搜档网
当前位置:搜档网 › STM32L15x —— 电源管理PWR和低功耗模式

STM32L15x —— 电源管理PWR和低功耗模式

dsp的低功耗模式

240xA系列DSP有一个低功耗指令IDLE,当被执行时,该指令将停止CPU 中所有电路的时钟;尽管如此,从CPU中出来的时钟将继续输出。通过使用该指令,CPU的时钟将被关闭以节约能量。当遇到复位或者中断请求时CPU将推出IDLE模式。 1.1时钟类型 所有以240xA为内核的设备均包含下面两种时钟类型: n组成大部分CPU逻辑电路时钟的CPU时钟。 n组成外设时钟以及CPU中的中断逻辑电路的系统时钟(由CPU 中出来的CLKOUT得来)。 当CPU进入IDLE模式时,系统时钟继续产生,CPU时钟停止产生。这种模式叫作IDLE1 模式。当CPU进入IDLE2 模式时,CPU时钟,系统时钟都将停止产生,这样允许进一步的节省能量。第三种节能模式,HALT模式,有可能将看门狗时钟以及振荡器时钟关闭。在HALT模式中,输入到锁相环的时钟被关闭。 低功耗模式不会改变通用I/O口的状态。在进入低功耗模式之前,I/O口将保持住同样的状态。并且,进入低功耗模式后,通用I/O口不会进入到高阻抗状态以及内部电压上拉或下拉不会改变。 当执行IDLE指令时,系统配置寄存器SCSR1 的12,13位LPM位将决定DSP进入三种节能模式中的哪种模式。 以下图标为三种模式下各时钟的关闭情况以及退出该情况所需要的条件。 (见相册) 1.2退出低功耗模式 多种情况可以退出低功耗模式。以下部分描述了怎样退出低功耗模式。 1.2.1复位 复位(任何情况下的复位)可以使DSP退出任何一种低功耗模式。如果DSP处于HALT模式即暂停状态下,复位将启动振荡器;尽管如此,由于启动振荡器至产生时钟需要一定时间,CPU的复位将被延迟一段时间。 1.2.2外部中断 外部中断,XINTx,可以使DSP退出出HALT的任何一种中断。如果DSP处于IDLE2节能模式,连接到外部中断引脚的同步逻辑可以识别出在引脚上的中断,然后开始系统时钟和CPU时钟,然后允许时钟逻辑向PIE控制器产生中断请求。 1.2.3唤醒中断 有一些外设具备启动DSP时钟的能力,然后形成了对某确定事件的中断。比如在通讯线路中的一些激活电压。例如:CAN唤醒中断可以在没有时钟运行时进行错误的中断请求。 1.1.1退出低功耗模式——一些样例 外设中断被用来唤醒处于不同功耗模式的DSP。唤醒的动作(以及DSP 接下来的动作)由下列情况决定; n该外设在外设中断级是否被使能 n该外设上级的IMR.n是否被使能 n在ST0中的INTM状态

DVFS的SoC低功耗技术

基于自适应DVFS的SoC低功耗技术研究 从当前嵌入式消费电子产品来看,媒体处理与无线通信、3D游戏逐渐融合,其强大的功能带来了芯片处理能力的增加,在复杂的移动应用环境中,功耗正在大幅度增加。比如手机,用户往往希望待机时间、听音乐时间,以及看MPEG4时间能更长。在这样的背景下,如何降低嵌入式芯片的功耗已迫在眉睫。 1低功耗技术分析 表1给出低功耗技术分析表。由表1可见,随着沟道宽度的减少,单位面积上的动态功耗和静态功耗都在不断增加。 这样芯片功耗则可描述为: 式中:CeffVdd2fclock是动态功耗部分。其中a为当前频率下的翻转率;Ceff为节点负载电容;Vdd 为工作电压;fclock为工作频率。IleakVd是静态功耗部分,其中Ileak为漏电流。由式(1)可知,降低芯片功耗所需要降低的参数。 1.1降低动态功耗的手段 1.1.1降低α 降低α有两种方法:一是通过工具优化逻辑结构来降低α;二是通过编码方式来实现低的α,例如采用翻转码。实际上假设每一次翻转都是有效和最优的,则afclock可视为一常数,但真实情况并非如此,每次时钟驱动下的设计往往存在冗余,同时对于某种额定的上层任务本身,也可能不适合软硬件划分。对于fclock,若不使用该模块时,可直接gated该模块。这种gated有三种手段: (1)在时钟产生端进行gated,由软件配置。该手段要求在前端设计这样的功能,包括正向时钟gated 和反相时钟gated,其结构是对称的。实际上设计时,器件lib会提供标准的gated单元,这使得前端设计变得较为容易。 (2)在模块中进行硬件判断,以gated clock时钟。例如,在AHB总线上有一块memory,作为AHB从动装置。由于软件频繁访问该模块,因此若采用软件频繁gated,则导致操作不连续;若将模块设计在内部,则因AHB的HSEL信号变高,下一拍时钟在模块内部被打开,这样即可节省时钟翻转的功耗。尤其对于memory来说,时钟翻转和不翻转的功耗差别较大。 (3)利用综合工具在近端加gated,而无需在前端设计。 理论上,单纯的频率下降,并不能带来功耗的变化,因为工作量一定,频率的下降只能带来运行时间的增加,但是芯片功耗中,时钟树的功耗几乎占去30%,所以在合适降低频率时,会减少时钟树上的功耗。 1.1.2降低Ceff Ceff的降低因工艺选择的不同而存在较大的差别。因此,选择合适的工艺更有利于降低Vdd这样可使功耗得到平方关系的下降。然而,基于成本、可靠性及商务等考虑,只能选择某一种工艺,如130nm工艺,可通过DVFS来改变电压。它的核心是:(1)某种工艺下的library可以在一定电压范围内工作正常。(2)由于模块或系统工作在不同任务下所需的工作频率不同,因此可以计算DVFS的收益。假设一个系统可以进行MP3或MP4的解码任务,这样在MP3解码时,所需频率只有100MHz;在MP4解码时,所需频率是200MHz。

电源技术的进展与电源管理的应用

电源技术的进展与电源管理的应用 一、引言 电能是目前人类生产和生活中最重要的一种能源形式。合理、高效、精确和方便地利用电能仍然是人类所面临的重大问题。采用电力电子技术的电源装置给电能的利用带来了革命。在世界范围内,用电总量中经过电力电子装置变换和调节的比例已经成为衡量用电水平的重要指标,目前全球范围内该指标的平均数为40%,据美国国家电力科学研究院预测,到2010年将达到80%。这对电源技术提出了新的挑战。 上世纪80年代,提出了电源制造中电力电子集成概念,明确了集成化是电力电子技术未来发展的方向,是解决电力电子技术发展面临障碍的最有希望的出路。电源集成电路逐步成为功率半导体器件中的主导器件,把电源技术推向了电源管理的新时代。电源管理集成电路分成电压调整器和接口电路两方面。正是因为这么多的集成电路(IC)进入电源领域,人们才更多地以电源管理来称呼现阶段的电源技术。 二、电源技术的进展 电源技术是一种应用功率半导体器件,综合电力变换技术、现代电子技术、自动控制技术的多学科的边缘交叉技术。随着科学技术的发展,电源技术又与现代控制理论、材料科学、电机工程、微电子技术等许多领域密切相关。目前电源技术已逐步发展成为一门多学科互相渗透的综合性技术学科。它对现代通讯、电子仪器、计算化、工业自动化、电力工程、国防及某些高新技术提供高质量、高效率、高可靠性的电源起着关键的作用。 上世纪40年代晶体管问世,随后不到十年,晶闸管在晶体管渐趋成熟的基础上问世,从而揭开了电源技术长足发展序幕。半个世纪以来,电源技术的发展不断创新。 1、高频变换是电源技术发展的主流

电源技术的精髓是电能变换。利用电能变换技术,将市电或电池等一次电源变换成适合各种用电对象的二次电源。开关电源在电源技术中占有重要地位,从20kHz发展到高稳定度、大容量、小体积、开关频率达兆赫兹的高频开关电源,为高频变换提供了物质基础,促进了电源技术的发展。高频化带来的最直接的好处是降低原材料消耗,电源装置小型化,提高功率密度,加快系统的功态响应,进一步提高电源装置的效率,有效抑制环境噪声污染,并使电源进入更广泛的领域,特别是高新技术领域,进一步扩展了它的应用范围。 2、新理论、新技术的指导 单管降压、升压电路、谐振变换、移相谐振、软开关PWM、零过渡PWM等电路拓扑理论;计算机辅助设计(CAD)、功率因数校正、有源箍位、并联均流、同步整流、高频磁放大器、高速编程、遥感遥控、微机监控等新技术,指导厂电源技术的发展。 3、新器件、新材料的支撑 晶闸管(SCR)、可关断晶闸管(GTO)、大功率晶体管(GTR)、绝缘栅双极型晶体管 (IGBT)、功率场效应晶体管(MOSFET)、智能ICBT(IPM)、MOS 栅控晶闸管(MCT)、静电感应晶体管(SIT)、超快恢复二极管、无感电容器、无感电阻器、新型铁氧体、非晶和微晶软磁合金、纳米晶软磁合金等元器件,装备厂现代电源技术、促进电源产品升级换代。并正在研究开发砷化镓(GaAs)、半导体金刚石、碳化硅(SiC)半导体材料。 4、控制的智能化 控制电路、驱动电路、保护电路采用集成组件。数字信号处理器DSP 的采用,实现控制全数字化。控制手段用微处理器和单片机组成的软件控制方式,达到了较高的智能化程度,并且进一步提高电源装置的可靠性。 5、电源电路的模块化、集成化 单片电源和模块电源取代整机电源,功率集成技术简化了电源的结构,已经在通讯、电力获得广泛应用,并且派生出新的供电体制――分布式供电,使集中供电单一体制走向多元化。电路集成的进一步发展是

数字集成电路物理设计阶段的低功耗技术

数字集成电路物理设计阶段的低功耗技术 张小花(200XXXXXXXX) 2011年六月 摘要:通过一个图像处理SoC的设计实例,着重讨论在物理设计阶段降低CMOS功耗的方法。该方法首先调整 PAD摆放位置、调整宏单元摆放位置、优化电源规划,得到一个低电压压降版图,间接降低CMOS功耗;接着,通过规划开关活动率文件与设置功耗优化指令,直接降低CMOS功耗。最终实验结果表明此方法使CMOS功耗降低了 10.92%。基于该设计流程的图像处理SoC已经通过ATE设备的测试,并且其功耗满足预期目标。 关键词: 集成电路; 物理设计; 电压降; 低功耗 Digital integrated circuit physical design phase of the low power technology luo jiang nan(2008102041) June, 2011 Abstract: through a image processing of SoC design examples, the paper discuss the physical design stage reduce power consumption method. CMOS This method firstly PAD put the position, adjusting adjustment macro unit put the position, optimizing power planning, get a low voltage pressure drop, reduce the power consumption of the CMOS indirect territory; Then, through the planning activities rate documents and set switch power optimization, reduce the power consumption of the CMOS setup instructions directly. Finally the experimental results show that the method that CMOS power consumption was reduced by 10.92%. Based on the design process of the image processing has been through the ATE the SoC test equipment, and its power consumption to meet expectations. Keywords: IC; physical design; voltage drop; low power consumption 1 引言 随着集成电路规模的扩大以及便携式和嵌入式应用需求的增长,低功耗数字集成电路设计技术日益受到重视,已成为集成电路设计的研究热点.通常低功耗设计技术包括三个方面:设计中的低功耗技术、封装的低功耗技术和运行管理的低功耗技术.其中设计中的低功耗技术包括前端设计阶段的 体系结构级低功耗技术、RTL级低功耗技术、门级低功耗技术和物理设计阶段的低功耗 技术.

DSP作业

DSP 作业 1.DSP 芯片有哪些主要特点? 答:DSP 的主要特点有: 1.哈佛结构 2.多总线结构 3.流水线结构 4.多处理单元 5特殊的DSP 指令 6.指令周期短 7.运算精度高 8.硬件配置强。 2.简述典型DSP 应用系统的构成。 答:输入信号首先进行带限滤波和抽样,然后进行数模变换将信号变换成数字比特流,根据奈奎斯特抽样定理,对低通模拟信号,为保持信号的不丢失,抽样频率至少必须是输入带限信号最高频率的2倍。 输入 输出 输出 3.简述DSP 应用系统的一般设计开发过程。如何选择DSP 芯片? 答:DSP 应用系统的一般开发过程有:系统需求说明;定义技术指标;选择DSP 芯片及外围芯片;软件设计说明、软件编程与测试;硬件设计说明、硬件电力与调试;系统集成;系统测试,样机、中试与产品。 DSP 芯片的选择:1.DSP 芯片的运算速度 2. DSP 芯片的价格 3. DSP 芯片的硬件资源(存储器、ADC 、PWM 等等) 4.DSP 芯片运算精度 5.芯片开发工具:软件 硬件 6..DSP 芯片功耗 7.其他:封装、应用场合、售后服务等。 4.常用的DSP 芯片有哪些? 答:C20x 、C24x 、C5x 、C54x 、C62xx 、C3x 、C4x 、C67xx 。 5.DSP 控制器的应用领域有哪些? 答:(1)信号处理:数字滤波、快速FFT 、相关运算、谱分析、自适应铝波、卷积、模式匹配、加窗、波形产生等。 (2)通信:调制解调器、数据压缩、回拨抵消、多路复用、传真、自适应均衡、数据加密、扩频通信、纠错编码、可视电话等。 (3)语言:语音邮件、语音存储、语音编码、语音合成、语音识别、语音增强、说话人辨认、说话人确认等。 (4)图形/图像:图像增强、动画、机器人视觉、二维/三维处理器、图像压缩与传输等。 (5)军事:导航、雷达处理、声纳处理、导弹制导等。 抗混叠滤波 A/D DSP 芯片 D/A 平滑滤

超低功耗系统设计

超低功耗系统设计 学院: 学号: 姓名:

基于MSP430单片机的开关稳压电源设计 MSP430系列单片机是美国TI公司生产的新一代16位单片机,是一种超低功耗的混合信号处理器(MixedSignal Processor),它具有低电压、超低功耗、强大的处理能力、系统工作稳定、丰富的片内外设、方便开发等优点,具有很高的性价比,在工程控制等领域有着极其广泛的应用范围。开关Boost稳压电源利用开关器件控制、无源磁性元件及电容元件的能量存储特性,从输入电压源获取分离的能量,暂时把能量以磁场的形式存储在电感器中,或以电场的形式存储在电容器中,然后将能量转换到负载。对DC—DC主回路采用Boost升压斩波电路。 2 系统结构和总设计方案 本开关稳压电源是以MSP430F449为主控制器件,它是TI公司生产的16位超低功耗特性的功能强大的单片机,其低功耗的优点有利于系统效率高的要求,且其ADCl2是高精度的12位A/D转换模块,有高速、通用的特点。这里使用MSP430完成电压反馈的PI调节;PWM波产生,基准电压设定;电压电流显示;过电流保护等。 系统框图如图1所示。 3 硬件电路设计 3.1 DC/DC转换电路设计 系统主硬件电路由电源部分、整流滤波电路、DC/DC转换电路、驱动电

路、MSP430单片机等部分组成。交流输入电压经整流滤波电路后经过DC/DC变换器,采用Boost升压斩波电路DC/DC变换,如图2所示: 根据升压斩波电路的工作原理一个周期内电感L积蓄的能量与释放的能量相等,即: 式(1)中I1为输出电流,电感储能的大小通过的电流与电感值有关。在实际电路中电感的参数则与选取开关频率与输入/输出电压要求,根据实际电路的要求选用合适的电感值,且要注意其内阻不应过大,以免其损耗过大减小效率采样电路。对于电容的计算,在指定纹波电压限制下,它的大小的选取主要依据式(2): 式(2)中:C为电容的值;D1为占空比;TS为MOSFET的开关周期;I0为负载电流;V’为输出电压纹波。 3.2 采样电路 采样电路为电压采集与电流采集电路,采样电路如图3所示。其中P6.O,P6.1为MSP430芯片的采样通道,P6.O为电压采集,P6.1为电流采集。 电压采集因为采样信号要输入单片机MSP430内部,其内部采样基准电压选为2.5 V,因此要将输入的采样电压限制在2.5 V之下,考虑安全裕量则将输入电压限制在2 V以下,当输入电压为36 V时,采样电压为:12/ (12+200)×36=2.04 V,符合要求。 电流采集采用康铜丝进行采集。首先考虑效率问题,康铜丝不能选择过大,同时MSP430基准电压为2.5 V,且所需康铜丝需自制。考虑以上方面在康铜丝阻值选取上约为O.1Ω。 3.3 PWM驱动电路的设计 电力MOSFET驱动功率小,采用三极管驱动即可满足要求,驱动电路如图

电源管理系统

电源管理系统要求: 一、运行环境: 海上石油钻井平台或母船 进线侧电源:3*380VAC 50Hz 出线侧电源:3*1000VAC 50Hz 二、系统需要实现的基本功能: 1、对进线侧输入电源进行冗余保护,可实现一路电源故障时,自动或手动切换到另一路电源;自动切换时间尽可能短; 2、出线侧电源由进线侧电源通过变压器升压获得,同时该变压器可用于对负载电机(约100KW)进行自耦降压启动,启动过程全程监控; 3、对出线侧负载进行正常的启动/停止、紧急停车等常规功能; 4、对进线侧和出线侧电源进行实时监控,监控内容包括:电压、电流、功耗、功率、相序、温度、计时、绝缘等; 5、电源管理系统在监测到第4条中的电压、电流等参数超过额定值时需要进行相应的声光报警或跳闸等执行动作; 6、关于整个电源管理系统的绝缘,由于负载设备通过出线侧电缆连接至海底工作,对绝缘的监测和安全控制是电源管理系统的重要环节,故要求: a、对上述绝缘参数进行实时、严密的监控和记录; b、依据相关海底电气绝缘标准,设置报警值、跳闸值,且监测到整个 电源管理系统及负载侧绝缘降低至相应的设定值时进行报警或跳闸 动作;

c、电源管理系统应有对上述绝缘的测试功能,可在电源管理系统、海 底设备和连接电缆合闸工作前进行绝缘测试,测试值低于报警值或 跳闸值时,整个电源管理系统不得启动; 7、人机界面采用触摸屏或其他数字仪表进行监测、操作及数据记录等; 8、整个系统设有相应的通讯端口,以便于对其进行远程监测和操作; 三、其他要求: 1、上述功能的实现必需达到稳定可靠,故障率低; 2、所有元器件的必须用进口国际知名品牌; 3、电源管理系统的其他设计参照符合使用环境的相关技术规范,上述内容中如有与相关国家和行业规范冲突之处,请及时沟通; 4、上述内容为基本要求,贵公司如有更优化、合理的建议,请及时沟通;

各种超低功耗隔离技术的比较及应用

各种超低功耗隔离技术的比较及应用 长久以来,隔离一直被设计师视为一个必不可少的负担。说它必不可少是因为,它可以使电子元件变得安全,以便任何人都能使用。说它是个负担是因为,它会限制通信速度,消耗大量电能,并占用较大的电路板空间。基于老技术的光耦合器,甚至许多较新的数字隔离器,其功耗非常高,致使某些类型的应用失去了可行性。在本文中,我们将考察超低功耗隔离领域的最新发展,其与现有技术的关系,以及其实现方式。同时,我们还将探讨可以从这类新器件受益的多种应用。 对设计师来说,大约45年前出现的现代光耦合器是一个巨大的进步。它们允许在电源控制电路中实现反馈,在通信电路中实现信号隔离以中断接地环路,以及对高端功率晶体管或电流监控器进行通信。 20世纪70年代,光电器件大量涌现。这些器件影响了RS-232、RS-485等通信标准,以及4至20mA电路环路和DeviceNet及PROFIBUS等工业总线的发展。受隔离器件本身限制的影响,光隔离的功能决定了这些通信总线的诸多特性。在接下来的20年中,隔离技术的发展变化基本上属于量变,而到了2000年,市场上出现了首批新型芯片级数字隔离器。这些新器件以感性耦合技术为基础,采用芯片级变压器、GMR材料以及后来的差分容性耦合技术。与较老的光耦合器相比,这些新技术可以实现超高的速率和超低的功耗水平,然而,受当时实施的标准限制,新器件的许多功能(如高速率)并未得到充分利用,因为现行标准接口并不需要这些功能。 在数字隔离器采用标准封装和IC工艺制造其编码和解码电子元件之后,数字化功能的添加变得十分简便。低功耗、对低电源电压的支持以及高集成度成为非光学隔离器的主要设计优势。能大幅提高隔离速率并且大幅降低隔离功耗的新技术可以支持要求最为苛刻的新接口标准。目前,数字隔离器的功耗(远远低于光耦合器)需要低两至三个数量级才能进入新的应用空间。到目前为止,高性能隔离还不能实现这一目标。 各种技术的比较 隔离器件性能的快速发展是数据编码方案与数据传输所用介质的效率共同作用的结果。在

数字电源管理技术及应用详解

数字电源管理技术及应用详解 本文介绍了数字电源的基本特点、数字电源相比于模拟电源的优势和数字电源管理的主要内容,也介绍了数字电源管理技术的应用。 新一代集成电路需要3.3V,1.8V甚至更低的电源电压,单个器件需要多路电压供电,而且电流的需求很大,电压也必须以正确的时序加到器件上。为这些器件供电的电压必须在电路板上(最好在距离这些器件近的地方)产生,以使压降最小和电压稳定。高性能的DC/DC 转换器适用于宽范围输入,既可作为隔离式电源,也可作为非隔离负载点转换器。因此,大多数板载电源系统已经采用DC/DC转换模块作为供电主体。但是,若缺少了电源管理电路,则无法构建一个完整、健全的电源系统。电源管理的内容包括:电源系统监控、定序和跟踪、监视和失效保护。电源管理器件在输入端处理共模抑制、起动限制、起动和关闭的控制,甚至功率因数校正等功能。配置在输出端的电源管理器件控制启动定序和输出电压调节,并为过欠压、过流情况提供相应的失效保图1电源管理器件在隔离型AC/DC电源系统中的应用护。所有相关功能电路均要求与主电路隔离。 图1所示为在隔离型AC/DC变换器中电源管理器件的主要应用。 专用的数字电源管理器件比通常采用的模拟电路或微控制器、可编程逻辑器件等方法在成本、开发周期和可靠性方面具有较大优势。新一代的数字电源管理器件内部集成了能够满足实时监控需求的快速ADC,使它能比通用微控制器的片外ADC更快地反映失效。监测数据通过I2C或PMBus总线传输给电源主控制器,用以实现精准的调压设置、故障保护等功能。内部的时钟可实现故障记录。对于多路输出的电源系统,数字电源主控制器实时地通过总线接口从各输出端的管理器件内读出各路输出的监测数据,实现了电源系统的全面监视。一旦

浅析DSP应用系统中降低功耗的设计办法

浅析DSP应用系统中降低功耗的设计办法 摘要:本文就TMS320系列定点DSP器件为例,介绍一些行之有效的降低功耗的设计方法。 关键词:DSP器件DSP运行外围电路 一、合理选择DSP器件 应根据系统要求来选择合适的DSP器件。在典型的DSP应用系统中,通常其核心是由一片或多片DSP构成数据处理模块,由于系统运算量大且速度要求高,因此DSP内部的部件开关状态转换十分频繁,这使得DSP器件的功耗在应用系统的功耗中占有相当的比例,所以设计人员在进行电路低功耗设计时要熟悉DSP及其相关产品的情况。DSP器件的功耗与该系统的电源电压有关,同一系列的产品,其供电电压也可能不同,如TMS320C2XX系列中供电电压就有5V 和3.3V两种,在系统功耗是系统设计首要目标的情况下,应尽可能地选择低电压供电的DSP器件。选择3.3V低电压供电的DSP除了能减小DSP本身的功耗以降低系统的总功耗外,还可以使外部逻辑电路功耗降低,这对实现系统低功耗有着重要的作用。DSP生产厂家也比较注重系统功耗的问题,德州仪器公司(TI)为实现低功耗应用系统而设计了一批新型的DSP器件,以其中的TMS32OC55X 为例,C55X可以在0.9V和0.05mw/MIPS环境下运行,传输速率可达800MIPS,其功耗相当于T1上一代芯片C54X功耗的15%左右,非常适合应用于电池供电系统。此外,Tl公司还充分考虑DSP电源供电设计的问题,为支持DSP设计的TPS767D3XX将两个1—A线性稳压器和两个上电复位开关封装在一起,它不仅降低组件数量和电路板大小,使系统的成本降低,对于系统降低功耗也有重要的作用。 TPS767D3xx在全部1—A输出范围内提供极快的瞬态响应、低压差和几乎恒定的低静态电流(典型值为85μA),压差在IA时的典型值为350mV。可以说,选择何种器件基本上就决定了系统功耗的大小。 二、让DSP以适当的速度运行 TMS320系列的DSP一般采用CMOS工艺,CMOS电路的静态功耗极小,而其动态功耗的大小与该电路改变逻辑状态的频率和速度密切相关。TMS320系列应用系统的功耗与工作频率即系统时钟(CLKOUTI)成正比。在不需要DSP的全部运算能力时,可以适当地降低TMS320的系统时钟频率令DSP适速运行以降低系统功耗。当时钟频率增加时,电流也相应地增加,执行同样程序代码的时间会相应缩短。例如,以1.2mA/MHz运行一段500个时钟周期代码,当CLKOUT1为1OMHz时,DSP执行该段代码用时50μs,所需电流为12mA;当CLKOUT1增加到20MHz时,所需电流增加到24mA,执行时间缩短为25μs。TMS320系列执行一段用户程序所耗能量与器件执行快慢无关,因为该能量仅仅取决于DSP 器件内部逻辑状态转换的数目。如此看来,似乎DSP的功耗并未降低,那为什么不让DSP全速运行呢?原来,DSP以全速运行完代码后使用IDLE指令,进入

低功耗广域网(LPWAN)技术

是德科技 低功耗广域网(LPWAN) 技术——优势和测试挑战 应用指南

什么是 LPWAN? 物联网是指由数十亿个设备连接到互联网所组成的一个网络。一些常见的设备包括可穿戴设备和智能家居设备等。这些类型的应用,基本上是要以牺牲部分隐私为代价来获取某些便利。对于工业物联网而言,其优势是巨大的。物联网可以提升工作效率、降低成本、减少能耗,还包括机器学习依据大数据做出动作。通过分析所有这些设备所产生的数据,您可以提升工作效率,或为客户提供更好的服务。由于您能够更深入地了解客户,因此能提供新的服务并扩大业务范围。 不过,当今的大多数无线技术还无法满足物联网的要求,尤其是在覆盖范围或电池使用寿命方面。 数据速率/功耗 覆盖范围 图 1. 比较 LPWAN 技术与其他物联网无线标准的数据速率、功耗和覆盖范围 为了满足物联网的要求,您必须在数据速率、功耗和覆盖范围之间进行权衡。要实现低功耗,可能不得不牺牲数据速率。 在图 1 中,WLAN 和 LTE(蜂窝)能以极高的数据速率和高功耗提供短距离和长距离的覆盖范围。 ZigBee、BT LE 和 NFC 能以中等数据速率和低功耗提供短距离的覆盖范围。 LPWAN 是一种能够同时满足覆盖范围和电池使用寿命要求的技术。它能提供最长距离的覆盖范围,而功耗非常小,同时只需牺牲少许的数据速率。很多智慧城市和智能公用事业应用,例如智能路灯、湿度传感器、智能计量和智能停车,对数据速率的要求不高,但却需要非常广阔的覆盖范围。这就是您需要 LPWAN 的原因。

LPWAN 技术:案例研究 让我们思考一下,如何使用 LPWAN 在无线智能计量应用中提高工作效率。 一家公用事业公司负责为一个小城镇的所有家庭供水。这家公司必须派人到每一户去抄水表。这个过程完全通过人工完成,在上门的路上浪费了大量时间。如果能够在每一户中部署水表,通过水表无线跟踪用水情况,并将数据发送到云,该公司就可以节省大量的工时,进而节省大量的成本,使公司可以专注于其他领域。此外,这家公用事业公司将能更好地了解客户的用水模式,并据此优化供水能力,确保在高峰时段提供充足供水。 为了无线跟踪用水情况,该公司必须为水表添加一个很小的硬件设备,即物联网客户端或代理器。这个硬件可以读取水表数字,并将读数定期发送到云。在这种情况下,数据速率和时延并不重要。最重要的因素是覆盖范围和电池使用寿命。某些水表安装在遥远的位置、地下室或难以到达的地方。无线技术必须支持广泛的覆盖区域,并能提供深入的室内覆盖。水表中的电池预期能够使用 10 年以上。 因此,这些服务提供商面临的挑战是: 1. 将所有这些处于遥远位置的水表通过无线技术连接到云。 2. 确保这些水表中的电池使用寿命达到 10 年以上。 为了克服这些挑战,这家公用事业公司可以采用一种 LPWAN 技术。通常,我们可以把这些技术分为授权许可的技术和非授权许可的技术。每一种技术都有其优点和缺点。

对半导体技术、微电子技术、集成电路技术三者的浅略认识

对半导体技术、微电子技术、集成电路技术三者的浅略认识 一、半导体技术、微电子技术、集成电路技术三者的联系与区别 我们首先从三者的概念或定义上来分别了解一下这三种技术。 半导体技术就是以半导体为材料,制作成组件及集成电路的技术。在电子信息方面,绝大多数的电子组件都是以硅为基材做成的,因此电子产业又称为半导体产业。半导体技术最大的应用便是集成电路,它们被用来发挥各式各样的控制功能,犹如人体中的大脑与神经。 微电子技术是随着集成电路,尤其是超大型规模集成电路而发展起来的一门新的技术,是建立在以集成电路为核心的各种半导体器件基础上的高新电子技术,为微电子学中的各项工艺技术的总和。 集成电路技术,在电子学中是一种把电路小型化的技术。采用一定的工艺,把一个电路中所需的各种电子元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构。(以上三者概念均来源于网络)这般看来,三者概念上互相交叉,却也略有区别。依我这个初次接触这三个名词、对电子信息几乎一窍不通的大一新生来看,半导体技术是其他二者技术的基础,因为半导体是承载整个电子信息的基石,不管是微电子还是集成电路,便是以半导体为材料才可以建造、发展。而微电子技术,个人感觉比较广泛,甚至集成电路技术可以包含在微电子技术里。除此之外,诸如小型元件,如纳米级电子元件制造技术,都可以归为微电子技术。而集成电路技术概念上比较狭窄,单单只把电路小型化、集成化技术,上面列举的小型元件制造,便不能归为集成电路技术,但可以归为微电子技术。以上便是鄙人对三者概念上、应用上联系与区别的区区之见,如有错误之处还望谅解。 二、对集成电路技术的详细介绍 首先我们了解一下什么是集成电路。 集成电路是一种微型电子器件或部件。人们采用一定的工艺,把一个电路中所需的各种元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构。其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗、智能化和高可靠性方面迈进了一大步。它在电路中用字母“IC”表示。当今半导体工业大多数应用的是基于硅的集成电路。集成电路具有体积小,重量轻,引出线和焊接点少,寿命长,可靠性高,性能好等优点,同时成本低,便于大规模生产。 而简单来说,集成电路技术便是制造集成电路的技术方法。它涉及半导体器件物理、微电子学、电子学、无线电、光学以及信息学等学科领域的知识。 从产业分工角度,集成电路技术可以分为集成电路加工技术、集成电路测试封装技术以及集成电路设计技术等几方面。 1. 集成电路加工技术 集成电路加工技术主要是通过物理或化学手段在硅材料上生成半导体器件(比如场效应管)以及器件之间的物理互连。这些器件以及器件之间的互连构成的电路功能要符合系统设计要求。集成电路加工技术涉及的知识包括半导体器件物理、精密仪器、光学等领域,具体应用在工艺流程中,包括注入、掺杂、器件模型、工艺偏差模型、成品率分析以及工艺过程设计等。在近十几年的时间里,集成电路加工工艺水平一直按照摩尔(Moore)定律在快速发展。 2.集成电路测试、封装技术 集成电路测试包括完成在硅基上产生符合功能要求的电路后对裸片硅的功能和性能的

低功耗解决方案

低功耗解决方案 篇一:低功耗高能效的电源MCU方案 低功耗高能效的电源MCU方案 当电池需要在几年甚至几十年中为某个产品供电时,不断改进MCU集成产品和轻微修改基本处理器结构都不能满足人们急剧增加的节能需要。针对很多能源敏感产品,如:计量器、楼宇自动化产品、安全产品和便携式医疗设备,如果节能需求和处理功率之间发生了冲突,就必须要大规模发展MCU设计。 EnergyMicro采用了一种‘bluesky’的方法来设计它的低功率EFM32Gecko微处理器,也开发了支持这个产品的软件和硬件工具(图1)。EnergyMicro现已生产了一种装置,仅够消耗现有8位、16位和32位MCU所耗能量的四分之一,使现有电池的寿命大大延长了。换句话说,有了这样的节能MCU,产品设计人员能够大大削减电池的成本、缩小它的尺寸了。而对某些产品,如能源计量器和安全设备,有了频率、成本和碳足迹的维护标注,电池的更换次数就更少了。 要在MCU上获得如此低功率的资格不是件容易的事,需要进行多年的开发,实现真正的创新。到EnergyMicro的网站上去查一查最高峰值,您就会发现有关技术的描述都取了很大的标题,让32位EFM32成为世界上最节能的微控制器

的10大原因,实际上肯定还有更多的原因。 我们先把“超低能量”的specmanship(技术指标差距)放在一边吧。当电池充电量有限时,MCU如何能超时使用能源就变得很重要。在产品的休眠期内减少其能耗和时间与在活跃期时要做的工作一样重要。EFM32MCU以ARMCortex-M3处理核为基础,在设计上大大减少了活跃模式的电源消耗。在基准测试中,32MHz的EFM32实际需要3V的供电,以180μA/MHz的能量运行正确的Flash代码。 这很好,但MCU需要多长时间来处理任务也会对节能产生重要影响。因此,使用32位Cortex-M3比8位和16位器件的处理效率高,执行任务的时钟周期也短得多,这样就会大大缩短产品活跃期。通过保持尽可能短的活跃周期,32位MCU更多的时候都处于深度睡眠模式。人们都忘记了过去32位处理器是不能传送sub-?A待机模式的,采用了正确的低功耗设计技术,现在可以做到这点了。EFM32可以提供所有基线功能,如:实时计数器、RAM和CPU保持、掉电检测和深度睡眠模式中的开机重设,全部只使用μA的能量。 通常,在我们提到的目标应用中,MCU的工作周期可以非常短,MCU在深睡眠状态可停留高达99%的时间。因此,这里的消耗对整体节能真的很重要。 如果MCU从深度睡眠中唤醒产品并重新进入活跃模式所花的时间很长,其优势就会丧失。为什么呢?因为当MCU从

电源管理模块

电源管理模块 手指康复机器人的数字电路部分需要直流电源供电,故电源管理模块首先采用的开关电源将220v 的交流电转换为直流电压,再利用低压线性稳压器为各个子模块供电。 为了避免模拟信号与数字信号地相互干扰,将交流电压转换为两个独立的直流电源,再分别为模拟电路和数字电路的电源供电。电源管理系统拓扑结构如下: 具体实现如下: ① +12V 转+8V 采用的是LM7808,这是一块三端集成的稳压电路,能够准确的降压到+8V 。电路两端的电容作用都为滤波,用来平滑电压与提高抗干扰能力。其中输出端并联220uF/25V 的电解电容,它自谐频率小,可以起到储能滤波的功能,消除低频干扰。但是由于大电容的电解电容自身存在一定的电感,对于高频信号以及脉冲干扰信号无法有效滤除,故并联一个或几个容值比较小的陶瓷电容,以达到滤除高频干扰信号的作用。 220V 交流电 12V 直流电源 LM2596S5 24V 直流电源 MRF 7808 NE555 LM117-3.3 7414 7474 ARM 外围电路 AD REF TLV5620 LT3080 LM358 WD5-24S5 直流电机电源 HCPL2630 TLP185 3.3 12 5 8 -8 24 5

②+12V转-8V采用NE555芯片,这是一款将模拟功能和逻辑功能很好的结合在一起的芯片,应用的范围十分广泛。 其内部结构如上,当NE555的第三脚输出高电平,通过D1向C1充电,电压可达11V。当NE555输出为低电平时,D1被C2反偏截止。C2向C3转移电荷,重复多次后C3电压达8V,相对地线则输出视为-8V ③+12V转+5V采用的是开关型集成稳压芯片LM2596,它内含固定频率振荡器,以及基准稳压器,并具备完善的保护电路、热关断电路、电流限制等。

单片机低功耗技术及应用

单片机低功耗技术及应用 摘要: 介绍单片机的低功耗低功耗设计技术特点及单片机应用单片机应用系统中的低功耗设计低功耗设计要注意的几个问题,并列举了充分利用片内资源实现低功耗及C语言源程序。 关键词: 单片机低功耗设计 随着集成电路技术和工艺的飞速发展,真正单片化的单片机已经成为主流产品。它的绝大部分资源都在单片机芯片内部;过去需要用外部扩展器件才能实现的功能,如ROM、RAM、A/D、D/A、数字量I/O、显示驱动等功能,现在在单片机内部就可以完成。单片机的真正单片化,省去了大量的硬件开发调试工作,大大地提高了工作效率;系统先天的可靠性、抗干扰能力得到了显著的改善。经实验测试,实现同样功能的系统,采用单片方式比总线扩展方式具有更多的优点。系统不仅功能强、性能可靠、成本降低,而且进一步微型化和便携化。因此,使用电池作为系统的电源也越来越普遍。系统的最小电源消耗和最大的电池寿命就成为主要的技术要求。例如1999年的多国仪器仪表展览会上,不止一家国外公司展出了使用电池的工业流量计,5~10年都不必更换电池和进行维护。所以低功耗单片机的应用有着非常广阔的天地。低功耗单片机应用符合现代电子终端产品的要求:便携、节能、可靠等。目前国际上先进的单片机生产厂商,如日本NEC、富士通、爱普森和美国TI等公司都采用了低功耗设计。笔者在一些应用中使用了日本NEC公司的78K0和78K0S系列的单片机,其休眠状态下的功耗电流可达到0.05~0.01μA。 1 单片机的低功耗设计技术 1.1 高集成度的完全单片化设计 将很多外围硬件集成到了CPU芯片中,增大硬件冗余。内部以低功耗、低电压的原则设计,这给单片机的低功耗设计提供了很强的支持。 1.2 内部电路可选择性工作 通过特殊功能寄存器选择使用不同的功能电路,即依靠软件选择其中不同的硬件;对于不使用的功能使其停止工作,以减少无效功耗。 1.3 宽电源电压范围 先进的单片机芯片工艺特点决定了单片机在很宽的电源电压范围内都能正常工作。例如,NEC公司的78K0和78K0S系列的单片机,可以在1.8V~5.5V电源电压范围内正常工作。单片机供电电压范围的放宽,可以进一步拓宽单片机的应用领域,尤其是便携式或掌上型仪器或装置,可以放心地使用电池作为电源,而不必关心电池放电过程电压曲线是否平稳、是否会影响单片机正常工作,更不必因电池供电而专门增加稳压电路,从而可减少大约1/3的功率消耗。 1.4 具有高速和低速两套时钟 系统运行频率越高,电源功耗就会相应增大。为更好地降低功耗,内部集成了两套独立的时钟系统,高速的主时钟和32.768kHz的副时钟。也可在满足功能需要的情况下按一定比例降低CPU主时钟频率时钟频率,以降低电源功耗。在不需要高速运行的情况下,可选用副时钟低速运行,进一步降低功耗。通过软件对特殊功能寄存器赋值可改变CPU的时钟频率,或进行主时钟和副时钟切换。 1.5 在线改变CPU的工作频率 可根据CPU处理任务的不同,在外部振荡器不变的情况下,通过程序改变处理器时钟控制寄存器PCC的值,在线改变CPU的频率。CPU在几种不同频率下工作的电源功耗比较。

STM8L051低功耗模式实现说明文档

STM8L051低功耗模式测试文档 STM8L051的五种低功耗模式wait ,low power run mode,low power wait mode,Ative-Halt mode,Halt mode。 1、WAIT mode 在等待模式,CPU的时钟是停止的,被选择的外设继续运行。W AIT mode 分为两种方式:WFE,WFI。WFE是等待事件发生,才从等待模式中唤醒。WFI是等待中断发生,才从等待模式中唤醒。 2、low power run mode 在低功耗运行模式下,CPU和被选择的外设在工作,程序执行在LSI或者LSE下,从RAM 中执行程序,Flash和EEPROM都要停止运行。电压被配置成Ultra Low Power模式。进入此模式可以通过软件配置,退出此模式可以软件配置或者是复位。 3、low power wait mode 这种模式进入是在low power run mode下,执行wfe。在此模式下CPU时钟会被停止,其他的外设运行情况和low power run mode类似。在此模式下可以被内部或外部事件、中断和复位唤醒。当被事件唤醒后,系统恢复到low power run mode。 4、Active-Halt mode 在此模式下,除了RTC外,CPU和其他外设的时钟被停止。系统唤醒是通过RTC中断、外部中断或是复位。 5、Halt mode 在此模式下,CPU和外设的时钟都被停止。系统唤醒是通过外部中断或复位。关闭内部的参考电压可以进一步降低功耗。通过配置ULP位和FWU位,也可以6us的快速唤醒,不用等待内部的参考电压启动。 一、各个低功耗模式的代码实现 1、WAIT mode 等待模式分为两种:WFI和WFE。 1.1 WFI mode 当执行“wfi”语句时,系统就进入WFI模式,当中断发生时,CPU被从WFI模式唤醒,执行中断服务程序和继续向下执行程序。 通过置位CFG_GCR的AL位,使主程序服务完中断服务程序后,重新返回到WFI 模式。 程序如下: void Mcuwfi() { PWR_UltraLowPowerCmd(ENABLE); //开启电源的低功耗模式 CLK_HSEConfig(CLK_HSE_OFF); //关闭HSE时钟(16MHz) #ifdef USE_LSE CLK_SYSCLKSourceConfig(CLK_SYSCLKSource_LSE);

低功耗电路设计

便携式产品低功耗电路设计的综合考虑 集成电路和计算机系统的发展对低功耗的要求越来越高 分析了功耗产生的主要原因以及与成本的关系 如今为了适应这一变化 低功率逻辑电路的标准被定义为每一级门电路功耗小于1.3uW/MHz最终用户认为 对于总体系统设计来说这是电子工业发展的必然趋势更轻和功能更强大的最终产品 从功率观点看设计任务将变得更加艰巨 就是单个或一组充电电池能维持设备连续几天的工作 另外绿色所有政府部门采购的台式电脑必须符合功耗要求 VLSI技术公司移动产品部销售经理Barta指出深绿色 这些机器将挂起所有操作直到被相关激励信号唤醒后才进入正常运行模式 ARPA?y?ú??μí1|?êμ?×óáìóò×÷é?è??D?? ê1D?ò?′úμ?×ó?μí3μ?1|o?????μíóú??óD?μí3μ?1|o? ?÷?tμ??′1üàíμè?÷??áìóò?Dμ??è????ê? òò?a?aá???áìóòé??°′óá?μ??ìo?D?o?′|àí 随着每隔几年电路密度的成倍增大难度越来越大 LSI逻辑公司ASIC市场部副总裁Koc说200k门数的芯片 这么大的功率已经远远超过了封装的散热能力 因为高温工作会给集成电路带来可靠性和功能性问题 与温度有关的这些故障模型包括工作器件故障以及电流密度 低功率应用 在电池供电模式下由于受便携式电脑的实际尺寸和重量限制也限制了电池的大小和重量

低功率系统的另一个例子是蜂窝电话模拟电路 电池在充电一次后接收模式下工作一整天 一般来说而现在系统设计都将功耗作为其中的一项重要性能指标 同时也带来功耗问题但利用适当的功率控制方法或创新性设计可以获得多种解决方案 首先则速度越慢 会减小电容充放电的电流或负载驱动电流较低的电压将导致较低的输出功率或较低的信号幅度 产生功耗的原因 整体的功耗取决于诸多因素封装密度产品性能和供电电压往往速度越高功耗越大 它通常由负载器件和寄生元件产生 在电阻性负载电路如模拟电路中更是如此 电路中的导线(金属导线)和层间寄生电阻会产生静态阻抗功耗 有源器件的正常工作模式可用一条转移曲线和某些I-V特性来描述 适用于全部有源器件对无源和有源器件来说 在CMOS电路中I-V转移曲线是一个瞬态函数 从一个状态转移到另一个状态不消耗功率转移曲线并不是理想的方形理论上看 具有零内阻的开关器件会在电源与地之间形成直接短路的现象 最大的功耗来自于内部和外部电容的充放电 据此 峰值电流I=C(V/T)T是上升或下降沿时间因此峰值电流通常都比较大此时C 是指输出端的负载电容F则是开关频率 所需要的电源电压也越高由此产生的影响涉及到电源总线母板布线另外 因此可能会影响到系统的总体封装

相关主题