搜档网
当前位置:搜档网 › 原油破乳剂技术研发概述

原油破乳剂技术研发概述

原油破乳剂技术研发概述
原油破乳剂技术研发概述

原油破乳剂技术研发概述(上)

2009年09月17日星期四 10:13

从油田送往炼油厂的原油往往含盐、带水,且盐分主要存在于水中,而水则与原油形成了一种相对稳定的乳化液,如果不能通过破乳就很难达到脱水脱盐的目的,也就必然导致生产设备的腐蚀,并造成容器管道壁结垢等现象。油品乳化问题可以说在原油储运和加工过程中经常出现,尤其是随着日益明显的原油劣质化趋势,因此如何高效解决原油乳化问题已经成为提高炼油厂工艺运行效率的一个首要问题。

原油破乳最常用的办法是加破乳剂和水,使油中的水集聚,并从油中分出,而盐份溶于水中,再加以高压电场配合,使形成的较大水滴顺利除去。在原油生产过程中,首先就是找到一种适合所加工原油性质的破乳剂,当然最好是广谱型的高效破乳剂。

1.原油乳化的理化实质

一种乳化液由至少两种不相混溶的液体组成,其中最为常见的一相通常为水。油有可能极细地分散于水中,这种情况称为水包油型乳化液。反之如果油为连续相而水是分散相,就称之为油包水型乳化液。原油中的乳化液就属于油包水型。

水分子之间相互吸引,油分子之间也是如此,但单个水分子与油分子之间则存在明显的排斥力,并在油和水的界面发生作用,此时油水便在各自表面力作用下将接触界面的面积降低到一个“最低值”,形成水滴、油滴或油包水、水包油等毫米级的液滴。实践证明,当往原油中加入某些特定的化学品之后,这种发生在界面上的排斥力就会在一定程度上得到抵消,从而大大降低表面力。

有些物质既含有亲水基团,也含有疏水基团,如果混合液中含有这类物质便极易发生乳化现象。原油乳化就是因为其中含有此类天然的乳化物质,如羧基或酚基等等极性基团就是原油中的乳化物质。与此相应,破乳过程就是反其道而行之。

2.原油破乳剂原理、类型与技术研发状况

2.1.原油破乳剂原理

破乳剂是一类能破坏乳状液的稳定性,使分散相聚集起来并从乳状液中析出的化合物。在化工生产中,用破乳剂可回收乳状液里没有参加反应的原料或产品等。破乳剂有:水、溶剂、无机盐类电解质、对抗型表面活性剂和非离子型表面活性剂等。乳液中加入溶剂或无机盐类电解质,可以改变水相或油相的比重,促使乳状液破坏。例如硫酸钠、硫酸镁和明矾等多价的金属盐都可以破坏分散相微滴表面的双电层,使微滴聚集而析出。正离子型乳化剂不能与负离子型表面活性剂并用,利用这个特性,可以破坏一些乳液。

例如,在高分子合成工业中常用十二烷基硫酸酯的钠盐或者十二烷基苯磺酸钙作乳化剂进行乳液聚合。要回收未反应的单体原料时,可以用烷基溴化吡啶等正离子型表面活性剂与硫酸或磺酸离子结合生成难离解的吡啶盐,使油相和水相分开。有少数的乳状液是靠乳液的粘度大而保持它的稳定性,加水或溶剂可改变它的粘度,或者使乳化剂的浓度下降到所要求的水平以下,以破坏乳状液。

非离子型表面活性剂的破乳效果很好。例如,十八碳醇聚氧乙烯聚氧丙烯嵌段型醚是一种很有效的原油破乳剂,只要加入少量这种破乳剂,就可以破坏体系的亲水和亲油平衡,促使原油析出水相。

2.2.原油破乳剂常见类型

关于国外原油破乳剂的类型,国原油脱水、油田化学领域的不少专著已有报道,这里只作简略介绍。

(1)、烷基酚醛树脂聚氧乙烯聚氧丙烯醚这是文献报道很多的一类破乳剂,包括胺基改性型,即在合成烷基酚醛树脂时加入乙醇胺、多乙烯多胺等,生成胺基改性烷基酚醛树脂,作为聚醚化反应的起始剂。

(2)、聚硅氧烷聚氧乙烯聚氧丙烯醚硅原子数3-50的甲基、苯基等取代聚硅氧烷与环氧乙烷、环氧丙烷的嵌段共聚物,分子量500-4000。

(3)、聚磷酸酯通式如下的线型聚磷酸酯:

(4)、高分子量、超高分子量聚氧乙烯聚氧丙烯醚用作破乳剂的聚醚,分子量一般为

5x103-1x104,分子量达5x105-3x106的聚醚,破乳速度极高,破乳效果惊人。

(5)、聚醚的改性产物以醇、胺等含活性氢的化合物为起始剂制得的嵌段聚醚[聚氧乙烯氧丙烯(或丁烯)醚]在有机溶剂中与甲苯二异氰酸酯或六次甲基二异氰酸酯等二异氰酸酯反

应,一般得到油溶性破乳剂,文献报道很多。

(6)、含氮破乳剂包括以胺类为起始剂的嵌段聚醚,季铵化聚醚、脂肪胺盐酸盐(如前联的AH-2,脂烃链平均碳数为15)及高碳数烷基咪唑啉类。

(7)、磺酸盐及醚硫酸盐包括早期使用的烷芳基、脂烃基磺酸盐,以后研发的分子量800-1000的烷基苯磺酸钙、石油磺酸盐、氧乙基化脂肪醇醚硫酸盐[通式RO(C2H4O)n 。SO3Na,R=C12-13烷基,n=3-6.4]。

(8)、复配破乳剂二元及多元复配物,破乳效果好于任一单剂。

其他如用环氧丁烷代替环氧丙烷的聚醚破乳剂、薄膜扩展剂、以及天然盐水等。最常见的是通过表面扩展的原理,要求破乳剂具有高表面活性,最常见的就是低HLB值表面活性剂,高表面活性能够将界面膜上起稳定作用的表面活性剂替换下来,还要求形成的膜脆、易破裂,这样就达到破乳的作用了。

以上提到的各种类型的国外破乳剂,我国基本上都进行过研制和生产,主要类型可归纳如下。

(1)、以胺类为起始剂的嵌段聚醚所用的胺主要有多乙烯多胺、乙二胺等,产品品种多,生产量大,在上世纪70-80年代是我国油田用于原油脱水的主要破乳剂。属于这一类型破乳剂的产品有AE1910,AE9901,AE21,AE8051,

AE0604,AP134,AP113,AP136,AP227,AP125,AP221,AP116等等。

(2)、以醇类为起始剂的嵌段聚醚所用的醇有十八碳醇,丙二醇,丙三醇,季戊四醇等,产品品种多,生产量也大,在上世纪70-80年代是我国油田原油脱水、炼厂脱盐的另一类主要破乳剂。SP169,BPE2070,BPE2040,BPE22064,BPE2420,BPE2045,BP169等属于这一类型。基中SP169是我国研发较早、应用时间较长、应用地区较广、复配性能较好的一个产品。

(3)、烷基酚醛树脂嵌段聚醚合成起始剂时常用的烷基酚为壬基酚或以C9为主的混合烷基酚。属于这一类型的产品有酚醛3111,AF6231,AF3125,AF136,AR16,AR36,AR48等。

(4)、酚胺醛树脂嵌段聚醚即胺基改性酚醛树脂嵌段聚醚,起始剂为烷基酚、乙烯胺类化合物和甲醛的缩合产物。该类型破乳剂在上世纪70年代未研发成功,破乳效果好,适应性较广,是目前油田使用的主要类型。TA1031,PFA8311,XW-1。DPA2031,XW-4,XW-9,XW-12,

BC-26,BC-68等属于这一类型。

(5)、含硅破乳剂由以多乙烯多胺为起始剂的嵌段聚醚与聚烷基硅氧烷反应制得,研发工作开始于1977年,其目的是寻求破乳性能好,适应性广、能低温破乳的破乳剂。SAE,SAP116,SAP1187,SAP91,SAP2187等属于这一类。

(6)、超高分子量破乳剂采用三乙基铝-乙酰丙酮-水三元催化体系,通过阴离子配位聚合得到的环氧烷类聚合物,分子量高达5x105-5x106,破乳效果极好。UH6535属于这一类型。聚氧烯烃醚与三氯磷酰(POCL3),五氧化二磷(P2O5)的反应产物,如ZPC,ZPT,ZPM 等。

(7)、嵌段聚醚的改性产物作为破乳剂的嵌段聚醚,分子量一般为2x103-1x104,为增大这种聚醚的分子量,可采用以下技术方法:①、用二异氰酸酯(多用甲苯二异氰酸酯TDI)扩链,采用不同工艺条件,控制TDI加量、温度、溶剂等可制成油溶性破乳剂产品和水溶性破乳剂产品;②、用环氧氯丙烷在特定工艺条件下与聚醚反应可制得有效的改性破乳剂产品;

③、用不饱和单体如丙烯酸、马来酸酐等与聚醚反应,再使生成的反应产物聚合。属于这一类型的破乳剂有POI2420,XW-3,AP17041,BCL-405,BZG-14,HD-3,HD-5,HD-6,GD9909等。

需着重提及的是,一般原油破乳剂的改性,都是在以嵌段聚醚型破乳剂基础上进行化学改性。明康等人,采用以丙烯酸、甲基丙烯酸、丙烯酸丁酯、甲基丙烯酸甲酯为单体、过硫酸钾为引发剂,十二烷基硫酸钠为乳化剂,三乙醇胺与无水亚硫酸钠分别为链转移剂与终止剂,水为分散介质,采用乳液法合成了一种水溶性四元共聚物破乳剂。这类产品不用环氧丙烷、环氧乙烷原料,成本低、减少环境污染、破乳效果显著,是原油破乳剂的一种值得注意的研究发展方向。

(8)、复配破乳剂目前油田使用复配破乳剂即两种或多种破乳剂的组合物的现象十分普遍,在这一领域进行了大量的研究工作。其中值得注意的研究结果有两个。佐才等[3]将滨州化工厂生产的10种破乳剂进行双剂循环复配,有8个复配物对胜利滨南一矿稠油的脱水率超过90%,在91.2%-99.0%围,而10个单剂的脱水率最高88.9%,最低13.3%,其余在13.2%-61.3%围。田宜灵等[4]按正交设计法安排实验,将实验数据进行回归分析,建立了数学模型,通过计算机模拟可以找出任意给定条件下破乳剂最佳复配配方。

其他功能的破乳剂包括协同脱水剂,预脱水剂,反向破乳剂(污水除油剂,侧链含季铵基团的聚醚)以及咪唑啉破乳剂等,用于解决与原油脱水有关的种种问题。LGS-2,CW-01,RD-1,BH-1,M-501等属于这一类型。

2.3.我国原油破乳剂研发历史与现状

在原油破乳剂的发展过程中,油包水乳状液破乳剂首先得到应用和发展。在世界围,从本世纪20年代至今已发展了三代产品。20年代至30年代出现了第一代油包水乳状液破乳剂,主要是低分子阴离子表面活性剂,包括羧酸盐、硫酸和磺酸盐三类,其特点是便宜、投加量大、效果差且易受电解质影响。40年代至50年代发展的第二代破乳剂,主要是低分子非离子表面活性剂OP、平平加及Tween等,这类破乳剂的特点是能耐酸碱盐,但破乳效果仍较差。自60年代至今发展了第一代破乳剂,主要是高分子非离子表面活性剂,其特点是投加量少,破乳效果好,专一性强,广泛适应性差。

我国石油工业起步较晚,东部几个大油田自50年代后期相继投入开发,最初短时间采用过第二代国产油包水乳状液破乳剂OP、平平加和磺化蓖麻油等表面活性剂,但未能满足生产需要,靠购买国外第三代破乳剂维持乳化原油正常脱水。自60年代中期,胜利油田、油田等相继同省化学研究所、石油勘探开发研究院及中科院化学研究所等科研单位合作,很快研制和开发出了国产的第三代油包水乳状液破乳剂,即高分子非离子表面活性剂。与此同时,大学等高等院校又同石油单位合作,对国产破乳剂的破乳效果及机理进行了研究,进一步促进了国产破乳剂的推广和应用。现将我国先后研制和使用的主要油包水乳状液破乳剂介绍如下。

(1)、BPE2060破乳剂,该剂于1960年开始研制,于1967年工业放样和现场试验取得成功,它的研制成功标志着我国进入了研制和使用国产第三代油包水乳状液破乳剂新阶段。

(2)、 BP169破乳剂,本剂于1968年研制成功,其主要成分为聚氧丙烯聚氧乙烯聚氧丙烯丙二醇醚,它的研制成功较好地解决了当时油田存在的脱水包油问题,现在应用较少。

(3)、SP169破乳剂,该剂于1968年研制成功,其主要成分为聚氧丙烯聚氧乙烯聚氧丙烯十八醇醚,该剂具有脱出污水清,含油量少的突出优点,目前仍维持较高的用量,在很多油田单独应用,或用其他脱水速度快的破乳剂配合使用。

(4)、BPE2070破乳剂,本剂于1970年研究成功,其主要成分为聚氧乙烯聚氧丙烯丙二醇醚,研究该剂的目的仍是解决当时的脱水包油问题,目前仍有些油田应用。

(5)、AP221破乳剂,本剂于70年代初研制成功,其主要万分是以多乙烯多胺为引发剂的聚氧乙烯聚氧丙烯嵌段共聚物,经过其结构和性能进行研究,该剂不是单一组份,附有主剂外的其他两种组份,它们之间发挥协同效应,具有好的破乳效果。

(6)、胜利四号破乳剂(代号POI2006[,该剂于70年代初研制的。它是聚氧丙烯二醇醚(代号BP)、聚氧丙烯聚氧乙烯丙二醇醚(代号BPO)两个中间体同甲苯二异氰酸酯反应生成的混合线型聚氨基甲酸酯再加入适当溶剂稀释而成。该剂具有破乳速度快、投加量少等优点,缺点是溶解性差,使用困难。

(7)、孤岛五号破乳剂,该剂于70年代中后期研制成功的,由聚氧乙烯聚氧丙烯丙二醇醚加适当溶剂配成。该剂对稠油有防粘作用,可使井口回压降低,在当时孤岛稠油的开发中发挥了作用,缺点是所加溶剂有一定腐蚀性。

(8)、 AE9901破乳剂,该剂于1976年9月研制成功,主要成分是AE8028,即嵌段共聚物聚氧乙烯聚氧丙烯五乙烯六胺,加有适当溶剂。该剂具有脱水速度快、脱水含油较少等优点,直到目前仍有较多使用。

(9)、PAP157破乳剂,该剂于1977年研制成功,成分是嵌段共聚物聚氧丙烯聚氧乙烯聚氧丙烯多乙烯多胺。该剂是针对孤岛原油特点研制的,当时在孤岛的破乳脱水中发挥了一定作用。

(10)、POI2420破乳剂,该剂于1978年研制成功的。它是聚氧乙烯聚氧丙烯丙二醇醚(聚醚BPE2420)与甲苯二异氰酸酯反应生成的一种线型聚醚氨基甲酸酯。该剂具有脱水速度快、破乳能力强、适应性广泛等特点,并具有降粘、降蜡及减阻等能力,目前仍有较广泛的使用。

(11)、AP113破乳剂,该剂于70年代由化学研究所研究成功,其主要成分为以丙二醇为起始剂的聚氧乙烯聚氧丙烯嵌段共聚物,它对原油具有好的脱水效果。

(12)、3号破乳剂,该剂于70年代由化学研究所研究成功,其主要成分为以丙二醇为起始剂的聚氧乙烯聚氧丙烯嵌段共聚物,再与交联剂交联而成的高分子化合物,该剂对克拉玛依油田原油具有好的脱水效果。

(13)、UH6525破乳剂,本剂于70年代后期研制成功,主要成分是以三乙基铝—乙酰丙酮—水三元体系为催化剂而合成出的超高分子量的氧化乙烯放氧化丙

烯无规则共聚物,经室和现场试验证明,它具有破乳温度低、脱水速度快、脱出水清及含油量少等优点,后因工业生产条件要求苛刻、产品成本高等原因,未能大围推广。

(14)、SAE破乳剂,该剂于1980年研制的。它是嵌段共聚物聚氧乙烯聚氧丙烯五乙烯六胺同聚甲基乙氧基硅氧烷缩聚而生成的嵌段聚醚—聚硅氧烷共聚物

破乳剂。该剂具有良好的低温破乳剂和较好的防蜡降粘性能,目前还有一定应用。

(15)、 TA1031破乳剂,该剂于1981年研制的,它以具有多个多乙烯多胺支链的芳烃化合物为起始剂的嵌段聚醚,即聚氧乙烯聚氧丙烯多乙烯多胺芳烃,具

有良好的润湿性能,能迅速通过油相或水相达到油水界面,降低界面力,破坏界面膜,引起原油乳状液破坏、油水分离,目前仍有较广泛的使用。

(16)、AP8051破乳剂,该剂是1981年研制成功的嵌段共聚物聚氧乙烯聚氧丙烯多乙烯多胺,具有脱水速度快、脱出水含油较少等优点,目前仍有较多使用。

(17)、M-501破乳剂,该剂于1981年研制成功,其万分为聚氧乙烯聚氧丙烯聚氧乙烯嵌段共聚物和烃基双咪唑啉的聚氨基甲酸混合酯,是以丙二醇为起始剂的三嵌段聚醚BPE2525经甲苯二异氰酸酯扩链再用甲苯二异氰酸酯与烃基双咪唑

啉胺的加成物封端而得到的破乳剂。该剂具有较好的破乳降粘效果并具有缓蚀作用。

(18)、AR101破乳剂,该剂于1983年研制成功,它是以松香胺为起始剂,同环氧丙烷、环氧乙烷、甲苯二异氰酸酯反应形成的线型聚氧乙烯聚氧丙烯松香胺聚氨基甲酸酯,具有破乳温度低、破乳速度快的特点,适用于石蜡、中间基原油的破乳。

(19)、SAP-2破乳剂,该剂于1983年研制成功,它是聚氧丙烯聚氧乙烯二酚丙烷嵌段共聚物同聚甲基乙氧基硅氧烷进行缩聚形成的聚氧烯烃——聚硅氧烷

共聚物,再同聚氧乙烯聚氧丙烯五乙烯六胺混合而成的,具有破乳、净水两种功能。

(20)、AP17041破乳剂,该剂于1984年研制的,是聚氧乙烯聚氧丙烯四乙烯五胺同甲苯二异青酸酯反应生成的线型嵌段聚醚的聚氨基甲酸酯,对孤岛稠油有较好的适应性,破乳速度快,应用效果较好。

(21)、AE121破乳剂,该剂是1984年研制的,成分为聚氧乙烯聚氧丙烯聚氧乙烯四乙烯五胺三嵌段共聚物,具有脱出水清、含油量少、脱水速度快等优点,目前仍有较多的应用。

(22)、AR46及AR36破乳剂,这类破乳剂于80年代中期研制成功,其主要成分为烷基酚醛树脂聚氧丙烯聚氧乙烯嵌段聚合物,具有低温快速脱水等特点,适应于油田高含水原油低温快速脱水。

(23)、PA320稠油破乳剂,该剂于1989年研制成功,是以多官能团化合物为起始剂合成的聚氧丙烯聚氧乙烯经磷酸酐酯化(生成聚氧烯烃磷酸酯),再加入表面活性剂和混合溶剂而成。该剂对油水界面润湿性好,在油水两相均有良好分散性,具有破乳速度快、脱出的污水清等特点,用于单家寺稠油矿的破乳脱水取得了好的效果。

(24)、A-6及B-11破乳剂,这两种破乳剂于90年研制成功,主要成分为不同起始剂的双嵌段聚醚,附加醋酸、乙醇等溶剂。它们具有防蜡及破坏乳化层作用,适用于塔西柯克亚原油纯化学脱水。

(25)、HD-3及HD-6破乳剂,该破乳剂由华北石油管理局勘察于90年代初相继研究成功,主要成分为以多乙烯多胺为起始剂的聚氧乙烯聚氧丙烯嵌段共聚物的改性产品,特别适用于华北油田高含水乳化原油脱水。

(26)、胜利油田近期几种针对性很强的破乳剂。90年代以来,滨州化工厂同胜利油田一些采油厂合作,先后研制成功几种针对性很强的破乳剂。如该厂同孤岛采油厂合作研制的BZG-14高含水原油破乳剂,同现河采油厂合作研制的M-14T 破乳剂,同河口采油厂合作研制的BH-202稠油破乳剂,同纯梁采油厂合作研制的BCL-405原油破乳剂,同孤东采油厂合作研制的MA-1破乳剂[。合成这些破乳剂采用的起始剂依次为合成聚醚、长链咪唑啉、缩水多元醇及改性树脂等,在扩链剂方面也作了有益的探索,但它们均为经扩链的聚氧丙烯聚氧乙烯嵌段共聚物,属第三代高分子非离子表面活性剂。这些破乳剂解决了有关采油厂特定脱水站的难题,满足了生产需要并在继续推广应用。它们的专用性很强,其通用性有待实践验证。

(27)、复配型破乳剂,近年来,我国的一些大专院校、科研单位及石油系统有关单位,注意了破乳剂间的协同效应及复配型破乳剂研究,产生了一批复配型破乳剂,比较有代表性的有油田的J-26破乳剂、胜利油田的RAK-5多元复配破乳剂[39]等,在此不再一一分述。这些剂的使用,都达到了破乳剂用量少、脱水速度快、脱出污水色泽清及含油量少的好效果。

3.高效破乳剂技术发展趋势

纵观当前破乳剂技术研发现状,今后我国在对原油破乳脱水技术上需要跟踪并借鉴国外原油破乳剂发展趋势及研究成果,尤其在合成相对高分子量聚合物含F、Si、等特种表面活性剂,并对其扩链、改性和复配的技术方面。建议采用界面力、界面膜强度研究其结构与性能的关系及破乳机理,并致力于研发具有高效、低温、快速的的技术特点的破乳剂,使破乳过程中油水分离快,油水界面清晰,乳化中间层少,最终达到能达到低温快速高效破乳的目的。

由于原油组成的复杂性,加上影响形成乳化原油的因素众多,给原油破乳剂的

研究工作带来许多困难。而且随着油田大量注水开发,油井产出液的含水量大量增加,例如油田中区平均含水率已经高达90%,采出液主要是水包油型乳状液。当采出液到达地面后,必须加入高效破乳剂,使油水分离。

高效复合型原油破乳剂是由多元醇及多种高性能表面活性剂、电解质而组成。与其它同类破乳剂相比具有低温状态下原油破乳速度快、效率高等优点。现在常用的破乳剂有SP、AP、AE、AR等,但每一种破乳剂均有一定的局限性,对于特高含水的水包油型乳状液,存在脱水率低、脱水温度高、脱水速度慢等缺点。为克服上述缺点,目前有关研究单位已经在室首先合成了三种不同类型的破乳剂,然后利用

破乳剂之间的相互协同效应,对合成的三种组分进行复配,针对不同含水率的原油,得到了不同的复配体系,用于指导现场的应用。

组分A是一种具有较高分子量和窄分子量分布的聚醚,使用自制的起始剂,利用双金属氰化物络合催化剂(DMC)催化体系,与环氧乙烷、环氧丙烷共聚,合成出不同分子量和分子量分布的产品,考察了助催化剂的种类、聚合温度、进料速度、催化剂的加入量和封端方法对产物分子量和分子量分布的影响。通过原油的脱水实验可知,组分A的分子量越高、分子量分布越窄,脱水率越高。组分B是以多乙烯多胺为起始剂的环氧乙烷、环氧丙烷的聚醚,组分B是一种多支链型例如在众多高效破乳剂中,HS—P01型高效原油破乳剂 HS-P01型高效原油破乳剂是交通大学化工学院推出的创新产品,一种高效,多功能的复合型的原油破乳剂,是以烷基酚醛树脂为起始剂,在催化剂存在下加入环氧乙烷、环氧丙烷共聚得烷基酚醛树脂聚氧丙烯聚氧乙烯醚,以此为主要成份,添加增效改性添加剂及高效缓蚀添加剂复配制得HS型高效原油破乳剂。另外,YF-PR反相破乳剂是一种新型破乳剂,主要应用于炼油或油田含油污水的处理,可有效的降低污水中的油和COD 含量。

原油的安全技术说明书

原油的安全技术说明书 第一部分:化学品名称 化学品中文名称:原油 化学品英文名称:Crude Oil CAS No.: 8030-30-6 企业名称: 地址: 邮编: 电子邮件: 传真号码: 企业应急电话: 技术说明书编制日期: 2013-1-5 生效日期: 2013年1月1日 第二部分:成分/组成信息 纯品或混合物:混合物 化学品名称:原油 有害物成分:原油 含量:无资料 CAS No.: 8030-30-6 第三部分:危险性概述 危险性类别:第3.2类中闪点易燃液体。

侵入途径:吸入、食入。 健康危害:原油蒸气可引起眼及上呼吸道刺激症状,如浓度过高,几分钟即可引起呼吸困难、紫绀等缺氧症状。 环境危害:该物质对环境可能有危害,对水体应给予特别注意。 燃爆危险:蒸气与空气形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。 第四部分:急救措施 皮肤接触:脱去污染的衣着,用肥皂水及清水彻底冲洗。 眼睛接触:立即提起眼睑,用流动清水冲洗。 吸入:迅速脱离现场至空气新鲜处。注意保暖,呼吸困难时给输氧。 呼吸停止时,立即进行人工呼吸。就医。 食入:误服者给充分漱口、饮水,就医。 第五部分:消防措施 危险特性:其蒸气与空气形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。与氧化剂能发生强烈反应,若遇高热,容器 内压增大,有开裂和爆炸的危险。 有害燃烧产物:一氧化碳、二氧化碳。 灭火方法:泡沫、干粉、二氧化碳,砂土。用水灭火无效。 第六部分:泄漏应急处理 应急处理:(1)小量泄漏——疏散泄漏污染区人员至安全区,禁止无关人员进入污染区,切断火源。建议应急处理人员戴

自给式呼吸器,穿一般消防防护服,在确保安全情况下 堵漏。喷水雾会减少蒸发,但不能降低泄漏物在受限制 空间内的易燃性。用沙土、蛭石或其它惰性材料吸收, 然后收集运至空旷的地方掩埋;蒸发、或焚烧。 (2)大量泄漏——利用围堤收容,然后收集、转移、回 收或无害处理后废弃。 第七部分:操作处置与储存 操作注意事项:生产过程密闭,全面通风,高浓度环境中,应该佩带防毒口罩,必要时建议佩带自给式呼吸器;戴安全防 护眼镜,穿相应的防护服,戴防护手套,工作现场严 禁吸烟,工作后,淋浴更衣,注意个人清洁卫生。 储存注意事项:储存于阴凉、通风仓间内。远离火种、热源。仓温不宜超过30℃。保持容器密封。应与氧化剂、酸类分开 存放。储存间内的照明、通风等设施应采用防爆型, 开关设在仓外。配备相应品种和数量的消防器材。罐 储时要有防火防爆技术措施。禁止使用易产生火花的 机械设备和工具。灌装时应注意流速(不超过3m/s), 且有接地装置,防止静电积聚。搬运时要轻装轻卸, 防止包装及容器损坏。废弃:处置前参阅国家和地方 有关法规。废物储存参见“储运注意事项”。用控制 焚烧法处置。 第八部分:接触控制/个体防护 最高允许浓度:中国MAC(mg/m3):未制定标准

专项检测试验方案

泸州向林老窖股份有限公司 叙永县龙洞水库枢纽工程项目经理部 专项试验检测方案 一、工程概述 1.1工程概况 龙洞水库位于泸州市叙永县分水镇熊家湾村,距叙永县城56km,距分水镇1.5km。从泸州市经G76纳黔高速约100km可到达叙永县,从叙永县经“叙威路”至分水镇,分水镇与坝址之间有硬化水泥乡村公路,路面宽约3m,工程对外交通比较方便。是一座以灌溉为主,兼顾生态环境用水的小(二)型水利工程。 龙洞沟为倒流河右岸一级支流,位于四川叙永县与云南威信县交界处,流域地处四川境内,发源于海拔1700m左右的小豆地、作坊处。河流基本由北向南流,在桐麻坝附近汇入倒流河,龙洞沟全长约15.5km,地面流域面积为43.0km2。龙洞沟流域以北与永宁河支流黄坭河分水,东、西面均为几乎流向平行的且同为倒流河的无名支沟分界,南与倒流河干流相连。流域地理坐标界于东经105°13′~105°17′、北纬27°43′~27°55′之间,流域大致呈南北向的长叶形,水系呈羽状分布。 水库工程枢纽区包括粘土心墙堆石坝、右岸泄洪(导流)隧洞和左岸取水隧洞等主要建筑物。 1.2工程设计标准和施工范围 1、粘土心墙堆石坝

本工程挡水建筑物采用粘土心墙堆石坝,坝轴线布置成直线。正常蓄水位1283.00m,死水位1258.00m,设计洪水位1283.00m,校核洪水位为1284.16m。 大坝坝顶高程1286.00m,防浪墙顶高程1287.20,坝顶宽6.0m,坝轴线长114.00m,最大坝高63.0m。上游坝坡坡比1:1.8,1258.50m 高程处设一级马道,采用干砌块石护坡。下游坝坡坡比1:1.8,高程1255.00m处设一级马道,上下游马道宽度均为2.0m。 坝体从上游至下游分别为上游堆石料区、上游渡料区、上游反滤料区、粘土心墙料区、下游反滤料区、下游过渡料区及下游堆石料区。 心墙防渗体位于坝体中央,心墙轴线与坝轴线重合,心墙顶高程1284.50m,心墙顶宽3.0m,两侧坡比1:0.25。心墙底部设C25砼基座,粘土心墙上游侧外设反滤料,水平厚度1.0m,上游反滤层上游侧设过渡料,过渡层水平厚度3.0m,外侧填筑坡比1:0.25。下游反滤料区共设2层,水平厚度1.0m和2.0m,外侧填筑坡比1:0.25。反滤层下游侧设过渡料,水平厚度3.0m。外侧填筑坡比1:0.25。坝壳堆石料采用弱风化及新鲜的白云岩。 2、泄洪(导流、放空)隧洞 本工程导流隧洞结合泄洪、放空隧洞布置在枢纽右岸。 导流隧洞进口布置在大坝轴线上游右岸约193m,泄洪隧洞进口布置在导流洞进口下游约40m处。泄洪隧洞穿过右岸山体,由进口明渠段、进口检修闸门竖井段、闸后有压隧洞段、出口闸室段和消力池段组成。其中,导流隧洞与泄洪隧洞在桩号泄0+061.70(导0+130.00m)

原油破乳剂的研究进展(1)

原油破乳剂的研究进展 肖稳发X (上海工程技术大学化学化工学院,上海200065) 摘 要:论述了原油破乳剂研究的新进展,包括破乳机理、复配破乳剂、稠油破乳剂、新型破乳剂、反相破乳剂、低温破乳剂。原油破乳剂未来的发展方向是原油的脱水温度将在25~35e 或更低的温度、高效低耗、一剂多用的高效破乳剂。 关键词:原油;破乳剂;破乳机理 Research Progress in Demulsifier for Crude O il XI AO Wen -f a (School of Chemistry &Chemical T echnolog y,Shanghai U niversity of Eng ineering Science,Shang hai 200065,China)Abstract:T he research trends of demulsifier for crude oil ar e discussed including demulsificatio n mechanism,built demulsifier ,demulsifier for highly viscous crude oil,new demulsifiers,reversed demulsifier and low temperature demelsif-i er.T he demelsifiers serv ing many purposes w ith hig h effect and less dosage or with dehydration temperature at 25~35e or mo re lower are the development trends. Key words:crude oil;demelsifier;demulsification mechanism 破乳剂的研究和应用已经有80多年的历史了。破乳剂的分子结构由最初的阴离子表面活性剂发展到20世纪40年代以后的环氧丙烷和环氧乙烷为单体的嵌段共聚物以及现在的特种表面活性剂和各种均聚物,破乳剂的研究取得了巨大的进展。但随着三次采油技术、重质油的开采技术和海洋石油开采技术的使用,破乳剂除了要满足传统破乳剂的基本性能外,还要具有快速、高效且低温条件下也能满足脱水工艺的要求,因此,研究新型原油破乳剂非常必要。 1 破乳机理研究 原油乳状液的破乳脱水有着较强的针对性,至今人们还没找到一种能够适合各种原油破乳的破乳剂。研究破乳剂的破乳机理,首先必须研究乳状液稳定的界面膜特性及在破乳剂作用下界面膜的变化情况,而膜的改变会直接影响到原油的油-水界面张力,因此对界面张力的研究是了解界面膜变化的最 直接方法。 长期以来,通过系统地研究原油乳化液的油-水界面张力与破乳剂的分子结构及破乳效果之间的关系,结果显示:破乳剂的破乳效果与原油乳化液的油-水界面张力密切相关,破乳剂降低界面张力能力越强,破乳效果越好。破乳剂的破乳过程包括顶替作用和胶溶作用,在低破乳剂用量下,以顶替作用为主,界面张力随破乳剂用量的增加而降低,较高破乳剂用量下,以胶溶作用为主,界面张力随破乳剂用量的增加而升高。同一原油的油-水界面膜对破乳剂HLB 值的要求有一定的确定性,只有当破乳剂的HLB 值处于或接近最佳值时,才能形成最大的界面吸附,此时界面张力下降得最低。 2复配型破乳剂 由于原油的组成复杂,其中的天然乳化剂和稳定剂含量变化大,特性不尽相同,加之原油物性的影响,不同原油形成的油包水乳状液界面膜的组成、结构和强度有很大不同。一般针对某一含水原油筛选 # 18#X 收稿日期:2004-10-28 基金项目:上海市教委重点资助项目。 作者简介:肖稳发(1963-),男,教授,主要从事精细化学品的合成与应用,已公开发表论文45篇。 Vol.12,No.24精细与专用化学品第12卷第24期Fine and Specialty Chemicals 2004年12月21日

液化石油气安全技术说明书(最新版).

化学品安全技术说明书 第一部分化学品及企业标识 化学品中文名称:液化石油气 化学品英文名称:Liquefied petroleum gas 企业名称: 地址: 邮编: 电子邮件地址: 联系电话: 传真号码: 企业应急电话: 产品代码: 产品推荐用途:用作民用燃料、发动机燃料、加热炉燃料以及打火机的气体燃料,亦用作乙烯或制氢原料、化工原料。 产品限制用途:无资料。 第二部分:危险性概述 物理化学危险:极易燃,与空气混合能形成爆炸性混合物。遇明火、高热极易燃烧爆炸。蒸汽比空气重,能在较底处扩散到相当远的地方,遇火源会着火回燃,在火场中,受热的容器有爆炸危险。 健康危害:本品有麻醉作用。轻度中毒有头晕、头痛、兴奋或嗜睡、恶心、呕吐、脉缓等;重症者可突然倒下,尿失禁,意识丧失,甚至呼吸停止。液化石油气发生泄漏时会吸收大量的热量造成低温,引起皮肤冻伤。

环境危害:是空气污染物质。 GHS危险性类别:根据《化学品分类和危险性公示通则》(GB13690-2009)及化学品分类、警示标签和警示性说明规范系列标准,该产品属于易燃气体(类别1);加压气体–液态气体。 标签要素: 象形图: 警示词:危险 危险信息:极易燃气体;含压力下气体,如加热可爆炸。 防范说明: 预防措施: 1、密闭操作,注意通风。防止皮肤接触。仅在室外或通风良好处操作。 2、避免接触眼睛、皮肤。 3、避免吸入气体。 4、作业场所不得进食、饮水或吸烟。 5、佩戴过滤式防毒面具(半面罩),穿防护服,戴劳保手套。 6、得到专门指导后操作。 7、在阅读并了解所有安全预防措施之前,切勿操作。 8、按要求使用个体防护装备。 事故响应:

原油破乳剂技术研发概述

原油破乳剂技术研发概述(上) 2009年09月17日星期四 10:13 从油田送往炼油厂的原油往往含盐、带水,且盐分主要存在于水中,而水则与原油形成了一种相对稳定的乳化液,如果不能通过破乳就很难达到脱水脱盐的目的,也就必然导致生产设备的腐蚀,并造成容器管道壁结垢等现象。油品乳化问题可以说在原油储运和加工过程中经常出现,尤其是随着日益明显的原油劣质化趋势,因此如何高效解决原油乳化问题已经成为提高炼油厂工艺运行效率的一个首要问题。 原油破乳最常用的办法是加破乳剂和水,使油中的水集聚,并从油中分出,而盐份溶于水中,再加以高压电场配合,使形成的较大水滴顺利除去。在原油生产过程中,首先就是找到一种适合所加工原油性质的破乳剂,当然最好是广谱型的高效破乳剂。 1.原油乳化的理化实质 一种乳化液由至少两种不相混溶的液体组成,其中最为常见的一相通常为水。油有可能极细地分散于水中,这种情况称为水包油型乳化液。反之如果油为连续相而水是分散相,就称之为油包水型乳化液。原油中的乳化液就属于油包水型。 水分子之间相互吸引,油分子之间也是如此,但单个水分子与油分子之间则存在明显的排斥力,并在油和水的界面发生作用,此时油水便在各自表面力作用下将接触界面的面积降低到一个“最低值”,形成水滴、油滴或油包水、水包油等毫米级的液滴。实践证明,当往原油中加入某些特定的化学品之后,这种发生在界面上的排斥力就会在一定程度上得到抵消,从而大大降低表面力。 有些物质既含有亲水基团,也含有疏水基团,如果混合液中含有这类物质便极易发生乳化现象。原油乳化就是因为其中含有此类天然的乳化物质,如羧基或酚基等等极性基团就是原油中的乳化物质。与此相应,破乳过程就是反其道而行之。 2.原油破乳剂原理、类型与技术研发状况 2.1.原油破乳剂原理

试验检测大纲.

南水北调东线一期工程枣庄市续建配套工程(滕州供水单元)工程 试验大纲 批准 校核 编写 中国葛洲坝集团第五工程有限公司 滕州水库工程标段二项目经理部

目录 1.工程概况 (3) 2.编制说明 (3) 2.1目的 (3) 2.2编制依据 (4) 2.3引用标准和规程、规范 (4) 2.4适应范围 (5) 2.5试验与检测主要项目 (5) 3.试验组织机构及工作流程 (6) 3.1试验组织机构 (6) 3.2试验室组建及实验室设备 (6) 3.3拟配备本标段的试验和检测仪器设备 (6) 3.4试验工作流程图 (7) 3.5实验工作流程说明 (9) 4.混凝土工程材料检验计划 (10) 5.混凝土配合比设计与试验 (11) 6.土方填筑现场生产性试验 (11) 7.工程施工质量控制与检测 (12) 7.1混凝土拌和生产质量控制与检验 (12) 7.2坝身填筑压实质量控制与检测 (14) 8.工程施工质量检测资料整理和月报 (14) 9.试验检测质量保证措施 (14) 10.试验室管理制度和岗位职责 (15) (1)室内试验工作管理制度 (15) (2)试验设备管理制度 (16) (3)安全管理制度 (17) (4)试验设备维修保养制度 (18) (5)试验检测质量保证体系 (19) (6)计量器具周期检定制度 (19) 11.试验室职责和各岗位职责 (20) (1)试验室职责 (20) (2)试验室主任岗位职责 (21) (3)技术负责人岗位职责 (21) (4)质量负责人岗位职责 (22) (5)试验员岗位职责 (23) (6)资料、设备管理人员岗位职责 (23)

几类常用原油破乳剂的作用机理

几类常用原油破乳剂的作用机理 荐 661 常治辉原创 | 2010/3/13 18:19 | 投票 关键字:原油破乳剂 、相破乳机理 早期使用的破乳剂一般是亲水性强的阴离子型表面活性剂,因此早期的破乳机理认为,破乳作用的第一步是破乳剂在热能和机械能作用下与油水界面膜相接触,排替原油界面膜内的天然活性物质,形成新的油水界面膜。 这种新的油水界面膜亲水性强,牢固性差,因此油包水型乳状液便能反相变型成为水包油型乳状液。外相的水相互聚结,当达到一定体积后,因油水密度差异,从油相中沉降出来。 Salager用表面活性剂亲合力差值SAD(Surfactant affinity–difference)定量地表示阴离子破乳剂的反相点: SAD将所有影响破乳剂的诸因素归纳在一起,当SAD=0时,乳状液的稳定性最低,最容易反相破乳。 2、絮凝–聚结破乳机理 在非离子型破乳剂问世后,由于其相对分子质量远大于阴离子破乳剂,因此,出现了絮凝-聚结破乳理论。这种机理并没有完全否定反相排替破乳机理,而是认为:在热能和机械能的作用下,即在加热和搅拌下相对分子质量较大的破乳剂分散在原油乳状液中,引起细小的液珠絮凝,使分散相中的液珠集合成松散的团粒。在团粒内各细小液珠依然存在,这种絮凝过程是可逆的。随后的聚结过程是将这些松散的团粒不可逆地集合成一个大液滴,导致乳状液珠数目减少。当液滴长大到一定直径后,因油水密度差异,沉降分离。 对于非离子型破乳剂,SAD定义为: 研究表明:在低温下,非离子型原油破乳剂中环氧乙烷链段以弯曲形式掉入水相,环氧丙烷链段以多点吸附形式吸附在油水界面上。在高温下,环氧乙烷链段从水相向油水界面转移,而环氧丙烷链段则脱离界面进入油相。

石油醚安全技术说明书

第一部分化学品及企业标识 化学品中文名称:石油醚 化学品俗名或商品名:石油精 化学品英文名称:Petroleum ether 企业名称: 地址: 邮编: 电子地址邮件: 传真号码:() 企业应急电话: 技术说明书编码: 生效日期:2018年4 月 3日 国家应急电话:(86)-(0532)-() 第二部分危险性概述 紧急情况概述: 液体,高度易燃,其蒸汽与空气混合,能形成爆炸性混合物。如果被吞食,可能造成严重的肺部损伤。对水生生物有毒。对水生生物造成长期有害作用。 GHS危险性类别: 易燃液体,类别2 吸入危险,类别1 生殖细胞至突变性,类别1B 危害水生环境-急性毒性,类别2 危害水生环境-慢性毒性,类别2 标签要素: 象形图: 警示词:危险 危险性说明:高度易燃液体和气体,吞食或进入呼吸道可致命,可能导致遗传性缺陷,对水生生物有毒,对水生生物造成长期持续影响。 防范说明: 预防措施:使用前取得专业说明,在阅读并明了所有安全措施前切勿搬动。远离火源、热源、火花。保持容器密闭。使用不产生火花或静电的工具。操作

时佩戴防护手套、防护面具、防护服、防护眼罩。 事故响应:皮肤接触:脱去污染衣着,用大量流动清水冲洗。就医。 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。 吸入:迅速脱离现场至空气新鲜处。呼吸心跳停止时,立即进行人 工呼吸和胸外心脏按压术。就医。 食入:立即呼叫急救中心,不得诱呕吐 安全储备:储存于阴凉、通风的库房,保持容器密封。远离火种、热源。保持低温 废弃处置:建议燃烧处理 物理化学危害:高度易燃物,其蒸汽与空气混合能形成爆炸混合物。 健康危害:其蒸气或雾对眼睛、粘膜和呼吸道有刺激性。中毒表现可有烧灼感、咳嗽、喘息、喉炎、气短、头痛、恶心和呕吐。本品可引起周围神经炎。对皮肤 有强烈刺激性。 环境危害:对环境有危害,对水体、土壤和大气可造成污染。 燃爆危险:该品极度易燃,具强刺激性。 第三部分成分/组成信息 纯品?混合物□ 化学品名称: 第四部分急救措施 皮肤接触:立即脱去污染的衣着,用肥皂水和清水彻底冲洗皮肤。就医。 眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入:用水漱口,给饮牛奶或蛋清。就医。 第五部分消防措施

油品分析实训总结

10--11学年第二学期《油品分析》实训总结《油品分析》实训的教学目的是培养学生将已学的专业理论知识和专业基础知识与实际生产相结合,以处理实际生产过程问题。通过学习了解油品分析的特点、原料资源和主要产品。要求学生了解油品分析的概述、油品取样、常见油品技术要求及其标准分析方法和油品化验等,重点掌握汽油、柴油、喷气燃料等燃料油,润滑油,润滑脂,天然气,液化石油气,溶剂油,石蜡油,石油沥青等石油产品的主要技术要求及其分析检验方法,注重操作技能的训练。 通过实训能够使学生受到系统的学习和训练,进一步加深对理论知识的理解,培养他们独立学习的能力和综合思考能力,使学生养成实事求是的学习态度和综合思维能力。 这一学期针对与09级学生共开设了三个实训项目,3个教学班,总的来看实训进行得非常顺利,效果也比较好。 实训项目一汽油、柴油、煤油酸度的测定法 1、实验内容:汽油、煤油、柴油酸度测定法 2、实验基本要求: (1)汽油酸度测定 (2)柴油酸度测定 (3)煤油酸度测定 实训项目二汽油技术要求的分析检验 1、实验内容:汽油技术要求的分析检验 2、实验基本要求: (1)蒸发性 (2)抗爆性 (3)腐蚀性 (4)安定性 实训项目三石油沥青质量标准测定 1、实验内容:石油沥青质量标准测定 2、实验基本要求: (1)沥青延度的测定

(2)沥青软化点的测定 (3)沥青针入度的测定 本次实训,重点培养学生的提出问题、分析问题和解决问题的能力,加强他们的动手操作能力,规范实验操作。使他们能真正学到有用的知识,扩大他们的视野,同时也有意增强他们对理论知识的理解和应用。 当然,在实训过程中,也难免存在许多问题:比如学生预习情况不好,以致实训过程中时常弄得措手不及,影响实训进度的进行和实训效果的准确性。再比如有的学生动手操作能力太差,操作不规范,少数同学实验中还出现一些低级的错误;实训过程经常丢三落四等等。这些都是在所难免的,针对这些问题,应在教学过程中采取具有一定针对性的措施,尽量克服各种困难,改进实训方案,提高实验水平,尽可能使每一个学生都能得到很好的锻炼,使实验室真正成为他们掌握技能知识的地方。

最新版液化石油气安全技术说明书范文

最新版液化石油气安全技术说明书

安全化学品安全技术说明书 修订日期: -2 SDS编号:LBPC-M-003 产品名称:液化石油气版本:LBPC-M(2) 第一部分化学品及企业标识 化学品中文名称:液化石油气 化学品英文名称:Liquefied petroleum gas 企业名称:日照岚桥港口石化有限公司 地址:日照市岚山区虎山镇潘家村西首 邮编: 276808 电子邮件地址: 联系电话: 传真号码: 企业应急电话: 技术说明书编码:LBPC-M-003 产品推荐用途及限制用途:主要用作民用燃料、发动机燃料、制氢原料、加热炉燃料以及打火机的气体燃料等,也可用作石油化工的原料。 第二部分危险性概述 物理化学危险:极易燃,与空气混合能形成爆炸性混合物,遇热源或明火有燃烧爆炸危险。比空气重,能在较低处扩散到相当远的地方,遇点火源会着火回燃。 健康危害:主要侵犯中枢神经系统。急性液化气轻度中毒主要表现为头昏、头

痛、咳嗽、食欲减退、乏力、失眠等;重者失去知觉、小便失禁、呼吸变浅变慢。 环境危害:对环境有害,可对水体、土壤和大气造成污染。 GHS危险性类别:易燃液体-2,吸入危害-4,皮肤腐蚀/刺激-3,水生环境危害-4。 标签要素: 象形图: 警示词:危险 危险信息:极易燃液体。吸入有害,皮肤接触有害,对水生生物有害且有长期持续影响。 防范说明:工作场所严禁烟火,应远离热源、火花、明火。采取防静电措施,容器和接收设备接地连接装置,防止静电的积聚。使用防爆电机、通风、照明等设备,使用不产生火花的工具。操作现场不得进食、饮水或吸烟。 预防措施:生产、储存、使用液化石油气的车间及场所应设置泄漏检测报警仪,使用防爆型的通风系统和设备,配备两套以上重型防护服。穿防静电工作服,工作场所浓度超标时,建议操作人员应该佩戴过滤式防毒面具。可能接触液体时,应防止冻伤。储罐等压力容器和设备应设置安全阀、压力表、液位计、温度计,并应装有带压力、液位、温度远传记录和报警功能的安全装置,设置整流装置与压力机、动力电源、管线压力、通风设施或相应的吸收装置的联锁装置。储罐等设置紧急切断装置。避免与氧化剂、卤素接触。生产、储存

水中油类测定分析方法的综述

水中油类测定分析方法的综述 李海州 (浙江海洋学院海洋与技术学院,浙江舟山316004) [摘要]:本文对国内外学者有关水中油类的测定方法做了比较系统的综述。对几种水中油类的常用方法,重量法、紫外分光光度法、荧光分光光度法、红外分光光度法和非分散红外光度法做了简要介绍,并对其优劣进行了评价。另外,介绍了测定水中油类含量存在的难点、发展趋势和技术改进等。 关键词:水;油类;测定分析 油类是指任何类型的(矿物油、植物油等)及其炼制品(汽油、柴油、机油、煤油等)、油泥和油渣[1]。油类主要有漂浮油、分散油、乳化油、溶解油和油类附着在固体悬浮物表面而形成油膜---固体物 5种形式。全世界每年至少有500—1000吨油类通过各种途径进入水体,由于漂浮于水体表面的油将会影响空气和水体表面氧的交换,而分散于水体中以及吸附于悬浮颗粒上或以乳化状态存在于水体的油易被微生物氧化分解,并将消耗水中的溶解氧,从而使水质恶化;油膜还能附着于鱼鳃上,使鱼类窒息而死;当鱼类产卵期,在含有油类污染物质废水中孵化的鱼苗,多数为畸形,生命力低下,易于死亡;含有油类污染物的废水进入水体后,造成的危害很为严重,

不仅影响水生生物的生长,降低水体的自我净化能力,而且影响水体附近的环境,因此,油类是水体环境中的主要污染物之一,在水质监测中,也是一项重要的监测项目。要消除油类对环境的污染和危害,首先就必须能够准确的测定水中油类的含量。 然而,水中油类含量测定又是比较复杂的,因为水中的油类成分是相当复杂的,此外不同地区、不同行业水体中油类污染的成分也不同,无法有用单一的油标准进行对照,无法准确测定,所以水体中油类物质含量的测定问题是环境分析化学一个古老、重要而又困难的问题。目前水体中油类测定常用的方法有重量法、紫外分光光度法、荧光分光光度法、非分散红外光度和国家最新颁布的国家标准方法红外分光光度法等[2],本文简要介绍以上几种方法的原理和优劣,及人们对水体中油类监测分析方法的创新和改进。 1.重量法 重量法是用有机萃取剂(石油醚或正己烷)提取酸化了的样品中的油类,将溶剂蒸发掉后,称重后计算油类含量。重量法应用范围不受油品的限制,可测定含油量较高的污水,不需要特殊的仪器和试剂,测定结果的准确度较高、重复性较好。缺点是损失了沸点低于提取剂的油类成分,方法操作复杂,灵敏度低,分析时间长,并要耗费大量的提取剂,而且方法的精密度随操作条件和熟练程度不同差异很大。 因此,水体中动植物油含量较高的,采用该方法较适合,可以得到

公路水运工程试验检测总结(公共基础)

第一篇概述 第一章概述 1、取得《公路水运--等级证书》的检测机构,可设立工地试验室,承担相应业务、并对试验结果承担责任。 2、试验检测贯穿于公路水运始终(勘察设计—运营监控) 3、试验检测是工程建设中,进行质量、进度、费用三大控制的主要手段。 4、检测机构在规定范围内出具数据报告可作为公路水运工程质量控制、质量评定、工程验收、技术状况评价、事故调查、投诉处理等依据。

第二篇试验检测管理 第二章法律法规 1、检测技术活动核心:提供客观准确数据。 2、1985年颁布《计量法》(为加强计量监督管理,保障国家单位制统一和量值可靠,有利于生产、贸易、科学发展,适应现代化建设需要,维护国家、人民利益)。 1987年《计量法实施细则》。 第一节计量法及计量法实施细则 1、《计量法》第7条计量标准器具具备条件:①合格②环境③人员④制度。 2、实行强制检定:县级以上行政部门对社会公用计量标准器具; 部门、企业、事业单位使用给最高计量标准器具; 用于贸易结算、安全防护、医疗卫生、环境监测方面列入强制检定目录的。 3、强制检定的计量器具:计量标准+工作计量器具 4、不合格计量器具:①无合格证/印②检定过期③检定不合格的。 第二节标准化法及标准化法实施条例 1、(按部门分类)国标>行标>地标(行业标准可↑→国标) (企业标准)┅已有国/行标、鼓励企业内部标准—(未备案)国标→国务院标准化行政主管部门制定 行标(无国标情况下使用)→国务院有关行政部门制定┅有国标、行标废止 地标→省级、直辖市标准化行政主管部门制定┅有国/行标、地标废止 2、(按性质分类)强制性、推荐性(推荐性标准可↑→强制性)

破乳剂概述

CHINA UNIVERSITY OF PETROLEUM 论文题目:原油乳化剂概述 所在院系:理学院 课程名称:精细有机合成与工艺 考生姓名:于欣 学号: S100061380 班级:应化10级研 指导教师:郑晓宇 完成日期:2011年6月24日

原油破乳剂的概述 摘要:对目前常用的非离子破乳剂进行归类介绍,分析乳状液稳定的影响因素,概述破乳剂的破乳机理,并对目前常用的聚氧乙烯聚氧丙烯聚醚类破乳剂的合成原理和破乳剂改性的研究思路进行介绍,并举例说明梳型破乳剂的合成方法。最后概述破乳剂的发展趋势。 关键字:破乳剂;破乳机理;合成机理;梳型破乳剂 原油从地下采出多以油水乳状液状态出现。据了解,如今国内陆上多数油田原油综合含水率达80%以上,如果不及时脱水,会增加泵、管线和贮罐负荷,引起金属表面腐蚀和结垢;而排放水中含有的油也会造成环境污染和原油浪费,因此无论从经济角度,还是从环境保护角度,均需对原油进行破乳脱水。由于化学破乳剂具有活性高、见效快等优点,投加破乳剂是目前最常用的破乳方法。 一、油田常用破乳剂的种类 破乳剂的破乳效果与原油的性质有关,对某一种原油有效的破乳剂,对另一种原油就不一定有效,因此如何根据原油的性质去选择合适的破乳剂是一个非常重要的问题。 目前,国内外的原油破乳剂,品种繁多,但多是非离子型的破乳剂,破乳效果也各有千秋。但就其分子组成来说,主要是环氧乙烷与环氧丙烷的共聚物。目前油田中常用的非离子型破乳剂主要有以下几种[1]: l. SP型破乳剂 SP型破乳剂的主要组分为聚氧乙烯聚氧丙烯十八醇醚,理论结构式为R(PO)x(EO)y(PO)z H,式中:EO-聚氧乙烯;PO-聚氧丙烯;R-脂肪醇;x、y、z-聚合度。 SP型破乳剂外观呈淡黄色膏状物质,HLB值为10~12,溶于水。SP型非离子型破乳剂对石蜡基原油具有较好的破乳效果。其疏水部分由碳12~18烃链组成,其亲水基是通过分子中的羟基(-OH)、醚基(-O-)与水作用形成氢键而达到亲水的目的。由于羟基、醚基亲水性较弱,所以只靠一两个羟基或醚基不能把碳12~18烃链疏水基拉入水中,必须有多个这样的亲水基,才能达到水溶的目的。

液化石油气安全技术说明书最新版

液化石油气安全技术说明书最新版

化学品安全技术说明书 第一部分化学品及企业标识 化学品中文名称:液化石油气 化学品英文名称:Liquefied petroleum gas 企业名称: 地址: 邮编: 电子邮件地址: 联系电话: 传真号码: 企业应急电话: 产品代码: 产品推荐用途:用作民用燃料、发动机燃料、加热炉燃料以及打火机的气体燃料,亦用作乙烯或制氢原料、化工原料。 产品限制用途:无资料。 第二部分:危险性概述 物理化学危险:极易燃,与空气混合能形成爆炸性混合物。遇明火、高热极易燃烧爆炸。蒸汽比空气重,能在较底处扩散到相当远的地方,遇火源会着火回燃,在火场中,受热的容器有爆炸危险。 健康危害:本品有麻醉作用。轻度中毒有头晕、头痛、兴奋或嗜睡、

恶心、呕吐、脉缓等;重症者可突然倒下,尿失禁,意识丧失,甚至呼吸停止。液化石油气发生泄漏时会吸收大量的热量造成低温,引起皮肤冻伤。 环境危害:是空气污染物质。 GHS危险性类别:根据《化学品分类和危险性公示通则》(GB13690-)及化学品分类、警示标签和警示性说明规范系列标准,该产品属于易燃气体(类别1);加压气体–液态气体。 标签要素: 象形图: 警示词:危险 危险信息:极易燃气体;含压力下气体,如加热可爆炸。 防范说明: 预防措施: 1、密闭操作,注意通风。防止皮肤接触。仅在室外或通风良好处操作。 2、避免接触眼睛、皮肤。 3、避免吸入气体。 4、作业场所不得进食、饮水或吸烟。

5、佩戴过滤式防毒面具(半面罩),穿防护服,戴劳保手套。 6、得到专门指导后操作。 7、在阅读并了解所有安全预防措施之前,切勿操作。 8、按要求使用个体防护装备。 事故响应: 1、尽可能切断泄漏源。 2、皮肤接触:如果发生冻伤,将换不浸泡于保持在38-42℃的温水中复温。不要涂擦。不要使用热水或辐射热。使用清洁、干燥的敷料包扎。就医。 3、眼睛接触:不适用。 4、吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困 难, 给输氧。呼吸、心跳停止,立即进行心肺复苏术。就医。 5、食入:不适用。 安全储存: 1、储存于阴凉、通风的库房。 2、远离火种、热源。禁止使用易产生火花的机械设备和工具。 3、库温不宜超过30℃,保持容器密封。 4、采用防爆型照明、通风设施。 废弃处理:处理前应参阅国家和地方有关法规。建议用焚烧法处理。 第三部分:成分/组成信息

油品分析习题集及参考答案(大学期末复习资料)

试题答案(第一章油品分析概述) 1.名词解释 (1)油品分析(2)石油产品标准(3)试验方法标准(4)国际标准 (5)区域标准(6)国家标准(7)行业标准(8)地方标准 (9)企业标准(10)国外先进标准(11)原始记录(12)再现性 (1)答:油品分析是用统一规定或公认的方法,分析检验石油和石油产品理化性质和使用性能的科学试验。 (2)答:石油产品标准是将石油产品质量规格按其性能和使用要求规定的主要指标。 (3)答:石油产品试验方法标准就是根据石油产品试验多为条件性试验的特点,为方便使用和确保贸易往来中具有仲裁和鉴定法律约束力而制定的一系列分析方法标准。 (4)答:国际标准是国际标准化组织(ISO)制定以及由其公布的其他国际组织制定的标准。 (5)答:区域标准是世界某一区域标准化组织制定并通过的标准。 (6)答:国家标准是在全国范围内统一技术要求而制定的标准,是由国家指定机关制定,发布实施的法定性文件。 (7)答:行业标准是在没有国家标准而又需要在全国有关行业范围内统一技术要求所制定的标准。 (8)答:地方标准是在没有国家标准和行业标准而又需要在省、自治区、直辖市范围内统一工业产品要求所制定的标准。 (9)答:企业标准是在在没有相应国家或行业标准时,企业自身所制定的试验方法标准。 (10)答:国外先进标准是指国际上有影响的区域标准,世界主要经济发达国家制定的国家标准和其他某些具有世界先进水平的国家标准,国际上通行的团体标准以及先进的企业标准。 (11)答:原始记录为能反映发生在现场最初状态全部信息的记载。 (12)答:再现性是指在不同试验条件(不同操作者、不同仪器、不同实验室)按同一方法对同一试验材料进行正确和正常操作所得单独的试验结果,在规定置信水平(95%置信度)下的允许差值,用R表示。 2.判断题(正确的划“√”,错误的划“3”) (1)组成原油的元素主要是C、H、O、N、S。(√) (2)润滑剂包括润滑油和润滑脂。(√) (3)我国石油产品国家标准是由国务院标准化行政主管部门指派中国石油化工股份有限公司石油化工科学研究院组织制定,目前由中华人民共和国国家质量监督检验检疫总局和国家标准化管理委员会联合发布实施。(√)

石脑油:原油:粗汽化学品安全技术说明书MSDS

石脑油:原油:粗汽油 标识中文名:石脑油;原油;粗汽油英文名:Grade oil 分子量:0 CAS号:8030-30-6RTECS号:DE3030000 UN编号:1256危险货物编号:32004IMDG规则页码:3264 理化性质外观与性状:红色、红棕色或黑色有绿色荧光的稠厚性油状液体。 主要用途:可分离出多种有机原料,如汽油,苯、煤油、沥青等。 熔点(℃):无资料沸点:120~200 相对密度(水=1):0.78~0.97相对密度(空气=1):无资料饱和蒸汽压(kPa):无资料燃烧热(kj/mol):无资料 溶解性:不溶于水,溶于多数有机溶剂。 燃烧爆炸危险性燃烧性:易燃建规火险分级:甲 闪点(℃):<-18自燃温度(℃):350 爆炸下限(V%): 1.l爆炸上限(V%):8.7 危险特性: 其蒸气与空气形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。与氧化剂能发生强烈 反应,若遇高热,容器内压增大,有开裂和爆炸的危险。 燃烧(分解)产物:一氧化碳、二氧化碳。稳定性:稳定 聚合危害:不能出现禁忌物:强氧化剂。 灭火方法:泡沫、干粉、二氧化碳,砂土。用水灭火无效。 包装与储运危险性类别:第3.2类中闪点易燃液体危险货物包装标志:7包装类别:Ⅰ 储运注意事项: 储存于阴凉、通风仓间内。远寓火种、热源。仓温不宜超过30℃。保持容器密封。应与 氧化剂、酸类分开存放。储存间内的照明、通风等设施应采用防爆型,开关设在仓外。 配备相应品种和数量的消防器材。罐储时要有防火防爆技术措施。禁止使用易产生火花 的机械设备和工具。灌装时应注意流速(不超过3m/s),且有接地装置,防止静电积聚。 搬运时要轻装轻卸,防止包装及容器损坏。废弃:处置前参阅国家和地方有关法规。废 物储存参见“储运注意事项”。用控制焚烧法处置。包装方法:小开口钢桶;螺纹口玻璃 瓶、铁盖压口玻璃瓶、塑料瓶或金属桶(罐)外木板箱。 毒性危害接触限值: 中国MAC:未制定标准;苏联MAC:未制定标准; 美国TWA:未制定标准;美国STEL:未制定标准 侵入途径:吸入食入 毒性:LD50:500~5000mg/kg(哺乳动物吸入) 健康危害: 石脑油蒸气可引起眼及上呼吸道刺激症状,如浓度过高,几分钟即可引起呼吸困难、紫 绀等缺氧症状。 急救皮肤接触:脱去污染的衣着,用肥皂水及清水彻底冲洗。 眼睛接触:立即提起眼睑,用流动清水冲洗。 吸入: 迅速脱离现场至空气新鲜处。注意保暖,呼吸困难时给输氧。呼吸停止时,立即进行人 工呼吸。就医。 食入:误服者给充分漱口、饮水,就医。 防护措施工程控制:生产过程密闭,全面通风。 呼吸系统防护:高浓度环境中,应该佩带防毒口罩。必要时建议佩带自给式呼吸器。 眼睛防护:戴安全防护眼镜。 防护服:穿相应的防护服。 手防护:戴防护手套。 泄漏处置: 疏散泄漏污染区人员至安全区,禁止无关人员进入污染区,切断火源。建议应急处理人 员戴自给式呼吸器,穿一般消防防护服。在确保安全情况下堵漏。喷水雾会减少蒸发, 但不能降低泄漏物在受限制空间内的易燃性。用沙土、蛭石或其它惰性材料吸收,然后 收集运至空旷的地方掩埋;蒸发、或焚烧。如大量泄漏,利用围堤收容,然后收集、转 移、回收或无害处理后废弃。 法规信息:化学危险品安全管理条例(1987年2月17日国务院发布),化学危险品安全 管理条例实施细则(化劳发[1992]677号),工作场所安全使用化学危险品规定[1996]劳 部发423号)法规,针对化学危险品的安全使用、生产、储存、运输、装卸等方面均作 了相应规定;常用危险化学品的分类及标志(GB13690-92)将该物质划为第3.2类中 闪点易燃液体。 其他:工作现场严禁吸烟。工作后,淋浴更衣。注意个人清洁卫生。

聚醚型破乳剂的合成及改性方法

聚醚型破乳剂的合成及改性方法 摘要:介绍了聚醚型原油破乳剂的合成方法,通过改头、换尾、加骨、扩链、接枝、交联和复配等改性技术合成新的聚醚型破乳剂,根据目前原油破乳剂的合成和应用情况,提出了原油破乳剂研发过程中亟待解决的问题。 关键词:原油乳状液破乳机理破乳方法 聚醚是利用分子中含有活泼氢的化合物作为起始剂,与环氧乙烷、环氧丙烷发生聚合反应得到的一类嵌段共聚物,是一类典型的两亲高分子表面活性剂。聚醚的结构有着丰富的可设计性,如合成中可以控制各链段的长度、EO 百分含量、起始剂与PO 的比例等。以聚醚型破乳剂为代表的非离子型破乳剂是目前油田应用最为广泛的原油破乳剂,近年来,聚醚型破乳剂的研究有了长足的进步,本文介绍了聚醚型原油破乳剂的合成及改性方法,并提出了目前原油破乳剂研发过程中亟待解决的问题。 一、聚醚型破乳剂的发展历程 20 世纪40 年代以后,聚醚型非离子表面活性剂逐渐被用于原油破乳,合成了以低分子聚醚型表面活性剂为主的油包水(W/O)型原油破乳剂,使聚醚型表面活性剂的研究发展到一个新的阶段;1954 年,美国Wyandotte 公司报道合成了Pluronic(以丙二醇为起始剂)和Tetronic(以乙二胺为起始剂)两种嵌段聚醚;1959 年,Witro chemical 公司开发了直链脂肪醇聚氧乙烯醚。60 年代初美国、日本、西欧等发达国家对聚醚表面活性剂的反应机理、合成方法进行了深入研究,为它的发展奠定了基础。此后,各种高性能的聚醚表面活性剂相继被开发出来,广泛应用于石油、石化等工业领域。20世纪60 年代以后,随着采油技术的全面提高,开采出的原油乳状液脱稳难度加大,要求设计和合成新型原油破乳剂以满足生产的需要,于是开发了以高分子聚醚型表面活性剂为主的W/O 型原油破乳剂。这些破乳剂的优点是用量少、破乳效果好。 二、聚醚型破乳剂的合成与改性 聚醚型破乳剂的合成过程简述如下:起始剂和一种环氧化物(如PO 或EO )在催化剂作用下,加成聚合后,再加入另一种环氧化物加成聚合生成嵌段共聚物。在传统聚醚型破乳剂的基础上进行改性是破乳剂的主要合成手段,其研究的方法主要有:“改头、换尾、加骨、扩链、接枝、交联、复配”等。 1.破乳剂改头改性 改头是指选择、设计和合成具有活泼氢的起始剂。不同的起始剂将合成不同结构的线型或空间网状结构的破乳剂。通常采用的起始剂有醇类、脂肪酸、脂肪胺类、酚类等。随着研究的不断深入,人们采用的起始剂由原来的单一化逐渐转为多样化。通过改头后,破乳剂分子中疏水性基团的结构和组成发生了改变,从

原油破乳剂的应用现状

原油破乳剂的应用现状综述 课题名称:原油破乳剂的应用现状综述学院:化学化工学院 专业:化学工程与工艺 姓名:禹荣飞 学号:33 指导老师:王治红 二零一五年十一月二十五号

目录

摘要 本文回顾了原油破乳剂的发展历程,综述了国内外原油破乳剂的产品类型、结构、国内外现状及研发情况, 提出了目前原油破乳剂存在的问题,探讨了破乳剂的发展趋势以及今后的研发情况。 关键词:乳状液;破乳剂;发展历程;新进展;发展方向 前言 近年来,随着原油的不断开发,原油储量越来越低,促使采油技术和合成乳化液技术不断发展,大量高级乳化液的应用,使原油乳状液变得更加稳定,导致采出的原油含水量逐年上升,加重了乳化原油破乳脱水的任务,这也加大了原油存储、运输、精炼过程中的设备负荷,增大了加热过程中的燃料消耗量,含有盐类、硫化物和其它物质的水会对管线设备造成腐蚀和结垢,这使得原油的破乳脱水任务大大加重。所以,这就要求我们要更加深入地研究和考察影响原油乳状液稳定的原因及破乳机理,并不断开发新的破乳剂。

1原油乳状液与原油破乳剂 1.1原油乳状液 乳状液性质 乳状液是一种或多种液体以液滴形式分散在与它不相溶的液体中形成的多分散体系,分散的小液滴一般在~100μm 之间,以液滴形式存在的一相称为分散相(内相或不连续相);另一种相称为分散介质(外相或连续相)。 原油中含有沥青质、胶质、石蜡、脂肪酸、环烷酸、有机氮和硫、粘土等天然乳化剂,其中大部分乳化剂对形成油-水乳状液有促进作用。原油在地层内是油水分离的,当油-水混合物沿油管向地面流动时,压力不断降低,原油中溶解的气体陆续析出,导致气体体积膨胀得越来越大,进一步对油、水产生混合和搅拌作用。通过井口的油水气混合物,压力迅速下降,而流速急剧飙升,使油和水充分混合,形成稳定的乳状液。此外,随着采油技术的发展,聚合物驱、三元复合驱等技术的广泛应用,原油乳化现象更加严重。 原油乳状液具有一定的物理性质、热力学性质、流变学性质、电性质和稳定性,其中原油乳状液的稳定性对于破乳剂的研究显得尤为重要。而影响原油乳状液稳定性的因素主要有界面张力、界面膜的强度、界面电荷、原油粘度与分散度、原油中的天然表面活性剂、固体颗粒、温度、无机盐、pH 值等。原油乳状液中含有的水、有机物、无机盐等对原油的开采、原油输送、存储和精炼过程有很大影响,具体表现如下: (1)使液流的体积增加,存储设备和输送管道的有效利用率降低; (2)使加热过程中的燃料消耗大量增大; (3)使输送过程中的动力消耗大幅增加; (4)对金属管道、换热器等设备造成腐蚀和结垢; (5)影响炼化加工过程 因此在实际生产中必须对原油进行破乳脱水处理,而且越彻底越好,以保证油田开发和后续炼化加工过程的正常进行。 乳状液类型 原油乳状液是指以原油作为分散相或分散介质的乳状液,分为油包水型乳状液

相关主题