置到 末位置的直线距离。路程是标量,它是质点运动轨迹的长度。因此其大小与运动路径有关。 (3)一般情况下,运动物体的路程与位移大小是不同的。只有当质点做单一方向的直线运动时,路程与位移的 大小才相等。图1-1中质点轨迹ACB 的长度是路程,AB 是位移S 。 (4)在研究机械运动时,位移才是能用来描述位置变化的物理量。路程不能用来表达物体的确切位置。比如说 某人从O 点起走了50m 路,我们就说不出终了位置在何处。 4、速度、平均速度和瞬时速度(A ) B A B C 图1-1

高中物理力学经典的试题库(含答案)

高中物理力学计算题汇总经典精解(50题) 1.如图1-73所示,质量M=10kg的木楔ABC静止置于粗糙水平地面上,摩擦因素μ=0.02.在木楔的倾角θ为30°的斜面上,有一质量m=1.0kg的物块由静止开始沿斜面下滑.当滑行路程s=1.4m时,其速度v=1.4m/s.在这过程中木楔没有动.求地面对木楔的摩擦力的大小和方向.(重力加速度取g=10/m·s2) 图1-73 2.某航空公司的一架客机,在正常航线上作水平飞行时,由于突然受到强大垂直气流的作用,使飞机在10s高度下降1700m造成众多乘客和机组人员的伤害事故,如果只研究飞机在竖直方向上的运动,且假定这一运动是匀变速直线运动.试计算: (1)飞机在竖直方向上产生的加速度多大?方向怎样? (2)乘客所系安全带必须提供相当于乘客体重多少倍的竖直拉力,才能使乘客不脱离座椅?(g取10m/s2) (3)未系安全带的乘客,相对于机舱将向什么方向运动?最可能受到伤害的是人体的什么部位? (注:飞机上乘客所系的安全带是固定连结在飞机座椅和乘客腰部的较宽的带子,它使乘客与飞机座椅连为一体) 3.宇航员在月球上自高h处以初速度v0水平抛出一小球,测出水平射程为L(地面平坦),已知月球半径为R,若在月球上发射一颗月球的卫星,它在月球表面附近环绕月球运行的周期是多少? 4.把一个质量是2kg的物块放在水平面上,用12N的水平拉力使物体从静止开始运动,物块与水平面的动摩擦因数为0.2,物块运动2秒末撤去拉力,g取10m/s2.求 (1)2秒末物块的即时速度. (2)此后物块在水平面上还能滑行的最大距离. 5.如图1-74所示,一个人用与水平方向成θ=30°角的斜向下的推力F推一个重G=200N的箱子匀速前进,箱子与地面间的动摩擦因数为μ=0.40(g=10m/s2).求 图1-74 (1)推力F的大小. (2)若人不改变推力F的大小,只把力的方向变为水平去推这个静止的箱子,推力作用时间t=3.0s后撤去,箱子最远运动多长距离? 6.一网球运动员在离开网的距离为12m处沿水平方向发球,发球高度为2.4m,网的高度为0.9m. (1)若网球在网上0.1m处越过,求网球的初速度. (2)若按上述初速度发球,求该网球落地点到网的距离. 取g=10/m·s2,不考虑空气阻力. 7.在光滑的水平面,一质量m=1kg的质点以速度v0=10m/s沿x轴正方向运动,经过原点后受一沿y轴正方向的恒力F=5N作用,直线OA与x轴成37°角,如图1-70所示,求:

相关主题