搜档网
当前位置:搜档网 › 集成电路的ESD保护

集成电路的ESD保护

集成电路的ESD保护
集成电路的ESD保护

集成电路的ESD保护

概述

静电放电(ESD)会对集成电路(IC)造成破坏性的能量冲击,良好的IC设计能够在IC 装配到应用电路的过程中保护IC免遭ESD冲击的破坏。安装后,IC还必须能够承受ESD穿过静电防护电路进入最终电路的冲击。除此之外,机械防护、电源去耦电容都有助于提高ESD保护能力,但是,如果电容选择不当将会造成IC更容易损坏。为了给IC提供合理的ESD保护,需要考虑以下内容。

?冲击IC的ESD传递模式

?内部ESD保护

?应用电路与IC内部ESD保护的相互配合

?修改应用电路提高IC的ESD保护能力

ESD传递模式

静电放电强度以电压形式表示,该电压由电容的储能电荷产生,最终传递到IC。作用到IC的电压和电流强度与IC和ESD源之间的阻抗有关。对电荷来源进行评估后建立了ESD测试模型。

ESD测试中一般使用两种充电模式(图1),人体模式(HBM)下将电荷储存在人体内(100pF等效电容),通过人体皮肤放电(1.5kΩ等效电阻)。机器模式(MM)下将电荷储存在金属物体,机器模式中的放电只受内部连接电感的限制。

图1. ESD测试模型

以下概念对于评估ESD向IC的传递非常有用:

1. 电压高于标称电源电压时,IC阻抗较低。

对于图1中的HBM模式:Z

S = Z HBM = 1.5kΩ

2. 在MM模式下,电流受特征阻抗(约50Ω)的限制。

上述特征阻抗的计算可以从低阻L-C电路的能量(E)推导出来:

3. 如果ESD电流主要流入电源去耦电容,IC电压由储存的电荷量决定:

Q = C x V和Q Final = Q Initial

V1 x (C0 + C1) = V ESD x C0 (见图1)

4. 能够在瞬间导致IC损坏的能量相当于微焦级,有外部电源去耦电容时,考

虑这一点非常重要,图1中从电源电容(C1)传递到IC的能量是:

5. 耗散功率(P)会产生一定热量,假设能量经过一段较长的时间(t)释放掉,热量

将随之降低:

ESD能量传递到低阻电路时需要考虑其电流(上述第1、2条);对于高阻而言,能量以电压形式通过电荷转移传递到电源去耦电容和寄生电容(第3条)。对IC造成损坏的典型能量是在不到一个毫秒的时间内将微焦级能量释放到IC (第4、5条)。

IC内部保护电路

标准保护方案是限制到达IC核心电路的电压和电流。图1所示保护器件包括:?ESD二极管—在信号引脚与电源或地之间提供一个低阻通道,与极性有关。

?电源箝位—连接在电源之间,正常供电条件下不汲取电流,出现ESD冲击时呈低阻。

ESD二极管

如果对IC引脚进行HBM测试,测试电路的初始电压是2kV,通过ESD二极管的电流约为1.33A (图2):

图2. ESD二极管的电流和电压(测量数据)

理论上,进行HBM测试时引脚电压受限于二极管压降。大电流会在ESD二极管和引线上产生I-R压降,在信号引脚产生额外的电压,如图2所示。

为了确定IC是否能够承受2kV的ESD冲击,需要参考厂商提供的资料。IC的额定电压由最大电压决定,图1中的V

ESD,这是IC能够承受的一种特定的ESD源。Maxim IC所能承受的ESD指标在可靠性报告中可以查找到。

电源箝位

双极型IC的箝位电路类似于在受保护核电路中提供一个受冲击时击穿的部件,图3给出了图1中箝位功能的详细电路。箝位晶体管的过压导致集电极-基极之间的雪崩电流,发射结的正向偏置会进一步提高集电极电流,导致一个“突变”过程。箝位时的V-I特性曲线如图4所示。

图3. 图1中的箝位电路

图4. V-I箝位特性

箝位二极管在IC其它电路遭到破坏之前导通,箝位管要有足够的承受力,保证ESD 电流不会导致二次击穿。2kV HBM测试的箝位过程如图5所示,图5中的电压包括I-R压降和突变稳定后的箝位电压。

图5. 箝位工作过程(测量数据)

ESD保护与应用电路

箝位电压从第一次击穿变化到突变稳定后的导通电压,如图5所示。为保证箝位时关闭正常的工作条件,设计的箝位电压一般要略高于IC的绝对最大电压。

电源去耦电容会影响箝位操作,传递到去耦电容的电荷会产生高于IC绝对最大值的电压,但还不足以使箝位电路导通。这时的电容相当于一个能源,迅速向器件注入能量。

对于一个给定的去耦电容,ESD测试中初始电压的变化遵循电荷守恒原理。例如,

使用一个0.01μF去耦电容,2kV HBM测试电压可以达到20V:

图6. 能量和电压与电源耦合电容的关系

被保护引脚电容上的能量如图6所示,对小的去耦电容,箝位二极管通过进入突变稳定模式限制电压(V1)。突变稳定后的电压所产生的能量近似地随着电容的增大而成比例增大。电源去耦电容增大到一定程度后,电荷传输不会产生导致箝位电路击穿的电压。

箝位电压高于IC所能承受的电压(典型值6V),低于二极管的击穿电压(约10V)时,对于存在去耦电容的情况,因为电容储能可能导致某些问题。如果IC在没有外部电路的情况下进行测试,引脚上作用10V电压是可以接受的,对器件不会构成威胁。

改善ESD保护

合理选择去耦电容的大小有助于在电路中提高IC的保护,降低电容储能,使ESD 电荷不会产生击穿箝位电路的电压。我们可以考虑图1中C1>>C0的情况:

最初:

将C1加倍,则会导致:

电容加倍,能量降低一倍。

对于小尺寸高速双极型IC,HBM测试中吸收的最大能量是1μJ;2kV人体模式下,如果电容小于0.02μF (图6),箝位二极管会产生动作。为了使去耦电容的能量低于1μJ,去耦电容有两种选择:要么容值大于0.05μF,要么小于0.005μF。当使用更高的测试电压时,要按比例增大0.05μF电容的尺寸。

实际应用中,通常不允许使用更大的去耦电容。浪涌电流的要求会限制电容尺寸。如果不控制电压摆率,唯一限制浪涌电流的途径就是限制去耦电容的尺寸:

去耦电容与电源间的引线总是存在一定量的电感,通常也会接入一个滤波电感。这种配置下,最大浪涌电流取决于滤波电感与去耦电容的特征阻抗,这个阻抗(图7中的Zo)类似于MM测试中的电流限制。

图7. C1较大时的电源阻抗

通过限制浪涌电流,可以使用较大的滤波电容(C1);发生ESD冲击时,使得作用在IC上的电压低于器件允许的最大额定电压。

改善ESD保护的有效途径有:

?使用更大的滤波电容,使最大ESD电压低于IC引脚所能承受的绝对最大电压。

?使用小的滤波电容,使得箝位二极管在低能量时提供保护。

?增大串联电感限制大电容产生的浪涌电流。

?增加外部箝位二极管,如图8所示的齐纳二极管,使ESD电压低于器件所能承受的绝对最大电压(图9)。

图8. 齐纳ESD保护二极管

图9. 利用齐纳保护二极管改善箝位(测量数据)

结论

IC及其周边元件需要承受突破应用电路镜电防护层的ESD能量,电源的去耦电容可能是降低作用到IC上的ESD强度的一条低成本解决途径,诸多设计因素会影响ESD性能,具体可以归纳为:

1. 确定应用场合的测试电压(V ESD),典型值为2kV的HBM或100V MM模式。

2. 检查IC的可靠性报告,确认二极管、钳位二极管和传导路径适合的测试电

压。Maxim的可靠性报告中提供了IC的相关信息。

3. 当使用外部电容,如电源滤波电容(C1)时,需检查其产生的电压,这个电压

最终作用到IC上。

4. 如果出现ESD冲击时,电压介于IC的最大额定电压(典型值为6V)与击穿电

压(典型值在8V至10V),可以考虑使用较大尺寸的电容来替代电源滤波的方案。

ESD(静电放电)及ESD保护电路的设计

什么是ESD(静电放电)及ESD保护电路的设计 学习资料2008-12-09 08:27:57 阅读592 评论1 字号:大中小订阅 来源:电子系统设计 静电放电(E SD,electrostatic discharge )是在电子装配中电路板与元件损害的一个熟悉而低估的根源。它影响每一个制造商,无任其大小。虽然许多人认为他们是在E SD安全的环境中生产产品,但事实上,E SD有关的损害继续给世界的电子制造工业带来每年数十亿美元的代价。 E SD究竟是什么?静电放电(E SD)定义为,给或者从原先已经有静电(固定的)的电荷(电子不足或过剩)放电(电子流)。电荷在两种条件下是稳定的: 当它“陷入”导电性的但是电气绝缘的物体上,如,有塑料柄的金属的螺丝起子。 当它居留在绝缘表面(如塑料),不能在上面流动时。 可是,如果带有足够高电荷的电气绝缘的导体(螺丝起子)靠近有相反电势的集成电路(IC)时,电荷“跨接”,引起静电放电(E SD)。 E SD以极高的强度很迅速地发生,通常将产生足够的热量熔化半导体芯片的内部电路,在电子显微镜下外表象向外吹出的小子弹孔,引起即时的和不可逆转的损坏。 更加严重的是,这种危害只有十分之一的情况坏到引起在最后测试的整个元件失效。其它90%的情况,E SD 损坏只引起部分的降级- 意味着损坏的元件可毫无察觉地通过最后测试,而只在发货到顾客之后出现过早的现场失效。其结果是最损声誉的,对一个制造商纠正任何制造缺陷最付代价的地方。 可是,控制E SD的主要困难是,它是不可见的,但又能达到损坏电子元件的地步。产生可以听见“嘀哒”一声的放电需要累积大约2000伏的相当较大的电荷,而3000伏可以感觉小的电击,5000伏可以看见火花。 例如,诸如互补金属氧化物半导体(CMOS, complementary metal oxide semiconductor)或电气可编程只读内存(E PROM, electricall programmable read-only memory)这些常见元件,可分别被只有250伏和100伏的E SD电势差所破坏,而越来越多的敏感的现代元件,包括奔腾处理器,只要5伏就可毁掉。 该问题被每天的引起损害的活动复合在一起。例如,从乙烯基的工厂地板走过,在地板表面和鞋子之间产生摩擦。其结果是纯电荷的物体,累积达到3~2000伏的电荷,取决于局部空气的相当湿度。 甚至工人在台上的自然移动所形成的摩擦都可产生400~6000伏。如果在拆开或包装泡沫盒或泡泡袋中的PCB期间,工人已经处理绝缘体,那么在工人身体表面累积的净电荷可达到大约26000伏。 因此,作为主要的E SD危害来源,所有进入静电保护区域(E P A, electrostatic protected area)的工作人员必须接地,以防止任何电荷累积,并且所有表面应该接地,以维持所有东西都在相同的电势,防止E SD发生。 用来防止E SD的主要产品是碗带(wri s tband),有卷毛灯芯绒和耗散性表面或垫料- 两者都必须正确接地。另外的辅助物诸如耗散性鞋类或踵带和合适的衣服,都是设计用来防止人员在静电保护区域(EP A)移动时累积和保持净电荷。 在装配期间和之后,P CB也应该防止来自内部和外表运输中的E SD。有许多电路板包装产品可用于这方面,包括屏蔽袋、装运箱和可移动推车。虽然以上设备的正确使用将防止90%的E SD有关的问题,但是为了达到最后10%,需要另一种保护:离子化。

ESD防护办法

1.目的

1.1明确ESD敏感电子元件静电防护的重要性及各相关部门对产品静电防护的职责权限. 1.2规范EOS/ESD相关设施之操作、维护、控制及测试方法与点检频率,以保护静电敏感元件,从而保证 产品出货品质,满足客户需求. 2.适用范围 适用于ESD敏感电子元件相关制造,测试,存储及相关设施操作,控制与维护之领域。 3.定义 3.1 静电释放(ELECTROSTATIC,DISCHARGE)即静电电荷在不同电势的物品或表面之间转移的过程 3.1 静电损伤(ELECTROSTATIC,OVERSTRESS)即器件接受静电释放时,其特性产生变化,通常性能变差, 但未完全失效。 4.职责权限 4.1人力资源 4.1.1电工 ①设备干/支接地装置架设与安装. ②静电防护干/支接地装置架设与安装 ③接地装置干线检测与维护. 4.2生产部 ①新人上岗ESD静电防护培训与考核. ②静电手环日常点检/记录. ③工作区域之EOS/ESD设施的日常维护. ④车间静电区域的设施检测、标识与维护. 4.3品保部 4.3.1 IQC ①进料检验区静电防护需求提出. ②对ESD敏感电子元件进料检验. ③新人上岗ESD静电防护培训与考核. ④IQC静电进料检验区域的设施检测、标识与维护. 4.3.2 IPQC ①开线前相关设备,烙铁及特殊制程(静电防护)静电防护点检. ②现场稽核,确保所有静电防护设施之EOS/ESD状态均在规范之中. ③新人上岗ESD静电防护培训与考核. ④车间静电区域所有设施检测与异常提报. 4.3.3 FQC ①出货检验区静电防护需求提出. ②对ESD敏感电子产品出货检验. ③FQC静电检验区域的设施检测、标识与维护. 4.4 PMC 4.4.1仓库 ①静电防护需求提出.

ESD(静电防护)测试试题

ESD 测试题 选择题 1. ESD控制的目的含有达到更好品质和客户更满意。(V ) 2. 静电由接触或磨擦而产生。(V ) 3. ESD 意思是储存静电瞬间放电。( V ) 4. 非现场人员若不具ESD资格,碰触电子零件亦无所谓。(X ) 5. 隔离(绝缘)所有东西是建立一个防静电工作区的一个步骤。( V ) 6. 6( X )手带静电环即可处理对静电敏感之材料。 7. 防静电鞋须两脚都穿著,且只须在有接地之地板上工作才穿著。( V ) 8. 防静电包装必须有封闭式的静电遮蔽容器。( V ) 9. 防ESD 包装材料或容器可以无限期使用。( X ) 10. 通过ESD 资格考试一生有效。( X ) 11. 每天必须做工作桌之自我检查和接地测试。( V ) 1 2 .假如我在防静电工作区穿上防静电鞋后,当我坐下来后就必须戴上静电环。( V ) 13. 当发现缺失或不足时,ESD 标准规范必须修正。( V ) 14. 防静电工作桌或工作区内每个处理ESD 敏感零组件的工作站必须有标示。( V ) 15. 全部防静电工作桌必须有接地静电环插座且其阻抗低于2Q O(V ) 16. 距离工作桌1 公尺内之所有物品其静电电压不需低于100V。( X ) 17. 内装有ESD 敏感零组件之包装是需有标示。( V ) 18. 只有单独置放的零件怕静电。若已装在PCB 上就不怕静电破坏。( X ) 19. 粉红/蓝/黑色的塑料材料表示不易于静电产生。( X ) 20. 每周必须检查静电环一次。( X ) 21. 拿取基板成品、半成品时,手不可触及焊锡面,金手指,测试点及配线等。( V ) 22. 作业中掉落地板上的电子ESDS类零件可以继续使用。(X ) 23. 检验静电敏感器件时必须佩带有线静电环,无线静电环不能使用。( V ) 24. 冬天皮肤干燥,可以在佩带静电环的手腕处擦润肤霜。( X ) 25. 作业人员进入车间须做防护措施,但客户可以不用。( X ) 26. 日常工作产生的静电强度与周围空气之相对湿度成正比,相对湿度愈高,产生的静电的强度愈 高。( X ) 27. 如果高绝缘材料的静电不能被消除,可以通过用离子风机来消除静电或采用防静电喷雾方式对其 进行隔离。(V ) 28. 建立静电安全工作区的步骤之一是把每件东西都绝缘. () 29. 设备外壳接地与静电线接地端为同一接地端. () 30. ESD 防护措施的各种接地不但可以有效防止带电,也可以防止静电的产生. () 31. 防静电包装袋和中转箱可以永远重复使用. (X) 32. 防静电标准要求当缺陷被发现时应及时釆取补救措施. (V) 33. 任何一个可导通并有按扣的导线都可用来做ESD 防护区的接地线. (X) 34. 温湿度对静电的控制有至关重要的作用。它若控制不好,易产生高静电,导致ESD事件率高。(V) 35. 移动电话发出的电磁波会对产品产生干扰,并产生感应电流使产品失效或机器误动作。(V) 36.3. 好的防静电环境,接地系统及良好的防静电地板是最最重要的。(V) 37.4. ESD 是一种静电放电现象,它具有偶然性,瞬时性,不可见性。所以对ESD 的控制需要提高治理手 段,坚持“先破坏,后治理” 。( X ) 38. 防静电控制的目的是为了好的品质和满足顾客的要求。(V ) 39. 在个别情况下可以让没有静电防护的人用手直接触摸元件。(X ) 40. 静电电荷是在接触和磨擦中产生的。(V)

esd保护电路

CMOS电路中ESD保护结构的设计 上海交通大学微电子工程系王大睿 1 引言 静电放电(ESD,Electrostatic Discharge)给电子器件环境会带来破坏性的后果。它是造成集成电路失效的主要原因之一。随着集成电路工艺不断发展,互补金属氧化物半导体(CMOS,ComplementaryMetal-Oxide Semiconductor)的特征尺寸不断缩小,金属氧化物半导体(MOS,Metal-Oxide Semiconductor)的栅氧厚度越来越薄,MOS管能承受的电流和电压也越来越小,因此要进一步优化电路的抗ESD性能,需要从全芯片ESD保护结构的设计来进行考虑。 2 ESD的测试方法 ESD模型常见的有三种,人体模型(HBM,Hu-man Body Model)、充电器件模型(CDM,Charge DeviceModel)和机器模型(MM,Machine Mode),其中以人体模型最为通行。一般的商用芯片,要求能够通过2kV静电电压的HBM检测。对于HBM放电,其电流可在几百纳秒内达到几安培,足以损坏芯片内部的电路。 ,所以对I/O引脚会进行以下六种测试:

1) PS模式:VSS接地,引脚施加正的ESD电压,对VSS放电,其余引脚悬空; 2) NS模式:VSS接地,引脚施加负的ESD电压,对VSS放电,其余引脚悬空; 3) PD模式:VDD接地,引脚施加正的ESD电压,对VDD放电,其余引脚悬空; 4) ND模式:VDD接地,引脚施加负的ESD电压,对VDD放电,其余引脚悬空; 5) 引脚对引脚正向模式:引脚施加正的ESD电压,其余所有I/O引脚一起接地,VDD和VSS引脚悬空; 6) 引脚对引脚反向模式:引脚施加负的:ESD电压,其余所有I/O引脚一起接地,VDD和VSS引脚悬空。 VDD引脚只需进行(1)(2)项测试 3 ESD保护原理 ESD保护电路的设计目的就是要避免上作电路成为ESD的放电通路而遭到损害,保证在任意两芯片引脚之间发生的ESD,都有适合的低阻旁路将ESD电流引入电源线。这个低阻旁路不但要能吸收ESD电流,还要能钳位工作电路的电压,防止工作电路由于电压过载而受损。这条电路通路还需要有很好的工作稳定性,能在ESD发生时陕速响应,而且还不能对芯片正常工作电路有影响。 4 CMOS电路ESD保护结构的设计 根据ESD的测试方法以及ESD保护电路的原理可知,在芯片中我们需要建立六种低阻ESD电流通路,它们分别是: 1) 引脚焊块(PAD)到VSS的低阻放电通路 2) VSS到PAD的低阻放电通路

5种ESD防护方法

5种ESD防护方法 静电放电(ESD)理论研究的已经相当成熟,为了模拟分析静电事件,前人设计了很多静电放电模型。常见的静电模型有:人体模型(HBM),带电器件模型,场感应模型,场增强模型,机器模型和电容耦合模型等。芯片级一般用HBM做测试,而电子产品则用IEC 6 1000-4-2的放电模型做测试。为对 ESD 的测试进行统一规范,在工业标准方面,欧共体的 IEC 61000-4-2 已建立起严格的瞬变冲击抑制标准;电子产品必须符合这一标准之后方能销往欧共体的各个成员国。 因此,大多数生产厂家都把 IEC 61000-4-2看作是 ESD 测试的事实标准。我国的国家标准(GB/T 17626.2-1998)等同于I EC 6 1000-4-2。大多是实验室用的静电发生器就是按 IEC 6 1000-4-2的标准,分为接触放电和空气放电。静电发生器的模型如图 1。放电头按接触放电和空气放电分尖头和圆头两种。

IEC 61000-4-2的 静电放电的波形如图2,可以看到静电放电主要电流是一个上升沿在1nS左右的一个上升沿,要消除这个上升沿要求ESD保护器件响应时间要小于这个时间。静电放电的能量主要集中在几十MHz到500MHz,很多时候我们能从频谱上考虑,如滤波器滤除相应频带的能量来实现静电防护。 IEC 61000-4-2规定了几个试验等级,目前手机CTA测试执行得是3级,即接触放电6KV,空气放电8KV。很多手机厂家内部执行更高的静电防护等级。

当集成电路( IC )经受静电放电( ESD)时,放电回路的电阻通常都很小,无法限制放电电流。例如将带静电的电缆插到电路接口上时,放电回路的电阻几乎为零,造成高达数十安培的瞬间放电尖峰电流,流入相应的 IC 管脚。瞬间大电流会严重损伤 IC ,局部发热的热量甚至会融化硅片管芯。ESD 对 IC的损伤还包括内部金属连接被烧断,钝化层受到破坏,晶体管单元被烧坏。 ESD 还会引起 IC 的死锁( LATCHUP)。这种效应和 CMOS 器件内部的类似可控硅的结构单元被激活有关。高电压可激活这些结构,形成大电流信道,一般是从 VCC 到地。串行接口器件的死锁电流可高达 1A 。死锁电流会一直保持,直到器件被断电。不过到那时, IC 通常早已因过热而烧毁了。 电路级ESD防护方法 1、并联放电器件 常用的放电器件有TVS,齐纳二极管,压敏电阻,气体放电管等。如图

电路中的ESD保护

电路中的ESD保护 ESD的意思是“静电释放”。集成电路器件工作在一定的电压、电流和功耗限定范围内,大量聚集的静电荷在条件适宜是就会产生高压放电,静电放电通过器件引线的高压瞬时传送,可能会使氧化层断开,造成器件的功能失常。 静电的产生主要包括:摩擦起电、感应起电和接触起电。 ESD保护器件的原理,ESD保护二极管是一种新型的集成化的静电保护器件,其内部相当于是一个齐纳稳压二极管,当输入电流超过它的额定电压时,就会被击穿,把过多的电能量导回大地,以起到保护电路的作用。 ESD保护器件一般接在外部接口处,防止外部产生的静电对电路内部造成影响。 ESD器件的主要性能参数 1、最大工作电压,即是允许长时间连续施加在保护器件两端的电压,在此工作状态下,ESD保护器件不导通,保持高祖状态。 2、击穿电压,即是ESD器件开始工作时的导通电压。 3、钳位电压,即是ESD器件流过峰值电流时,其两端呈现的电压,超过此电压,可能造成ESD器件的永久性损伤。 4、漏电流,在指定的直流电压下,通过ESD器件的电流,一般是nA级的,此电流越小,对被保护电路的影响越小。 5、电容,在给定电压、频率条件下测得的值,此值越小,对被保护的信号传输影响就越小。 6、响应时间,指ESD器件对输入电压钳制到预定电压的时间。 ESD保护器件 TVS管即瞬态抑制二极管是一种二极管形式的高效保护器件,利用P-N结的反向击穿工作原理,将静电高压导入大地,从而保护了电器内部对静电敏感的器件。当TVS二极管的瞬时电压超过电路正常工作电压时,TVS二极管便发生雪崩,提供给瞬时电流一个超低电阻通路,其结果就是瞬时电流通过二极管被引开,避开可被保护器件,并且在电路恢复正常值之前使被保护回路一直处于截止状态,当瞬时脉冲结束以后,TVS二极管自动回复高阻状态,整个回路进入正常电压。TVS二极管的工作特性曲线如下图所示

各种静电防护措施,ESD的含义及三种型式

各种静电防护措施,ESD的含义及三种型式 仪表元器件按其种类不同,受静电破坏的程度也不一样,最低的100V的静电压也会对其造成破坏。近年来随着仪表元件发展趋于集成化,因此要求相应的静电电压也在不断减弱。人体平常所感应的静电电压在2-4KV以上,通常是由于人体的轻微动作或与绝缘物的磨擦而引起的。也就是说,倘若我们日常生活中所带的静电电位与IC接触,那么几乎所有的IC都将被破坏,这种危险存在于任何没有采取静电防护措施的工作环境中。静电对IC的破坏不仅体现在仪表元器件的制造工序当中,而且在IC的组装、远输等过程中都会对IC产生破坏。 要解决以上问题,可以采取以下各种静电防护措施: 1、操作现场静电防护。对静电敏感器件应在防静电的工作区域内操作; 2、人体静电防护。操作人员穿戴防静电工作服、手套、工鞋、工帽、手腕带; 3、储存运输过程中静电防护。静电敏感器件的储存和运输不能在有电荷的状态下进行。要实现上述功能,基本做法是设法减少带电物的电压,达到设计要求的安全值以内。即要求下式中的电荷(Q)与电阻(R)要小,表电容量(C)要大。V=I.R Q=C.V 式中V:电压,Q:电荷量I:电流C:静电容量R:电阻当然电阻值也不是越低越好,特别是在大面积场所的防静电区域内必须考虑漏电等安全措施之后再进行材料的选取。 静电的防护 一、接地 接地就是直接将静电过一条线的连接泄放到大地,这是防静电措施中最直接最有效的,对于导体通常用接地的方法,如人工带防静电手腕带及工作台面接地等。接地通过以下方法实施: ①人体通过手腕带接地。 ②人体通过防静电鞋(或鞋带)和防静电地板接地。 ③工作台面接地。

集成电路的ESD保护

集成电路的ESD保护 概述 静电放电(ESD)会对集成电路(IC)造成破坏性的能量冲击,良好的IC设计能够在IC 装配到应用电路的过程中保护IC免遭ESD冲击的破坏。安装后,IC还必须能够承受ESD穿过静电防护电路进入最终电路的冲击。除此之外,机械防护、电源去耦电容都有助于提高ESD保护能力,但是,如果电容选择不当将会造成IC更容易损坏。为了给IC提供合理的ESD保护,需要考虑以下内容。 ?冲击IC的ESD传递模式 ?内部ESD保护 ?应用电路与IC内部ESD保护的相互配合 ?修改应用电路提高IC的ESD保护能力 ESD传递模式 静电放电强度以电压形式表示,该电压由电容的储能电荷产生,最终传递到IC。作用到IC的电压和电流强度与IC和ESD源之间的阻抗有关。对电荷来源进行评估后建立了ESD测试模型。 ESD测试中一般使用两种充电模式(图1),人体模式(HBM)下将电荷储存在人体内(100pF等效电容),通过人体皮肤放电(1.5kΩ等效电阻)。机器模式(MM)下将电荷储存在金属物体,机器模式中的放电只受内部连接电感的限制。 图1. ESD测试模型 以下概念对于评估ESD向IC的传递非常有用:

1. 电压高于标称电源电压时,IC阻抗较低。 对于图1中的HBM模式:Z S = Z HBM = 1.5kΩ 2. 在MM模式下,电流受特征阻抗(约50Ω)的限制。 上述特征阻抗的计算可以从低阻L-C电路的能量(E)推导出来: 3. 如果ESD电流主要流入电源去耦电容,IC电压由储存的电荷量决定: Q = C x V和Q Final = Q Initial V1 x (C0 + C1) = V ESD x C0 (见图1) 4. 能够在瞬间导致IC损坏的能量相当于微焦级,有外部电源去耦电容时,考 虑这一点非常重要,图1中从电源电容(C1)传递到IC的能量是: 5. 耗散功率(P)会产生一定热量,假设能量经过一段较长的时间(t)释放掉,热量 将随之降低: ESD能量传递到低阻电路时需要考虑其电流(上述第1、2条);对于高阻而言,能量以电压形式通过电荷转移传递到电源去耦电容和寄生电容(第3条)。对IC造成损坏的典型能量是在不到一个毫秒的时间内将微焦级能量释放到IC (第4、5条)。 IC内部保护电路 标准保护方案是限制到达IC核心电路的电压和电流。图1所示保护器件包括:?ESD二极管—在信号引脚与电源或地之间提供一个低阻通道,与极性有关。 ?电源箝位—连接在电源之间,正常供电条件下不汲取电流,出现ESD冲击时呈低阻。 ESD二极管 如果对IC引脚进行HBM测试,测试电路的初始电压是2kV,通过ESD二极管的电流约为1.33A (图2):

esd静电防护方法

esd静电防护方法esd静电防护技术 1.一般esd静电防护的基本思路 (1)从元器件设计方面,把静电保护设计到LED器件内,例如大功率LED,设计者在承载GaN基LED芯片倒装的硅片上,设计静电保护二极管,这时硅片不但作为GaN的承载基体,还起到ESD保护作用,使采用这种芯片封装的器件ESDS达到几千伏。它的优点是直接提高器件抗ESD能力,简化封装生产和器件安装等过程的静电防护措施;缺点是增加成本,增大体积,芯片生产工艺复杂并且需要专业生产设各,它适用于高价值的LED 器件。 (2)从生产工艺方面,有两种静电防护途径;①消除产生静电的材料与过程。通过材料的选用,使静电产生的途径不存在了或者减少了,从源头消除了静电放电的产生与积累,是静电防护的有效的基本方法之一。②泄放或中和防止静电放电。因为产生静电的所有途径是不可能完全消除的,所以我们需要安全地泄放或中和那些要发生的静电,防止静电放电的发生。 2,esd静电防护接地技术 接地就是直接将静电通过一条导线的连接泄放到大地,这是防静电措施中|最直接、最有效的方法。多数静电防护系统的效果,都依赖于接地地线的质量,静电接地技术是静电泄放工艺中的主要环节,系统接地的质量将直接影响电荷的释放能力。地线必须是能够接受或提供大量电荷的,理想的地线应该是一个优良的导体,即电流流过地线时不产生电位降,地线上各点电位相同。在工作区的静电地线应为静电专用地线,不得与其他地线共用。防静电接地是厂房基建工程中重要的指标之一。 3.esd静电防护操作系统 在进行静电敏感器件的操作时,工作台上应铺设具有静电导电和静电耗散功能的材料制成的防静电台垫。使所有与器件接触的端子、工具、仪器仪表、人体达到一致的电位,并通过接地使静电能迅速泄放。 4.人体防静电系统 人体防静电系统主要由防静电手腕带、防静电工作服、鞋袜等组成,必要时还需要辅以防静电工作帽、手套、脚套等物品。这种整体的防静电系统兼各静电泄放、中和和屏蔽的作用。防静电手腕带由静电导电材料制成,通过与皮肤直接接触,把人体静电直接导走,所以手腕带使用时必须与皮肤接触良好,使皮肤上的瞬时静电电压、于100V.防静电工作椅以静电导电织物为面料,它们在与人的接触中不产生静电,并能将人体本身所带静电很快泄放,导人大地,起到静电防护作用。 5.生产过程的esd静电防护 LED从芯片到封装应用的生产过程较复杂,就防静电而言,是一个综合治理的过程,应渗透到生产的各个环节,并根据各生产环节的工艺要求,提出不同的对策,以达到对器件的有效静电防护。对固定单个设备(如固晶机、键合台、测试设各、波峰焊设各等)的工艺要求: (1)设各应良好接地; (2)有必要的设各周围要铺设防静电地垫; (3)操作者穿戴防静电衣、帽、腕带等; (4)必要时,在静电防护关键部位设置离子风机。

完整ESD及EMI保护方案

完整ESD及EMI保护方案 对于电子产品而言,保护电路是为了防止电路中的关键敏感型器件受到过流、过压、过热等冲击的损害。保护电路的优劣对电子产品的质量和寿命至关重要。随着消费类电子产品需求的持续增长,更要求有强固的静电放电(ESD)保护,同时还要减少不必要的电磁干扰(EMI)/射频干扰(RFI)噪声。此外,消费者希望最新款的消费电子产品可以用小尺寸设备满足越来越高的下载和带宽能力。随着设备的越来越小和融入性能的不断增加,ESD以及许多情况下的EMI/RFI抑制已无法涵盖在驱动所需接口的新一代IC当中。另外,先进的系统级芯片(SoC)设计都是采用几何尺寸很小的工艺制造的。为了优化功能和芯片尺寸,IC设计人员一直在不断减少其设计的功能的最小尺寸。IC尺寸的缩小导致器件更容易受到ESD电压的损害。过去,设计人员只要选择符合IEC61000-4-2规范的一个保护产品就足够了。因此,大多数保 护产品的数据表只包括符合评级要求。由于集成电路变得越来越敏感,较新的设计都有保护元件来满足标准评级,但ESD冲击仍会形成过高的电压,有可能损坏IC。因此,设计人员必 须选择一个或几个保护产品,不仅要符合ESD脉冲要求,而且也可以将ESD冲击钳位到足够低的电压,以确保IC得到保护。图1:美国静电放电协会(ESDA)的ESD保护要求先进技术实现强大ESD保护安森美半导体的ESD钳位性能备受业界推崇,钳位性能可从几种方法观察和量化。使用几个标准工具即可测量独立ESD保护器件或集成器件的ESD钳位能力,包括ESD保护功能。第一个工具是ESD IEC61000-4-2 ESD脉冲响应截图,显示的是随 时间推移的钳位电压响应,可以看出ESD事件中下游器件的情形。图2:ESD钳钳位截图 除了ESD钳位屏幕截图,另一种方法是测量传输线路脉冲(TLP)来评估ESD钳位性能。由于ESD事件是一个很短的瞬态脉冲,TLP可以测量电流与电压(I-V)数据,其中每个数据点都是从短方脉冲获得的。TLP I-V曲线和参数可以用来比较不同TVS器件的属性,也可用于预测电路的ESD钳位性能。图3:典型TLP I-V曲线图安森美半导体提供的高速接口ESD 保护保护器件阵容有两种类型。第一类最容易实现,被称为传统设计保护。在这种类型设计中,信号线在器件下运行。这些器件通常是电容最低的产品。另一类是采用 PicoGuard® XS技术的产品。这种类型设计使用阻抗匹配(Impedance Matched)电路,可保证100 Ω的阻抗,相当于电容为零。这类设计无需并联电感,有助于最大限度地减少封装引起的ESD电压尖峰。图4:传统方法与PicoGuard® XS设计方法的 对比安森美半导体的保护和滤波解决方案均基于传统硅芯片工艺技术。相比之下,其它类型的

MOS芯片的ESD保护电路设计

MOS芯片的ESD保护电路设计 随着CMOS集成电路产业的高速发展,越来越多的CMOS芯片应用在各种电子产品中,但在电子产品系统的设计过程中,随着CMOS工艺尺寸越求越小,单位面积上集成的晶体管越来越多,极大地降低了芯片的成本,提高了芯片的运算速度。 但是,随着工艺的进步和尺寸的减小,静电释放(ESD),Elecyro Static Discharge)问题变得日益严峻。据统计,在集成电路设计中大约40%的失效电路是ESD问题造成的。 MOS晶体管是绝缘栅器件,栅极通过薄氧化层和其他电极之间绝缘。如果栅氧化层有较大的电压,会造成氧化层击穿,使器件永久破坏。 随着器件尺寸减少,栅氧化层不断减薄,氧化层能承受的电压也不断下降,引起氧化层本征击穿的电场强度约为1 X 107V/cm。如栅氧化层厚度是50 nm 则可承受的最大电压约50 V,当栅氧化层厚度减少到5 nm,则所能承受的最大电压约为5 V。因此外界的噪声电压容易引起栅击穿。 特别是外界各种杂散电荷会在栅极上积累,由于MOS 晶体管的栅电容很小,只要少量的电荷就能形成很大的等效栅压,引起器件和电路失效,这就是ESD问题。例如,人体所带的静电荷可产生高达几kV的电压,在80%的湿度情况下,人走过化纤地毯可能产生1.5 kV静电压。ESD对CMOS集成电路的损伤,不仅会引起MOS器件栅击穿,还可能诱发电路内部发生闩锁效畸应。 另外,静电释放产生的瞬时大电流可能造成芯片局部发热,损害器件和电路。在一般的条件下,ESD不会导致器件即时失效,它往往潜伏在集成电路器件中,这种存在有潜在缺陷的器件在使用时容易失效。 特别是在深亚微米CMOS工艺中,由于溥栅氧化层的击穿电压较低,必须加入有效的在片ESD保护电路以箝位加到内部电路栅氧化层上的过充电压。 1 ESD放电模式与设计方案 电路的输入或输出端与电源和地之间的ESD应力有4种模式 在集成电路中和外界相连的输入、输出端子比内部器什更容易受到ESD损伤。一般电路的输入或输出端与电源和地之间的ESD应力有4种模式: (1)某一输入(或输出)端对地的正脉冲电压(PS模式):VSS接地,ESD正电压加到该输入输出端,对VSS放电,VDD与其他管脚悬空。 (2)某一输入(或输出)端对地的负脉冲电压(NS模式):VSS接地,ESD负电压加到该输入输出端,对VSS放电,VDD与其他管脚脚悬空。 (3)某一个输入或输出端相对VDD端的正脉冲电压(PD模式):VDD接地,ESD正电压加到该输入输出端,对VDD放电,VSS与其他管脚悬空。 (4)某一个输入或输出端相对VDD端的负脉冲电压(ND模式):VDD接地,ESD负电压加在该输入输出端,对VDD放电,VSS与其他管脚悬空。 防止集成电路芯片输入、输出端受到ESD应力损伤的方法是在芯片的输入和输出端增加ESD保护电路。保护电路的作用主要有两方面:一是提供ESD电流的释放通路;二是电压钳位,防止过大的电压加到MOS器件上。 对CMOS集成电路连接到压点的输入端常采用双二极管保护电镀,图2所示为常见的ESD 保护电路的结构:双二极管保护电路。 二极管D1是和PMOS源、漏区同时形成的,是p+n-结构,二极管D2是和NMOS源、漏区

ESD 保护 layout指南

Application Report SLVA680–February 2015 ESD Protection Layout Guide Guy Yater High Volume Linear ABSTRACT Successfully protecting a system against electrostatic discharge (ESD)is largely dependent on the printed circuit board (PCB)design.While selecting the proper transient voltage suppressor (TVS)founds the basis of an ESD protection strategy,its scope is not covered here.ESD selection guides are available in Technical Documents at https://www.sodocs.net/doc/2d10918071.html,/esd for guidance in choosing the correct type of TVS diode for a particular system.With the proper TVS selected,designing a PCB Layout that leverages the strategies outlined in this ESD Layout Guide will provide the PCB designer with an avenue towards successfully protecting a system against ESD. Contents 1 Introduction ...................................................................................................................11.1Optimizing Impedance for Dissipating ESD .....................................................................31.2Limiting EMI from ESD .............................................................................................41.3Routing with VIAs ...................................................................................................51.4Optimizing Ground Schemes for ESD (6) 2Conclusion (8) 1Introduction An ESD event rapidly forces current (see Figure 1),I ESD ,into a system,usually through a user interface such as a cable connection,or a human input device like a key on a keyboard.Protecting a system against ESD using a TVS relies upon the TVS being able to shunt I ESD to ground.Optimizing a PCB Layout for ESD suppression is largely dependant on designing the path to ground for I ESD with as little impedance as possible.During an ESD event,the voltage presented to the protected integrated circuit (Protected IC),V ESD ,is a function of I ESD and the impedance presented to it.Since the designer has no control over I ESD ,lowering the impedance to ground is the primary means available for minimizing V ESD .Lowering the impedance presents several challenges.Mainly,it cannot be of zero impedance,or the signal line being protected would be shorted to ground.In order for the circuit to have a realistic application,the protected line needs to be able to maintain some voltage,usually under a high impedance to ground.This is where the TVS becomes applicable. Figure 1.IEC 61000-4-2Compliant Level 4(8kV ESD)Waveform 1 SLVA680–February 2015 ESD Protection Layout Guide Submit Documentation Feedback Copyright ?2015,Texas Instruments Incorporated

ESD防护与电路设计经验

ESD 防护与电路设计 陶显芳 2013.04.10

静电的产生与防护GB/T17626.2 IEC61000-4-2

物体B 两种不同性质的物体接触在一起,因原子外层电子的能级不同,在其接触的界面处就会产生接点电位差,并产生势垒电荷;当把接触在一起的两种物体进行分离时,两个物体都会带电,这种带电称为静电。由于绝缘体中被极化带电的分子来不及中和,所以绝缘体带电要比导体严重。 带电物体通过电场的作用,会对其周边的物体产生感应,使周边物体产生极化带电;在电场不断产生变化的时候,如果极化带电变化的速度跟不上电场变化的速度,物体就会产生分离带电,即:一个带正电,另一个带负电。很多高分子绝缘材料,其极化带电变化的速度比较慢,所以很容易感应带电,因此,当两种不同性质的高分子绝缘体互相接触后再分离,其带电比其它物质严重,经过

静电抗扰度试验的目的 在天气比较干燥的冬天, 通过皮鞋与地毯摩擦,或不同 材料的衣服互相摩擦,人体很 容易会带上静电,其电压最高 可达15kV。如果人体带上这 个高压静电之后,再触摸一些 敏感电子设备,这些电子设备 中的敏感元器件就很容易被击 穿损坏。右图是电子产品静电 抗扰度试验室的设备配置图, 静电抗扰度试验主要就是模拟 人体带电(静电)对电子产品 的影响或损伤。 静电抗扰度试验一般都称为 ESD(Electro-Static– discharge,静电释放)。

(a)图1 (b)

静电抗扰度试验要点 静电抗扰度试验的关键设备是静 电放电枪,右图是静电放电枪的工 作原理图,试验时,150P电容被充 上2000V以上的电压(模仿人体带 电),然后通过探头与被测设备的 外壳,输入、输出接口,直接触或 部分接触进行放电;或通过探头与 被测设备内部电路的分布电容,以 及被测设备与地之间的电容产生静 电感应,使设备中的敏感元器件感 应带电;或通过对被测设备周边的 导体进行放电所产生的高频电磁场 对被测设备的干扰,以此方法来检 测设备对静电放电或静电感应的承 受能力。

ESD防护方法

ESD防护技术 摘要:分静电基础知识、ESD防护技术两部分,第一部分主要介绍静电特点、静电衰减与之积累规律、人体静电的起电方式、静电损伤的失效模式;第二部分主要介绍静电防护的必要性、静电防护的目的与途径、静电防护的过程控制、静电防护系统的构成。 随着电子产品的轻、薄、短、小化,以及电子元器件的不断小型化、超大规模集成电路的广泛应用,特别是数字技术的发展和应用,SMT组装技术在电子产品制造业中扮演着日益重要的角色,而静电已成为电子工业中造成器件失效、产成品合格率低及其早期失效的主要原因,严重影响产品直通率及质量稳定性与可靠性,给制造商的生产成本、声誉造成不良影响,因此静电防护已越来越受到重视。 1 静电起电及其流散与积累规律 1.1静电起电 一般物体是中性,若任一物体带有过剩的电荷则成为带电体,物体间的电荷转移过程称为起电过程。失去电子带正电,得到电子带负电,由于电子的得与失使物体失去电平衡,就产生了静电。静电产生得基本过程可归纳为四个阶段:接触→电荷转移→偶电层的形成→电荷分离。 物体的起电方式主要有: ⑴物体间的摩擦,产生的热可使电子转移,产生静电; ⑵物体间的接触与分离;

⑶电磁感应。 对于后两种起电方式比较容易预防与控制,在实际生产中最难以控制、防不胜防的是第一种起电方式——摩擦起电,主要是由于人体的动作及设备的运动而产生。如元器件、PCB成品板间的相互碰撞和接触摩擦而形成很高的表面电位,操作者与大地绝缘时,人体静电位可高达1.5kV~35kV。 1.2 静电起电序列 两个不同物体相互接触时,各自带上极性相反、数量相同的电荷,一个失去电子成为空穴带电(+),而另一个得到电子成为电子带电(-)。常见不同物体接触起电的序列为:(+)空气→人手→玻璃→云母→头发→尼龙→羊毛→铝→纸→棉花→钢铁→木→硬橡皮→铜→银→金→聚乙烯→聚氯乙稀(-),位于较前的物体一般带正电,而位于较后着则带负电,即电子从位于前面的物体转移到后面的物体中。两种相摩擦的物体在起电序列中的位置相距越远,摩擦带电后产生的电位就越大,但物体呈现电性在很大程度上受到物体所含杂质成分、表面氧化和吸附情况、温度压力、外界电场等因素的影响。 1.3 静电衰减与积累规律 静电荷通过中和与泄漏而自行消失的现象称为电荷的消散或衰减。物体以某种方式起电后,电荷一般按指数规律衰减,工程材料的静电衰减时间τ是评价材料防静电性能好坏的重要指标。静电的衰减速度与材料电阻率有密切关系,材料电阻率越大,如高绝缘介质的橡胶、塑料等,带电以后衰减速度极慢;而电阻率较低的材料如防静电

CMOS 电路中ESD 保护结构的设计

CMOS电路中ESD保护结构的设计 作者 王大睿 上海交通大学 微电子工程系 摘 要:本文研究了在CMOS 工艺中I/O 电路的 ESD保护结构设计以及相关版图的要求,其中重点讨论了PAD到VSS电流通路的建立。 关键词:ESD保护电路,ESD设计窗口,ESD 电流通路 Construction Strategy of ESD Protection Circuit Abstract:The principles used to construct ESD protection on circuits and the basic concept ions of ESD protection design are presented. Key words:ESD protection/On circuit, ESD design window, ESD current path 1引言 静电放电(ESD,Electrostatic Discharge)给电子器件环境会带来破坏性的后果。它是造成集成电路失效的主要原因之一。随着集成电路工艺不断发展,互补金属氧化物半导体(CMOS,Complementary Metal-Oxide Semiconductor)的特征尺寸不断缩小,金属氧化物半导体(MOS, Metal-Oxide Semiconductor)的栅氧厚度越来越薄,MOS管能承受的电流和电压也越来越小,因此要进一步优化电路的抗ESD性能,需要从全芯片ESD保护结构的设计来进行考虑。 2ESD的测试方法 ESD模型常见的有三种,人体模型(HBM ,Human Body Model)、充电器件模型(CDM,Charge Device Model)和机器模型(MM,Machine Mode),其中以人体模型最为通行。一般的商用芯片,要求能够通过2kV静电电压的HBM检测。对于HBM放电,其电流可在几百纳秒内达到几安培,足以损坏芯片内部的电路。 图1 人体模式(HBM)的等效电路。人体的等效电阻为 1.5k?。 进入芯片的静电可以通过任意一个引脚放电,测试时,任意两个引脚之间都应该进行放电测试,每次放电检测都有正负两种极性,所以对I/O引脚会进行以下六种测试:

USB3.0应用的ESD保护原理图

USB3.0应用的ESD保护原理图 USB是通用串行总线的简称,这是目前个人计算机与其它外部设备联机使用最为广泛的一种传输接口。该接口最初由英特尔与微软公司倡导发起,其最大的特点是支持热插拔和随插即用,使用者不需要重新开机便可以直接安装或加载硬件驱动程序,使用起来比PCI和ISA 总线要方便很多。 USB 3.0接口分成主机(Host)端与设备(Device)端,必须先有主机端的支持,外围的设备端才能搭配。从芯片大厂英特尔及AMD已开始推出支持USB 3.0的南桥芯片,微软Windows 7也开始提供支持USB3.0的驱动,以及最近市面上的计算机及外围产品中已越来越多地标榜具有USB 3.0功能,可知USB 3.0取代USB 2.0已是既定的趋势。 USB3.0的数据传输速率比USB2.0快十倍,正好满足日益增长的对高画质、大容量存储的需求。无论是数字照片文档、影片文件、电子邮件数据或其它重要数据的复制或备份,甚至是整个计算机系统的备份,均可大幅缩减时间,提升工作效率。除了在计算机上的应用之外,手机与相机也大都使用USB与计算机连接传输数据,并利用USB进行充电。 为实现十倍于USB 2.0的传输速度,必须使用更先进的工艺来设计和制造USB 3.0控制芯片,这也造成USB 3.0的控制芯片对静电放电(ESD)的耐受能力快速下降。此外,当USB 3. 0被广泛用于传输影音数据时,对数据传输容错率会有更严格的要求,使用额外的保护组件来防止ESD事件对数据传输的干扰变得很有必要。除了传输速度的要求之外,USB另一个最重要的特点就是随插即用、随拔即关。但由于在USB传输线内部经常会累积静电,造成在热插拔动作下必然会有一些ESD现象发生,电子系统经常因此而发生工作异常、甚至造成USB连接端口组件毁坏,像ESD等瞬时噪声就是来自这个热插拔动作。 USB3.0连接端口保护组件的要素 ESD保护组件必须同时符合下面五项要求才适合用在USB3.0端口: 首先,ESD保护组件本身的寄生电容必须小于0.3pF,才不会影响USB3.0高达4.8Gbps的传输速率。其次,保护组件的ESD耐受能力必须够高,至少要能承受IEC61000-4-2接触模式8kV ESD的攻击。第三也是最重要的一项要求,在ESD事件发生期间保护组件必须提供够低的箝制电压,不能造成传输数据错误或遗漏,甚至造成系统产品内部电路损坏。第四,保护组件动作后的导通阻值必须够低,这样,除了可以降低箝制电压外,最大的优点是可让组件在遭受高能量ESD攻击时仍能保持低箝制电压,以避免出现保护组件未受损但系统内部电路已无法正常工作甚至损坏的情况。第五,单个芯片即可解决USB 3.0连接端口中所有信号线/电源线的ESD保护需求,尤其是使用在Micro USB接口时,这将大大降低设计布局的复杂度。 以上五项基本要求缺一不可,若有任何一项无法满足,则USB 3.0端口就无法被完善地保护。不过,同时符合以上五项要求的ESD保护组件其本身的设计难度相当高,若非具有丰富经验与扎实技术的设计团队将无法实现。

相关主题